1
0
Fork 0
mirror of https://github.com/beefytech/Beef.git synced 2025-06-09 20:12:21 +02:00
Beef/BeefySysLib/third_party/sparsehash/hashtable_test.cc
2019-08-23 11:56:54 -07:00

2037 lines
74 KiB
C++

// Copyright (c) 2010, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// ---
//
// This tests densehashtable
// This tests dense_hash_set
// This tests dense_hash_map
// This tests sparsehashtable
// This tests sparse_hash_set
// This tests sparse_hash_map
//
// This test replaces hashtable_unittest.cc, which was becoming
// unreadable. This file is opaque but hopefully not unreadable -- at
// least, not the tests!
//
// Note that since all these classes are templatized, it's important
// to call every public method on the class: not just to make sure
// they work, but to make sure they even compile.
#include <sparsehash/internal/sparseconfig.h>
#include <config.h>
#include <math.h>
#include <stddef.h> // for size_t
#include <stdlib.h>
#include <string.h>
#ifdef HAVE_STDINT_H
# include <stdint.h>
#endif // for uintptr_t
#include <iostream>
#include <set>
#include <sstream>
#include <typeinfo> // for class typeinfo (returned by typeid)
#include <vector>
#include <sparsehash/type_traits.h>
#include <sparsehash/sparsetable>
#include "hash_test_interface.h"
#include "testutil.h"
namespace testing = GOOGLE_NAMESPACE::testing;
using std::cout;
using std::pair;
using std::set;
using std::string;
using std::vector;
using GOOGLE_NAMESPACE::dense_hash_map;
using GOOGLE_NAMESPACE::dense_hash_set;
using GOOGLE_NAMESPACE::sparse_hash_map;
using GOOGLE_NAMESPACE::sparse_hash_set;
using GOOGLE_NAMESPACE::sparsetable;
using GOOGLE_NAMESPACE::HashtableInterface_SparseHashMap;
using GOOGLE_NAMESPACE::HashtableInterface_SparseHashSet;
using GOOGLE_NAMESPACE::HashtableInterface_SparseHashtable;
using GOOGLE_NAMESPACE::HashtableInterface_DenseHashMap;
using GOOGLE_NAMESPACE::HashtableInterface_DenseHashSet;
using GOOGLE_NAMESPACE::HashtableInterface_DenseHashtable;
namespace sparsehash_internal = GOOGLE_NAMESPACE::sparsehash_internal;
typedef unsigned char uint8;
#ifdef _MSC_VER
// Below, we purposefully test having a very small allocator size.
// This causes some "type conversion too small" errors when using this
// allocator with sparsetable buckets. We're testing to make sure we
// handle that situation ok, so we don't need the compiler warnings.
#pragma warning(disable:4244)
#endif
namespace {
#ifndef _MSC_VER // windows defines its own version
# ifdef __MINGW32__ // mingw has trouble writing to /tmp
static string TmpFile(const char* basename) {
return string("./#") + basename;
}
# else
static string TmpFile(const char* basename) {
string kTmpdir = "/tmp";
return kTmpdir + "/" + basename;
}
# endif
#endif
// Used as a value in some of the hashtable tests. It's just some
// arbitrary user-defined type with non-trivial memory management.
struct ValueType {
public:
ValueType() : s_(kDefault) { }
ValueType(const char* init_s) : s_(kDefault) { set_s(init_s); }
~ValueType() { set_s(NULL); }
ValueType(const ValueType& that) : s_(kDefault) { operator=(that); }
void operator=(const ValueType& that) { set_s(that.s_); }
bool operator==(const ValueType& that) const {
return strcmp(this->s(), that.s()) == 0;
}
void set_s(const char* new_s) {
if (s_ != kDefault)
free(const_cast<char*>(s_));
s_ = (new_s == NULL ? kDefault : reinterpret_cast<char*>(strdup(new_s)));
}
const char* s() const { return s_; }
private:
const char* s_;
static const char* const kDefault;
};
const char* const ValueType::kDefault = "hi";
// This is used by the low-level sparse/dense_hashtable classes,
// which support the most general relationship between keys and
// values: the key is derived from the value through some arbitrary
// function. (For classes like sparse_hash_map, the 'value' is a
// key/data pair, and the function to derive the key is
// FirstElementOfPair.) KeyToValue is the inverse of this function,
// so GetKey(KeyToValue(key)) == key. To keep the tests a bit
// simpler, we've chosen to make the key and value actually be the
// same type, which is why we need only one template argument for the
// types, rather than two (one for the key and one for the value).
template<class KeyAndValueT, class KeyToValue>
struct SetKey {
void operator()(KeyAndValueT* value, const KeyAndValueT& new_key) const {
*value = KeyToValue()(new_key);
}
};
// A hash function that keeps track of how often it's called. We use
// a simple djb-hash so we don't depend on how STL hashes. We use
// this same method to do the key-comparison, so we can keep track
// of comparison-counts too.
struct Hasher {
explicit Hasher(int i=0) : id_(i), num_hashes_(0), num_compares_(0) { }
int id() const { return id_; }
int num_hashes() const { return num_hashes_; }
int num_compares() const { return num_compares_; }
size_t operator()(int a) const {
num_hashes_++;
return static_cast<size_t>(a);
}
size_t operator()(const char* a) const {
num_hashes_++;
size_t hash = 0;
for (size_t i = 0; a[i]; i++ )
hash = 33 * hash + a[i];
return hash;
}
size_t operator()(const string& a) const {
num_hashes_++;
size_t hash = 0;
for (size_t i = 0; i < a.length(); i++ )
hash = 33 * hash + a[i];
return hash;
}
size_t operator()(const int* a) const {
num_hashes_++;
return static_cast<size_t>(reinterpret_cast<uintptr_t>(a));
}
bool operator()(int a, int b) const {
num_compares_++;
return a == b;
}
bool operator()(const string& a, const string& b) const {
num_compares_++;
return a == b;
}
bool operator()(const char* a, const char* b) const {
num_compares_++;
// The 'a == b' test is necessary, in case a and b are both NULL.
return (a == b || (a && b && strcmp(a, b) == 0));
}
private:
mutable int id_;
mutable int num_hashes_;
mutable int num_compares_;
};
// Allocator that allows controlling its size in various ways, to test
// allocator overflow. Because we use this allocator in a vector, we
// need to define != and swap for gcc.
template<typename T,
typename SizeT = size_t, SizeT MAX_SIZE = static_cast<SizeT>(~0)>
struct Alloc {
typedef T value_type;
typedef SizeT size_type;
typedef ptrdiff_t difference_type;
typedef T* pointer;
typedef const T* const_pointer;
typedef T& reference;
typedef const T& const_reference;
explicit Alloc(int i=0, int* count=NULL) : id_(i), count_(count) {}
~Alloc() {}
pointer address(reference r) const { return &r; }
const_pointer address(const_reference r) const { return &r; }
pointer allocate(size_type n, const_pointer = 0) {
if (count_) ++(*count_);
return static_cast<pointer>(malloc(n * sizeof(value_type)));
}
void deallocate(pointer p, size_type) {
free(p);
}
pointer reallocate(pointer p, size_type n) {
if (count_) ++(*count_);
return static_cast<pointer>(realloc(p, n * sizeof(value_type)));
}
size_type max_size() const {
return static_cast<size_type>(MAX_SIZE);
}
void construct(pointer p, const value_type& val) {
new(p) value_type(val);
}
void destroy(pointer p) { p->~value_type(); }
bool is_custom_alloc() const { return true; }
template <class U>
Alloc(const Alloc<U, SizeT, MAX_SIZE>& that)
: id_(that.id_), count_(that.count_) {
}
template <class U>
struct rebind {
typedef Alloc<U, SizeT, MAX_SIZE> other;
};
bool operator==(const Alloc<T,SizeT,MAX_SIZE>& that) {
return this->id_ == that.id_ && this->count_ == that.count_;
}
bool operator!=(const Alloc<T,SizeT,MAX_SIZE>& that) {
return !this->operator==(that);
}
int id() const { return id_; }
// I have to make these public so the constructor used for rebinding
// can see them. Normally, I'd just make them private and say:
// template<typename U, typename U_SizeT, U_SizeT U_MAX_SIZE> friend struct Alloc;
// but MSVC 7.1 barfs on that. So public it is. But no peeking!
public:
int id_;
int* count_;
};
// Below are a few fun routines that convert a value into a key, used
// for dense_hashtable and sparse_hashtable. It's our responsibility
// to make sure, when we insert values into these objects, that the
// values match the keys we insert them under. To allow us to use
// these routines for SetKey as well, we require all these functions
// be their own inverse: f(f(x)) == x.
template<class Value>
struct Negation {
typedef Value result_type;
Value operator()(Value& v) { return -v; }
const Value operator()(const Value& v) const { return -v; }
};
struct Capital {
typedef string result_type;
string operator()(string& s) {
return string(1, s[0] ^ 32) + s.substr(1);
}
const string operator()(const string& s) const {
return string(1, s[0] ^ 32) + s.substr(1);
}
};
struct Identity { // lame, I know, but an important case to test.
typedef const char* result_type;
const char* operator()(const char* s) const {
return s;
}
};
// This is just to avoid memory leaks -- it's a global pointer to
// all the memory allocated by UniqueObjectHelper. We'll use it
// to semi-test sparsetable as well. :-)
sparsetable<char*> g_unique_charstar_objects(16);
// This is an object-generator: pass in an index, and it will return a
// unique object of type ItemType. We provide specializations for the
// types we actually support.
template <typename ItemType> ItemType UniqueObjectHelper(int index);
template<> int UniqueObjectHelper(int index) {
return index;
}
template<> string UniqueObjectHelper(int index) {
char buffer[64];
snprintf(buffer, sizeof(buffer), "%d", index);
return buffer;
}
template<> char* UniqueObjectHelper(int index) {
// First grow the table if need be.
