mirror of
https://github.com/beefytech/Beef.git
synced 2025-06-29 04:55:58 +02:00
366 lines
12 KiB
C++
366 lines
12 KiB
C++
// Copyright (c) 2011, Google Inc.
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived from
|
|
// this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
// ----
|
|
// Author: llib@google.com (Bill Clarke)
|
|
|
|
#include "config_for_unittests.h"
|
|
#include <assert.h>
|
|
#include <stdio.h>
|
|
#ifdef HAVE_MMAP
|
|
#include <sys/mman.h>
|
|
#endif
|
|
#ifdef HAVE_UNISTD_H
|
|
#include <unistd.h> // for sleep()
|
|
#endif
|
|
#include <algorithm>
|
|
#include <string>
|
|
#include <vector>
|
|
#include <gperftools/malloc_hook.h>
|
|
#include "malloc_hook-inl.h"
|
|
#include "base/logging.h"
|
|
#include "base/simple_mutex.h"
|
|
#include "base/sysinfo.h"
|
|
#include "tests/testutil.h"
|
|
|
|
// On systems (like freebsd) that don't define MAP_ANONYMOUS, use the old
|
|
// form of the name instead.
|
|
#ifndef MAP_ANONYMOUS
|
|
# define MAP_ANONYMOUS MAP_ANON
|
|
#endif
|
|
|
|
namespace {
|
|
|
|
using std::string;
|
|
using std::vector;
|
|
|
|
vector<void (*)()> g_testlist; // the tests to run
|
|
|
|
#define TEST(a, b) \
|
|
struct Test_##a##_##b { \
|
|
Test_##a##_##b() { g_testlist.push_back(&Run); } \
|
|
static void Run(); \
|
|
}; \
|
|
static Test_##a##_##b g_test_##a##_##b; \
|
|
void Test_##a##_##b::Run()
|
|
|
|
|
|
static int RUN_ALL_TESTS() {
|
|
vector<void (*)()>::const_iterator it;
|
|
for (it = g_testlist.begin(); it != g_testlist.end(); ++it) {
|
|
(*it)(); // The test will error-exit if there's a problem.
|
|
}
|
|
fprintf(stderr, "\nPassed %d tests\n\nPASS\n",
|
|
static_cast<int>(g_testlist.size()));
|
|
return 0;
|
|
}
|
|
|
|
void Sleep(int seconds) {
|
|
#ifdef _MSC_VER
|
|
_sleep(seconds * 1000); // Windows's _sleep takes milliseconds argument
|
|
#else
|
|
sleep(seconds);
|
|
#endif
|
|
}
|
|
|
|
using std::min;
|
|
using base::internal::kHookListMaxValues;
|
|
|
|
// Since HookList is a template and is defined in malloc_hook.cc, we can only
|
|
// use an instantiation of it from malloc_hook.cc. We then reinterpret those
|
|
// values as integers for testing.
|
|
typedef base::internal::HookList<MallocHook::NewHook> TestHookList;
|
|
|
|
int TestHookList_Traverse(const TestHookList& list, uintptr_t* output_array, int n) {
|
|
MallocHook::NewHook values_as_hooks[kHookListMaxValues];
|
|
int result = list.Traverse(values_as_hooks, min(n, kHookListMaxValues));
|
|
for (int i = 0; i < result; ++i) {
|
|
output_array[i] = reinterpret_cast<const uintptr_t>(*values_as_hooks[i]);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
bool TestHookList_Add(TestHookList* list, int val) {
|
|
return list->Add(reinterpret_cast<MallocHook::NewHook>(val));
|
|
}
|
|
|
|
bool TestHookList_Remove(TestHookList* list, int val) {
|
|
return list->Remove(reinterpret_cast<MallocHook::NewHook>(val));
|
|
}
|
|
|
|
// Note that this is almost the same as INIT_HOOK_LIST in malloc_hook.cc without
|
|
// the cast.
