1
0
Fork 0
mirror of https://github.com/beefytech/Beef.git synced 2025-06-08 19:48:20 +02:00
Beef/IDEHelper/Compiler/BfModuleTypeUtils.cpp

10171 lines
341 KiB
C++

#include "BeefySysLib/util/AllocDebug.h"
#include "BfCompiler.h"
#include "BfSystem.h"
#include "BfParser.h"
#include "BfCodeGen.h"
#include "BfExprEvaluator.h"
#include <fcntl.h>
#include "BfConstResolver.h"
#include "BfMangler.h"
#include "BeefySysLib/util/PerfTimer.h"
#include "BeefySysLib/util/BeefPerf.h"
#include "BfSourceClassifier.h"
#include "BfAutoComplete.h"
#include "BfDemangler.h"
#include "BfResolvePass.h"
#include "BfFixits.h"
#include "BfIRCodeGen.h"
#include "BfDefBuilder.h"
//////////////////////////////////////////////////////////////////////////
int32 GetNumLowZeroBits(int32 n)
{
if (n == 0)
return 32;
int i = 0;
while ((n & 1) == 0)
{
n = (int32)((uint32)n >> 1);
i++;
}
return i;
}
//////////////////////////////////////////////////////////////////////////
USING_NS_BF;
BfGenericExtensionEntry* BfModule::BuildGenericExtensionInfo(BfGenericTypeInstance* genericTypeInst, BfTypeDef* partialTypeDef)
{
if (!partialTypeDef->IsExtension())
return NULL;
if (partialTypeDef->mGenericParamDefs.size() != genericTypeInst->mTypeGenericArguments.size())
{
AssertErrorState();
return NULL;
}
BfGenericExtensionInfo* genericExtensionInfo = genericTypeInst->mGenericExtensionInfo;
if (genericExtensionInfo == NULL)
{
genericExtensionInfo = new BfGenericExtensionInfo();
genericTypeInst->mGenericExtensionInfo = genericExtensionInfo;
}
BfTypeState typeState;
typeState.mTypeInstance = genericTypeInst;
typeState.mCurTypeDef = partialTypeDef;
SetAndRestoreValue<BfTypeState*> prevTypeState(mContext->mCurTypeState, &typeState);
//auto genericExEntry = new BfGenericExtensionEntry();
//auto insertPair = genericExtensionInfo->mExtensionMap.insert(std::make_pair(partialTypeDef, BfGenericExtensionEntry()));
//auto genericExEntry = &insertPair.first->second;
BfGenericExtensionEntry* genericExEntry;
genericExtensionInfo->mExtensionMap.TryAdd(partialTypeDef, NULL, &genericExEntry);
int startDefGenericParamIdx = (int)genericExEntry->mGenericParams.size();
for (int paramIdx = startDefGenericParamIdx; paramIdx < (int)genericTypeInst->mTypeGenericArguments.size(); paramIdx++)
{
auto genericParamInstance = new BfGenericTypeParamInstance(partialTypeDef, paramIdx);
genericParamInstance->mExternType = GetGenericParamType(BfGenericParamKind_Type, paramIdx);
genericExEntry->mGenericParams.push_back(genericParamInstance);
}
for (int paramIdx = startDefGenericParamIdx; paramIdx < (int)genericTypeInst->mTypeGenericArguments.size(); paramIdx++)
{
auto genericParamInstance = genericExEntry->mGenericParams[paramIdx];
auto rootGenericParamInstance = genericTypeInst->mGenericParams[paramIdx];
genericParamInstance->mTypeConstraint = rootGenericParamInstance->mTypeConstraint;
genericParamInstance->mInterfaceConstraints = rootGenericParamInstance->mInterfaceConstraints;
genericParamInstance->mGenericParamFlags |= rootGenericParamInstance->mGenericParamFlags;
ResolveGenericParamConstraints(genericParamInstance, genericTypeInst->IsUnspecializedType());
}
for (auto genericParam : genericExEntry->mGenericParams)
{
for (auto constraintTypeInst : genericParam->mInterfaceConstraints)
AddDependency(constraintTypeInst, mCurTypeInstance, BfDependencyMap::DependencyFlag_Constraint);
if (genericParam->mTypeConstraint != NULL)
AddDependency(genericParam->mTypeConstraint, mCurTypeInstance, BfDependencyMap::DependencyFlag_Constraint);
}
return genericExEntry;
}
bool BfModule::BuildGenericParams(BfType* resolvedTypeRef)
{
BfTypeState typeState;
typeState.mBuildingGenericParams = true;
SetAndRestoreValue<BfTypeState*> prevTypeState(mContext->mCurTypeState, &typeState);
BF_ASSERT(mCurMethodInstance == NULL);
auto genericTypeInst = (BfGenericTypeInstance*)resolvedTypeRef;
if (genericTypeInst->mTypeGenericArguments[0]->IsGenericParam())
{
BF_ASSERT(genericTypeInst->mIsUnspecialized);
}
auto typeDef = genericTypeInst->mTypeDef;
int startDefGenericParamIdx = (int)genericTypeInst->mGenericParams.size();
for (int paramIdx = startDefGenericParamIdx; paramIdx < (int)genericTypeInst->mTypeGenericArguments.size(); paramIdx++)
{
auto genericParamInstance = new BfGenericTypeParamInstance(typeDef, paramIdx);
genericParamInstance->mExternType = GetGenericParamType(BfGenericParamKind_Type, paramIdx);
genericTypeInst->mGenericParams.push_back(genericParamInstance);
}
if (!typeDef->mPartials.empty())
{
for (auto partialTypeDef : typeDef->mPartials)
{
if (!partialTypeDef->IsExtension())
{
typeState.mCurTypeDef = partialTypeDef;
for (int paramIdx = startDefGenericParamIdx; paramIdx < (int)genericTypeInst->mTypeGenericArguments.size(); paramIdx++)
{
auto genericParamDef = typeDef->mGenericParamDefs[paramIdx];
auto genericParamInstance = genericTypeInst->mGenericParams[paramIdx];
ResolveGenericParamConstraints(genericParamInstance, genericTypeInst->IsUnspecializedType());
for (auto nameNode : genericParamDef->mNameNodes)
{
HandleTypeGenericParamRef(nameNode, typeDef, paramIdx);
}
}
}
else
{
auto genericExEntry = BuildGenericExtensionInfo(genericTypeInst, partialTypeDef);
if (genericExEntry == NULL)
continue;
if (!genericTypeInst->IsUnspecializedType())
{
SetAndRestoreValue<bool> prevIgnoreErrors(mIgnoreErrors, true);
for (int paramIdx = 0; paramIdx < genericExEntry->mGenericParams.size(); paramIdx++)
{
auto genericParamInstance = genericExEntry->mGenericParams[paramIdx];
BfGenericParamSource genericParamSource;
genericParamSource.mCheckAccessibility = false;
genericParamSource.mTypeInstance = genericTypeInst;
BfError* error = NULL;
if (!CheckGenericConstraints(genericParamSource, genericTypeInst->mTypeGenericArguments[paramIdx], NULL, genericParamInstance, NULL, &error))
{
genericExEntry->mConstraintsPassed = false;
}
}
}
}
}
}
else
{
for (int paramIdx = startDefGenericParamIdx; paramIdx < (int)genericTypeInst->mGenericParams.size(); paramIdx++)
{
auto genericParamInstance = genericTypeInst->mGenericParams[paramIdx];
ResolveGenericParamConstraints(genericParamInstance, genericTypeInst->IsUnspecializedType());
auto genericParamDef = genericParamInstance->GetGenericParamDef();
if (genericParamDef != NULL)
{
for (auto nameNode : genericParamDef->mNameNodes)
{
HandleTypeGenericParamRef(nameNode, typeDef, paramIdx);
}
}
}
}
for (auto genericParam : genericTypeInst->mGenericParams)
{
for (auto constraintTypeInst : genericParam->mInterfaceConstraints)
AddDependency(constraintTypeInst, mCurTypeInstance, BfDependencyMap::DependencyFlag_Constraint);
if (genericParam->mTypeConstraint != NULL)
AddDependency(genericParam->mTypeConstraint, mCurTypeInstance, BfDependencyMap::DependencyFlag_Constraint);
}
return true;
}
bool BfModule::ValidateGenericConstraints(BfTypeReference* typeRef, BfGenericTypeInstance* genericTypeInst, bool ignoreErrors)
{
if ((mCurTypeInstance != NULL) && (mCurTypeInstance->IsTypeAlias()))
{
// Don't validate constraints during the population of a concrete generic type alias instance, we want to
// throw those errors at the usage sites
return true;
}
SetAndRestoreValue<bool> prevIgnoreErrors(mIgnoreErrors, mIgnoreErrors || ignoreErrors);
genericTypeInst->mValidatedGenericConstraints = true;
if (genericTypeInst->IsTypeAlias())
{
auto underlyingType = genericTypeInst->GetUnderlyingType();
if ((underlyingType != NULL) && (underlyingType->IsGenericTypeInstance()))
return ValidateGenericConstraints(typeRef, (BfGenericTypeInstance*)underlyingType, ignoreErrors);
return true;
}
auto typeDef = genericTypeInst->mTypeDef;
for (int paramIdx = 0; paramIdx < (int)genericTypeInst->mTypeGenericArguments.size(); paramIdx++)
{
auto genericParamInstance = genericTypeInst->mGenericParams[paramIdx];
// Why did we remove this line? This breaks determining compatibility of one unspecialized type to another unspecialized type, called from ResolveTypeResult
//if (!genericTypeInst->mIsUnspecialized)
{
BfError* error = NULL;
if (!CheckGenericConstraints(BfGenericParamSource(genericTypeInst), genericTypeInst->mTypeGenericArguments[paramIdx], typeRef, genericParamInstance, NULL, &error))
{
genericTypeInst->mHadValidateErrors = true;
return false;
}
}
}
return true;
}
bool BfModule::AreConstraintsSubset(BfGenericParamInstance* checkInner, BfGenericParamInstance* checkOuter)
{
// Added new flags?
if ((checkInner->mGenericParamFlags | checkOuter->mGenericParamFlags) != checkOuter->mGenericParamFlags)
{
// If the outer had a type flag and the inner has a specific type constraint, then see if those are compatible
auto outerFlags = checkOuter->mGenericParamFlags;
if (checkOuter->mTypeConstraint != NULL)
{
if (checkOuter->mTypeConstraint->IsStruct())
outerFlags |= BfGenericParamFlag_Struct;
else if (checkOuter->mTypeConstraint->IsStructOrStructPtr())
outerFlags |= BfGenericParamFlag_StructPtr;
else if (checkOuter->mTypeConstraint->IsObject())
outerFlags |= BfGenericParamFlag_Class;
}
if ((checkInner->mGenericParamFlags | outerFlags) != outerFlags)
return false;
}
if (checkInner->mTypeConstraint != NULL)
{
if (checkOuter->mTypeConstraint == NULL)
return false;
if (!TypeIsSubTypeOf(checkInner->mTypeConstraint->ToTypeInstance(), checkOuter->mTypeConstraint->ToTypeInstance()))
return false;
}
for (auto& innerIFace : checkInner->mInterfaceConstraints)
{
if (!checkOuter->mInterfaceConstraints.Contains(innerIFace))
return false;
}
for (auto& innerOp : checkInner->mOperatorConstraints)
{
if (!checkOuter->mOperatorConstraints.Contains(innerOp))
return false;
}
return true;
}
bool BfModule::CheckConstraintState(BfAstNode* refNode)
{
if (mContext->mCurConstraintState == NULL)
return true;
auto checkState = mContext->mCurConstraintState->mPrevState;
while (checkState != NULL)
{
if (*checkState == *mContext->mCurConstraintState)
{
if (refNode != NULL)
{
Fail("Constraints cause circular operator invocations", refNode);
}
return false;
}
checkState = checkState->mPrevState;
}
return true;
}
bool BfModule::ShouldAllowMultipleDefinitions(BfTypeInstance* typeInst, BfTypeDef* firstDeclaringTypeDef, BfTypeDef* secondDeclaringTypeDef)
{
if (firstDeclaringTypeDef == secondDeclaringTypeDef)
return false;
// Since we will use shared debugging info, we won't be able to differentiate between these two fields.
// If we created per-target debug info then we could "fix" this.
// Can these projects even see each other?
if ((!firstDeclaringTypeDef->mProject->ContainsReference(secondDeclaringTypeDef->mProject)) &&
(!secondDeclaringTypeDef->mProject->ContainsReference(firstDeclaringTypeDef->mProject)))
return true;
if (typeInst->IsUnspecializedType())
{
bool alwaysCoincide = true;
auto genericTypeInst = (BfGenericTypeInstance*)typeInst;
if (genericTypeInst->mGenericExtensionInfo != NULL)
{
auto firstConstraints = genericTypeInst->GetGenericParamsVector(firstDeclaringTypeDef);
auto secondConstraints = genericTypeInst->GetGenericParamsVector(secondDeclaringTypeDef);
for (int genericIdx = 0; genericIdx < (int)firstConstraints->size(); genericIdx++)
{
auto firstConstraint = (*firstConstraints)[genericIdx];
auto secondConstraint = (*secondConstraints)[genericIdx];
if ((!AreConstraintsSubset(firstConstraint, secondConstraint)) &&
(!AreConstraintsSubset(secondConstraint, firstConstraint)))
alwaysCoincide = false;
}
}
// Only show an error if we are certain both members will always appear at the same time
if (!alwaysCoincide)
return true;
}
return false;
}
void BfModule::CheckInjectNewRevision(BfTypeInstance* typeInstance)
{
if ((typeInstance != NULL) && (typeInstance->mTypeDef != NULL))
{
if (typeInstance->mTypeDef->mNextRevision != NULL)
{
// It's possible that our main compiler thread is generating a new typedef while we're autocompleting. This handles that case...