sparsetable<char*>::size_type table_size = g_unique_charstar_objects.size();
while (index >= static_cast<int>(table_size)) {
assert(table_size * 2 > table_size); // avoid overflow problems
table_size *= 2;
}
if (table_size > g_unique_charstar_objects.size())
g_unique_charstar_objects.resize(table_size);
if (!g_unique_charstar_objects.test(index)) {
char buffer[64];
snprintf(buffer, sizeof(buffer), "%d", index);
g_unique_charstar_objects[index] = strdup(buffer);
}
return g_unique_charstar_objects.get(index);
}
template<> const char* UniqueObjectHelper(int index) {
return UniqueObjectHelper<char*>(index);
}
template<> ValueType UniqueObjectHelper(int index) {
return ValueType(UniqueObjectHelper<string>(index).c_str());
}
template<> pair<const int, int> UniqueObjectHelper(int index) {
return pair<const int,int>(index, index + 1);
}
template<> pair<const string, string> UniqueObjectHelper(int index) {
return pair<const string,string>(
UniqueObjectHelper<string>(index), UniqueObjectHelper<string>(index + 1));
}
template<> pair<const char* const,ValueType> UniqueObjectHelper(int index) {
return pair<const char* const,ValueType>(
UniqueObjectHelper<char*>(index), UniqueObjectHelper<ValueType>(index+1));
}
class ValueSerializer {
public:
bool operator()(FILE* fp, const int& value) {
return fwrite(&value, sizeof(value), 1, fp) == 1;
}
bool operator()(FILE* fp, int* value) {
return fread(value, sizeof(*value), 1, fp) == 1;
}
bool operator()(FILE* fp, const string& value) {
const int size = value.size();
return (*this)(fp, size) && fwrite(value.c_str(), size, 1, fp) == 1;
}
bool operator()(FILE* fp, string* value) {
int size;
if (!(*this)(fp, &size)) return false;
char* buf = new char[size];
if (fread(buf, size, 1, fp) != 1) {
delete[] buf;
return false;
}
new(value) string(buf, size);
delete[] buf;
return true;
}
template <typename OUTPUT>
bool operator()(OUTPUT* fp, const ValueType& v) {
return (*this)(fp, string(v.s()));
}
template <typename INPUT>
bool operator()(INPUT* fp, ValueType* v) {
string data;
if (!(*this)(fp, &data)) return false;
new(v) ValueType(data.c_str());
return true;
}
template <typename OUTPUT>
bool operator()(OUTPUT* fp, const char* const& value) {
// Just store the index.
return (*this)(fp, atoi(value));
}
template <typename INPUT>
bool operator()(INPUT* fp, const char** value) {
// Look up via index.
int index;
if (!(*this)(fp, &index)) return false;
*value = UniqueObjectHelper<char*>(index);
return true;
}
template <typename OUTPUT, typename First, typename Second>
bool operator()(OUTPUT* fp, std::pair<const First, Second>* value) {
return (*this)(fp, const_cast<First*>(&value->first))
&& (*this)(fp, &value->second);
}
template <typename INPUT, typename First, typename Second>
bool operator()(INPUT* fp, const std::pair<const First, Second>& value) {
return (*this)(fp, value.first) && (*this)(fp, value.second);
}
};
template <typename HashtableType>
class HashtableTest : public ::testing::Test {
public:
HashtableTest() : ht_() { }
// Give syntactically-prettier access to UniqueObjectHelper.
typename HashtableType::value_type UniqueObject(int index) {
return UniqueObjectHelper<typename HashtableType::value_type>(index);
}
typename HashtableType::key_type UniqueKey(int index) {
return this->ht_.get_key(this->UniqueObject(index));
}
protected:
HashtableType ht_;
};
}
// These are used to specify the empty key and deleted key in some
// contexts. They can't be in the unnamed namespace, or static,
// because the template code requires external linkage.
extern const string kEmptyString("--empty string--");
extern const string kDeletedString("--deleted string--");
extern const int kEmptyInt = 0;
extern const int kDeletedInt = -1234676543; // an unlikely-to-pick int
extern const char* const kEmptyCharStar = "--empty char*--";
extern const char* const kDeletedCharStar = "--deleted char*--";
namespace {
#define INT_HASHTABLES \
HashtableInterface_SparseHashMap<int, int, Hasher, Hasher, \
Alloc<int> >, \
HashtableInterface_SparseHashSet<int, Hasher, Hasher, \
Alloc<int> >, \
/* This is a table where the key associated with a value is -value */ \
HashtableInterface_SparseHashtable<int, int, Hasher, Negation<int>, \
SetKey<int, Negation<int> >, \
Hasher, Alloc<int> >, \
HashtableInterface_DenseHashMap<int, int, kEmptyInt, Hasher, Hasher, \
Alloc<int> >, \
HashtableInterface_DenseHashSet<int, kEmptyInt, Hasher, Hasher, \
Alloc<int> >, \
HashtableInterface_DenseHashtable<int, int, kEmptyInt, \
Hasher, Negation<int>, \
SetKey<int, Negation<int> >, \
Hasher, Alloc<int> >
#define STRING_HASHTABLES \
HashtableInterface_SparseHashMap<string, string, Hasher, Hasher, \
Alloc<string> >, \
HashtableInterface_SparseHashSet<string, Hasher, Hasher, \
Alloc<string> >, \
/* This is a table where the key associated with a value is Cap(value) */ \
HashtableInterface_SparseHashtable<string, string, Hasher, Capital, \
SetKey<string, Capital>, \
Hasher, Alloc<string> >, \
HashtableInterface_DenseHashMap<string, string, kEmptyString, \
Hasher, Hasher, Alloc<string> >, \
HashtableInterface_DenseHashSet<string, kEmptyString, Hasher, Hasher, \
Alloc<string> >, \
HashtableInterface_DenseHashtable<string, string, kEmptyString, \
Hasher, Capital, \
SetKey<string, Capital>, \
Hasher, Alloc<string> >
// I'd like to use ValueType keys for SparseHashtable<> and
// DenseHashtable<> but I can't due to memory-management woes (nobody
// really owns the char* involved). So instead I do something simpler.
#define CHARSTAR_HASHTABLES \
HashtableInterface_SparseHashMap<const char*, ValueType, \
Hasher, Hasher, Alloc<const char*> >, \
HashtableInterface_SparseHashSet<const char*, Hasher, Hasher, \
Alloc<const char*> >, \
/* This is a table where each value is its own key. */ \
HashtableInterface_SparseHashtable<const char*, const char*, \
Hasher, Identity, \
SetKey<const char*, Identity>, \
Hasher, Alloc<const char*> >, \
HashtableInterface_DenseHashMap<const char*, ValueType, kEmptyCharStar, \
Hasher, Hasher, Alloc<const char*> >, \
HashtableInterface_DenseHashSet<const char*, kEmptyCharStar, \
Hasher, Hasher, Alloc<const char*> >, \
HashtableInterface_DenseHashtable<const char*, const char*, kEmptyCharStar, \
Hasher, Identity, \
SetKey<const char*, Identity>, \
Hasher, Alloc<ValueType> >
// This is the list of types we run each test against.
// We need to define the same class 4 times due to limitations in the
// testing framework. Basically, we associate each class below with
// the set of types we want to run tests on it with.
template <typename HashtableType> class HashtableIntTest
: public HashtableTest<HashtableType> { };
template <typename HashtableType> class HashtableStringTest
: public HashtableTest<HashtableType> { };
template <typename HashtableType> class HashtableCharStarTest
: public HashtableTest<HashtableType> { };
template <typename HashtableType> class HashtableAllTest
: public HashtableTest<HashtableType> { };
typedef testing::TypeList6<INT_HASHTABLES> IntHashtables;
typedef testing::TypeList6<STRING_HASHTABLES> StringHashtables;
typedef testing::TypeList6<CHARSTAR_HASHTABLES> CharStarHashtables;
typedef testing::TypeList18<INT_HASHTABLES, STRING_HASHTABLES,
CHARSTAR_HASHTABLES> AllHashtables;
TYPED_TEST_CASE_6(HashtableIntTest, IntHashtables);
TYPED_TEST_CASE_6(HashtableStringTest, StringHashtables);
TYPED_TEST_CASE_6(HashtableCharStarTest, CharStarHashtables);
TYPED_TEST_CASE_18(HashtableAllTest, AllHashtables);
// ------------------------------------------------------------------------
// First, some testing of the underlying infrastructure.
TEST(HashtableCommonTest, HashMunging) {
const Hasher hasher;
// We don't munge the hash value on non-pointer template types.
{
const sparsehash_internal::sh_hashtable_settings<int, Hasher, size_t, 1>
settings(hasher, 0.0, 0.0);
const int v = 1000;
EXPECT_EQ(hasher(v), settings.hash(v));
}
{
// We do munge the hash value on pointer template types.
const sparsehash_internal::sh_hashtable_settings<int*, Hasher, size_t, 1>
settings(hasher, 0.0, 0.0);
int* v = NULL;
v += 0x10000; // get a non-trivial pointer value
EXPECT_NE(hasher(v), settings.hash(v));
}
{
const sparsehash_internal::sh_hashtable_settings<const int*, Hasher,
size_t, 1>
settings(hasher, 0.0, 0.0);
const int* v = NULL;
v += 0x10000; // get a non-trivial pointer value
EXPECT_NE(hasher(v), settings.hash(v));
}
}
// ------------------------------------------------------------------------
// If the first arg to TYPED_TEST is HashtableIntTest, it will run
// this test on all the hashtable types, with key=int and value=int.
// Likewise, HashtableStringTest will have string key/values, and
// HashtableCharStarTest will have char* keys and -- just to mix it up
// a little -- ValueType values. HashtableAllTest will run all three
// key/value types on all 6 hashtables types, for 18 test-runs total
// per test.
//
// In addition, TYPED_TEST makes available the magic keyword
// TypeParam, which is the type being used for the current test.
// This first set of tests just tests the public API, going through
// the public typedefs and methods in turn. It goes approximately
// in the definition-order in sparse_hash_map.h.
TYPED_TEST(HashtableIntTest, Typedefs) {
// Make sure all the standard STL-y typedefs are defined. The exact
// key/value types don't matter here, so we only bother testing on
// the int tables. This is just a compile-time "test"; nothing here
// can fail at runtime.
this->ht_.set_deleted_key(-2); // just so deleted_key succeeds
typename TypeParam::key_type kt;
typename TypeParam::value_type vt;
typename TypeParam::hasher h;
typename TypeParam::key_equal ke;
typename TypeParam::allocator_type at;
typename TypeParam::size_type st;
typename TypeParam::difference_type dt;
typename TypeParam::pointer p;
typename TypeParam::const_pointer cp;
// I can't declare variables of reference-type, since I have nothing
// to point them to, so I just make sure that these types exist.