|
|
#define INIT_HOOK_LIST(initial_value) { 1, { initial_value } }
|
|
|
|
TEST(HookListTest, InitialValueExists) {
|
|
TestHookList list = INIT_HOOK_LIST(69);
|
|
uintptr_t values[2] = { 0, 0 };
|
|
EXPECT_EQ(1, TestHookList_Traverse(list, values, 2));
|
|
EXPECT_EQ(69, values[0]);
|
|
EXPECT_EQ(1, list.priv_end);
|
|
}
|
|
|
|
TEST(HookListTest, CanRemoveInitialValue) {
|
|
TestHookList list = INIT_HOOK_LIST(69);
|
|
ASSERT_TRUE(TestHookList_Remove(&list, 69));
|
|
EXPECT_EQ(0, list.priv_end);
|
|
|
|
uintptr_t values[2] = { 0, 0 };
|
|
EXPECT_EQ(0, TestHookList_Traverse(list, values, 2));
|
|
}
|
|
|
|
TEST(HookListTest, AddAppends) {
|
|
TestHookList list = INIT_HOOK_LIST(69);
|
|
ASSERT_TRUE(TestHookList_Add(&list, 42));
|
|
EXPECT_EQ(2, list.priv_end);
|
|
|
|
uintptr_t values[2] = { 0, 0 };
|
|
EXPECT_EQ(2, TestHookList_Traverse(list, values, 2));
|
|
EXPECT_EQ(69, values[0]);
|
|
EXPECT_EQ(42, values[1]);
|
|
}
|
|
|
|
TEST(HookListTest, RemoveWorksAndWillClearSize) {
|
|
TestHookList list = INIT_HOOK_LIST(69);
|
|
ASSERT_TRUE(TestHookList_Add(&list, 42));
|
|
|
|
ASSERT_TRUE(TestHookList_Remove(&list, 69));
|
|
EXPECT_EQ(2, list.priv_end);
|
|
|
|
uintptr_t values[2] = { 0, 0 };
|
|
EXPECT_EQ(1, TestHookList_Traverse(list, values, 2));
|
|
EXPECT_EQ(42, values[0]);
|
|
|
|
ASSERT_TRUE(TestHookList_Remove(&list, 42));
|
|
EXPECT_EQ(0, list.priv_end);
|
|
EXPECT_EQ(0, TestHookList_Traverse(list, values, 2));
|
|
}
|
|
|
|
TEST(HookListTest, AddPrependsAfterRemove) {
|
|
TestHookList list = INIT_HOOK_LIST(69);
|
|
ASSERT_TRUE(TestHookList_Add(&list, 42));
|
|
|
|
ASSERT_TRUE(TestHookList_Remove(&list, 69));
|
|
EXPECT_EQ(2, list.priv_end);
|
|
|
|
ASSERT_TRUE(TestHookList_Add(&list, 7));
|
|
EXPECT_EQ(2, list.priv_end);
|
|
|
|
uintptr_t values[2] = { 0, 0 };
|
|
EXPECT_EQ(2, TestHookList_Traverse(list, values, 2));
|
|
EXPECT_EQ(7, values[0]);
|
|
EXPECT_EQ(42, values[1]);
|
|
}
|
|
|
|
TEST(HookListTest, InvalidAddRejected) {
|
|
TestHookList list = INIT_HOOK_LIST(69);
|
|
EXPECT_FALSE(TestHookList_Add(&list, 0));
|
|
|
|
uintptr_t values[2] = { 0, 0 };
|
|
EXPECT_EQ(1, TestHookList_Traverse(list, values, 2));
|
|
EXPECT_EQ(69, values[0]);
|
|
EXPECT_EQ(1, list.priv_end);
|
|
}
|
|
|
|
TEST(HookListTest, FillUpTheList) {
|
|
TestHookList list = INIT_HOOK_LIST(69);
|
|
int num_inserts = 0;
|
|
while (TestHookList_Add(&list, ++num_inserts))
|
|
;
|
|
EXPECT_EQ(kHookListMaxValues, num_inserts);
|
|
EXPECT_EQ(kHookListMaxValues, list.priv_end);
|
|
|
|
uintptr_t values[kHookListMaxValues + 1];
|
|
EXPECT_EQ(kHookListMaxValues, TestHookList_Traverse(list, values,
|
|
kHookListMaxValues));
|
|
EXPECT_EQ(69, values[0]);
|
|
for (int i = 1; i < kHookListMaxValues; ++i) {