if (typeInstance->mDefineState == BfTypeDefineState_Undefined)
{
if (typeInstance->IsBoxed())
{
BfBoxedType* boxedType = (BfBoxedType*)typeInstance;
BfTypeInstance* innerType = boxedType->mElementType->ToTypeInstance();
PopulateType(innerType, BfPopulateType_Data);
}
else
{
mContext->HandleChangedTypeDef(typeInstance->mTypeDef);
mSystem->InjectNewRevision(typeInstance->mTypeDef);
}
}
else
{
BF_ASSERT(mCompiler->IsAutocomplete());
}
}
if ((!typeInstance->IsDeleting()) && (!mCompiler->IsAutocomplete()))
BF_ASSERT((typeInstance->mTypeDef->mDefState == BfTypeDef::DefState_Defined) || (typeInstance->mTypeDef->mDefState == BfTypeDef::DefState_New));
}
}
bool BfModule::InitType(BfType* resolvedTypeRef, BfPopulateType populateType)
{
BP_ZONE("BfModule::InitType");
SetAndRestoreValue<BfTypeInstance*> prevTypeInstance(mCurTypeInstance, resolvedTypeRef->ToTypeInstance());
SetAndRestoreValue<BfMethodInstance*> prevMethodInstance(mCurMethodInstance, NULL);
if (mCompiler->mHotState != NULL)
mCompiler->mHotState->mHasNewTypes = true;
auto typeInst = resolvedTypeRef->ToTypeInstance();
if (typeInst != NULL)
{
CheckInjectNewRevision(typeInst);
if (typeInst->mBaseType != NULL)
BF_ASSERT((typeInst->mBaseType->mRebuildFlags & BfTypeRebuildFlag_Deleted) == 0);
if ((typeInst->mTypeDef != NULL) && (typeInst->mTypeDef->mDefState == BfTypeDef::DefState_New) &&
(typeInst->mTypeDef->mNextRevision == NULL))
{
mContext->HandleChangedTypeDef(typeInst->mTypeDef);
typeInst->mTypeDef->mDefState = BfTypeDef::DefState_Defined;
}
typeInst->mIsReified = mIsReified;
//BF_ASSERT(typeInst->mTypeDef->mTypeCode != BfTypeCode_Extension);
if (resolvedTypeRef->IsTuple())
{
auto tupleType = (BfTupleType*)resolvedTypeRef;
for (int fieldIdx = 0; fieldIdx < (int)tupleType->mFieldInstances.size(); fieldIdx++)
{
auto fieldInstance = (BfFieldInstance*)&tupleType->mFieldInstances[fieldIdx];
if (fieldInstance->GetResolvedType()->IsUnspecializedType())
tupleType->mHasUnspecializedMembers = true;
}
}
typeInst->mRevision = mCompiler->mRevision;
if (typeInst->mTypeDef != NULL)
BF_ASSERT(typeInst->mTypeDef->mDefState != BfTypeDef::DefState_Deleted);
}
if (resolvedTypeRef->IsGenericTypeInstance())
{
auto genericTypeInst = (BfGenericTypeInstance*)resolvedTypeRef;
for (auto typeGenericArg : genericTypeInst->mTypeGenericArguments)
BF_ASSERT((typeGenericArg->mRebuildFlags & BfTypeRebuildFlag_Deleted) == 0);
}
if (!mContext->mSavedTypeDataMap.IsEmpty())
{
String typeName = BfSafeMangler::Mangle(resolvedTypeRef, this);
BfSavedTypeData* savedTypeData;
if (mContext->mSavedTypeDataMap.Remove(typeName, &savedTypeData))
{
// if (resolvedTypeRef->mTypeId != -1)
// {
// // If we have an ID and it as the last one assigned the roll back the ID counter
// if (resolvedTypeRef->mTypeId == mCompiler->mCurTypeId - 1)
// mCompiler->mCurTypeId--;
// }
mContext->mSavedTypeData[savedTypeData->mTypeId] = NULL;
resolvedTypeRef->mTypeId = savedTypeData->mTypeId;
BfLogSysM("Using mSavedTypeData for %p %s\n", resolvedTypeRef, typeName.c_str());
if (typeInst != NULL)
{
if (mCompiler->IsHotCompile())
{
BfLogSysM("Using mSavedTypeData HotTypeData %p for %p\n", savedTypeData->mHotTypeData, resolvedTypeRef);
typeInst->mHotTypeData = savedTypeData->mHotTypeData;
savedTypeData->mHotTypeData = NULL;
}
}
delete savedTypeData;
mContext->mTypes[resolvedTypeRef->mTypeId] = resolvedTypeRef;
}
else
{
BfLogSysM("No mSavedTypeData entry for %p %s\n", resolvedTypeRef, typeName.c_str());
}
}
resolvedTypeRef->mContext = mContext;
if (resolvedTypeRef->IsGenericTypeInstance())
{
auto genericTypeInstance = (BfGenericTypeInstance*)resolvedTypeRef;
// Do it here so the location we attempted to specialize this type will throw the failure if there is one
if (!BuildGenericParams(resolvedTypeRef))
return false;
}
BfLogSysM("%p InitType: %s Type: %p TypeDef: %p Revision:%d\n", mContext, TypeToString(resolvedTypeRef).c_str(), resolvedTypeRef, (typeInst != NULL) ? typeInst->mTypeDef : NULL, mCompiler->mRevision);
// When we're autocomplete, we can't do the method processing so we have to add this type to the type work list
if (((populateType < BfPopulateType_Full) || (mCompiler->IsAutocomplete())) /*&& (!resolvedTypeRef->IsUnspecializedTypeVariation())*/ && (resolvedTypeRef->IsTypeInstance()) &&
(!resolvedTypeRef->IsTypeAlias()))
{
BfTypeProcessRequest* typeProcessRequest = mContext->mPopulateTypeWorkList.Alloc();
typeProcessRequest->mType = resolvedTypeRef;
BF_ASSERT(resolvedTypeRef->mContext == mContext);
mCompiler->mStats.mTypesQueued++;
mCompiler->UpdateCompletion();
}
return PopulateType(resolvedTypeRef, populateType);
}
void BfModule::AddFieldDependency(BfTypeInstance* typeInstance, BfFieldInstance* fieldInstance, BfType* fieldType)
{
auto fieldTypeInstance = fieldType->ToTypeInstance();
if (fieldTypeInstance == NULL)
{
auto underlyingType = fieldType->GetUnderlyingType();
if (underlyingType != NULL)
AddFieldDependency(typeInstance, fieldInstance, underlyingType);
return;
}
auto depFlag = fieldTypeInstance->IsValueType() ? BfDependencyMap::DependencyFlag_ValueTypeMemberData : BfDependencyMap::DependencyFlag_PtrMemberData;
AddDependency(fieldTypeInstance, typeInstance, depFlag);
if ((fieldTypeInstance->IsStruct()) && (fieldTypeInstance->IsGenericTypeInstance()))
{
// When we're a generic struct, our data layout can depend on our generic parameters as well
auto genericTypeInstance = (BfGenericTypeInstance*)fieldTypeInstance;
for (auto typeGenericArg : genericTypeInstance->mTypeGenericArguments)
AddFieldDependency(typeInstance, fieldInstance, typeGenericArg);
}
}
void BfModule::CheckMemberNames(BfTypeInstance* typeInst)
{
struct MemberRef
{
BfMemberDef* mMemberDef;
String mName;
String mKindName;
BfTypeInstance* mTypeInst;
BfAstNode* mNameNode;
BfProtection mProtection;
BfTypeDef* mDeclaringType;
bool mIsOverride;
};
SizedArray<MemberRef, 64> memberList;
// Check base types first and then current type
auto checkType = typeInst;
while (checkType != NULL)
{
for (auto prop : checkType->mTypeDef->mProperties)
{
BfPropertyDeclaration* propDecl = (BfPropertyDeclaration*)prop->mFieldDeclaration;
if ((propDecl != NULL) && (propDecl->mExplicitInterface != NULL))
continue;
if (!typeInst->IsTypeMemberIncluded(prop->mDeclaringType))
continue;
MemberRef memberRef;
memberRef.mMemberDef = prop;
memberRef.mTypeInst = checkType;
memberRef.mProtection = prop->mProtection;
memberRef.mName = prop->mName;
memberRef.mKindName = "property";
if (prop->mFieldDeclaration != NULL)
memberRef.mNameNode = prop->mFieldDeclaration->mNameNode;
memberRef.mDeclaringType = prop->mDeclaringType;
auto propertyDeclaration = BfNodeDynCast<BfPropertyDeclaration>(prop->mFieldDeclaration);
if (propertyDeclaration != NULL)
memberRef.mIsOverride = (propertyDeclaration->mNewSpecifier != NULL) ||
((propertyDeclaration->mVirtualSpecifier != NULL) && (propertyDeclaration->mVirtualSpecifier->GetToken() == BfToken_Override));
memberList.push_back(memberRef);
}
for (auto field : checkType->mTypeDef->mFields)
{
if (!typeInst->IsTypeMemberIncluded(field->mDeclaringType))
continue;
MemberRef memberRef;
memberRef.mMemberDef = field;
memberRef.mTypeInst = checkType;
memberRef.mProtection = field->mProtection;
memberRef.mName = field->mName;
memberRef.mKindName = "field";
memberRef.mDeclaringType = field->mDeclaringType;
if (field->mFieldDeclaration != NULL)
{
memberRef.mNameNode = field->mFieldDeclaration->mNameNode;
memberRef.mIsOverride = field->mFieldDeclaration->mNewSpecifier != NULL;
}
memberList.push_back(memberRef);
}
checkType = checkType->mBaseType;
}
Dictionary<String, MemberRef> memberMap;
memberMap.Reserve(memberList.size());
for (int i = (int)memberList.size() - 1; i >= 0; i--)
{
MemberRef& memberRef = memberList[i];
if (memberRef.mName.empty())
continue;
if ((memberRef.mTypeInst == typeInst) && (!memberRef.mIsOverride))
{
MemberRef* prevMemberRef = NULL;
if (memberMap.TryGetValue(memberRef.mName, &prevMemberRef))
{
//auto& prevMemberRef = itr->second;
MemberRef* firstMemberRef = &memberRef;
MemberRef* secondMemberRef = prevMemberRef;
bool showPrevious = false;
BfError* error = NULL;
if (prevMemberRef->mTypeInst != typeInst)
{
if ((prevMemberRef->mProtection != BfProtection_Private) && (memberRef.mNameNode != NULL))
{
error = Warn(BfWarning_CS0108_MemberHidesInherited, StrFormat("%s hides inherited member '%s'. Use the 'new' keyword if hiding was intentional.", prevMemberRef->mKindName.c_str(), memberRef.mName.c_str()), memberRef.mNameNode, true);
showPrevious = true;
}
}
else
{
if (ShouldAllowMultipleDefinitions(typeInst, firstMemberRef->mDeclaringType, secondMemberRef->mDeclaringType))
{
if (firstMemberRef->mMemberDef != NULL)
{
firstMemberRef->mMemberDef->mHasMultiDefs = true;
secondMemberRef->mMemberDef->mHasMultiDefs = true;
}
continue;
}
bool wantsSwap = false;
if ((secondMemberRef->mNameNode != NULL) && (firstMemberRef->mNameNode != NULL) &&
(secondMemberRef->mNameNode->GetSourceData() == firstMemberRef->mNameNode->GetSourceData()) &&
(secondMemberRef->mNameNode->GetSrcStart() < firstMemberRef->mNameNode->GetSrcStart()))
{
wantsSwap = true;
}
if (secondMemberRef->mDeclaringType->IsExtension() != firstMemberRef->mDeclaringType->IsExtension())
{
wantsSwap = firstMemberRef->mDeclaringType->IsExtension();
}
if (wantsSwap)
{
std::swap(firstMemberRef, secondMemberRef);
}
if (secondMemberRef->mNameNode != NULL)
error = Fail(StrFormat("A %s named '%s' has already been declared.", secondMemberRef->mKindName.c_str(), memberRef.mName.c_str()), secondMemberRef->mNameNode, true);
showPrevious = true;
}
if ((secondMemberRef->mNameNode != NULL) && (error != NULL))
mCompiler->mPassInstance->MoreInfo("Previous declaration", firstMemberRef->mNameNode);
}
}
memberMap.TryAdd(memberRef.mName, memberRef);
}
}
void BfModule::TypeFailed(BfTypeInstance* typeInstance)
{
BfLogSysM("TypeFailed: %p\n", typeInstance);
typeInstance->mTypeFailed = true;
// Punt on field types - just substitute System.Object where we have NULLs
for (auto& fieldInstance : typeInstance->mFieldInstances)
{
if ((fieldInstance.mResolvedType == NULL) || (fieldInstance.mResolvedType->IsNull()))
{
fieldInstance.mResolvedType = mContext->mBfObjectType;
}
if (fieldInstance.mOwner == NULL)
fieldInstance.mOwner = typeInstance;
}
if (typeInstance->mAlign == -1)
typeInstance->mAlign = 1;
if (typeInstance->mSize == -1)
typeInstance->mSize = 1;
mContext->mFailTypes.Add(typeInstance);
mHadBuildError = true;
}
bool BfModule::CheckCircularDataError()
{
bool hadError = false;
int checkIdx = 0;
auto checkTypeState = mContext->mCurTypeState;
bool isPreBaseCheck = checkTypeState->mPopulateType == BfPopulateType_Declaration;
while (true)
{
if (checkTypeState == NULL)
return hadError;
if (isPreBaseCheck)
{
if (checkTypeState->mPopulateType != BfPopulateType_Declaration)
return hadError;
}
else
{
if (checkTypeState->mPopulateType == BfPopulateType_Declaration)
return hadError;
if ((checkIdx > 0) && (checkTypeState->mCurBaseTypeRef == NULL) && (checkTypeState->mCurAttributeTypeRef == NULL) && (checkTypeState->mCurFieldDef == NULL))
return hadError;
}
if ((checkTypeState->mTypeInstance == mCurTypeInstance) && (checkIdx > 0))
break;
checkTypeState = checkTypeState->mPrevState;
checkIdx++;
}
checkTypeState = mContext->mCurTypeState->mPrevState;
while (true)
{
if (checkTypeState == NULL)
return hadError;
if ((checkTypeState->mCurAttributeTypeRef == NULL) && (checkTypeState->mCurBaseTypeRef == NULL) && (checkTypeState->mCurFieldDef == NULL))
return hadError;
// We only get one chance to fire off these errors, they can't be ignored.
SetAndRestoreValue<bool> prevIgnoreErrors(mIgnoreErrors, false);
hadError = true;
if (checkTypeState->mCurAttributeTypeRef != NULL)
{
Fail(StrFormat("Attribute type '%s' causes a data cycle", BfTypeUtils::TypeToString(checkTypeState->mCurAttributeTypeRef).c_str()), checkTypeState->mCurAttributeTypeRef, true);
}
else if (checkTypeState->mCurBaseTypeRef != NULL)
{
Fail(StrFormat("Base type '%s' causes a data cycle", BfTypeUtils::TypeToString(checkTypeState->mCurBaseTypeRef).c_str()), checkTypeState->mCurBaseTypeRef, true);
}
else if (checkTypeState->mCurFieldDef->mFieldDeclaration != NULL)
{
Fail(StrFormat("Field '%s.%s' causes a data cycle", TypeToString(checkTypeState->mTypeInstance).c_str(), checkTypeState->mCurFieldDef->mName.c_str()),
checkTypeState->mCurFieldDef->mFieldDeclaration->mTypeRef, true);
}
else
{
Fail(StrFormat("Field '%s.%s' causes a data cycle", TypeToString(checkTypeState->mTypeInstance).c_str(), checkTypeState->mCurFieldDef->mName.c_str()));
}
auto module = GetModuleFor(checkTypeState->mTypeInstance);
if (module != NULL)
module->TypeFailed(checkTypeState->mTypeInstance);
else
checkTypeState->mTypeInstance->mTypeFailed = true;
checkTypeState = checkTypeState->mPrevState;
}
}
bool BfModule::PopulateType(BfType* resolvedTypeRef, BfPopulateType populateType)
{
if ((populateType == BfPopulateType_Declaration) && (resolvedTypeRef->mDefineState >= BfTypeDefineState_Declared))
return true;
// Are we "demanding" to reify a type that is currently resolve-only?
if (mIsReified)
{
if (resolvedTypeRef->IsTypeInstance())
{
auto typeModule = resolvedTypeRef->GetModule();
if ((typeModule != NULL) && (typeModule->mIsSpecialModule))
{
auto typeInst = resolvedTypeRef->ToTypeInstance();
if (!typeInst->mIsReified)
{
BfLogSysM("Reifying type %p in scratch module in PopulateType\n", resolvedTypeRef);
// It's important for unspecialized types to be in the correct module --
// when we process their methods, new types will be determined as
// resolve-only or reified based on the module the unresolved type is in
BF_ASSERT(typeInst->mModule == mContext->mUnreifiedModule);
typeInst->mIsReified = true;
typeInst->mModule = mContext->mScratchModule;
// Why did we need to do this at all? Why is just marking the type as reified not enough?