__attribute__((unused)) typedef typename TypeParam::reference r;
__attribute__((unused)) typedef typename TypeParam::const_reference cf;
typename TypeParam::iterator i;
typename TypeParam::const_iterator ci;
typename TypeParam::local_iterator li;
typename TypeParam::const_local_iterator cli;
// Now make sure the variables are used, so the compiler doesn't
// complain. Where possible, I "use" the variable by calling the
// method that's supposed to return the unique instance of the
// relevant type (eg. get_allocator()). Otherwise, I try to call a
// different, arbitrary function that returns the type. Sometimes
// the type isn't used at all, and there's no good way to use the
// variable.
kt = this->ht_.deleted_key();
(void)vt; // value_type may not be copyable. Easiest not to try.
h = this->ht_.hash_funct();
ke = this->ht_.key_eq();
at = this->ht_.get_allocator();
st = this->ht_.size();
(void)dt;
(void)p;
(void)cp;
i = this->ht_.begin();
ci = this->ht_.begin();
li = this->ht_.begin(0);
cli = this->ht_.begin(0);
}
TYPED_TEST(HashtableAllTest, NormalIterators) {
EXPECT_TRUE(this->ht_.begin() == this->ht_.end());
this->ht_.insert(this->UniqueObject(1));
{
typename TypeParam::iterator it = this->ht_.begin();
EXPECT_TRUE(it != this->ht_.end());
++it;
EXPECT_TRUE(it == this->ht_.end());
}
}
TEST(HashtableTest, ModifyViaIterator) {
// This only works for hash-maps, since only they have non-const values.
{
sparse_hash_map<int, int> ht;
ht[1] = 2;
sparse_hash_map<int, int>::iterator it = ht.find(1);
EXPECT_TRUE(it != ht.end());
EXPECT_EQ(1, it->first);
EXPECT_EQ(2, it->second);
it->second = 5;
it = ht.find(1);
EXPECT_TRUE(it != ht.end());
EXPECT_EQ(5, it->second);
}
{
dense_hash_map<int, int> ht;
ht.set_empty_key(0);
ht[1] = 2;
dense_hash_map<int, int>::iterator it = ht.find(1);
EXPECT_TRUE(it != ht.end());
EXPECT_EQ(1, it->first);
EXPECT_EQ(2, it->second);
it->second = 5;
it = ht.find(1);
EXPECT_TRUE(it != ht.end());
EXPECT_EQ(5, it->second);
}
}
TYPED_TEST(HashtableAllTest, ConstIterators) {
this->ht_.insert(this->UniqueObject(1));
typename TypeParam::const_iterator it = this->ht_.begin();
EXPECT_TRUE(it != this->ht_.end());
++it;
EXPECT_TRUE(it == this->ht_.end());
}
TYPED_TEST(HashtableAllTest, LocalIterators) {
// Now, tr1 begin/end (the local iterator that takes a bucket-number).
// ht::bucket() returns the bucket that this key would be inserted in.
this->ht_.insert(this->UniqueObject(1));
const typename TypeParam::size_type bucknum =
this->ht_.bucket(this->UniqueKey(1));
typename TypeParam::local_iterator b = this->ht_.begin(bucknum);
typename TypeParam::local_iterator e = this->ht_.end(bucknum);
EXPECT_TRUE(b != e);
b++;
EXPECT_TRUE(b == e);
// Check an empty bucket. We can just xor the bottom bit and be sure
// of getting a legal bucket, since #buckets is always a power of 2.
EXPECT_TRUE(this->ht_.begin(bucknum ^ 1) == this->ht_.end(bucknum ^ 1));
// Another test, this time making sure we're using the right types.
typename TypeParam::local_iterator b2 = this->ht_.begin(bucknum ^ 1);
typename TypeParam::local_iterator e2 = this->ht_.end(bucknum ^ 1);
EXPECT_TRUE(b2 == e2);
}
TYPED_TEST(HashtableAllTest, ConstLocalIterators) {
this->ht_.insert(this->UniqueObject(1));
const typename TypeParam::size_type bucknum =
this->ht_.bucket(this->UniqueKey(1));
typename TypeParam::const_local_iterator b = this->ht_.begin(bucknum);
typename TypeParam::const_local_iterator e = this->ht_.end(bucknum);
EXPECT_TRUE(b != e);
b++;
EXPECT_TRUE(b == e);
typename TypeParam::const_local_iterator b2 = this->ht_.begin(bucknum ^ 1);
typename TypeParam::const_local_iterator e2 = this->ht_.end(bucknum ^ 1);
EXPECT_TRUE(b2 == e2);
}
TYPED_TEST(HashtableAllTest, Iterating) {
// Test a bit more iterating than just one ++.
this->ht_.insert(this->UniqueObject(1));
this->ht_.insert(this->UniqueObject(11));
this->ht_.insert(this->UniqueObject(111));
this->ht_.insert(this->UniqueObject(1111));
this->ht_.insert(this->UniqueObject(11111));
this->ht_.insert(this->UniqueObject(111111));
this->ht_.insert(this->UniqueObject(1111111));
this->ht_.insert(this->UniqueObject(11111111));
this->ht_.insert(this->UniqueObject(111111111));
typename TypeParam::iterator it = this->ht_.begin();
for (int i = 1; i <= 9; i++) { // start at 1 so i is never 0
// && here makes it easier to tell what loop iteration the test failed on.
EXPECT_TRUE(i && (it++ != this->ht_.end()));
}
EXPECT_TRUE(it == this->ht_.end());
}
TYPED_TEST(HashtableIntTest, Constructors) {
// The key/value types don't matter here, so I just test on one set
// of tables, the ones with int keys, which can easily handle the
// placement-news we have to do below.
Hasher hasher(1); // 1 is a unique id
int alloc_count = 0;
Alloc<typename TypeParam::key_type> alloc(2, &alloc_count);
TypeParam ht_noarg;
TypeParam ht_onearg(100);
TypeParam ht_twoarg(100, hasher);
TypeParam ht_threearg(100, hasher, hasher); // hasher serves as key_equal too
TypeParam ht_fourarg(100, hasher, hasher, alloc);
// The allocator should have been called at most once, for the last ht.
EXPECT_LE(1, alloc_count);
int old_alloc_count = alloc_count;
const typename TypeParam::value_type input[] = {
this->UniqueObject(1),
this->UniqueObject(2),
this->UniqueObject(4),
this->UniqueObject(8)
};
const int num_inputs = sizeof(input) / sizeof(input[0]);
const typename TypeParam::value_type *begin = &input[0];
const typename TypeParam::value_type *end = begin + num_inputs;
TypeParam ht_iter_noarg(begin, end);
TypeParam ht_iter_onearg(begin, end, 100);
TypeParam ht_iter_twoarg(begin, end, 100, hasher);
TypeParam ht_iter_threearg(begin, end, 100, hasher, hasher);
TypeParam ht_iter_fourarg(begin, end, 100, hasher, hasher, alloc);
// Now the allocator should have been called more.
EXPECT_GT(alloc_count, old_alloc_count);
old_alloc_count = alloc_count;
// Let's do a lot more inserting and make sure the alloc-count goes up
for (int i = 2; i < 2000; i++)
ht_fourarg.insert(this->UniqueObject(i));
EXPECT_GT(alloc_count, old_alloc_count);
EXPECT_LT(ht_noarg.bucket_count(), 100u);
EXPECT_GE(ht_onearg.bucket_count(), 100u);
EXPECT_GE(ht_twoarg.bucket_count(), 100u);
EXPECT_GE(ht_threearg.bucket_count(), 100u);
EXPECT_GE(ht_fourarg.bucket_count(), 100u);
EXPECT_GE(ht_iter_onearg.bucket_count(), 100u);
// When we pass in a hasher -- it can serve both as the hash-function
// and the key-equal function -- its id should be 1. Where we don't
// pass it in and use the default Hasher object, the id should be 0.
EXPECT_EQ(0, ht_noarg.hash_funct().id());
EXPECT_EQ(0, ht_noarg.key_eq().id());
EXPECT_EQ(0, ht_onearg.hash_funct().id());
EXPECT_EQ(0, ht_onearg.key_eq().id());
EXPECT_EQ(1, ht_twoarg.hash_funct().id());
EXPECT_EQ(0, ht_twoarg.key_eq().id());
EXPECT_EQ(1, ht_threearg.hash_funct().id());
EXPECT_EQ(1, ht_threearg.key_eq().id());
EXPECT_EQ(0, ht_iter_noarg.hash_funct().id());
EXPECT_EQ(0, ht_iter_noarg.key_eq().id());
EXPECT_EQ(0, ht_iter_onearg.hash_funct().id());
EXPECT_EQ(0, ht_iter_onearg.key_eq().id());
EXPECT_EQ(1, ht_iter_twoarg.hash_funct().id());
EXPECT_EQ(0, ht_iter_twoarg.key_eq().id());
EXPECT_EQ(1, ht_iter_threearg.hash_funct().id());
EXPECT_EQ(1, ht_iter_threearg.key_eq().id());
// Likewise for the allocator
EXPECT_EQ(0, ht_threearg.get_allocator().id());
EXPECT_EQ(0, ht_iter_threearg.get_allocator().id());
EXPECT_EQ(2, ht_fourarg.get_allocator().id());
EXPECT_EQ(2, ht_iter_fourarg.get_allocator().id());
}
TYPED_TEST(HashtableAllTest, OperatorEquals) {
{
TypeParam ht1, ht2;
ht1.set_deleted_key(this->UniqueKey(1));
ht2.set_deleted_key(this->UniqueKey(2));
ht1.insert(this->UniqueObject(10));
ht2.insert(this->UniqueObject(20));
EXPECT_FALSE(ht1 == ht2);
ht1 = ht2;
EXPECT_TRUE(ht1 == ht2);
}
{
TypeParam ht1, ht2;
ht1.insert(this->UniqueObject(30));
ht1 = ht2;
EXPECT_EQ(0u, ht1.size());
}
{
TypeParam ht1, ht2;
ht1.set_deleted_key(this->UniqueKey(1));
ht2.insert(this->UniqueObject(1)); // has same key as ht1.delkey
ht1 = ht2; // should reset deleted-key to 'unset'
EXPECT_EQ(1u, ht1.size());
EXPECT_EQ(1u, ht1.count(this->UniqueKey(1)));
}
}
TYPED_TEST(HashtableAllTest, Clear) {
for (int i = 1; i < 200; i++) {
this->ht_.insert(this->UniqueObject(i));
}
this->ht_.clear();
EXPECT_EQ(0u, this->ht_.size());
// TODO(csilvers): do we want to enforce that the hashtable has or
// has not shrunk? It does for dense_* but not sparse_*.