|
|
EXPECT_EQ(i, values[i]);
|
|
}
|
|
}
|
|
|
|
void MultithreadedTestThread(TestHookList* list, int shift,
|
|
int thread_num) {
|
|
string message;
|
|
char buf[64];
|
|
for (int i = 1; i < 1000; ++i) {
|
|
// In each loop, we insert a unique value, check it exists, remove it, and
|
|
// check it doesn't exist. We also record some stats to log at the end of
|
|
// each thread. Each insertion location and the length of the list is
|
|
// non-deterministic (except for the very first one, over all threads, and
|
|
// after the very last one the list should be empty).
|
|
int value = (i << shift) + thread_num;
|
|
EXPECT_TRUE(TestHookList_Add(list, value));
|
|
sched_yield(); // Ensure some more interleaving.
|
|
uintptr_t values[kHookListMaxValues + 1];
|
|
int num_values = TestHookList_Traverse(*list, values, kHookListMaxValues);
|
|
EXPECT_LT(0, num_values);
|
|
int value_index;
|
|
for (value_index = 0;
|
|
value_index < num_values && values[value_index] != value;
|
|
++value_index)
|
|
;
|
|
EXPECT_LT(value_index, num_values); // Should have found value.
|
|
snprintf(buf, sizeof(buf), "[%d/%d; ", value_index, num_values);
|
|
message += buf;
|
|
sched_yield();
|
|
EXPECT_TRUE(TestHookList_Remove(list, value));
|
|
sched_yield();
|
|
num_values = TestHookList_Traverse(*list, values, kHookListMaxValues);
|
|
for (value_index = 0;
|
|
value_index < num_values && values[value_index] != value;
|
|
++value_index)
|
|
;
|
|
EXPECT_EQ(value_index, num_values); // Should not have found value.
|
|
snprintf(buf, sizeof(buf), "%d]", num_values);
|
|
message += buf;
|
|
sched_yield();
|
|
}
|
|
fprintf(stderr, "thread %d: %s\n", thread_num, message.c_str());
|
|
}
|
|
|
|
static volatile int num_threads_remaining;
|
|
static TestHookList list = INIT_HOOK_LIST(69);
|
|
static Mutex threadcount_lock;
|
|
|
|
void MultithreadedTestThreadRunner(int thread_num) {
|
|
// Wait for all threads to start running.
|
|
{
|
|
MutexLock ml(&threadcount_lock);
|
|
assert(num_threads_remaining > 0);
|
|
--num_threads_remaining;
|
|
|
|
// We should use condvars and the like, but for this test, we'll
|
|
// go simple and busy-wait.
|
|
while (num_threads_remaining > 0) {
|
|
threadcount_lock.Unlock();
|
|
Sleep(1);
|
|
threadcount_lock.Lock();
|
|
}
|
|
}
|
|
|
|
// shift is the smallest number such that (1<<shift) > kHookListMaxValues
|
|
int shift = 0;
|
|
for (int i = kHookListMaxValues; i > 0; i >>= 1)
|
|
shift += 1;
|
|
|
|
MultithreadedTestThread(&list, shift, thread_num);
|
|
}
|
|
|
|
|
|
TEST(HookListTest, MultithreadedTest) {
|
|
ASSERT_TRUE(TestHookList_Remove(&list, 69));
|
|
ASSERT_EQ(0, list.priv_end);
|
|
|
|
// Run kHookListMaxValues thread, each running MultithreadedTestThread.