// This causes issues where we may delete a method instance that is currently being used as the generic bindings for
// a method of a specialized generic type
// if (typeInst->IsOnDemand())
// {
// RebuildMethods(typeInst);
// }
// else
// mContext->RebuildType(typeInst, false, false);
}
}
else
{
if ((typeModule != NULL) && (!typeModule->mIsReified) && (!typeModule->mReifyQueued))
{
BF_ASSERT((mCompiler->mCompileState != BfCompiler::CompileState_Unreified) && (mCompiler->mCompileState != BfCompiler::CompileState_VData));
BfLogSysM("Queued reification of type %p in module %p in PopulateType\n", resolvedTypeRef, typeModule);
BF_ASSERT(!typeModule->mIsSpecialModule);
// This caused issues - we may need to reify a type and then request a method
typeModule->mReifyQueued = true;
mContext->mReifyModuleWorkList.Add(typeModule);
//typeModule->ReifyModule();
}
}
}
}
if (!resolvedTypeRef->IsIncomplete())
return true;
auto typeInstance = resolvedTypeRef->ToTypeInstance();
CheckInjectNewRevision(typeInstance);
BF_ASSERT((resolvedTypeRef->mRebuildFlags & (BfTypeRebuildFlag_Deleted | BfTypeRebuildFlag_DeleteQueued)) == 0);
/*BfTypeRebuildFlags allowedFlags = (BfTypeRebuildFlags)(BfTypeRebuildFlag_AddedToWorkList | BfTypeRebuildFlag_AwaitingReference | BfTypeRebuildFlag_UnderlyingTypeDeferred);
if ((resolvedTypeRef->mRebuildFlags & ~allowedFlags) != 0)
{
// BfContext::UpdateAfterDeletingTypes should clear out all flags except for the Deleted flag
// If this type was deleted then we should never be able to reach PopulateType here.
// This may happen if dependent types were not properly rebuilt when a used type
// was deleted.
auto hadFlags = resolvedTypeRef->mRebuildFlags;
BF_ASSERT((resolvedTypeRef->mRebuildFlags & ~allowedFlags) == 0);
resolvedTypeRef->mRebuildFlags = (BfTypeRebuildFlags)(resolvedTypeRef->mRebuildFlags & ~allowedFlags);
}*/
bool isNew = resolvedTypeRef->mDefineState == BfTypeDefineState_Undefined;
if (isNew)
{
BP_ZONE("BfModule::PopulateType");
if (resolvedTypeRef->mTypeId == -1)
{
mCompiler->mTypeInitCount++;
auto typeInstance = resolvedTypeRef->ToTypeInstance();
if (!mCompiler->mTypeIdFreeList.IsEmpty())
{
resolvedTypeRef->mTypeId = mCompiler->mTypeIdFreeList.back();
mCompiler->mTypeIdFreeList.pop_back();
}
else
resolvedTypeRef->mTypeId = mCompiler->mCurTypeId++;
while (resolvedTypeRef->mTypeId >= (int)mContext->mTypes.size())
mContext->mTypes.Add(NULL);
mContext->mTypes[resolvedTypeRef->mTypeId] = resolvedTypeRef;
if (typeInstance != NULL)
{
typeInstance->mSignatureRevision = mCompiler->mRevision;
typeInstance->mLastNonGenericUsedRevision = mCompiler->mRevision;
}
}
BfLogSysM("PopulateType: %p %s populateType:%d ResolveOnly:%d Reified:%d AutoComplete:%d Ctx:%p Mod:%p TypeId:%d\n", resolvedTypeRef, TypeToString(resolvedTypeRef, BfTypeNameFlags_None).c_str(), populateType, mCompiler->mIsResolveOnly, mIsReified, mCompiler->IsAutocomplete(), mContext, this, resolvedTypeRef->mTypeId);
BF_ASSERT(!resolvedTypeRef->IsDeleting());
}
if (resolvedTypeRef->IsRef())
{
BfRefType* refType = (BfRefType*)resolvedTypeRef;
if (refType->mElementType->IsValueType())
{
PopulateType(refType->mElementType, populateType);
resolvedTypeRef->mDefineState = refType->mElementType->mDefineState;
}
else
{
PopulateType(refType->mElementType, BfPopulateType_Identity);
resolvedTypeRef->mDefineState = BfTypeDefineState_Defined;
}
refType->mSize = refType->mAlign = mSystem->mPtrSize;
return true;
}
if (resolvedTypeRef->IsTypeAlias())
{
auto typeAlias = (BfTypeInstance*)resolvedTypeRef;
SetAndRestoreValue<BfTypeInstance*> prevCurType(mCurTypeInstance, typeAlias);
auto typeDef = typeAlias->mTypeDef;
auto typeAliasDecl = (BfTypeAliasDeclaration*)typeDef->mTypeDeclaration;
BfType* aliasToType = NULL;
BfTypeState typeState(mCurTypeInstance, mContext->mCurTypeState);
typeState.mPopulateType = populateType;
typeState.mCurBaseTypeRef = typeAliasDecl->mAliasToType;
SetAndRestoreValue<BfTypeState*> prevTypeState(mContext->mCurTypeState, &typeState);
if (!CheckCircularDataError())
{
if (typeAliasDecl->mAliasToType != NULL)
aliasToType = ResolveTypeRef(typeAliasDecl->mAliasToType, BfPopulateType_IdentityNoRemapAlias);
}
//typeAlias->mModule = mContext->mScratchModule;
typeAlias->mTypeIncomplete = false;
typeAlias->mDefineState = BfTypeDefineState_DefinedAndMethodsSlotted;
if (aliasToType != NULL)
{
AddDependency(aliasToType, typeAlias, BfDependencyMap::DependencyFlag_DerivedFrom);
}
else
mContext->mFailTypes.Add(typeAlias);
if (typeAlias->mTypeFailed)
aliasToType = NULL;
if (resolvedTypeRef->IsGenericTypeInstance())
((BfGenericTypeAliasType*)resolvedTypeRef)->mAliasToType = aliasToType;
else
((BfTypeAliasType*)resolvedTypeRef)->mAliasToType = aliasToType;
if (aliasToType != NULL)
{
resolvedTypeRef->mSize = aliasToType->mSize;
resolvedTypeRef->mAlign = aliasToType->mAlign;
if (auto aliasToTypeInst = aliasToType->ToTypeInstance())
{
typeAlias->mInstSize = aliasToTypeInst->mInstSize;
typeAlias->mInstAlign = aliasToTypeInst->mInstAlign;
}
else
{
typeAlias->mInstSize = aliasToType->mSize;
typeAlias->mInstAlign = aliasToType->mAlign;
}
}
else
{
resolvedTypeRef->mSize = 0;
resolvedTypeRef->mAlign = 1;
typeAlias->mInstSize = 0;
typeAlias->mInstAlign = 1;
}
resolvedTypeRef->mDefineState = BfTypeDefineState_DefinedAndMethodsSlotted;
resolvedTypeRef->mRebuildFlags = BfTypeRebuildFlag_None;
return true;
}
if (resolvedTypeRef->IsSizedArray())
{
resolvedTypeRef->mRevision = mRevision;
BfSizedArrayType* arrayType = (BfSizedArrayType*)resolvedTypeRef;
auto elementType = arrayType->mElementType;
if (elementType->IsValueType())
{
PopulateType(arrayType->mElementType, BfPopulateType_Data);
resolvedTypeRef->mDefineState = arrayType->mElementType->mDefineState;
AddDependency(elementType, resolvedTypeRef, BfDependencyMap::DependencyFlag_ValueTypeMemberData);
}
else
{
PopulateType(arrayType->mElementType, BfPopulateType_Identity);
resolvedTypeRef->mDefineState = BfTypeDefineState_Defined;
AddDependency(elementType, resolvedTypeRef, BfDependencyMap::DependencyFlag_PtrMemberData);
}
if (arrayType->mElementCount > 0)
{
arrayType->mSize = (arrayType->mElementType->GetStride() * ((int)arrayType->mElementCount - 1)) + arrayType->mElementType->mSize;
arrayType->mAlign = std::max((int32)arrayType->mElementType->mAlign, 1);
}
else
{
arrayType->mSize = 0;
arrayType->mAlign = 1;
}
arrayType->mWantsGCMarking = elementType->WantsGCMarking();
resolvedTypeRef->mDefineState = BfTypeDefineState_DefinedAndMethodsSlotted;
resolvedTypeRef->mRebuildFlags = BfTypeRebuildFlag_None;
bool isValueless = arrayType->IsValuelessType();
return true;
}
if (isNew)
{
BfTypeDef* typeDef = NULL;
if (typeInstance != NULL)
{
if ((populateType == BfPopulateType_Data) && (typeInstance->mNeedsMethodProcessing))
return true;
typeDef = typeInstance->mTypeDef;
}
if (resolvedTypeRef->IsMethodRef())
return true;
if (resolvedTypeRef->IsPointer())
{
BfPointerType* pointerType = (BfPointerType*)resolvedTypeRef;
if (pointerType->mElementType->IsIncomplete())
PopulateType(pointerType->mElementType, BfPopulateType_Declaration);
pointerType->mSize = pointerType->mAlign = mSystem->mPtrSize;
resolvedTypeRef->mDefineState = BfTypeDefineState_Defined;
return true;
}
if (resolvedTypeRef->IsGenericParam())
{
BfGenericParamType* genericParamType = (BfGenericParamType*)resolvedTypeRef;
PopulateType(mContext->mBfObjectType);
genericParamType->mSize = mContext->mBfObjectType->mSize;
genericParamType->mAlign = mContext->mBfObjectType->mAlign;
resolvedTypeRef->mDefineState = BfTypeDefineState_Defined;
return true;
}
if (resolvedTypeRef->IsRetTypeType())
{
BfRetTypeType* retTypeType = (BfRetTypeType*)resolvedTypeRef;
BF_ASSERT(retTypeType->mElementType->IsGenericParam());
resolvedTypeRef->mSize = mContext->mBfObjectType->mSize;
resolvedTypeRef->mAlign = mContext->mBfObjectType->mAlign;
resolvedTypeRef->mDefineState = BfTypeDefineState_Defined;
return true;
}
if (resolvedTypeRef->IsConcreteInterfaceType())
{
BfConcreteInterfaceType* concreteInterfaceType = (BfConcreteInterfaceType*)resolvedTypeRef;
BF_ASSERT(concreteInterfaceType->mInterface->IsInterface());
resolvedTypeRef->mSize = concreteInterfaceType->mInterface->mSize;
resolvedTypeRef->mAlign = concreteInterfaceType->mInterface->mAlign;
resolvedTypeRef->mDefineState = BfTypeDefineState_Defined;
return true;
}
if (resolvedTypeRef->IsConstExprValue())
{
resolvedTypeRef->mSize = 0;
resolvedTypeRef->mAlign = 0;
resolvedTypeRef->mDefineState = BfTypeDefineState_Defined;
return true;
}
// The autocomplete pass doesn't need to do the method processing, allow type to be (partially) incomplete
if ((mCompiler->mResolvePassData != NULL) && (mCompiler->mResolvePassData->mAutoComplete != NULL) &&
(typeInstance != NULL) && (typeInstance->mNeedsMethodProcessing) && (!typeInstance->IsDelegate()))
return true;
BfPrimitiveType* primitiveType = NULL;
if (typeInstance == NULL)
{
BF_ASSERT(resolvedTypeRef->IsPrimitiveType());
primitiveType = (BfPrimitiveType*)resolvedTypeRef;
typeDef = primitiveType->mTypeDef;
}
#define PRIMITIVE_TYPE(name, llvmType, size, dType) \
primitiveType->mSize = primitiveType->mAlign = size; \
primitiveType->mDefineState = BfTypeDefineState_Defined;
switch (typeDef->mTypeCode)
{
case BfTypeCode_None:
primitiveType->mSize = primitiveType->mAlign = 0;
resolvedTypeRef->mDefineState = BfTypeDefineState_Defined;
return true;
case BfTypeCode_Self:
case BfTypeCode_Dot:
case BfTypeCode_Var:
case BfTypeCode_Let:
{
auto objType = mContext->mBfObjectType;
primitiveType->mSize = objType->mSize;
primitiveType->mAlign = objType->mAlign;
resolvedTypeRef->mDefineState = BfTypeDefineState_Defined;
}
return true;
case BfTypeCode_NullPtr:
primitiveType->mSize = primitiveType->mAlign = mSystem->mPtrSize;
primitiveType->mDefineState = BfTypeDefineState_Defined;
return true;
case BfTypeCode_Boolean:
PRIMITIVE_TYPE("bool", Int1, 1, DW_ATE_boolean);
return true;
case BfTypeCode_Int8:
PRIMITIVE_TYPE("sbyte", Int8, 1, DW_ATE_signed);
return true;
case BfTypeCode_UInt8:
PRIMITIVE_TYPE("byte", Int8, 1, DW_ATE_unsigned);
return true;
case BfTypeCode_Int16:
PRIMITIVE_TYPE("short", Int16, 2, DW_ATE_signed);
return true;
case BfTypeCode_UInt16:
PRIMITIVE_TYPE("ushort", Int16, 2, DW_ATE_unsigned);
return true;
case BfTypeCode_Int32:
PRIMITIVE_TYPE("int", Int32, 4, DW_ATE_signed);
return true;
case BfTypeCode_UInt32:
PRIMITIVE_TYPE("uint", Int32, 4, DW_ATE_unsigned);
return true;
case BfTypeCode_Int64:
PRIMITIVE_TYPE("long", Int64, 8, DW_ATE_signed);
return true;
case BfTypeCode_UInt64:
PRIMITIVE_TYPE("ulong", Int64, 8, DW_ATE_unsigned);
return true;
case BfTypeCode_IntPtr:
if (mSystem->mPtrSize == 4)
{
PRIMITIVE_TYPE("intptr", Int32, 4, DW_ATE_signed);
}
else
{
PRIMITIVE_TYPE("intptr", Int64, 8, DW_ATE_signed);
}
return true;
case BfTypeCode_UIntPtr:
if (mSystem->mPtrSize == 4)
{
PRIMITIVE_TYPE("uintptr", Int32, 4, DW_ATE_unsigned);
}
else
{
PRIMITIVE_TYPE("uintptr", Int64, 8, DW_ATE_unsigned);
}
return true;