}
TYPED_TEST(HashtableAllTest, ClearNoResize) {
if (!this->ht_.supports_clear_no_resize())
return;
typename TypeParam::size_type empty_bucket_count = this->ht_.bucket_count();
int last_element = 1;
while (this->ht_.bucket_count() == empty_bucket_count) {
this->ht_.insert(this->UniqueObject(last_element));
++last_element;
}
typename TypeParam::size_type last_bucket_count = this->ht_.bucket_count();
this->ht_.clear_no_resize();
EXPECT_EQ(last_bucket_count, this->ht_.bucket_count());
EXPECT_TRUE(this->ht_.empty());
// When inserting the same number of elements again, no resize
// should be necessary.
for (int i = 1; i < last_element; ++i) {
this->ht_.insert(this->UniqueObject(last_element + i));
EXPECT_EQ(last_bucket_count, this->ht_.bucket_count());
}
}
TYPED_TEST(HashtableAllTest, Swap) {
// Let's make a second hashtable with its own hasher, key_equal, etc.
Hasher hasher(1); // 1 is a unique id
TypeParam other_ht(200, hasher, hasher);
this->ht_.set_deleted_key(this->UniqueKey(1));
other_ht.set_deleted_key(this->UniqueKey(2));
for (int i = 3; i < 2000; i++) {
this->ht_.insert(this->UniqueObject(i));
}
this->ht_.erase(this->UniqueKey(1000));
other_ht.insert(this->UniqueObject(2001));
typename TypeParam::size_type expected_buckets = other_ht.bucket_count();
this->ht_.swap(other_ht);
EXPECT_EQ(this->UniqueKey(2), this->ht_.deleted_key());
EXPECT_EQ(this->UniqueKey(1), other_ht.deleted_key());
EXPECT_EQ(1, this->ht_.hash_funct().id());
EXPECT_EQ(0, other_ht.hash_funct().id());
EXPECT_EQ(1, this->ht_.key_eq().id());
EXPECT_EQ(0, other_ht.key_eq().id());
EXPECT_EQ(expected_buckets, this->ht_.bucket_count());
EXPECT_GT(other_ht.bucket_count(), 200u);
EXPECT_EQ(1u, this->ht_.size());
EXPECT_EQ(1996u, other_ht.size()); // because we erased 1000
EXPECT_EQ(0u, this->ht_.count(this->UniqueKey(111)));
EXPECT_EQ(1u, other_ht.count(this->UniqueKey(111)));
EXPECT_EQ(1u, this->ht_.count(this->UniqueKey(2001)));
EXPECT_EQ(0u, other_ht.count(this->UniqueKey(2001)));
EXPECT_EQ(0u, this->ht_.count(this->UniqueKey(1000)));
EXPECT_EQ(0u, other_ht.count(this->UniqueKey(1000)));
// We purposefully don't swap allocs -- they're not necessarily swappable.
// Now swap back, using the free-function swap
// NOTE: MSVC seems to have trouble with this free swap, not quite
// sure why. I've given up trying to fix it though.
#ifdef _MSC_VER
other_ht.swap(this->ht_);
#else
std::swap(this->ht_, other_ht);
#endif
EXPECT_EQ(this->UniqueKey(1), this->ht_.deleted_key());
EXPECT_EQ(this->UniqueKey(2), other_ht.deleted_key());
EXPECT_EQ(0, this->ht_.hash_funct().id());
EXPECT_EQ(1, other_ht.hash_funct().id());
EXPECT_EQ(1996u, this->ht_.size());
EXPECT_EQ(1u, other_ht.size());
EXPECT_EQ(1u, this->ht_.count(this->UniqueKey(111)));
EXPECT_EQ(0u, other_ht.count(this->UniqueKey(111)));
// A user reported a crash with this code using swap to clear.
// We've since fixed the bug; this prevents a regression.
TypeParam swap_to_clear_ht;
swap_to_clear_ht.set_deleted_key(this->UniqueKey(1));
for (int i = 2; i < 10000; ++i) {
swap_to_clear_ht.insert(this->UniqueObject(i));
}
TypeParam empty_ht;
empty_ht.swap(swap_to_clear_ht);
swap_to_clear_ht.set_deleted_key(this->UniqueKey(1));
for (int i = 2; i < 10000; ++i) {
swap_to_clear_ht.insert(this->UniqueObject(i));
}
}
TYPED_TEST(HashtableAllTest, Size) {
EXPECT_EQ(0u, this->ht_.size());
for (int i = 1; i < 1000; i++) { // go through some resizes
this->ht_.insert(this->UniqueObject(i));
EXPECT_EQ(static_cast<typename TypeParam::size_type>(i), this->ht_.size());
}
this->ht_.clear();
EXPECT_EQ(0u, this->ht_.size());
this->ht_.set_deleted_key(this->UniqueKey(1));
EXPECT_EQ(0u, this->ht_.size()); // deleted key doesn't count
for (int i = 2; i < 1000; i++) { // go through some resizes
this->ht_.insert(this->UniqueObject(i));
this->ht_.erase(this->UniqueKey(i));
EXPECT_EQ(0u, this->ht_.size());
}
}
TEST(HashtableTest, MaxSizeAndMaxBucketCount) {
// The max size depends on the allocator. So we can't use the
// built-in allocator type; instead, we make our own types.
sparse_hash_set<int, Hasher, Hasher, Alloc<int> > ht_default;
sparse_hash_set<int, Hasher, Hasher, Alloc<int, unsigned char> > ht_char;
sparse_hash_set<int, Hasher, Hasher, Alloc<int, unsigned char, 104> > ht_104;
EXPECT_GE(ht_default.max_size(), 256u);
EXPECT_EQ(255u, ht_char.max_size());
EXPECT_EQ(104u, ht_104.max_size());
// In our implementations, MaxBucketCount == MaxSize.
EXPECT_EQ(ht_default.max_size(), ht_default.max_bucket_count());
EXPECT_EQ(ht_char.max_size(), ht_char.max_bucket_count());
EXPECT_EQ(ht_104.max_size(), ht_104.max_bucket_count());
}
TYPED_TEST(HashtableAllTest, Empty) {
EXPECT_TRUE(this->ht_.empty());
this->ht_.insert(this->UniqueObject(1));
EXPECT_FALSE(this->ht_.empty());
this->ht_.clear();
EXPECT_TRUE(this->ht_.empty());
TypeParam empty_ht;
this->ht_.insert(this->UniqueObject(1));
this->ht_.swap(empty_ht);
EXPECT_TRUE(this->ht_.empty());
}
TYPED_TEST(HashtableAllTest, BucketCount) {
TypeParam ht(100);
// constructor arg is number of *items* to be inserted, not the
// number of buckets, so we expect more buckets.
EXPECT_GT(ht.bucket_count(), 100u);
for (int i = 1; i < 200; i++) {
ht.insert(this->UniqueObject(i));
}
EXPECT_GT(ht.bucket_count(), 200u);
}
TYPED_TEST(HashtableAllTest, BucketAndBucketSize) {
const typename TypeParam::size_type expected_bucknum = this->ht_.bucket(
this->UniqueKey(1));
EXPECT_EQ(0u, this->ht_.bucket_size(expected_bucknum));
this->ht_.insert(this->UniqueObject(1));
EXPECT_EQ(expected_bucknum, this->ht_.bucket(this->UniqueKey(1)));
EXPECT_EQ(1u, this->ht_.bucket_size(expected_bucknum));
// Check that a bucket we didn't insert into, has a 0 size. Since
// we have an even number of buckets, bucknum^1 is guaranteed in range.
EXPECT_EQ(0u, this->ht_.bucket_size(expected_bucknum ^ 1));
}
TYPED_TEST(HashtableAllTest, LoadFactor) {
const typename TypeParam::size_type kSize = 16536;
// Check growing past various thresholds and then shrinking below
// them.
for (float grow_threshold = 0.2f;
grow_threshold <= 0.8f;
grow_threshold += 0.2f) {
TypeParam ht;
ht.set_deleted_key(this->UniqueKey(1));
ht.max_load_factor(grow_threshold);
ht.min_load_factor(0.0);
EXPECT_EQ(grow_threshold, ht.max_load_factor());
EXPECT_EQ(0.0, ht.min_load_factor());
ht.resize(kSize);
size_t bucket_count = ht.bucket_count();
// Erase and insert an element to set consider_shrink = true,
// which should not cause a shrink because the threshold is 0.0.
ht.insert(this->UniqueObject(2));
ht.erase(this->UniqueKey(2));
for (int i = 2;; ++i) {
ht.insert(this->UniqueObject(i));
if (static_cast<float>(ht.size())/bucket_count < grow_threshold) {
EXPECT_EQ(bucket_count, ht.bucket_count());
} else {
EXPECT_GT(ht.bucket_count(), bucket_count);
break;
}
}
// Now set a shrink threshold 1% below the current size and remove
// items until the size falls below that.
const float shrink_threshold = static_cast<float>(ht.size()) /
ht.bucket_count() - 0.01f;
// This time around, check the old set_resizing_parameters interface.
ht.set_resizing_parameters(shrink_threshold, 1.0);
EXPECT_EQ(1.0, ht.max_load_factor());
EXPECT_EQ(shrink_threshold, ht.min_load_factor());
bucket_count = ht.bucket_count();
for (int i = 2;; ++i) {
ht.erase(this->UniqueKey(i));
// A resize is only triggered by an insert, so add and remove a
// value every iteration to trigger the shrink as soon as the
// threshold is passed.
ht.erase(this->UniqueKey(i+1));
ht.insert(this->UniqueObject(i+1));
if (static_cast<float>(ht.size())/bucket_count > shrink_threshold) {
EXPECT_EQ(bucket_count, ht.bucket_count());
} else {
EXPECT_LT(ht.bucket_count(), bucket_count);
break;
}
}
}
}
TYPED_TEST(HashtableAllTest, ResizeAndRehash) {
// resize() and rehash() are synonyms. rehash() is the tr1 name.
TypeParam ht(10000);
ht.max_load_factor(0.8f); // for consistency's sake
for (int i = 1; i < 100; ++i)
ht.insert(this->UniqueObject(i));
ht.resize(0);
// Now ht should be as small as possible.
EXPECT_LT(ht.bucket_count(), 300u);
ht.rehash(9000); // use the 'rehash' version of the name.
// Bucket count should be next power of 2, after considering max_load_factor.
EXPECT_EQ(16384u, ht.bucket_count());
for (int i = 101; i < 200; ++i)
ht.insert(this->UniqueObject(i));
// Adding a few hundred buckets shouldn't have caused a resize yet.