|
|
// First, we need to set up the rest of the globals.
|
|
num_threads_remaining = kHookListMaxValues; // a global var
|
|
RunManyThreadsWithId(&MultithreadedTestThreadRunner, num_threads_remaining,
|
|
1 << 15);
|
|
|
|
uintptr_t values[kHookListMaxValues + 1];
|
|
EXPECT_EQ(0, TestHookList_Traverse(list, values, kHookListMaxValues));
|
|
EXPECT_EQ(0, list.priv_end);
|
|
}
|
|
|
|
// We only do mmap-hooking on (some) linux systems.
|
|
#if defined(HAVE_MMAP) && defined(__linux) && \
|
|
(defined(__i386__) || defined(__x86_64__) || defined(__PPC__))
|
|
|
|
int mmap_calls = 0;
|
|
int mmap_matching_calls = 0;
|
|
int munmap_calls = 0;
|
|
int munmap_matching_calls = 0;
|
|
const int kMmapMagicFd = 1;
|
|
void* const kMmapMagicPointer = reinterpret_cast<void*>(1);
|
|
|
|
int MmapReplacement(const void* start,
|
|
size_t size,
|
|
int protection,
|
|
int flags,
|
|
int fd,
|
|
off_t offset,
|
|
void** result) {
|
|
++mmap_calls;
|
|
if (fd == kMmapMagicFd) {
|
|
++mmap_matching_calls;
|
|
*result = kMmapMagicPointer;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
int MunmapReplacement(const void* ptr, size_t size, int* result) {
|
|
++munmap_calls;
|
|
if (ptr == kMmapMagicPointer) {
|
|
++munmap_matching_calls;
|
|
*result = 0;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
TEST(MallocMookTest, MmapReplacements) {
|
|
mmap_calls = mmap_matching_calls = munmap_calls = munmap_matching_calls = 0;
|
|
MallocHook::SetMmapReplacement(&MmapReplacement);
|
|
MallocHook::SetMunmapReplacement(&MunmapReplacement);
|
|
EXPECT_EQ(kMmapMagicPointer, mmap(NULL, 1, PROT_READ, MAP_PRIVATE,
|
|
kMmapMagicFd, 0));
|
|
EXPECT_EQ(1, mmap_matching_calls);
|
|
|
|
char* ptr = reinterpret_cast<char*>(
|
|
mmap(NULL, 1, PROT_READ | PROT_WRITE,
|
|
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0));
|
|
EXPECT_EQ(2, mmap_calls);
|
|
EXPECT_EQ(1, mmap_matching_calls);
|
|
ASSERT_NE(MAP_FAILED, ptr);
|
|
*ptr = 'a';
|
|
|
|
EXPECT_EQ(0, munmap(kMmapMagicPointer, 1));
|
|
EXPECT_EQ(1, munmap_calls);
|
|
EXPECT_EQ(1, munmap_matching_calls);
|
|
|
|
EXPECT_EQ(0, munmap(ptr, 1));
|
|
EXPECT_EQ(2, munmap_calls);
|
|
EXPECT_EQ(1, munmap_matching_calls);
|
|
|
|
// The DEATH test below is flaky, because we've just munmapped the memory,
|
|
// making it available for mmap()ing again. There is no guarantee that it
|
|
// will stay unmapped, and in fact it gets reused ~10% of the time.
|
|
// It the area is reused, then not only we don't die, but we also corrupt
|
|
// whoever owns that memory now.
|
|
// EXPECT_DEATH(*ptr = 'a', "SIGSEGV");
|
|
}
|
|
#endif // #ifdef HAVE_MMAP && linux && ...
|
|
|
|
} // namespace
|
|
|
|
int main(int argc, char** argv) {
|
|
return RUN_ALL_TESTS();
|
|
}
|