case BfTypeCode_IntUnknown:
case BfTypeCode_UIntUnknown:
return true;
case BfTypeCode_Char8:
PRIMITIVE_TYPE("char8", Int8, 1, DW_ATE_unsigned_char);
return true;
case BfTypeCode_Char16:
PRIMITIVE_TYPE("char16", Int16, 2, DW_ATE_unsigned_char);
return true;
case BfTypeCode_Char32:
PRIMITIVE_TYPE("char32", Int32, 4, DW_ATE_unsigned_char);
return true;
case BfTypeCode_Single:
PRIMITIVE_TYPE("float", Float, 4, DW_ATE_float);
return true;
case BfTypeCode_Double:
PRIMITIVE_TYPE("double", Double, 8, DW_ATE_float);
return true;
case BfTypeCode_Object:
case BfTypeCode_Struct:
case BfTypeCode_Interface:
case BfTypeCode_Enum:
// Implemented below
break;
case BfTypeCode_Extension:
// This can only happen if we didn't actually find the type the extension referred to
break;
default:
//NotImpl(resolvedTypeRef->mTypeRef);
BF_FATAL("Invalid type");
return false;
}
//////////////////////////////////////////////////////////////////////////
BF_ASSERT(typeInstance != NULL);
if (!typeInstance->IsArray())
{
BF_ASSERT(typeInstance->mTypeDef != mContext->mCompiler->mArray1TypeDef);
}
if (mContext->mBfObjectType == NULL)
{
if (typeInstance->mTypeDef == mCompiler->mBfObjectTypeDef)
mContext->mBfObjectType = typeInstance;
else
ResolveTypeDef(mCompiler->mBfObjectTypeDef);
}
if (typeInstance->mModule == NULL)
{
// Create a module for this type
mContext->HandleTypeWorkItem(resolvedTypeRef);
}
}
if (typeInstance == NULL)
return true;
auto result = typeInstance->mModule->DoPopulateType(typeInstance, populateType);
return result;
}
int BfModule::GenerateTypeOptions(BfCustomAttributes* customAttributes, BfTypeInstance* typeInstance, bool checkTypeName)
{
if (mContext->mSystem->mTypeOptions.size() == 0)
{
return -1;
}
Array<int> matchedIndices;
if ((!checkTypeName) && (typeInstance->mTypeOptionsIdx != -1))
{
// Methods should 'inherit' the owner's type options before applying type options from custom attributes
auto typeOptions = mSystem->GetTypeOptions(typeInstance->mTypeOptionsIdx);
if (typeOptions->mMatchedIndices.size() == 0)
matchedIndices.push_back(typeInstance->mTypeOptionsIdx);
else
matchedIndices = typeOptions->mMatchedIndices;
}
if (customAttributes != NULL)
{
if (!mCompiler->mAttributeTypeOptionMap.IsEmpty())
{
StringT<128> attrName;
for (auto& customAttrs : customAttributes->mAttributes)
{
attrName.Clear();
customAttrs.mType->mTypeDef->mFullName.ToString(attrName);
Array<int>* arrPtr;
if (mCompiler->mAttributeTypeOptionMap.TryGetValue(attrName, &arrPtr))
{
for (auto optionsIdx : *arrPtr)
{
matchedIndices.Add(optionsIdx);
}
}
}
}
}
int typeOptionsCount = (int)mContext->mSystem->mTypeOptions.size();
if (checkTypeName)
{
auto _CheckTypeName = [&](const StringImpl& typeName)
{
for (int optionIdx = 0; optionIdx < (int)mContext->mSystem->mTypeOptions.size(); optionIdx++)
{
auto& typeOptions = mContext->mSystem->mTypeOptions[optionIdx];
bool matched = false;
for (auto& filter : typeOptions.mTypeFilters)
{
int filterIdx = 0;
int typeNameIdx = 0;
const char* filterPtr = filter.c_str();
const char* namePtr = typeName.c_str();
char prevFilterC = 0;
while (true)
{
char filterC;
while (true)
{
filterC = *(filterPtr++);
if (filterC != ' ')
break;
}
char nameC;
while (true)
{
nameC = *(namePtr++);
if (nameC != ' ')
break;
}
if ((filterC == 0) || (nameC == 0))
{
matched = (filterC == 0) && (nameC == 0);
break;
}
bool doWildcard = false;
if (nameC != filterC)
{
if (filterC == '*')
doWildcard = true;
else if (((filterC == ',') || (filterC == '>')) &&
((prevFilterC == '<') || (prevFilterC == ',')))
{
doWildcard = true;
filterPtr--;
}
if (!doWildcard)
{
matched = false;
break;
}
}
if (doWildcard)
{
int openDepth = 0;
const char* startNamePtr = namePtr;
while (true)
{
nameC = *(namePtr++);
if (nameC == 0)
{
namePtr--;
if (openDepth != 0)
matched = false;
break;
}
if ((nameC == '>') && (openDepth == 0))
{
namePtr--;
break;
}
if (nameC == '<')
openDepth++;
else if (nameC == '>')
openDepth--;
else if ((nameC == ',') && (openDepth == 0))
{
namePtr--;
break;
}
}
if (!matched)
break;
}
prevFilterC = filterC;
}
}
if (matched)
matchedIndices.push_back(optionIdx);
}
};
if (typeInstance->IsTypedPrimitive())
{
auto underlyingType = typeInstance->GetUnderlyingType();
String typeName = TypeToString(underlyingType);
_CheckTypeName(typeName);
}
if ((!typeInstance->IsBoxed()) && (typeInstance->mTypeDef == mCompiler->mPointerTTypeDef))
{
BF_ASSERT(typeInstance->IsGenericTypeInstance());
auto innerType = ((BfGenericTypeInstance*)typeInstance)->mTypeGenericArguments[0];
auto ptrType = CreatePointerType(innerType);
String typeName = TypeToString(ptrType);
_CheckTypeName(typeName);
}
String typeName = TypeToString(typeInstance);
_CheckTypeName(typeName);
}
int matchedIdx = -1;
if (matchedIndices.size() == 1)
{
matchedIdx = matchedIndices[0];
}
else if (matchedIndices.size() > 1)
{
// Try to find a merged typeoptions with these indices
for (int mergedIdx = 0; mergedIdx < (int)mContext->mSystem->mMergedTypeOptions.size(); mergedIdx++)
{
auto& typeOptions = mContext->mSystem->mMergedTypeOptions[mergedIdx];
if (typeOptions.mMatchedIndices == matchedIndices)
{
matchedIdx = typeOptionsCount + mergedIdx;
break;
}
}
// Otherwise make one...
if (matchedIdx == -1)
{
auto& first = mContext->mSystem->mTypeOptions[matchedIndices[0]];
BfTypeOptions mergedTypeOptions;
mergedTypeOptions.mSIMDSetting = first.mSIMDSetting;
mergedTypeOptions.mOptimizationLevel = first.mOptimizationLevel;
mergedTypeOptions.mEmitDebugInfo = first.mEmitDebugInfo;
mergedTypeOptions.mRuntimeChecks = first.mRuntimeChecks;
mergedTypeOptions.mInitLocalVariables = first.mInitLocalVariables;
mergedTypeOptions.mEmitDynamicCastCheck = first.mEmitDynamicCastCheck;
mergedTypeOptions.mEmitObjectAccessCheck = first.mEmitObjectAccessCheck;
mergedTypeOptions.mAllocStackTraceDepth = first.mAllocStackTraceDepth;
mergedTypeOptions.mMatchedIndices = matchedIndices;
for (int idx = 1; idx < (int)matchedIndices.size(); idx++)
{
auto& typeOptions = mContext->mSystem->mTypeOptions[matchedIndices[idx]];
if (typeOptions.mSIMDSetting != -1)
mergedTypeOptions.mSIMDSetting = typeOptions.mSIMDSetting;
if (typeOptions.mOptimizationLevel != -1)
mergedTypeOptions.mOptimizationLevel = typeOptions.mOptimizationLevel;
if (typeOptions.mEmitDebugInfo != -1)
mergedTypeOptions.mEmitDebugInfo = typeOptions.mEmitDebugInfo;
if (typeOptions.mRuntimeChecks != BfOptionalBool_NotSet)
mergedTypeOptions.mRuntimeChecks = typeOptions.mRuntimeChecks;
if (typeOptions.mInitLocalVariables != BfOptionalBool_NotSet)
mergedTypeOptions.mInitLocalVariables = typeOptions.mInitLocalVariables;
if (typeOptions.mEmitDynamicCastCheck != BfOptionalBool_NotSet)
mergedTypeOptions.mEmitDynamicCastCheck = typeOptions.mEmitDynamicCastCheck;
if (typeOptions.mEmitObjectAccessCheck != BfOptionalBool_NotSet)
mergedTypeOptions.mEmitObjectAccessCheck = typeOptions.mEmitObjectAccessCheck;
if (typeOptions.mAllocStackTraceDepth != -1)
mergedTypeOptions.mAllocStackTraceDepth = typeOptions.mAllocStackTraceDepth;
}
matchedIdx = typeOptionsCount + (int)mContext->mSystem->mMergedTypeOptions.size();
mContext->mSystem->mMergedTypeOptions.push_back(mergedTypeOptions);
}
}
return matchedIdx;
}
void BfModule::SetTypeOptions(BfTypeInstance* typeInstance)
{
typeInstance->mTypeOptionsIdx = GenerateTypeOptions(typeInstance->mCustomAttributes, typeInstance, true);
}
bool BfModule::DoPopulateType(BfType* resolvedTypeRef, BfPopulateType populateType)
{
auto typeInstance = resolvedTypeRef->ToTypeInstance();
auto typeDef = typeInstance->mTypeDef;
BF_ASSERT((typeInstance->mTypeDef->mNextRevision == NULL) || (mCompiler->IsAutocomplete()));
// This is a special case where our base type has been rebuilt but we haven't
if ((typeInstance->mBaseTypeMayBeIncomplete) && (!typeInstance->mTypeIncomplete))
{
BfLogSysM("BaseTypeMayBeIncomplete processing. Type:%p -> Base:%p\n", typeInstance, typeInstance->mBaseType);
PopulateType(typeInstance->mBaseType, populateType);
if (!typeInstance->mBaseType->IsIncomplete())
typeInstance->mBaseTypeMayBeIncomplete = false;
if (!typeInstance->mTypeIncomplete)
return true;
}
typeInstance->mBaseTypeMayBeIncomplete = false;
BF_ASSERT(mIsModuleMutable);
// Don't do type instance method processing for an autocomplete pass - this will get handled later on during
// the PopulateType worklist pass in the full resolver. We do need to handle the methods for delegates, though,
// since those can affect method declarations of other methods
// TODO: Investigate this "Delegate" claim
bool canDoMethodProcessing = ((mCompiler->mResolvePassData == NULL) || (mCompiler->mResolvePassData->mAutoComplete == NULL) /*|| (typeInstance->IsDelegate())*/);
if (populateType == BfPopulateType_Full_Force)
canDoMethodProcessing = true;
if (typeInstance->mResolvingConstField)
return !typeInstance->mTypeFailed;
if (typeInstance->mNeedsMethodProcessing)
{
if ((canDoMethodProcessing) && (populateType >= BfPopulateType_DataAndMethods))
DoTypeInstanceMethodProcessing(typeInstance);
return true;
}
// Partial population break out point
if ((populateType >= BfPopulateType_Identity) && (populateType <= BfPopulateType_IdentityNoRemapAlias))
return true;
if (!resolvedTypeRef->IsValueType())
{
resolvedTypeRef->mSize = typeInstance->mAlign = mSystem->mPtrSize;
}
BF_ASSERT((typeInstance->mMethodInstanceGroups.size() == 0) || (typeInstance->mMethodInstanceGroups.size() == typeDef->mMethods.size()));
typeInstance->mMethodInstanceGroups.Resize(typeDef->mMethods.size());
for (int i = 0; i < (int)typeInstance->mMethodInstanceGroups.size(); i++)
{
typeInstance->mMethodInstanceGroups[i].mOwner = typeInstance;
typeInstance->mMethodInstanceGroups[i].mMethodIdx = i;
}
AutoDisallowYield disableYield(mSystem);
SetAndRestoreValue<BfTypeInstance*> prevTypeInstance(mCurTypeInstance, typeInstance);
SetAndRestoreValue<BfMethodInstance*> prevMethodInstance(mCurMethodInstance, NULL);
SetAndRestoreValue<BfMethodState*> prevMethodState(mCurMethodState, NULL);
SetAndRestoreValue<bool> prevHadError(mHadBuildError, false);
SetAndRestoreValue<bool> prevHadWarning(mHadBuildWarning, false);
BfTypeState typeState(mCurTypeInstance, mContext->mCurTypeState);
typeState.mPopulateType = populateType;
SetAndRestoreValue<BfTypeState*> prevTypeState(mContext->mCurTypeState, &typeState);
if (typeInstance->IsGenericTypeInstance())
{
auto genericTypeInst = (BfGenericTypeInstance*)typeInstance;
if (genericTypeInst->mGenericParams.size() == 0)
BuildGenericParams(resolvedTypeRef);
}
// Don't do TypeToString until down here. Otherwise we can infinitely loop on BuildGenericParams
bool isStruct = resolvedTypeRef->IsStruct();
bool reportErrors = true;
if ((mCompiler->mResolvePassData != NULL) && (mCompiler->mResolvePassData->mAutoComplete != NULL))
reportErrors = true;
// If we're not the defining context then we don't report errors for this type, but errors will still put the system
// into an errored state
SetAndRestoreValue<bool> prevReportErrors(mReportErrors, reportErrors);
CheckCircularDataError();