EXPECT_EQ(ht.bucket_count(), 16384u);
}
TYPED_TEST(HashtableAllTest, FindAndCountAndEqualRange) {
pair<typename TypeParam::iterator, typename TypeParam::iterator> eq_pair;
pair<typename TypeParam::const_iterator,
typename TypeParam::const_iterator> const_eq_pair;
EXPECT_TRUE(this->ht_.empty());
EXPECT_TRUE(this->ht_.find(this->UniqueKey(1)) == this->ht_.end());
EXPECT_EQ(0u, this->ht_.count(this->UniqueKey(1)));
eq_pair = this->ht_.equal_range(this->UniqueKey(1));
EXPECT_TRUE(eq_pair.first == eq_pair.second);
this->ht_.insert(this->UniqueObject(1));
EXPECT_FALSE(this->ht_.empty());
this->ht_.insert(this->UniqueObject(11));
this->ht_.insert(this->UniqueObject(111));
this->ht_.insert(this->UniqueObject(1111));
this->ht_.insert(this->UniqueObject(11111));
this->ht_.insert(this->UniqueObject(111111));
this->ht_.insert(this->UniqueObject(1111111));
this->ht_.insert(this->UniqueObject(11111111));
this->ht_.insert(this->UniqueObject(111111111));
EXPECT_EQ(9u, this->ht_.size());
typename TypeParam::const_iterator it = this->ht_.find(this->UniqueKey(1));
EXPECT_EQ(it.key(), this->UniqueKey(1));
// Allow testing the const version of the methods as well.
const TypeParam ht = this->ht_;
// Some successful lookups (via find, count, and equal_range).
EXPECT_TRUE(this->ht_.find(this->UniqueKey(1)) != this->ht_.end());
EXPECT_EQ(1u, this->ht_.count(this->UniqueKey(1)));
eq_pair = this->ht_.equal_range(this->UniqueKey(1));
EXPECT_TRUE(eq_pair.first != eq_pair.second);
EXPECT_EQ(eq_pair.first.key(), this->UniqueKey(1));
++eq_pair.first;
EXPECT_TRUE(eq_pair.first == eq_pair.second);
EXPECT_TRUE(ht.find(this->UniqueKey(1)) != ht.end());
EXPECT_EQ(1u, ht.count(this->UniqueKey(1)));
const_eq_pair = ht.equal_range(this->UniqueKey(1));
EXPECT_TRUE(const_eq_pair.first != const_eq_pair.second);
EXPECT_EQ(const_eq_pair.first.key(), this->UniqueKey(1));
++const_eq_pair.first;
EXPECT_TRUE(const_eq_pair.first == const_eq_pair.second);
EXPECT_TRUE(this->ht_.find(this->UniqueKey(11111)) != this->ht_.end());
EXPECT_EQ(1u, this->ht_.count(this->UniqueKey(11111)));
eq_pair = this->ht_.equal_range(this->UniqueKey(11111));
EXPECT_TRUE(eq_pair.first != eq_pair.second);
EXPECT_EQ(eq_pair.first.key(), this->UniqueKey(11111));
++eq_pair.first;
EXPECT_TRUE(eq_pair.first == eq_pair.second);
EXPECT_TRUE(ht.find(this->UniqueKey(11111)) != ht.end());
EXPECT_EQ(1u, ht.count(this->UniqueKey(11111)));
const_eq_pair = ht.equal_range(this->UniqueKey(11111));
EXPECT_TRUE(const_eq_pair.first != const_eq_pair.second);
EXPECT_EQ(const_eq_pair.first.key(), this->UniqueKey(11111));
++const_eq_pair.first;
EXPECT_TRUE(const_eq_pair.first == const_eq_pair.second);
// Some unsuccessful lookups (via find, count, and equal_range).
EXPECT_TRUE(this->ht_.find(this->UniqueKey(11112)) == this->ht_.end());
EXPECT_EQ(0u, this->ht_.count(this->UniqueKey(11112)));
eq_pair = this->ht_.equal_range(this->UniqueKey(11112));
EXPECT_TRUE(eq_pair.first == eq_pair.second);
EXPECT_TRUE(ht.find(this->UniqueKey(11112)) == ht.end());
EXPECT_EQ(0u, ht.count(this->UniqueKey(11112)));
const_eq_pair = ht.equal_range(this->UniqueKey(11112));
EXPECT_TRUE(const_eq_pair.first == const_eq_pair.second);
EXPECT_TRUE(this->ht_.find(this->UniqueKey(11110)) == this->ht_.end());
EXPECT_EQ(0u, this->ht_.count(this->UniqueKey(11110)));
eq_pair = this->ht_.equal_range(this->UniqueKey(11110));
EXPECT_TRUE(eq_pair.first == eq_pair.second);
EXPECT_TRUE(ht.find(this->UniqueKey(11110)) == ht.end());
EXPECT_EQ(0u, ht.count(this->UniqueKey(11110)));
const_eq_pair = ht.equal_range(this->UniqueKey(11110));
EXPECT_TRUE(const_eq_pair.first == const_eq_pair.second);
}
TYPED_TEST(HashtableAllTest, BracketInsert) {
// tests operator[], for those types that support it.
if (!this->ht_.supports_brackets())
return;
// bracket_equal is equivalent to ht_[a] == b. It should insert a if
// it doesn't already exist.
EXPECT_TRUE(this->ht_.bracket_equal(this->UniqueKey(1),
this->ht_.default_data()));
EXPECT_TRUE(this->ht_.find(this->UniqueKey(1)) != this->ht_.end());
// bracket_assign is equivalent to ht_[a] = b.
this->ht_.bracket_assign(this->UniqueKey(2),
this->ht_.get_data(this->UniqueObject(4)));
EXPECT_TRUE(this->ht_.find(this->UniqueKey(2)) != this->ht_.end());
EXPECT_TRUE(this->ht_.bracket_equal(
this->UniqueKey(2), this->ht_.get_data(this->UniqueObject(4))));
this->ht_.bracket_assign(
this->UniqueKey(2), this->ht_.get_data(this->UniqueObject(6)));
EXPECT_TRUE(this->ht_.bracket_equal(
this->UniqueKey(2), this->ht_.get_data(this->UniqueObject(6))));
// bracket_equal shouldn't have modified the value.
EXPECT_TRUE(this->ht_.bracket_equal(
this->UniqueKey(2), this->ht_.get_data(this->UniqueObject(6))));
// Verify that an operator[] that doesn't cause a resize, also
// doesn't require an extra rehash.
TypeParam ht(100);
EXPECT_EQ(0, ht.hash_funct().num_hashes());
ht.bracket_assign(this->UniqueKey(2), ht.get_data(this->UniqueObject(2)));
EXPECT_EQ(1, ht.hash_funct().num_hashes());
// And overwriting, likewise, should only cause one extra hash.
ht.bracket_assign(this->UniqueKey(2), ht.get_data(this->UniqueObject(2)));
EXPECT_EQ(2, ht.hash_funct().num_hashes());
}
TYPED_TEST(HashtableAllTest, InsertValue) {
// First, try some straightforward insertions.
EXPECT_TRUE(this->ht_.empty());
this->ht_.insert(this->UniqueObject(1));
EXPECT_FALSE(this->ht_.empty());
this->ht_.insert(this->UniqueObject(11));
this->ht_.insert(this->UniqueObject(111));
this->ht_.insert(this->UniqueObject(1111));
this->ht_.insert(this->UniqueObject(11111));
this->ht_.insert(this->UniqueObject(111111));
this->ht_.insert(this->UniqueObject(1111111));
this->ht_.insert(this->UniqueObject(11111111));
this->ht_.insert(this->UniqueObject(111111111));
EXPECT_EQ(9u, this->ht_.size());
EXPECT_EQ(1u, this->ht_.count(this->UniqueKey(1)));
EXPECT_EQ(1u, this->ht_.count(this->UniqueKey(1111)));
// Check the return type.
pair<typename TypeParam::iterator, bool> insert_it;
insert_it = this->ht_.insert(this->UniqueObject(1));
EXPECT_EQ(false, insert_it.second); // false: already present
EXPECT_TRUE(*insert_it.first == this->UniqueObject(1));
insert_it = this->ht_.insert(this->UniqueObject(2));
EXPECT_EQ(true, insert_it.second); // true: not already present
EXPECT_TRUE(*insert_it.first == this->UniqueObject(2));
}
TYPED_TEST(HashtableIntTest, InsertRange) {
// We just test the ints here, to make the placement-new easier.
TypeParam ht_source;
ht_source.insert(this->UniqueObject(10));
ht_source.insert(this->UniqueObject(100));
ht_source.insert(this->UniqueObject(1000));
ht_source.insert(this->UniqueObject(10000));
ht_source.insert(this->UniqueObject(100000));
ht_source.insert(this->UniqueObject(1000000));
const typename TypeParam::value_type input[] = {
// This is a copy of the first element in ht_source.
*ht_source.begin(),
this->UniqueObject(2),
this->UniqueObject(4),
this->UniqueObject(8)
};
set<typename TypeParam::value_type> set_input;
set_input.insert(this->UniqueObject(1111111));
set_input.insert(this->UniqueObject(111111));
set_input.insert(this->UniqueObject(11111));
set_input.insert(this->UniqueObject(1111));
set_input.insert(this->UniqueObject(111));
set_input.insert(this->UniqueObject(11));
// Insert from ht_source, an iterator of the same type as us.
typename TypeParam::const_iterator begin = ht_source.begin();
typename TypeParam::const_iterator end = begin;
std::advance(end, 3);
this->ht_.insert(begin, end); // insert 3 elements from ht_source
EXPECT_EQ(3u, this->ht_.size());
EXPECT_TRUE(*this->ht_.begin() == this->UniqueObject(10) ||
*this->ht_.begin() == this->UniqueObject(100) ||
*this->ht_.begin() == this->UniqueObject(1000) ||
*this->ht_.begin() == this->UniqueObject(10000) ||
*this->ht_.begin() == this->UniqueObject(100000) ||
*this->ht_.begin() == this->UniqueObject(1000000));
// And insert from set_input, a separate, non-random-access iterator.
typename set<typename TypeParam::value_type>::const_iterator set_begin;
typename set<typename TypeParam::value_type>::const_iterator set_end;
set_begin = set_input.begin();
set_end = set_begin;
std::advance(set_end, 3);
this->ht_.insert(set_begin, set_end);
EXPECT_EQ(6u, this->ht_.size());
// Insert from input as well, a separate, random-access iterator.