bool underlyingTypeDeferred = false;
BfType* underlyingType = NULL;
if (typeInstance->mBaseType != NULL)
{
if (typeInstance->IsTypedPrimitive())
underlyingType = typeInstance->GetUnderlyingType();
if ((typeInstance->mRebuildFlags & BfTypeRebuildFlag_UnderlyingTypeDeferred) != 0)
underlyingTypeDeferred = true;
}
else if (typeInstance->IsEnum())
{
bool hasPayloads = false;
for (auto fieldDef : typeDef->mFields)
{
if ((fieldDef->IsEnumCaseEntry()) && (fieldDef->mTypeRef != NULL))
{
hasPayloads = true;
break;
}
}
if (!hasPayloads)
{
bool hadType = false;
for (auto baseTypeRef : typeDef->mBaseTypes)
{
SetAndRestoreValue<BfTypeReference*> prevTypeRef(mContext->mCurTypeState->mCurBaseTypeRef, baseTypeRef);
SetAndRestoreValue<bool> prevIgnoreError(mIgnoreErrors, true);
SetAndRestoreValue<bool> prevSkipTypeProtectionChecks(typeInstance->mSkipTypeProtectionChecks, true);
auto baseType = ResolveTypeRef(baseTypeRef, BfPopulateType_Declaration);
if (baseType != NULL)
{
if (baseType->IsIntegral())
{
if (!hadType)
{
hadType = true;
underlyingType = baseType;
}
else
{
Fail("Underlying enum type already specified", baseTypeRef);
}
}
else
{
Fail("Invalid underlying enum type", baseTypeRef);
}
}
else
{
AssertErrorState();
typeInstance->mTypeFailed = true;
}
}
if (underlyingType == NULL)
{
underlyingType = GetPrimitiveType(BfTypeCode_Int64);
underlyingTypeDeferred = true;
}
}
}
else if (((typeInstance->IsStruct()) || (typeInstance->IsTypedPrimitive())) &&
(!typeInstance->mTypeFailed))
{
for (auto baseTypeRef : typeDef->mBaseTypes)
{
SetAndRestoreValue<BfTypeReference*> prevTypeRef(mContext->mCurTypeState->mCurBaseTypeRef, baseTypeRef);
// We ignore errors here to avoid double-errors for type lookups, but this is where data cycles are detected
// but that type of error supercedes the mIgnorErrors setting
SetAndRestoreValue<bool> prevIgnoreError(mIgnoreErrors, true);
// Temporarily allow us to derive from private classes, to avoid infinite loop from TypeIsSubTypeOf
SetAndRestoreValue<bool> prevSkipTypeProtectionChecks(typeInstance->mSkipTypeProtectionChecks, true);
auto baseType = ResolveTypeRef(baseTypeRef, BfPopulateType_Declaration);
if (baseType != NULL)
{
if (baseType->IsPrimitiveType())
{
underlyingType = baseType;
}
else if (baseType->IsTypedPrimitive())
{
//PopulateType(baseType, true);
underlyingType = baseType->GetUnderlyingType();
BF_ASSERT(underlyingType != NULL);
}
}
else
{
AssertErrorState();
typeInstance->mTypeFailed = true;
}
}
// Incase we had re-entry, work this through ourselves again here
typeInstance->mIsTypedPrimitive = false;
}
if (underlyingTypeDeferred)
typeInstance->mRebuildFlags = (BfTypeRebuildFlags)(typeInstance->mRebuildFlags | BfTypeRebuildFlag_UnderlyingTypeDeferred);
typeInstance->mIsTypedPrimitive = underlyingType != NULL;
int wantFieldCount = (int)typeDef->mFields.size() + (((underlyingType != NULL) || (typeInstance->IsPayloadEnum())) ? 1 : 0);
if ((int)typeInstance->mFieldInstances.size() < wantFieldCount)
{
// Closures don't include the enclosed fields on their first pass through PopulateType, and they have no typeDef of their own
// so we need to take care not to truncate their fieldInstance vector here (thus the 'wantFieldCount' check above)
typeInstance->mFieldInstances.Resize(wantFieldCount);
}
if (underlyingType != NULL)
{
auto fieldInstance = &typeInstance->mFieldInstances.back();
fieldInstance->mDataOffset = 0;
fieldInstance->mDataSize = underlyingType->mSize;
fieldInstance->mOwner = typeInstance;
fieldInstance->mResolvedType = underlyingType;
typeInstance->mSize = underlyingType->mSize;
typeInstance->mAlign = underlyingType->mAlign;
typeInstance->mInstSize = underlyingType->mSize;
typeInstance->mInstAlign = underlyingType->mAlign;
typeInstance->mHasPackingHoles = underlyingType->HasPackingHoles();
}
// Partial population break out point
if (typeInstance->mDefineState < BfTypeDefineState_Declared)
{
typeInstance->mDefineState = BfTypeDefineState_Declared;
if (typeInstance->IsGenericTypeInstance())
{
auto genericTypeInstance = (BfGenericTypeInstance*)typeInstance;
// Add generic dependencies if needed
for (auto genericType : genericTypeInstance->mTypeGenericArguments)
{
if (genericType->IsPrimitiveType())
genericType = GetWrappedStructType(genericType);
if (genericType != NULL)
{
AddDependency(genericType, genericTypeInstance, BfDependencyMap::DependencyFlag_TypeGenericArg);
BfLogSysM("Adding generic dependency of %p for type %p\n", genericType, genericTypeInstance);
}
}
if (genericTypeInstance->IsSpecializedType())
{
// This ensures we rebuild the unspecialized type whenever the specialized type rebuilds. This is important
// for generic type binding
auto unspecializedTypeInstance = GetUnspecializedTypeInstance(genericTypeInstance);
BF_ASSERT(!unspecializedTypeInstance->IsUnspecializedTypeVariation());
mContext->mScratchModule->AddDependency(genericTypeInstance, unspecializedTypeInstance, BfDependencyMap::DependencyFlag_UnspecializedType);
}
}
auto _AddStaticSearch = [&](BfTypeDef* typeDef)
{
if (typeDef->mStaticSearch.IsEmpty())
return;
BfStaticSearch* staticSearch;
if (typeInstance->mStaticSearchMap.TryAdd(typeDef, NULL, &staticSearch))
{
for (auto typeRef : typeDef->mStaticSearch)
{
auto staticType = ResolveTypeRef(typeRef, NULL, BfPopulateType_Declaration);
if (staticType != NULL)
{
auto staticTypeInst = staticType->ToTypeInstance();
if (staticTypeInst == NULL)
{
Fail(StrFormat("Type '%s' cannot be used in a 'using static' declaration", TypeToString(staticType).c_str()), typeRef);
}
else
{
AddDependency(staticTypeInst, typeInstance, BfDependencyMap::DependencyFlag_StaticValue);
}
}
}
}
};
if (typeDef->mIsCombinedPartial)
{
for (auto partialTypeDef : typeDef->mPartials)
_AddStaticSearch(partialTypeDef);
}
else
_AddStaticSearch(typeDef);
}
if (populateType == BfPopulateType_Declaration)
{
return true;
}
if ((!mCompiler->mIsResolveOnly) && (!typeInstance->mHasBeenInstantiated))
{
for (auto& dep : typeInstance->mDependencyMap)
{
auto& depEntry = dep.mValue;
if ((depEntry.mFlags & BfDependencyMap::DependencyFlag_Allocates) != 0)
{
auto depType = dep.mKey;
if (depType->mRevision == depEntry.mRevision)
{
BfLogSysM("Setting mHasBeenInstantiated for %p instantiated from %p\n", typeInstance, depType);
typeInstance->mHasBeenInstantiated = true;
}
}
}
}
//BfLogSysM("Setting revision. Type: %p Revision: %d\n", typeInstance, mRevision);
//typeInstance->mRevision = mRevision;
// Temporarily allow us to derive from private classes, to avoid infinite loop from TypeIsSubTypeOf
SetAndRestoreValue<bool> prevSkipTypeProtectionChecks(typeInstance->mSkipTypeProtectionChecks, true);
if ((typeDef->mOuterType != NULL) && (typeDef->mOuterType->IsGlobalsContainer()))
{
if ((typeDef->mTypeDeclaration != NULL) && (typeDef->mTypeDeclaration->mTypeNode != NULL))
Fail("Global blocks cannot contain type declarations", typeDef->mTypeDeclaration->mTypeNode);
}
/// Create DI data
SizedArray<BfIRType, 8> llvmFieldTypes;
int curFieldDataIdx = 0;
typeInstance->mBaseType = NULL;
BfTypeInstance* defaultBaseTypeInst = NULL;
// Find base type
BfType* baseType = NULL;
struct BfInterfaceDecl
{
BfTypeInstance* mIFaceTypeInst;
BfTypeReference* mTypeRef;
BfTypeDef* mDeclaringType;
};
SizedArray<BfInterfaceDecl, 8> interfaces;
HashSet<BfTypeInstance*> ifaceSet;
if (resolvedTypeRef == mContext->mBfObjectType)
{
baseType = NULL;
}
else if (typeInstance->IsEnum())
{
if (mCompiler->mEnumTypeDef == NULL)
{
Fail("Enum type required");
TypeFailed(typeInstance);
}
else
baseType = ResolveTypeDef(mCompiler->mEnumTypeDef)->ToTypeInstance();
}
else if (resolvedTypeRef->IsObject())
baseType = mContext->mBfObjectType;
else if (resolvedTypeRef->IsPointer())
{
baseType = ResolveTypeDef(mCompiler->mPointerTTypeDef, BfPopulateType_Data);
}
else if ((resolvedTypeRef->IsValueType()) && (typeDef != mCompiler->mValueTypeTypeDef))
{
baseType = ResolveTypeDef(mCompiler->mValueTypeTypeDef, BfPopulateType_Data)->ToTypeInstance();
}
if (baseType != NULL)
defaultBaseTypeInst = baseType->ToTypeInstance();
BfTypeReference* baseTypeRef = NULL;
if ((typeDef->mIsDelegate) && (!typeInstance->IsClosure()))
{
if (mCompiler->mDelegateTypeDef == NULL)
{
Fail("Delegate type required");
TypeFailed(typeInstance);
}
else
baseType = ResolveTypeDef(mCompiler->mDelegateTypeDef)->ToTypeInstance();
}
else if (typeDef->mIsFunction)
{
if (mCompiler->mFunctionTypeDef == NULL)
{
Fail("Function type required");
TypeFailed(typeInstance);
}
else
baseType = ResolveTypeDef(mCompiler->mFunctionTypeDef)->ToTypeInstance();
}
else
{
for (auto checkTypeRef : typeDef->mBaseTypes)
{
SetAndRestoreValue<BfTypeReference*> prevTypeRef(mContext->mCurTypeState->mCurBaseTypeRef, checkTypeRef);
auto declTypeDef = typeDef;
if (typeDef->mIsCombinedPartial)
declTypeDef = typeDef->mPartials.front();
SetAndRestoreValue<BfTypeDef*> prevTypeDef(mContext->mCurTypeState->mCurTypeDef, declTypeDef);
bool populateBase = !typeInstance->mTypeFailed;
auto checkType = ResolveTypeRef(checkTypeRef, populateBase ? BfPopulateType_Data : BfPopulateType_Declaration);
if (checkType != NULL)
{
auto checkTypeInst = checkType->ToTypeInstance();
bool canDeriveFrom = checkTypeInst != NULL;
if ((typeInstance->IsStruct()) || (typeInstance->IsTypedPrimitive()) || (typeInstance->IsBoxed()))
canDeriveFrom |= checkType->IsPrimitiveType();
if ((typeInstance->IsEnum()) && (!checkType->IsInterface()))
{
if (typeInstance->IsTypedPrimitive())
continue;
if (checkType->IsPrimitiveType())
Fail(StrFormat("Enum '%s' cannot be specified as '%s' because it has a payload",
TypeToString(typeInstance).c_str(), TypeToString(checkType).c_str()),
checkTypeRef);
else
Fail("Enums cannot derive from other types", checkTypeRef);
continue;
}
if ((checkTypeInst != NULL) && (checkTypeInst->mTypeFailed))
{
// To keep circular references from breaking type invariants (ie: base type loops)
continue;
}
if (!canDeriveFrom)
{
Fail("Cannot derive from this type", checkTypeRef);
continue;
}
if (checkType->IsInterface())
{
auto ifaceInst = checkType->ToTypeInstance();
if (ifaceSet.Add(ifaceInst))
{
// Not base type
BfInterfaceDecl ifaceDecl;
ifaceDecl.mIFaceTypeInst = ifaceInst;
ifaceDecl.mTypeRef = checkTypeRef;
ifaceDecl.mDeclaringType = typeDef;
interfaces.push_back(ifaceDecl);
}
else
{
Fail(StrFormat("Interface '%s' is already specified", TypeToString(checkType).c_str()), checkTypeRef);
}
}
else if (resolvedTypeRef == mContext->mBfObjectType)
{
Fail(StrFormat("Type '%s' cannot define a base type", TypeToString(baseType).c_str()), checkTypeRef);
}
else
{
if (baseTypeRef != NULL)
{
Fail(StrFormat("Base type '%s' already declared", TypeToString(baseType).c_str()), checkTypeRef);
}
else
{
baseTypeRef = checkTypeRef;
if (checkTypeInst != NULL)
{
baseType = checkTypeInst;
/*if ((resolvedTypeRef->IsBoxed()) && (baseType->IsValueType()))
{
baseType = CreateBoxedType(baseType);
}*/
}
}
}
}
else
{
AssertErrorState();
// Why did we go around setting mTypeFailed on all these things?