// The first element of input overlaps with an existing element
// of ht_, so this should only up the size by 2.
this->ht_.insert(&input[0], &input[3]);
EXPECT_EQ(8u, this->ht_.size());
}
TEST(HashtableTest, InsertValueToMap) {
// For the maps in particular, ensure that inserting doesn't change
// the value.
sparse_hash_map<int, int> shm;
pair<sparse_hash_map<int,int>::iterator, bool> shm_it;
shm[1] = 2; // test a different method of inserting
shm_it = shm.insert(pair<int, int>(1, 3));
EXPECT_EQ(false, shm_it.second);
EXPECT_EQ(1, shm_it.first->first);
EXPECT_EQ(2, shm_it.first->second);
shm_it.first->second = 20;
EXPECT_EQ(20, shm[1]);
shm_it = shm.insert(pair<int, int>(2, 4));
EXPECT_EQ(true, shm_it.second);
EXPECT_EQ(2, shm_it.first->first);
EXPECT_EQ(4, shm_it.first->second);
EXPECT_EQ(4, shm[2]);
// Do it all again, with dense_hash_map.
dense_hash_map<int, int> dhm;
dhm.set_empty_key(0);
pair<dense_hash_map<int,int>::iterator, bool> dhm_it;
dhm[1] = 2; // test a different method of inserting
dhm_it = dhm.insert(pair<const int, int>(1, 3));
EXPECT_EQ(false, dhm_it.second);
EXPECT_EQ(1, dhm_it.first->first);
EXPECT_EQ(2, dhm_it.first->second);
dhm_it.first->second = 20;
EXPECT_EQ(20, dhm[1]);
dhm_it = dhm.insert(pair<const int, int>(2, 4));
EXPECT_EQ(true, dhm_it.second);
EXPECT_EQ(2, dhm_it.first->first);
EXPECT_EQ(4, dhm_it.first->second);
EXPECT_EQ(4, dhm[2]);
}
TYPED_TEST(HashtableStringTest, EmptyKey) {
// Only run the string tests, to make it easier to know what the
// empty key should be.
if (!this->ht_.supports_empty_key())
return;
EXPECT_EQ(kEmptyString, this->ht_.empty_key());
}
TYPED_TEST(HashtableAllTest, DeletedKey) {
if (!this->ht_.supports_deleted_key())
return;
this->ht_.insert(this->UniqueObject(10));
this->ht_.insert(this->UniqueObject(20));
this->ht_.set_deleted_key(this->UniqueKey(1));
EXPECT_EQ(this->ht_.deleted_key(), this->UniqueKey(1));
EXPECT_EQ(2u, this->ht_.size());
this->ht_.erase(this->UniqueKey(20));
EXPECT_EQ(1u, this->ht_.size());
// Changing the deleted key is fine.
this->ht_.set_deleted_key(this->UniqueKey(2));
EXPECT_EQ(this->ht_.deleted_key(), this->UniqueKey(2));
EXPECT_EQ(1u, this->ht_.size());
}
TYPED_TEST(HashtableAllTest, Erase) {
this->ht_.set_deleted_key(this->UniqueKey(1));
EXPECT_EQ(0u, this->ht_.erase(this->UniqueKey(20)));
this->ht_.insert(this->UniqueObject(10));
this->ht_.insert(this->UniqueObject(20));
EXPECT_EQ(1u, this->ht_.erase(this->UniqueKey(20)));
EXPECT_EQ(1u, this->ht_.size());
EXPECT_EQ(0u, this->ht_.erase(this->UniqueKey(20)));
EXPECT_EQ(1u, this->ht_.size());
EXPECT_EQ(0u, this->ht_.erase(this->UniqueKey(19)));
EXPECT_EQ(1u, this->ht_.size());
typename TypeParam::iterator it = this->ht_.find(this->UniqueKey(10));
EXPECT_TRUE(it != this->ht_.end());
this->ht_.erase(it);
EXPECT_EQ(0u, this->ht_.size());
for (int i = 10; i < 100; i++)
this->ht_.insert(this->UniqueObject(i));
EXPECT_EQ(90u, this->ht_.size());
this->ht_.erase(this->ht_.begin(), this->ht_.end());
EXPECT_EQ(0u, this->ht_.size());
}
TYPED_TEST(HashtableAllTest, EraseDoesNotResize) {
this->ht_.set_deleted_key(this->UniqueKey(1));
for (int i = 10; i < 2000; i++) {
this->ht_.insert(this->UniqueObject(i));
}
const typename TypeParam::size_type old_count = this->ht_.bucket_count();
for (int i = 10; i < 1000; i++) { // erase half one at a time
EXPECT_EQ(1u, this->ht_.erase(this->UniqueKey(i)));
}
this->ht_.erase(this->ht_.begin(), this->ht_.end()); // and the rest at once
EXPECT_EQ(0u, this->ht_.size());
EXPECT_EQ(old_count, this->ht_.bucket_count());
}
TYPED_TEST(HashtableAllTest, Equals) {
// The real test here is whether two hashtables are equal if they
// have the same items but in a different order.
TypeParam ht1;
TypeParam ht2;
EXPECT_TRUE(ht1 == ht1);
EXPECT_FALSE(ht1 != ht1);
EXPECT_TRUE(ht1 == ht2);
EXPECT_FALSE(ht1 != ht2);
ht1.set_deleted_key(this->UniqueKey(1));
// Only the contents affect equality, not things like deleted-key.
EXPECT_TRUE(ht1 == ht2);
EXPECT_FALSE(ht1 != ht2);
ht1.resize(2000);
EXPECT_TRUE(ht1 == ht2);
// The choice of allocator/etc doesn't matter either.
Hasher hasher(1);
Alloc<typename TypeParam::key_type> alloc(2, NULL);
TypeParam ht3(5, hasher, hasher, alloc);
EXPECT_TRUE(ht1 == ht3);
EXPECT_FALSE(ht1 != ht3);
ht1.insert(this->UniqueObject(2));
EXPECT_TRUE(ht1 != ht2);
EXPECT_FALSE(ht1 == ht2); // this should hold as well!
ht2.insert(this->UniqueObject(2));
EXPECT_TRUE(ht1 == ht2);
for (int i = 3; i <= 2000; i++) {
ht1.insert(this->UniqueObject(i));
}
for (int i = 2000; i >= 3; i--) {
ht2.insert(this->UniqueObject(i));
}
EXPECT_TRUE(ht1 == ht2);
}
TEST(HashtableTest, IntIO) {
// Since the set case is just a special (easier) case than the map case, I
// just test on sparse_hash_map. This handles the easy case where we can
// use the standard reader and writer.
sparse_hash_map<int, int> ht_out;
ht_out.set_deleted_key(0);
for (int i = 1; i < 1000; i++) {
ht_out[i] = i * i;
}
ht_out.erase(563); // just to test having some erased keys when we write.
ht_out.erase(22);
string file(TmpFile("intio"));
FILE* fp = fopen(file.c_str(), "wb");
EXPECT_TRUE(fp != NULL);
EXPECT_TRUE(ht_out.write_metadata(fp));
EXPECT_TRUE(ht_out.write_nopointer_data(fp));
fclose(fp);
sparse_hash_map<int, int> ht_in;
fp = fopen(file.c_str(), "rb");
EXPECT_TRUE(fp != NULL);
EXPECT_TRUE(ht_in.read_metadata(fp));
EXPECT_TRUE(ht_in.read_nopointer_data(fp));
fclose(fp);
EXPECT_EQ(1, ht_in[1]);
EXPECT_EQ(998001, ht_in[999]);
EXPECT_EQ(100, ht_in[10]);
EXPECT_EQ(441, ht_in[21]);
EXPECT_EQ(0, ht_in[22]); // should not have been saved
EXPECT_EQ(0, ht_in[563]);
}
TEST(HashtableTest, StringIO) {
// Since the set case is just a special (easier) case than the map case,
// I just test on sparse_hash_map. This handles the difficult case where
// we have to write our own custom reader/writer for the data.
sparse_hash_map<string, string, Hasher, Hasher> ht_out;
ht_out.set_deleted_key(string(""));
for (int i = 32; i < 128; i++) {
// This maps 'a' to 32 a's, 'b' to 33 b's, etc.
ht_out[string(1, i)] = string(i, i);
}
ht_out.erase("c"); // just to test having some erased keys when we write.
ht_out.erase("y");
string file(TmpFile("stringio"));
FILE* fp = fopen(file.c_str(), "wb");
EXPECT_TRUE(fp != NULL);
EXPECT_TRUE(ht_out.write_metadata(fp));
for (sparse_hash_map<string, string, Hasher, Hasher>::const_iterator
it = ht_out.begin(); it != ht_out.end(); ++it) {
const string::size_type first_size = it->first.length();
fwrite(&first_size, sizeof(first_size), 1, fp); // ignore endianness issues
fwrite(it->first.c_str(), first_size, 1, fp);
const string::size_type second_size = it->second.length();
fwrite(&second_size, sizeof(second_size), 1, fp);
fwrite(it->second.c_str(), second_size, 1, fp);
}
fclose(fp);
sparse_hash_map<string, string, Hasher, Hasher> ht_in;
fp = fopen(file.c_str(), "rb");
EXPECT_TRUE(fp != NULL);
EXPECT_TRUE(ht_in.read_metadata(fp));
for (sparse_hash_map<string, string, Hasher, Hasher>::iterator
it = ht_in.begin(); it != ht_in.end(); ++it) {
string::size_type first_size;
EXPECT_EQ(1u, fread(&first_size, sizeof(first_size), 1, fp));
char* first = new char[first_size];
EXPECT_EQ(1u, fread(first, first_size, 1, fp));
string::size_type second_size;
EXPECT_EQ(1u, fread(&second_size, sizeof(second_size), 1, fp));
char* second = new char[second_size];
EXPECT_EQ(1u, fread(second, second_size, 1, fp));
// it points to garbage, so we have to use placement-new to initialize.
// We also have to use const-cast since it->first is const.
new(const_cast<string*>(&it->first)) string(first, first_size);
new(&it->second) string(second, second_size);
delete[] first;
delete[] second;
}
fclose(fp);
EXPECT_EQ(string(" "), ht_in[" "]);
EXPECT_EQ(string("+++++++++++++++++++++++++++++++++++++++++++"), ht_in["+"]);
EXPECT_EQ(string(""), ht_in["c"]); // should not have been saved
EXPECT_EQ(string(""), ht_in["y"]);
}
TYPED_TEST(HashtableAllTest, Serialization) {
if (!this->ht_.supports_serialization()) return;
TypeParam ht_out;
ht_out.set_deleted_key(this->UniqueKey(2000));
for (int i = 1; i < 100; i++) {
ht_out.insert(this->UniqueObject(i));
}
// just to test having some erased keys when we write.
ht_out.erase(this->UniqueKey(56));
ht_out.erase(this->UniqueKey(22));
string file(TmpFile("serialization"));
FILE* fp = fopen(file.c_str(), "wb");
EXPECT_TRUE(fp != NULL);
EXPECT_TRUE(ht_out.serialize(ValueSerializer(), fp));
fclose(fp);
TypeParam ht_in;
fp = fopen(file.c_str(), "rb");
EXPECT_TRUE(fp != NULL);
EXPECT_TRUE(ht_in.unserialize(ValueSerializer(), fp));
fclose(fp);
EXPECT_EQ(this->UniqueObject(1), *ht_in.find(this->UniqueKey(1)));
EXPECT_EQ(this->UniqueObject(99), *ht_in.find(this->UniqueKey(99)));
EXPECT_FALSE(ht_in.count(this->UniqueKey(100)));
EXPECT_EQ(this->UniqueObject(21), *ht_in.find(this->UniqueKey(21)));
// should not have been saved
EXPECT_FALSE(ht_in.count(this->UniqueKey(22)));
EXPECT_FALSE(ht_in.count(this->UniqueKey(56)));
}
TYPED_TEST(HashtableIntTest, NopointerSerialization) {
if (!this->ht_.supports_serialization()) return;
TypeParam ht_out;
ht_out.set_deleted_key(this->UniqueKey(2000));
for (int i = 1; i < 100; i++) {
ht_out.insert(this->UniqueObject(i));
}
// just to test having some erased keys when we write.
ht_out.erase(this->UniqueKey(56));
ht_out.erase(this->UniqueKey(22));
string file(TmpFile("nopointer_serialization"));
FILE* fp = fopen(file.c_str(), "wb");
EXPECT_TRUE(fp != NULL);
EXPECT_TRUE(ht_out.serialize(typename TypeParam::NopointerSerializer(), fp));
fclose(fp);
TypeParam ht_in;
fp = fopen(file.c_str(), "rb");
EXPECT_TRUE(fp != NULL);
EXPECT_TRUE(ht_in.unserialize(typename TypeParam::NopointerSerializer(), fp));
fclose(fp);
EXPECT_EQ(this->UniqueObject(1), *ht_in.find(this->UniqueKey(1)));
EXPECT_EQ(this->UniqueObject(99), *ht_in.find(this->UniqueKey(99)));
EXPECT_FALSE(ht_in.count(this->UniqueKey(100)));
EXPECT_EQ(this->UniqueObject(21), *ht_in.find(this->UniqueKey(21)));
// should not have been saved
EXPECT_FALSE(ht_in.count(this->UniqueKey(22)));
EXPECT_FALSE(ht_in.count(this->UniqueKey(56)));
}
// We don't support serializing to a string by default, but you can do
// it by writing your own custom input/output class.
class StringIO {
public:
explicit StringIO(string* s) : s_(s) {}
size_t Write(const void* buf, size_t len) {
s_->append(reinterpret_cast<const char*>(buf), len);
return len;
}
size_t Read(void* buf, size_t len) {
if (s_->length() < len)
len = s_->length();
memcpy(reinterpret_cast<char*>(buf), s_->data(), len);
s_->erase(0, len);
return len;
}
private:
string* const s_;
};
TYPED_TEST(HashtableIntTest, SerializingToString) {
if (!this->ht_.supports_serialization()) return;
TypeParam ht_out;
ht_out.set_deleted_key(this->UniqueKey(2000));
for (int i = 1; i < 100; i++) {
ht_out.insert(this->UniqueObject(i));
}
// just to test having some erased keys when we write.
ht_out.erase(this->UniqueKey(56));
ht_out.erase(this->UniqueKey(22));
string stringbuf;
StringIO stringio(&stringbuf);
EXPECT_TRUE(ht_out.serialize(typename TypeParam::NopointerSerializer(),
&stringio));
TypeParam ht_in;
EXPECT_TRUE(ht_in.unserialize(typename TypeParam::NopointerSerializer(),
&stringio));
EXPECT_EQ(this->UniqueObject(1), *ht_in.find(this->UniqueKey(1)));
EXPECT_EQ(this->UniqueObject(99), *ht_in.find(this->UniqueKey(99)));
EXPECT_FALSE(ht_in.count(this->UniqueKey(100)));
EXPECT_EQ(this->UniqueObject(21), *ht_in.find(this->UniqueKey(21)));
// should not have been saved
EXPECT_FALSE(ht_in.count(this->UniqueKey(22)));
EXPECT_FALSE(ht_in.count(this->UniqueKey(56)));
}
// An easier way to do the above would be to use the existing stream methods.
TYPED_TEST(HashtableIntTest, SerializingToStringStream) {
if (!this->ht_.supports_serialization()) return;
TypeParam ht_out;
ht_out.set_deleted_key(this->UniqueKey(2000));
for (int i = 1; i < 100; i++) {
ht_out.insert(this->UniqueObject(i));
}
// just to test having some erased keys when we write.
ht_out.erase(this->UniqueKey(56));
ht_out.erase(this->UniqueKey(22));
std::stringstream string_buffer;
EXPECT_TRUE(ht_out.serialize(typename TypeParam::NopointerSerializer(),
&string_buffer));
TypeParam ht_in;
EXPECT_TRUE(ht_in.unserialize(typename TypeParam::NopointerSerializer(),
&string_buffer));
EXPECT_EQ(this->UniqueObject(1), *ht_in.find(this->UniqueKey(1)));
EXPECT_EQ(this->UniqueObject(99), *ht_in.find(this->UniqueKey(99)));
EXPECT_FALSE(ht_in.count(this->UniqueKey(100)));
EXPECT_EQ(this->UniqueObject(21), *ht_in.find(this->UniqueKey(21)));
// should not have been saved
EXPECT_FALSE(ht_in.count(this->UniqueKey(22)));
EXPECT_FALSE(ht_in.count(this->UniqueKey(56)));
}
// Verify that the metadata serialization is endianness and word size
// agnostic.
TYPED_TEST(HashtableAllTest, MetadataSerializationAndEndianness) {
TypeParam ht_out;
string kExpectedDense("\x13W\x86""B\0\0\0\0\0\0\0 \0\0\0\0\0\0\0\0\0\0\0\0",
24);
string kExpectedSparse("$hu1\0\0\0 \0\0\0\0\0\0\0\0\0\0\0\0", 20);
if (ht_out.supports_readwrite()) {
string file(TmpFile("metadata_serialization"));
FILE* fp = fopen(file.c_str(), "wb");
EXPECT_TRUE(fp != NULL);
EXPECT_TRUE(ht_out.write_metadata(fp));
EXPECT_TRUE(ht_out.write_nopointer_data(fp));
const size_t num_bytes = ftell(fp);
fclose(fp);
fp = fopen(file.c_str(), "rb");
EXPECT_LE(num_bytes, static_cast<size_t>(24));
char contents[24];
EXPECT_EQ(num_bytes, fread(contents, 1, num_bytes, fp));
EXPECT_EQ(EOF, fgetc(fp)); // check we're *exactly* the right size
fclose(fp);
// TODO(csilvers): check type of ht_out instead of looking at the 1st byte.
if (contents[0] == kExpectedDense[0]) {
EXPECT_EQ(kExpectedDense, string(contents, num_bytes));
} else {
EXPECT_EQ(kExpectedSparse, string(contents, num_bytes));
}
}
// Do it again with new-style serialization. Here we can use StringIO.
if (ht_out.supports_serialization()) {
string stringbuf;
StringIO stringio(&stringbuf);
EXPECT_TRUE(ht_out.serialize(typename TypeParam::NopointerSerializer(),
&stringio));
if (stringbuf[0] == kExpectedDense[0]) {
EXPECT_EQ(kExpectedDense, stringbuf);
} else {
EXPECT_EQ(kExpectedSparse, stringbuf);
}
}
}
// ------------------------------------------------------------------------
// The above tests test the general API for correctness. These tests
// test a few corner cases that have tripped us up in the past, and
// more general, cross-API issues like memory management.
TYPED_TEST(HashtableAllTest, BracketOperatorCrashing) {
this->ht_.set_deleted_key(this->UniqueKey(1));
for (int iters = 0; iters < 10; iters++) {
// We start at 33 because after shrinking, we'll be at 32 buckets.
for (int i = 33; i < 133; i++) {
this->ht_.bracket_assign(this->UniqueKey(i),
this->ht_.get_data(this->UniqueObject(i)));
}
this->ht_.clear_no_resize();
// This will force a shrink on the next insert, which we want to test.
this->ht_.bracket_assign(this->UniqueKey(2),
this->ht_.get_data(this->UniqueObject(2)));
this->ht_.erase(this->UniqueKey(2));
}
}
// For data types with trivial copy-constructors and destructors, we
// should use an optimized routine for data-copying, that involves
// memmove. We test this by keeping count of how many times the
// copy-constructor is called; it should be much less with the
// optimized code.
struct Memmove {
public:
Memmove(): i(0) {}
explicit Memmove(int ival): i(ival) {}
Memmove(const Memmove& that) { this->i = that.i; num_copies++; }
int i;
static int num_copies;
};
int Memmove::num_copies = 0;
struct NoMemmove {
public:
NoMemmove(): i(0) {}
explicit NoMemmove(int ival): i(ival) {}
NoMemmove(const NoMemmove& that) { this->i = that.i; num_copies++; }
int i;
static int num_copies;
};
int NoMemmove::num_copies = 0;
} // unnamed namespace
// This is what tells the hashtable code it can use memmove for this class:
_START_GOOGLE_NAMESPACE_
template<> struct has_trivial_copy<Memmove> : true_type { };
template<> struct has_trivial_destructor<Memmove> : true_type { };
_END_GOOGLE_NAMESPACE_
namespace {
TEST(HashtableTest, SimpleDataTypeOptimizations) {
// Only sparsehashtable optimizes moves in this way.