//typeInstance->mTypeFailed = true;
}
}
for (auto partialTypeDef : typeDef->mPartials)
{
if (!typeInstance->IsTypeMemberIncluded(partialTypeDef))
continue;
if (partialTypeDef->mTypeDeclaration == typeInstance->mTypeDef->mTypeDeclaration)
continue;
for (auto checkTypeRef : partialTypeDef->mBaseTypes)
{
SetAndRestoreValue<BfTypeReference*> prevTypeRef(mContext->mCurTypeState->mCurBaseTypeRef, checkTypeRef);
SetAndRestoreValue<BfTypeDef*> prevTypeDef(mContext->mCurTypeState->mCurTypeDef, partialTypeDef);
bool populateBase = !typeInstance->mTypeFailed;
auto checkType = ResolveTypeRef(checkTypeRef, BfPopulateType_Declaration);
if (checkType != NULL)
{
if (checkType->IsInterface())
{
BfInterfaceDecl ifaceDecl;
ifaceDecl.mIFaceTypeInst = checkType->ToTypeInstance();
ifaceDecl.mTypeRef = checkTypeRef;
ifaceDecl.mDeclaringType = partialTypeDef;
interfaces.push_back(ifaceDecl);
}
else
{
Fail(StrFormat("Extensions can only specify new interfaces, type '%s' is not a valid ", TypeToString(checkType).c_str()), checkTypeRef);
}
}
}
}
}
if (resolvedTypeRef->IsBoxed())
{
if ((baseType != NULL) && (baseType->IsStruct()))
{
BfBoxedType* boxedType = (BfBoxedType*)resolvedTypeRef;
BfType* modifiedBaseType = baseType;
if (boxedType->IsBoxedStructPtr())
modifiedBaseType = CreatePointerType(modifiedBaseType);
boxedType->mBoxedBaseType = CreateBoxedType(modifiedBaseType);
PopulateType(boxedType->mBoxedBaseType);
AddDependency(boxedType->mBoxedBaseType, typeInstance, BfDependencyMap::DependencyFlag_DerivedFrom);
}
baseType = mContext->mBfObjectType;
}
BfTypeInstance* baseTypeInst = NULL;
if (baseType != NULL)
{
baseTypeInst = baseType->ToTypeInstance();
}
if (typeInstance->mBaseType != NULL)
{
BF_ASSERT(typeInstance->mBaseType == baseTypeInst);
}
BfType* outerType = GetOuterType(typeInstance);
if (outerType != NULL)
AddDependency(outerType, typeInstance, BfDependencyMap::DependencyFlag_OuterType);
if ((baseTypeInst != NULL) && (typeInstance->mBaseType == NULL))
{
//curFieldDataIdx = 1;
if (!typeInstance->mTypeFailed)
PopulateType(baseTypeInst, BfPopulateType_Data);
typeInstance->mBaseTypeMayBeIncomplete = false;
typeInstance->mMergedFieldDataCount = baseTypeInst->mMergedFieldDataCount;
if ((resolvedTypeRef->IsObject()) && (!baseTypeInst->IsObject()))
{
Fail("Class can only derive from another class", baseTypeRef, true);
//typeInstance->mTypeFailed = true;
baseTypeInst = defaultBaseTypeInst;
typeInstance->mBaseType = baseTypeInst;
}
else if ((resolvedTypeRef->IsStruct()) && (!baseTypeInst->IsValueType()))
{
Fail("Struct can only derive from another struct", baseTypeRef, true);
//typeInstance->mTypeFailed = true;
baseTypeInst = defaultBaseTypeInst;
typeInstance->mBaseType = baseTypeInst;
}
if (!typeInstance->IsIncomplete())
{
// Re-entry may cause this type to be completed already
return true;
}
//BfLogSysM("Adding DerivedFrom dependency. Used:%p Using:%p\n", baseType, typeInstance);
auto checkBaseType = baseTypeInst;
while (checkBaseType != NULL)
{
// Add 'DerivedFrom' dependency all the way up the inheritance chain
AddDependency(checkBaseType, typeInstance, BfDependencyMap::DependencyFlag_DerivedFrom);
checkBaseType = checkBaseType->mBaseType;
}
typeInstance->mBaseType = baseTypeInst;
typeInstance->mInheritDepth = baseTypeInst->mInheritDepth + 1;
typeInstance->mHasParameterizedBase = baseTypeInst->mHasParameterizedBase;
if ((baseTypeInst->IsArray()) || (baseTypeInst->IsSizedArray()) || (baseTypeInst->IsGenericTypeInstance()))
typeInstance->mHasParameterizedBase = true;
if (underlyingType == NULL)
{
typeInstance->mInstSize = baseTypeInst->mInstSize;
typeInstance->mInstAlign = baseTypeInst->mInstAlign;
typeInstance->mAlign = baseTypeInst->mAlign;
typeInstance->mSize = baseTypeInst->mSize;
typeInstance->mHasPackingHoles = baseTypeInst->mHasPackingHoles;
if (baseTypeInst->mIsTypedPrimitive)
typeInstance->mIsTypedPrimitive = true;
}
}
if (populateType <= BfPopulateType_BaseType)
return true;
if ((typeInstance->mBaseType != NULL) && (!typeInstance->IsTypedPrimitive()))
{
curFieldDataIdx++;
}
if (!interfaces.empty())
{
for (int iFaceIdx = 0; iFaceIdx < (int)interfaces.size(); iFaceIdx++)
{
auto checkInterface = interfaces[iFaceIdx].mIFaceTypeInst;
PopulateType(checkInterface, BfPopulateType_Data);
BfTypeInterfaceEntry* found = NULL;
bool foundExact = false;
for (auto& typeInterfaceInst : typeInstance->mInterfaces)
{
if (typeInterfaceInst.mInterfaceType == checkInterface)
{
if (typeInterfaceInst.mDeclaringType == interfaces[iFaceIdx].mDeclaringType)
{
foundExact = true;
break;
}
found = &typeInterfaceInst;
}
}
if (foundExact)
continue;
BfTypeInterfaceEntry typeInterfaceInst;
typeInterfaceInst.mDeclaringType = interfaces[iFaceIdx].mDeclaringType;
typeInterfaceInst.mInterfaceType = checkInterface;
typeInterfaceInst.mStartInterfaceTableIdx = -1;
typeInterfaceInst.mStartVirtualIdx = -1;
typeInterfaceInst.mIsRedeclared = false;
typeInstance->mInterfaces.push_back(typeInterfaceInst);
// Interfaces can list other interfaces in their declaration, so pull those in too
for (auto depIFace : checkInterface->mInterfaces)
{
auto depIFaceEntry = interfaces[iFaceIdx];
depIFaceEntry.mIFaceTypeInst = depIFace.mInterfaceType;
interfaces.push_back(depIFaceEntry);
}
}
}
typeInstance->mDefineState = BfTypeDefineState_HasInterfaces;
if (populateType <= BfPopulateType_Interfaces)
return true;
prevSkipTypeProtectionChecks.Restore();
typeInstance->mInstSize = std::max(0, typeInstance->mInstSize);
typeInstance->mInstAlign = std::max(0, typeInstance->mInstAlign);
if ((typeInstance->mCustomAttributes == NULL) && (typeDef->mTypeDeclaration != NULL) && (typeDef->mTypeDeclaration->mAttributes != NULL))
{
BfAttributeTargets attrTarget;
if ((typeDef->mIsDelegate) || (typeDef->mIsFunction))
attrTarget = BfAttributeTargets_Delegate;
else if (typeInstance->IsEnum())
attrTarget = BfAttributeTargets_Enum;
else if (typeInstance->IsInterface())
attrTarget = BfAttributeTargets_Interface;
else if (typeInstance->IsStruct())
attrTarget = BfAttributeTargets_Struct;
else
attrTarget = BfAttributeTargets_Class;
if (!typeInstance->mTypeFailed)
{
// This allows us to avoid reentrancy when checking for inner types
SetAndRestoreValue<bool> prevSkipTypeProtectionChecks(typeInstance->mSkipTypeProtectionChecks, true);
if (typeDef->mIsCombinedPartial)
{
for (auto partialTypeDef : typeDef->mPartials)
{
if (partialTypeDef->mTypeDeclaration->mAttributes == NULL)
continue;
BfTypeState typeState;
typeState.mCurTypeDef = partialTypeDef;
SetAndRestoreValue<BfTypeState*> prevTypeState(mContext->mCurTypeState, &typeState);
if (typeInstance->mCustomAttributes == NULL)
typeInstance->mCustomAttributes = new BfCustomAttributes();
GetCustomAttributes(typeInstance->mCustomAttributes, partialTypeDef->mTypeDeclaration->mAttributes, attrTarget);
}
}
else
typeInstance->mCustomAttributes = GetCustomAttributes(typeDef->mTypeDeclaration->mAttributes, attrTarget);
}
}
if (typeInstance->mTypeOptionsIdx == -2)
{
SetTypeOptions(typeInstance);
}
ProcessCustomAttributeData();
bool isPacked = false;
bool isUnion = false;
bool isCRepr = false;
bool isOrdered = false;
ProcessTypeInstCustomAttributes(isPacked, isUnion, isCRepr, isOrdered);
typeInstance->mIsUnion = isUnion;
if ((typeInstance->IsEnum()) && (typeInstance->IsStruct()))
typeInstance->mIsUnion = true;
typeInstance->mIsPacked = isPacked;
typeInstance->mIsCRepr = isCRepr;
BfType* unionInnerType = NULL;
bool hadDeferredVars = false;
int dataPos;
if (resolvedTypeRef->IsBoxed())
{
BfBoxedType* boxedType = (BfBoxedType*)resolvedTypeRef;
BfType* innerType = boxedType->mElementType;
if (boxedType->IsBoxedStructPtr())
innerType = CreatePointerType(innerType);
if (innerType->IsIncomplete())
PopulateType(innerType, BfPopulateType_Data);
auto baseType = typeInstance->mBaseType;
dataPos = baseType->mInstSize;
int alignSize = BF_MAX(innerType->mAlign, baseType->mInstAlign);
if (alignSize > 1)
dataPos = (dataPos + (alignSize - 1)) & ~(alignSize - 1);
int dataSize = innerType->mSize;
typeInstance->mFieldInstances.push_back(BfFieldInstance());
BfFieldInstance* fieldInstance = &typeInstance->mFieldInstances.back();
fieldInstance->mDataOffset = dataPos;
fieldInstance->mDataSize = innerType->mSize;
fieldInstance->mOwner = typeInstance;
fieldInstance->mResolvedType = innerType;
if (!innerType->IsValuelessType())
{
curFieldDataIdx++;
}
dataPos += dataSize;
typeInstance->mInstAlign = std::max(baseType->mInstAlign, alignSize);
int instAlign = typeInstance->mInstAlign;
if (instAlign != 0)
{
int instSize = (dataPos + (instAlign - 1)) & ~(instAlign - 1);
if (instSize != typeInstance->mInstSize)
{
typeInstance->mInstSize = instSize;
typeInstance->mHasPackingHoles = true;
}
}
typeInstance->mInstSize = std::max(1, typeInstance->mInstSize);
}
else
{
dataPos = typeInstance->mInstSize;
if (underlyingType != NULL)
{
if (!underlyingType->IsValuelessType())
{
curFieldDataIdx++;
}
}
struct DeferredResolveEntry
{
BfFieldDef* mFieldDef;
int mTypeArrayIdx;
};
for (auto propDef : typeDef->mProperties)
{
if (!typeInstance->IsTypeMemberIncluded(propDef->mDeclaringType))
continue;
if (propDef->mFieldDeclaration != NULL)
{
BfTypeState typeState;
typeState.mCurTypeDef = propDef->mDeclaringType;
SetAndRestoreValue<BfTypeState*> prevTypeState(mContext->mCurTypeState, &typeState);
if (propDef->mFieldDeclaration->mAttributes != NULL)
{
auto customAttrs = GetCustomAttributes(propDef->mFieldDeclaration->mAttributes, BfAttributeTargets_Property);
delete customAttrs;
}
if (propDef->mFieldDeclaration->mAttributes != NULL)
{
auto customAttrs = GetCustomAttributes(propDef->mFieldDeclaration->mAttributes, BfAttributeTargets_Property);
delete customAttrs;
}
auto propDecl = (BfPropertyDeclaration*)propDef->mFieldDeclaration;
if (propDecl->mExplicitInterface != NULL)
{
if ((mCompiler->mResolvePassData != NULL) && (mCompiler->mResolvePassData->mAutoComplete != NULL))
mCompiler->mResolvePassData->mAutoComplete->CheckTypeRef(propDecl->mExplicitInterface, false);
auto explicitInterface = ResolveTypeRef(propDecl->mExplicitInterface, BfPopulateType_Declaration);
if (explicitInterface != NULL)
{
bool interfaceFound = false;
for (auto ifaceInst : typeInstance->mInterfaces)
interfaceFound |= ifaceInst.mInterfaceType == explicitInterface;
if (!interfaceFound)
{
Fail("Containing class has not declared to implement this interface", propDecl->mExplicitInterface, true);
}
}
}
}
if (propDef->mMethods.IsEmpty())
{
auto nameNode = ((BfPropertyDeclaration*)propDef->mFieldDeclaration)->mNameNode;
if (nameNode != NULL)
{
Fail(StrFormat("Property or indexer '%s.%s' must have at least one accessor", TypeToString(typeInstance).c_str(), propDef->mName.c_str()),
nameNode, true); // CS0548
}
}
}
BfSizedVector<DeferredResolveEntry, 8> deferredVarResolves;
for (auto field : typeDef->mFields)
{
auto fieldInstance = &typeInstance->mFieldInstances[field->mIdx];
if (fieldInstance->mResolvedType != NULL)
continue;
if (!typeInstance->IsTypeMemberIncluded(field->mDeclaringType))
{
fieldInstance->mFieldIncluded = false;
continue;
}
fieldInstance->mOwner = typeInstance;
fieldInstance->mFieldIdx = field->mIdx;
if (typeInstance->IsInterface())
Fail("Interfaces cannot include fields. Consider making this a property", field->GetRefNode());
}
int enumCaseEntryIdx = 0;
for (auto field : typeDef->mFields)
{
auto fieldInstance = &typeInstance->mFieldInstances[field->mIdx];
if ((fieldInstance->mResolvedType != NULL) || (!fieldInstance->mFieldIncluded))
continue;
BfType* resolvedFieldType = NULL;
if (field->IsEnumCaseEntry())
{
fieldInstance->mDataIdx = -(enumCaseEntryIdx++) - 1;
resolvedFieldType = typeInstance;
BfType* payloadType = NULL;
if (field->mTypeRef != NULL)
payloadType = ResolveTypeRef(field->mTypeRef, BfPopulateType_Data, BfResolveTypeRefFlag_NoResolveGenericParam);
if (payloadType == NULL)
{
if (!typeInstance->IsTypedPrimitive())
payloadType = CreateTupleType(BfTypeVector(), Array<String>());
}
if (payloadType != NULL)
{
AddDependency(payloadType, typeInstance, BfDependencyMap::DependencyFlag_ValueTypeMemberData);
BF_ASSERT(payloadType->IsTuple());
resolvedFieldType = payloadType;
fieldInstance->mIsEnumPayloadCase = true;
}
}
else if ((field->mTypeRef != NULL) && ((field->mTypeRef->IsExact<BfVarTypeReference>()) || (field->mTypeRef->IsExact<BfLetTypeReference>()) || (field->mTypeRef->IsExact<BfDeclTypeRef>())))
{
resolvedFieldType = GetPrimitiveType(BfTypeCode_Var);
DeferredResolveEntry resolveEntry;
resolveEntry.mFieldDef = field;
resolveEntry.mTypeArrayIdx = (int)llvmFieldTypes.size();
deferredVarResolves.push_back(resolveEntry);
fieldInstance->mIsInferredType = true;
// For 'let', make read-only
}
else
{
SetAndRestoreValue<BfFieldDef*> prevTypeRef(mContext->mCurTypeState->mCurFieldDef, field);
resolvedFieldType = ResolveTypeRef(field->mTypeRef, BfPopulateType_Declaration, BfResolveTypeRefFlag_NoResolveGenericParam);
if (resolvedFieldType == NULL)
{
// Failed, just put in placeholder 'var'
AssertErrorState();
resolvedFieldType = GetPrimitiveType(BfTypeCode_Var);
}
}
if (resolvedFieldType->IsMethodRef())
{
auto methodRefType = (BfMethodRefType*)resolvedFieldType;
}
if (fieldInstance->mResolvedType == NULL)
fieldInstance->mResolvedType = resolvedFieldType;
if (field->mIsConst)
{
// Resolve in ResolveConstField after we finish populating entire FieldInstance list
}
else if (field->mIsStatic)
{