sparse_hash_map<int, Memmove, Hasher, Hasher> memmove;
sparse_hash_map<int, NoMemmove, Hasher, Hasher> nomemmove;
sparse_hash_map<int, Memmove, Hasher, Hasher, Alloc<int> >
memmove_nonstandard_alloc;
Memmove::num_copies = 0;
for (int i = 10000; i > 0; i--) {
memmove[i] = Memmove(i);
}
const int memmove_copies = Memmove::num_copies;
NoMemmove::num_copies = 0;
for (int i = 10000; i > 0; i--) {
nomemmove[i] = NoMemmove(i);
}
const int nomemmove_copies = NoMemmove::num_copies;
Memmove::num_copies = 0;
for (int i = 10000; i > 0; i--) {
memmove_nonstandard_alloc[i] = Memmove(i);
}
const int memmove_nonstandard_alloc_copies = Memmove::num_copies;
EXPECT_GT(nomemmove_copies, memmove_copies);
EXPECT_EQ(nomemmove_copies, memmove_nonstandard_alloc_copies);
}
TYPED_TEST(HashtableAllTest, ResizeHysteresis) {
// We want to make sure that when we create a hashtable, and then
// add and delete one element, the size of the hashtable doesn't
// change.
this->ht_.set_deleted_key(this->UniqueKey(1));
typename TypeParam::size_type old_bucket_count = this->ht_.bucket_count();
this->ht_.insert(this->UniqueObject(4));
this->ht_.erase(this->UniqueKey(4));
this->ht_.insert(this->UniqueObject(4));
this->ht_.erase(this->UniqueKey(4));
EXPECT_EQ(old_bucket_count, this->ht_.bucket_count());
// Try it again, but with a hashtable that starts very small
TypeParam ht(2);
EXPECT_LT(ht.bucket_count(), 32u); // verify we really do start small
ht.set_deleted_key(this->UniqueKey(1));
old_bucket_count = ht.bucket_count();
ht.insert(this->UniqueObject(4));
ht.erase(this->UniqueKey(4));
ht.insert(this->UniqueObject(4));
ht.erase(this->UniqueKey(4));
EXPECT_EQ(old_bucket_count, ht.bucket_count());
}
TEST(HashtableTest, ConstKey) {
// Sometimes people write hash_map<const int, int>, even though the
// const isn't necessary. Make sure we handle this cleanly.
sparse_hash_map<const int, int, Hasher, Hasher> shm;
shm.set_deleted_key(1);
shm[10] = 20;
dense_hash_map<const int, int, Hasher, Hasher> dhm;
dhm.set_empty_key(1);
dhm.set_deleted_key(2);
dhm[10] = 20;
}
TYPED_TEST(HashtableAllTest, ResizeActuallyResizes) {
// This tests for a problem we had where we could repeatedly "resize"
// a hashtable to the same size it was before, on every insert.
const typename TypeParam::size_type kSize = 1<<10; // Pick any power of 2
const float kResize = 0.8f; // anything between 0.5 and 1 is fine.
const int kThreshold = static_cast<int>(kSize * kResize - 1);
this->ht_.set_resizing_parameters(0, kResize);
this->ht_.set_deleted_key(this->UniqueKey(kThreshold + 100));
// Get right up to the resizing threshold.
for (int i = 0; i <= kThreshold; i++) {
this->ht_.insert(this->UniqueObject(i+1));
}
// The bucket count should equal kSize.
EXPECT_EQ(kSize, this->ht_.bucket_count());
// Now start doing erase+insert pairs. This should cause us to
// copy the hashtable at most once.
const int pre_copies = this->ht_.num_table_copies();
for (int i = 0; i < static_cast<int>(kSize); i++) {
this->ht_.erase(this->UniqueKey(kThreshold));
this->ht_.insert(this->UniqueObject(kThreshold));
}
EXPECT_LT(this->ht_.num_table_copies(), pre_copies + 2);
// Now create a hashtable where we go right to the threshold, then
// delete everything and do one insert. Even though our hashtable
// is now tiny, we should still have at least kSize buckets, because
// our shrink threshhold is 0.
TypeParam ht2;
ht2.set_deleted_key(this->UniqueKey(kThreshold + 100));
ht2.set_resizing_parameters(0, kResize);
EXPECT_LT(ht2.bucket_count(), kSize);
for (int i = 0; i <= kThreshold; i++) {
ht2.insert(this->UniqueObject(i+1));
}
EXPECT_EQ(ht2.bucket_count(), kSize);
for (int i = 0; i <= kThreshold; i++) {
ht2.erase(this->UniqueKey(i+1));
EXPECT_EQ(ht2.bucket_count(), kSize);
}
ht2.insert(this->UniqueObject(kThreshold+2));
EXPECT_GE(ht2.bucket_count(), kSize);
}
template<typename T> class DenseIntMap : public dense_hash_map<int, T> {
public:
DenseIntMap() { this->set_empty_key(0); }
};
class DenseStringSet : public dense_hash_set<string, Hasher, Hasher> {
public:
DenseStringSet() { this->set_empty_key(string("")); }
};
TEST(HashtableTest, NestedHashtables) {
// People can do better than to have a hash_map of hash_maps, but we
// should still support it. I try a few different mappings.
sparse_hash_map<string, sparse_hash_map<int, string>, Hasher, Hasher> ht1;
sparse_hash_map<string, DenseStringSet, Hasher, Hasher> ht2;
dense_hash_map<int, DenseIntMap<int>, Hasher, Hasher> ht3;
ht3.set_empty_key(0);
ht1["hi"]; // create a sub-ht with the default values
ht1["lo"][1] = "there";
sparse_hash_map<string, sparse_hash_map<int, string>, Hasher, Hasher>
ht1copy = ht1;
ht2["hi"];
ht2["hi"].insert("lo");
sparse_hash_map<string, DenseStringSet, Hasher, Hasher> ht2copy = ht2;
ht3[1];
ht3[2][3] = 4;
dense_hash_map<int, DenseIntMap<int>, Hasher, Hasher> ht3copy = ht3;
}
TEST(HashtableTest, ResizeWithoutShrink) {
const size_t N = 1000000L;
const size_t max_entries = 40;
#define KEY(i, j) (i * 4 + j) * 28 + 11
dense_hash_map<size_t, int> ht;
ht.set_empty_key(0);
ht.set_deleted_key(1);
ht.min_load_factor(0);
ht.max_load_factor(0.2);
for (size_t i = 0; i < N; ++i) {
for (size_t j = 0; j < max_entries; ++j) {
size_t key = KEY(i, j);
ht[key] = 0;
}
for (size_t j = 0; j < max_entries / 2; ++j) {
size_t key = KEY(i, j);
ht.erase(key);
ht[key + 1] = 0;
}
for (size_t j = 0; j < max_entries; ++j) {
size_t key = KEY(i, j);
ht.erase(key);
ht.erase(key + (j < max_entries / 2));
}
EXPECT_LT(ht.bucket_count(), 4096);
}
}
TEST(HashtableDeathTest, ResizeOverflow) {
dense_hash_map<int, int> ht;
EXPECT_DEATH(ht.resize(static_cast<size_t>(-1)),
"overflows size_type");
sparse_hash_map<int, int> ht2;
EXPECT_DEATH(ht2.resize(static_cast<size_t>(-1)),
"overflows size_type");
}
TEST(HashtableDeathTest, InsertSizeTypeOverflow) {
static const int kMax = 256;
vector<int> test_data(kMax);
for (int i = 0; i < kMax; ++i) {
test_data[i] = i+1000;
}
sparse_hash_set<int, Hasher, Hasher, Alloc<int, uint8, 10> > shs;
dense_hash_set<int, Hasher, Hasher, Alloc<int, uint8, 10> > dhs;
dhs.set_empty_key(-1);
// Test we are using the correct allocator
EXPECT_TRUE(shs.get_allocator().is_custom_alloc());
EXPECT_TRUE(dhs.get_allocator().is_custom_alloc());
// Test size_type overflow in insert(it, it)
EXPECT_DEATH(dhs.insert(test_data.begin(), test_data.end()),
"overflows size_type");
EXPECT_DEATH(shs.insert(test_data.begin(), test_data.end()),
"overflows size_type");
}
TEST(HashtableDeathTest, InsertMaxSizeOverflow) {
static const int kMax = 256;
vector<int> test_data(kMax);
for (int i = 0; i < kMax; ++i) {
test_data[i] = i+1000;
}
sparse_hash_set<int, Hasher, Hasher, Alloc<int, uint8, 10> > shs;
dense_hash_set<int, Hasher, Hasher, Alloc<int, uint8, 10> > dhs;
dhs.set_empty_key(-1);
// Test max_size overflow
EXPECT_DEATH(dhs.insert(test_data.begin(), test_data.begin() + 11),
"exceed max_size");
EXPECT_DEATH(shs.insert(test_data.begin(), test_data.begin() + 11),
"exceed max_size");
}
TEST(HashtableDeathTest, ResizeSizeTypeOverflow) {
// Test min-buckets overflow, when we want to resize too close to size_type
sparse_hash_set<int, Hasher, Hasher, Alloc<int, uint8, 10> > shs;
dense_hash_set<int, Hasher, Hasher, Alloc<int, uint8, 10> > dhs;
dhs.set_empty_key(-1);
EXPECT_DEATH(dhs.resize(250), "overflows size_type"); // 9+250 > 256
EXPECT_DEATH(shs.resize(250), "overflows size_type");
}
TEST(HashtableDeathTest, ResizeDeltaOverflow) {
static const int kMax = 256;
vector<int> test_data(kMax);
for (int i = 0; i < kMax; ++i) {
test_data[i] = i+1000;
}
sparse_hash_set<int, Hasher, Hasher, Alloc<int, uint8, 255> > shs;
dense_hash_set<int, Hasher, Hasher, Alloc<int, uint8, 255> > dhs;
dhs.set_empty_key(-1);
for (int i = 0; i < 9; i++) {
dhs.insert(i);
shs.insert(i);
}
EXPECT_DEATH(dhs.insert(test_data.begin(), test_data.begin() + 250),
"overflows size_type"); // 9+250 > 256
EXPECT_DEATH(shs.insert(test_data.begin(), test_data.begin() + 250),
"overflows size_type");
}
// ------------------------------------------------------------------------
// This informational "test" comes last so it's easy to see.
// Also, benchmarks.
TYPED_TEST(HashtableAllTest, ClassSizes) {
std::cout << "sizeof(" << typeid(TypeParam).name() << "): "
<< sizeof(this->ht_) << "\n";
}
} // unnamed namespace
int main(int, char **) {
// All the work is done in the static constructors. If they don't
// die, the tests have all passed.
cout << "PASS\n";
return 0;
}