// Don't allocate this until after we're finished populating entire FieldInstance list,
// because we may have re-entry and create multiple instances of this static field
}
}
if (!resolvedTypeRef->IsIncomplete())
{
// We finished resolving ourselves through a re-entry, so we're actually done here
return true;
}
for (auto& resolveEntry : deferredVarResolves)
{
hadDeferredVars = true;
auto fieldType = ResolveVarFieldType(typeInstance, &typeInstance->mFieldInstances[resolveEntry.mFieldDef->mIdx], resolveEntry.mFieldDef);
if (fieldType == NULL)
{
fieldType = mContext->mBfObjectType;
// We used to set mTypeFailed, but mHasBuildError is enough to cause a type rebuild properly
mHadBuildError = true;
//typeInstance->mTypeFailed = true;
}
auto fieldInstance = &typeInstance->mFieldInstances[resolveEntry.mFieldDef->mIdx];
fieldInstance->SetResolvedType(fieldType);
}
if (typeInstance->mResolvingConstField)
return !typeInstance->mTypeFailed;
for (auto& fieldInstanceRef : typeInstance->mFieldInstances)
{
auto fieldInstance = &fieldInstanceRef;
auto fieldDef = fieldInstance->GetFieldDef();
auto resolvedFieldType = fieldInstance->GetResolvedType();
if (!fieldInstance->mFieldIncluded)
continue;
if (resolvedFieldType == NULL)
{
if ((underlyingType != NULL) || (typeInstance->IsPayloadEnum()))
continue;
}
if (!fieldInstance->mFieldIncluded)
continue;
if (fieldDef == NULL)
continue;
if ((!fieldDef->mIsStatic) && (resolvedFieldType->IsValueType()))
{
// We need that type finished up for alignment and data size
// But if the type has failed then we need to avoid stack overflow so we don't finish it
SetAndRestoreValue<BfFieldDef*> prevTypeRef(mContext->mCurTypeState->mCurFieldDef, fieldDef);
bool populateChildType = !typeInstance->mTypeFailed;
//bool populateChildType = true;
PopulateType(resolvedFieldType, populateChildType ? BfPopulateType_Data : BfPopulateType_Declaration);
if (populateChildType)
{
BF_ASSERT(!resolvedFieldType->IsDataIncomplete());
}
else
{
if (resolvedFieldType->IsDataIncomplete())
{
AssertErrorState();
resolvedFieldType = mContext->mBfObjectType;
fieldInstance->SetResolvedType(resolvedFieldType);
// We used to set mTypeFailed, but mHasBuildError is enough to cause a type rebuild properly
mHadBuildError = true;
}
}
}
}
}
if ((!typeInstance->IsIncomplete()) || (typeInstance->mNeedsMethodProcessing))
{
return !typeInstance->mTypeFailed;
}
BF_ASSERT(mContext->mCurTypeState == &typeState);
BF_ASSERT(!typeInstance->mIsFinishingType);
typeInstance->mIsFinishingType = true;
// No re-entry is allowed below here -- we will run all the way to the end at this point
BfSizedVector<BfIRMDNode, 8> diFieldTypes;
HashContext dataMemberHashCtx;
if (!resolvedTypeRef->IsBoxed())
{
bool isGlobalContainer = typeDef->IsGlobalsContainer();
if (typeInstance->mBaseType != NULL)
{
dataMemberHashCtx.Mixin(typeInstance->mBaseType->mTypeId);
if (typeInstance->mBaseType->mHotTypeData != NULL)
{
BfHotTypeVersion* ver = typeInstance->mBaseType->mHotTypeData->GetLatestVersion();
dataMemberHashCtx.Mixin(ver->mDataHash);
}
}
dataMemberHashCtx.Mixin(typeInstance->mIsPacked);
dataMemberHashCtx.Mixin(typeInstance->mIsCRepr);
dataMemberHashCtx.Mixin(typeInstance->mIsUnion);
int startDataPos = dataPos;
int maxDataPos = dataPos;
BfSizedVector<BfFieldInstance*, 16> dataFieldVec;
// We've resolved all the 'var' entries, so now build the actual composite type
for (auto& fieldInstanceRef : typeInstance->mFieldInstances)
{
auto fieldInstance = &fieldInstanceRef;
if (!fieldInstance->mFieldIncluded)
continue;
auto resolvedFieldType = fieldInstance->GetResolvedType();
if (fieldInstance->mResolvedType == NULL)
{
if ((underlyingType == NULL) && (!typeInstance->IsPayloadEnum()))
BF_ASSERT(typeInstance->mTypeFailed);
continue;
}
if ((fieldInstance->GetFieldDef() != NULL) && (fieldInstance->GetFieldDef()->mIsConst))
{
// Resolve later
}
else if (fieldInstance->GetFieldDef() != NULL)
{
if (!fieldInstance->GetFieldDef()->mIsStatic)
AddFieldDependency(typeInstance, fieldInstance, resolvedFieldType);
else
AddDependency(resolvedFieldType, typeInstance, BfDependencyMap::DependencyFlag_StaticValue);
}
auto fieldDef = fieldInstance->GetFieldDef();
BF_ASSERT(fieldInstance->mCustomAttributes == NULL);
if ((fieldDef != NULL) && (fieldDef->mFieldDeclaration != NULL) && (fieldDef->mFieldDeclaration->mAttributes != NULL))
{
BfTypeState typeState;
typeState.mCurTypeDef = fieldDef->mDeclaringType;
SetAndRestoreValue<BfTypeState*> prevTypeState(mContext->mCurTypeState, &typeState);
fieldInstance->mCustomAttributes = GetCustomAttributes(fieldDef->mFieldDeclaration->mAttributes, fieldDef->mIsStatic ? BfAttributeTargets_StaticField : BfAttributeTargets_Field);
for (auto customAttr : fieldInstance->mCustomAttributes->mAttributes)
{
if (TypeToString(customAttr.mType) == "System.ThreadStaticAttribute")
{
if ((!fieldDef->mIsStatic) || (fieldDef->mIsConst))
{
Fail("ThreadStatic attribute can only be used on static fields", fieldDef->mFieldDeclaration->mAttributes);
}
}
}
}
if (fieldInstance->mResolvedType != NULL)
{
auto resolvedFieldType = fieldInstance->GetResolvedType();
if ((!typeInstance->IsBoxed()) && (fieldDef != NULL))
{
if (fieldInstance->mIsEnumPayloadCase)
{
PopulateType(resolvedFieldType, BfPopulateType_Data);
if (resolvedFieldType->WantsGCMarking())
typeInstance->mWantsGCMarking = true;
}
if ((!fieldDef->mIsConst) && (!fieldDef->mIsStatic))
{
PopulateType(resolvedFieldType, resolvedFieldType->IsValueType() ? BfPopulateType_Data : BfPopulateType_Declaration);
if (resolvedFieldType->WantsGCMarking())
typeInstance->mWantsGCMarking = true;
fieldInstance->mMergedDataIdx = typeInstance->mMergedFieldDataCount;
if (resolvedFieldType->IsStruct())
{
auto resolvedFieldTypeInstance = resolvedFieldType->ToTypeInstance();
typeInstance->mMergedFieldDataCount += resolvedFieldTypeInstance->mMergedFieldDataCount;
}
else if (!resolvedFieldType->IsValuelessType())
typeInstance->mMergedFieldDataCount++;
if (fieldDef->mIsExtern)
{
Fail("Cannot declare instance member as 'extern'", fieldDef->mFieldDeclaration->mExternSpecifier, true);
}
BfAstNode* nameRefNode = NULL;
if (fieldDef->mFieldDeclaration != NULL)
nameRefNode = fieldDef->mFieldDeclaration->mNameNode;
if (nameRefNode == NULL)
nameRefNode = fieldDef->mTypeRef;
if (underlyingType != NULL)
{
if (typeInstance->IsEnum())
Fail("Cannot declare instance members in an enum", nameRefNode, true);
else
Fail("Cannot declare instance members in a typed primitive struct", nameRefNode, true);
TypeFailed(typeInstance);
fieldInstance->mDataIdx = -1;
continue;
}
if (typeDef->mIsStatic)
{
//CS0708
Fail("Cannot declare instance members in a static class", nameRefNode, true);
}
if (resolvedFieldType->IsValueType())
{
BF_ASSERT(!resolvedFieldType->IsDataIncomplete());
}
if (!mCompiler->mIsResolveOnly)
{
dataMemberHashCtx.MixinStr(fieldDef->mName);
dataMemberHashCtx.Mixin(resolvedFieldType->mTypeId);
}
int dataSize = resolvedFieldType->mSize;
int alignSize = resolvedFieldType->mAlign;
fieldInstance->mDataSize = dataSize;
if (!isUnion)
{
if (!resolvedFieldType->IsValuelessType())
{
if (isCRepr)
{
dataFieldVec.push_back(fieldInstance);
}
else
{
dataFieldVec.push_back(fieldInstance);
}
}
}
else
{
BF_ASSERT(resolvedFieldType->mSize >= 0);
if ((alignSize > 1) && (!isPacked))
dataPos = (dataPos + (alignSize - 1)) & ~(alignSize - 1);
fieldInstance->mDataOffset = dataPos;
if (!isPacked)
typeInstance->mInstAlign = std::max(typeInstance->mInstAlign, alignSize);
dataPos += dataSize;
if (dataPos > maxDataPos)
{
maxDataPos = dataPos;
}
dataPos = startDataPos;
}
auto fieldTypeInst = resolvedFieldType->ToTypeInstance();
if (fieldTypeInst != NULL)
{
if ((fieldTypeInst->mRebuildFlags & BfTypeRebuildFlag_UnderlyingTypeDeferred) != 0)
{
BfAstNode* refNode = fieldDef->mFieldDeclaration;
String failStr;
failStr = StrFormat("Circular data reference detected between '%s' and '%s'", TypeToString(mCurTypeInstance).c_str(), TypeToString(fieldTypeInst).c_str());
if (!mContext->mFieldResolveReentrys.IsEmpty())
{
failStr += StrFormat(" with the following fields:", TypeToString(mCurTypeInstance).c_str());
for (int i = 0; i < (int)mContext->mFieldResolveReentrys.size(); i++)
{
auto checkField = mContext->mFieldResolveReentrys[i];
if (i > 0)
failStr += ",";
failStr += "\n '" + TypeToString(typeInstance) + "." + checkField->GetFieldDef()->mName + "'";
if (checkField->mOwner == fieldTypeInst)
refNode = checkField->GetFieldDef()->mFieldDeclaration;
}
}
BfError* err = Fail(failStr, refNode);
if (err)
err->mIsPersistent = true;
}
}
}
bool useForUnion = false;
if (fieldInstance->mIsEnumPayloadCase)
{
if (!typeInstance->IsEnum())
{
Fail("Cases can only be used in enum types", fieldDef->mFieldDeclaration);
}
else
{
BF_ASSERT(typeInstance->mIsUnion);
}
}
if ((!fieldDef->mIsStatic) && (!resolvedFieldType->IsValuelessType()))
{
if (isUnion)
{
fieldInstance->mDataIdx = curFieldDataIdx;
}
}
}
if ((!typeInstance->IsSpecializedType()) && (!typeInstance->IsOnDemand()) && (fieldDef != NULL) && (!CheckDefineMemberProtection(fieldDef->mProtection, resolvedFieldType)))
{
//CS0052
Fail(StrFormat("Inconsistent accessibility: field type '%s' is less accessible than field '%s.%s'",
TypeToString(resolvedFieldType).c_str(), TypeToString(mCurTypeInstance).c_str(), fieldDef->mName.c_str()),
fieldDef->mTypeRef, true);
}
}
}
if (typeInstance->mIsUnion)
unionInnerType = typeInstance->GetUnionInnerType();
if (!isOrdered)
{
int dataFieldCount = (int)dataFieldVec.size();
Array<Deque<BfFieldInstance*>> alignBuckets;
for (auto fieldInst : dataFieldVec)
{
int alignBits = GetHighestBitSet(fieldInst->mResolvedType->mAlign);
while (alignBits >= alignBuckets.size())
alignBuckets.Add({});
alignBuckets[alignBits].Add(fieldInst);
}
dataFieldVec.clear();
int curSize = typeInstance->mInstSize;
while (dataFieldVec.size() != dataFieldCount)
{
// Clear out completed buckets
while (alignBuckets[alignBuckets.size() - 1].IsEmpty())
{
alignBuckets.pop_back();
}
int alignBits = GetNumLowZeroBits(curSize) + 1;
alignBits = BF_MIN(alignBits, (int)alignBuckets.size() - 1);
bool foundEntry = false;
while (alignBits >= 0)
{
if (alignBuckets[alignBits].IsEmpty())
{
alignBits--;
continue;
}
bool isHighestBucket = alignBits == alignBuckets.size() - 1;
auto fieldInst = alignBuckets[alignBits][0];
alignBuckets[alignBits].RemoveAt(0);
dataFieldVec.push_back(fieldInst);
curSize = BF_ALIGN(curSize, fieldInst->mResolvedType->mAlign);
curSize += fieldInst->mResolvedType->mSize;
foundEntry = true;
if (!isHighestBucket)
{
// We may have a larger type that can fit now...
break;
}
}
if (!foundEntry)
{
// If no entries will fit, then force an entry of the smallest alignment
for (int alignBits = 0; alignBits < alignBuckets.size(); alignBits++)
{
if (!alignBuckets[alignBits].IsEmpty())
{
auto fieldInst = alignBuckets[alignBits][0];
alignBuckets[alignBits].RemoveAt(0);
dataFieldVec.push_back(fieldInst);
curSize = BF_ALIGN(curSize, fieldInst->mResolvedType->mAlign);
curSize += fieldInst->mResolvedType->mSize;
break;
}
}
}
}
}
for (auto fieldInstance : dataFieldVec)
{
auto resolvedFieldType = fieldInstance->GetResolvedType();
BF_ASSERT(resolvedFieldType->mSize >= 0);
int dataSize = resolvedFieldType->mSize;
int alignSize = resolvedFieldType->mAlign;
fieldInstance->mDataSize = dataSize;
bool needsExplicitAlignment = !isCRepr || resolvedFieldType->NeedsExplicitAlignment();
int nextDataPos = (dataPos + (alignSize - 1)) & ~(alignSize - 1);
int padding = nextDataPos - dataPos;
if ((alignSize > 1) && (needsExplicitAlignment) && (padding > 0))
{
curFieldDataIdx++;
}
dataPos = nextDataPos;
fieldInstance->mDataOffset = dataPos;
fieldInstance->mDataIdx = curFieldDataIdx++;
if (!isPacked)
typeInstance->mInstAlign = std::max(typeInstance->mInstAlign, alignSize);
dataPos += dataSize;
}
if (unionInnerType != NULL)
{
dataPos = unionInnerType->mSize;
typeInstance->mInstAlign = BF_MAX(unionInnerType->mAlign, typeInstance->mInstAlign);
}
// Old dataMemberHash location
CheckMemberNames(typeInstance);
if (isPacked)
typeInstance->mInstAlign = 1;
else
typeInstance->mInstAlign = std::max(1, typeInstance->mInstAlign);
int alignSize = typeInstance->mInstAlign;
if (isCRepr)
{
// Align size to alignment
if (alignSize >= 1)
typeInstance->mInstSize = (dataPos + (alignSize - 1)) & ~(alignSize - 1);
typeInstance->mIsCRepr = true;
}
else
{
typeInstance->mInstSize = dataPos;
typeInstance->mIsCRepr = false;
}
if ((mCompiler->mResolvePassData != NULL) && (mCompiler->mResolvePassData->mAutoComplete != NULL))
{
for (auto propDef : typeInstance->mTypeDef->mProperties)
if (propDef->mFieldDeclaration != NULL)
mCompiler->mResolvePassData->mAutoComplete->CheckProperty(BfNodeDynCast<BfPropertyDeclaration>(propDef->mFieldDeclaration));
}
}
if (typeInstance->IsObjectOrInterface())
typeInstance->mWantsGCMarking = true;
if ((mCompiler->mOptions.mEnableRealtimeLeakCheck) && (!typeInstance->mWantsGCMarking))
{
typeInstance->mTypeDef->PopulateMemberSets();
BfMemberSetEntry* entry = NULL;
BfMethodDef* methodDef = NULL;
if (typeInstance->mTypeDef->mMethodSet.TryGetWith(String(BF_METHODNAME_MARKMEMBERS), &entry))
{
methodDef = (BfMethodDef*)entry->mMemberDef;
if (methodDef->HasBody())
typeInstance->mWantsGCMarking = true;
}
}
if (typeInstance->IsValueType())
{
typeInstance->mSize = typeInstance->mInstSize;
typeInstance->mAlign = typeInstance->mInstAlign;
}
if ((mCompiler->mOptions.mAllowHotSwapping) && (typeInstance->mDefineState < BfTypeDefineState_Defined))
{
if (typeInstance->mHotTypeData == NULL)
typeInstance->mHotTypeData = new BfHotTypeData();
// Clear any unused versions (if we have errors, etc)
if (mCompiler->mHotState != NULL)
typeInstance->mHotTypeData->ClearVersionsAfter(mCompiler->mHotState->mCommittedHotCompileIdx);
else
BF_ASSERT(typeInstance->mHotTypeData->mTypeVersions.IsEmpty()); // We should have created a new HotTypeData when rebuilding the type
BfHotTypeVersion* hotTypeVersion = new BfHotTypeVersion();
hotTypeVersion->mTypeId = typeInstance->mTypeId;
if (typeInstance->mBaseType != NULL)
hotTypeVersion->mBaseType = typeInstance->mBaseType->mHotTypeData->GetLatestVersion();
hotTypeVersion->mDeclHotCompileIdx = mCompiler->mOptions.mHotCompileIdx;
if (mCompiler->IsHotCompile())
hotTypeVersion->mCommittedHotCompileIdx = -1;
else
hotTypeVersion->mCommittedHotCompileIdx = 0;
hotTypeVersion->mRefCount++;
typeInstance->mHotTypeData->mTypeVersions.Add(hotTypeVersion);
if (typeInstance->mBaseType != NULL)
{
hotTypeVersion->mMembers.Add(typeInstance->mBaseType->mHotTypeData->GetLatestVersion());
}
for (auto& fieldInst : typeInstance->mFieldInstances)
{
auto fieldDef = fieldInst.GetFieldDef();
if ((fieldDef == NULL) || (fieldDef->mIsStatic))
continue;
auto depType = fieldInst.mResolvedType;
while (depType->IsSizedArray())
depType = ((BfSizedArrayType*)depType)->mElementType;
if (depType->IsStruct())
{
PopulateType(depType);
auto depTypeInst = depType->ToTypeInstance();
BF_ASSERT(depTypeInst->mHotTypeData != NULL);
if (depTypeInst->mHotTypeData != NULL)
hotTypeVersion->mMembers.Add(depTypeInst->mHotTypeData->GetLatestVersion());
}
}
for (auto member : hotTypeVersion->mMembers)
member->mRefCount++;
BfLogSysM("BfHotTypeVersion %p created for type %p\n", hotTypeVersion, typeInstance);
}
typeInstance->mDefineState = BfTypeDefineState_Defined;
if (typeInstance->mTypeFailed)
mHadBuildError = true;
CheckAddFailType();
typeInstance->mNeedsMethodProcessing = true;
typeInstance->mIsFinishingType = false;
///
// 'Splattable' means that we can be passed via 3 or fewer primitive/pointer values
if (typeInstance->IsStruct())
{
bool hadNonSplattable = false;
if (typeInstance->mBaseType != NULL)
PopulateType(typeInstance->mBaseType, BfPopulateType_Data);
if ((typeInstance->mBaseType == NULL) || (typeInstance->mBaseType->IsSplattable()))
{
int dataCount = 0;
std::function<void(BfType*)> splatIterate;
splatIterate = [&](BfType* checkType)
{
if (checkType->IsMethodRef())
{
// For simplicitly, any methodRef inside a struct makes the struct non-splattable. This reduces cases of needing to
// handle embedded methodRefs
hadNonSplattable = true;
}
else if (checkType->IsStruct())
{
PopulateType(checkType, BfPopulateType_Data);
auto checkTypeInstance = checkType->ToTypeInstance();
if (checkTypeInstance->mBaseType != NULL)
splatIterate(checkTypeInstance->mBaseType);
if (checkTypeInstance->mIsUnion)
{
bool wantSplat = false;
auto unionInnerType = checkTypeInstance->GetUnionInnerType(&wantSplat);
if (!wantSplat)
hadNonSplattable = true;
splatIterate(unionInnerType);
if (checkTypeInstance->IsEnum())
dataCount++; // Discriminator
}
else
{
for (int fieldIdx = 0; fieldIdx < (int)checkTypeInstance->mFieldInstances.size(); fieldIdx++)
{
auto fieldInstance = (BfFieldInstance*)&checkTypeInstance->mFieldInstances[fieldIdx];
if (fieldInstance->mDataIdx >= 0)
splatIterate(fieldInstance->GetResolvedType());
}
}
}
else if (!checkType->IsValuelessType())
{
if (checkType->IsSizedArray())
hadNonSplattable = true;
dataCount += checkType->GetSplatCount();
}
};
splatIterate(typeInstance);
if (isCRepr)
typeInstance->mIsSplattable = false;
else
typeInstance->mIsSplattable = (dataCount <= 3) && (!hadNonSplattable);
}
}
if (typeInstance->IsTypedPrimitive())
typeInstance->mIsSplattable = true;
BF_ASSERT(mContext->mCurTypeState == &typeState);
// This is only required for autocomplete and finding type references
if (!typeInstance->IsSpecializedType())
{
for (auto propDef : typeDef->mProperties)
{
if (propDef->mTypeRef == NULL)
continue;
BfTypeState typeState;
typeState.mCurTypeDef = propDef->mDeclaringType;
typeState.mTypeInstance = typeInstance;
SetAndRestoreValue<BfTypeState*> prevTypeState(mContext->mCurTypeState, &typeState);
ResolveTypeRef(propDef->mTypeRef, BfPopulateType_Identity, BfResolveTypeRefFlag_AllowRef);
}
}
for (auto& fieldInstanceRef : typeInstance->mFieldInstances)
{
auto fieldInstance = &fieldInstanceRef;
if (!fieldInstance->mFieldIncluded)
continue;
auto fieldDef = fieldInstance->GetFieldDef();
if (fieldDef == NULL)
continue;
if ((fieldInstance->mConstIdx == -1) && (fieldDef->mIsConst))
{
SetAndRestoreValue<BfFieldDef*> prevTypeRef(mContext->mCurTypeState->mCurFieldDef, fieldDef);
typeInstance->mModule->ResolveConstField(typeInstance, fieldInstance, fieldDef);
}
}
if ((typeInstance->IsEnum()) && (!typeInstance->IsPayloadEnum()))
{
BfLogSysM("Setting underlying type %p %d\n", typeInstance, underlyingTypeDeferred);
}
if (typeInstance->IsEnum())
{
int64 min = 0;
int64 max = 0;
bool isFirst = false;
if (typeInstance->mTypeInfoEx == NULL)
typeInstance->mTypeInfoEx = new BfTypeInfoEx();
for (auto& fieldInstanceRef : typeInstance->mFieldInstances)
{
auto fieldInstance = &fieldInstanceRef;
auto fieldDef = fieldInstance->GetFieldDef();
if ((fieldDef != NULL) && (fieldDef->IsEnumCaseEntry()))
{
if (fieldInstance->mConstIdx == -1)
continue;
auto constant = typeInstance->mConstHolder->GetConstantById(fieldInstance->mConstIdx);
BF_ASSERT((constant->mTypeCode == BfTypeCode_Int64) || (!underlyingTypeDeferred));
if (isFirst)
{
min = constant->mInt64;
max = constant->mInt64;
isFirst = false;
}
else
{
min = BF_MIN(constant->mInt64, min);
max = BF_MAX(constant->mInt64, max);
}
}
}
typeInstance->mTypeInfoEx->mMinValue = min;
typeInstance->mTypeInfoEx->mMaxValue = max;
if (underlyingTypeDeferred)
{
BfTypeCode typeCode;
if ((min >= -0x80) && (max <= 0x7F))
typeCode = BfTypeCode_Int8;
else if ((min >= 0) && (max <= 0xFF))
typeCode = BfTypeCode_UInt8;
else if ((min >= -0x8000) && (max <= 0x7FFF))
typeCode = BfTypeCode_Int16;
else if ((min >= 0) && (max <= 0xFFFF))
typeCode = BfTypeCode_UInt16;
else if ((min >= -0x80000000LL) && (max <= 0x7FFFFFFF))
typeCode = BfTypeCode_Int32;
else if ((min >= 0) && (max <= 0xFFFFFFFFLL))
typeCode = BfTypeCode_UInt32;
else
typeCode = BfTypeCode_Int64;
if (typeCode != BfTypeCode_Int64)
{
for (auto& fieldInstanceRef : typeInstance->mFieldInstances)
{
auto fieldInstance = &fieldInstanceRef;
if (fieldInstance->mConstIdx != -1)
{
auto constant = typeInstance->mConstHolder->GetConstantById(fieldInstance->mConstIdx);
BfIRValue newConstant = typeInstance->mConstHolder->CreateConst(typeCode, constant->mUInt64);
fieldInstance->mConstIdx = newConstant.mId;
}
}
}
underlyingType = GetPrimitiveType(typeCode);
auto fieldInstance = &typeInstance->mFieldInstances.back();
fieldInstance->mResolvedType = underlyingType;
fieldInstance->mDataSize = underlyingType->mSize;
typeInstance->mTypeInfoEx->mUnderlyingType = underlyingType;
typeInstance->mSize = underlyingType->mSize;
typeInstance->mAlign = underlyingType->mAlign;
typeInstance->mInstSize = underlyingType->mSize;
typeInstance->mInstAlign = underlyingType->mAlign;
typeInstance->mRebuildFlags = (BfTypeRebuildFlags)(typeInstance->mRebuildFlags & ~BfTypeRebuildFlag_UnderlyingTypeDeferred);
}
}
else
{
BF_ASSERT(!underlyingTypeDeferred);
}
if ((typeInstance->IsPayloadEnum()) && (!typeInstance->IsBoxed()))
{
int lastTagId = -1;
for (auto& fieldInstanceRef : typeInstance->mFieldInstances)
{
auto fieldInstance = &fieldInstanceRef;
auto fieldDef = fieldInstance->GetFieldDef();
if ((fieldDef != NULL) && (fieldInstance->mDataIdx < 0))
lastTagId = -fieldInstance->mDataIdx - 1;
}
auto fieldInstance = &typeInstance->mFieldInstances.back();
BF_ASSERT(fieldInstance->mResolvedType == NULL);
BfPrimitiveType* discriminatorType;
if (lastTagId > 0x7FFFFFFF) // HOW?
discriminatorType = GetPrimitiveType(BfTypeCode_Int64);
else if (lastTagId > 0x7FFF)
discriminatorType = GetPrimitiveType(BfTypeCode_Int32);
else if (lastTagId > 0x7F)
discriminatorType = GetPrimitiveType(BfTypeCode_Int16);
else
discriminatorType = GetPrimitiveType(BfTypeCode_Int8);
fieldInstance->mResolvedType = discriminatorType;
fieldInstance->mDataOffset = unionInnerType->mSize;
fieldInstance->mDataIdx = 2; // 0 = base, 1 = payload, 2 = discriminator
if (!isPacked)
{
if ((fieldInstance->mDataOffset % discriminatorType->mAlign) != 0)
{
fieldInstance->mDataOffset = BF_ALIGN(fieldInstance->mDataOffset, discriminatorType->mAlign);
fieldInstance->mDataIdx++; // Add room for explicit padding
}
}
typeInstance->mAlign = BF_MAX(unionInnerType->mAlign, discriminatorType->mAlign);
typeInstance->mSize = fieldInstance->mDataOffset + discriminatorType->mSize;
typeInstance->mInstSize = typeInstance->mSize;
typeInstance->mInstAlign = typeInstance->mAlign;
dataMemberHashCtx.Mixin(unionInnerType->mTypeId);
dataMemberHashCtx.Mixin(discriminatorType->mTypeId);
typeInstance->mMergedFieldDataCount = 1; // Track it as a single entry
}
if (!typeInstance->IsBoxed())
{
if (typeInstance->IsTypedPrimitive())
{
auto underlyingType = typeInstance->GetUnderlyingType();
dataMemberHashCtx.Mixin(underlyingType->mTypeId);
}
Val128 dataMemberHash = dataMemberHashCtx.Finish128();
if (typeInstance->mHotTypeData != NULL)
{
auto newHotTypeVersion = typeInstance->mHotTypeData->GetLatestVersion();
newHotTypeVersion->mDataHash = dataMemberHash;
if (mCompiler->mHotState != NULL)
{
auto committedHotTypeVersion = typeInstance->mHotTypeData->GetTypeVersion(mCompiler->mHotState->mCommittedHotCompileIdx);
if (committedHotTypeVersion != NULL)
{
if ((newHotTypeVersion->mDataHash != committedHotTypeVersion->mDataHash) && (typeInstance->mIsReified))
{
BfLogSysM("Hot compile detected data changes in %p '%s'\n", resolvedTypeRef, TypeToString(typeInstance).c_str());
if (!typeInstance->mHotTypeData->mPendingDataChange)
{
mCompiler->mHotState->mPendingDataChanges.Add(typeInstance->mTypeId);
typeInstance->mHotTypeData->mPendingDataChange = true;
}
else
{
BF_ASSERT(mCompiler->mHotState->mPendingDataChanges.Contains(typeInstance->mTypeId));
}
bool baseHadChanges = (typeInstance->mBaseType != NULL) && (typeInstance->mBaseType->mHotTypeData != NULL) && (typeInstance->mBaseType->mHotTypeData->mPendingDataChange);
if (!baseHadChanges)
Warn(0, StrFormat("Hot compile detected data changes in '%s'", TypeToString(typeInstance).c_str()), typeDef->GetRefNode());
}
else if (typeInstance->mHotTypeData->mPendingDataChange)
{
BfLogSysM("Hot compile removed pending data change for %p '%s'\n", resolvedTypeRef, TypeToString(typeInstance).c_str());
mCompiler->mHotState->RemovePendingChanges(typeInstance);
}
}
}
}
}
if (typeInstance == mContext->mBfObjectType)
typeInstance->mHasBeenInstantiated = true;
if (populateType == BfPopulateType_Data)
return true;
disableYield.Release();
if (canDoMethodProcessing)
{
if (typeInstance->mNeedsMethodProcessing) // May have been handled by GetRawMethodInstanceAtIdx above
DoTypeInstanceMethodProcessing(typeInstance);
}
return true;
}
void BfModule::DoTypeInstanceMethodProcessing(BfTypeInstance* typeInstance)
{
if (typeInstance->IsSpecializedByAutoCompleteMethod())
return;
BF_ASSERT(typeInstance->mModule == this);
//TODO: This is new, make sure this is in the right place
/*if (mAwaitingInitFinish)
FinishInit();*/
AutoDisallowYield disableYield(mSystem);
SetAndRestoreValue<BfTypeInstance*> prevTypeInstance(mCurTypeInstance, typeInstance);
SetAndRestoreValue<BfMethodInstance*> prevMethodInstance(mCurMethodInstance, NULL);
BfLogSysM("DoTypeInstanceMethodProcessing: %p %s Revision:%d\n", typeInstance, TypeToString(typeInstance).c_str(), typeInstance->mRevision);
auto typeDef = typeInstance->mTypeDef;
// Generate all methods. Pass 0
for (auto methodDef : typeDef->mMethods)
{
auto methodInstanceGroup = &typeInstance->mMethodInstanceGroups[methodDef->mIdx];
// This should still be set to the default value
BF_ASSERT((methodInstanceGroup->mOnDemandKind == BfMethodOnDemandKind_NotSet) || (methodInstanceGroup->mOnDemandKind == BfMethodOnDemandKind_AlwaysInclude));
}
if (typeInstance == mContext->mBfObjectType)
{
BF_ASSERT(typeInstance->mInterfaceMethodTable.size() == 0);
}
int newIntefaceStartIdx = 0;
auto implBaseType = typeInstance->GetImplBaseType();
if (implBaseType != NULL)
{
auto baseTypeInst = implBaseType->ToTypeInstance();
if (implBaseType->IsIncomplete())
PopulateType(implBaseType, BfPopulateType_Full_Force);
typeInstance->mInterfaceMethodTable = baseTypeInst->mInterfaceMethodTable;
typeInstance->mVirtualMethodTable = implBaseType->mVirtualMethodTable;
typeInstance->mVirtualMethodTableSize = implBaseType->mVirtualMethodTableSize;
if ((!mCompiler->IsHotCompile()) && (!mCompiler->mPassInstance->HasFailed()) && ((mCompiler->mResolvePassData == NULL) || (mCompiler->mResolvePassData->mAutoComplete == NULL)))
{
BF_ASSERT(typeInstance->mVirtualMethodTable.size() == typeInstance->mVirtualMethodTableSize);
}
else
{
BF_ASSERT(typeInstance->mVirtualMethodTableSize >= (int)typeInstance->mVirtualMethodTable.size());
}
}
// Add new interfaces
for (int iFaceIdx = 0; iFaceIdx < (int)typeInstance->mInterfaces.size(); iFaceIdx++)
{
BfTypeInterfaceEntry& typeInterfaceInst = typeInstance->mInterfaces[iFaceIdx];
auto checkInterface = typeInterfaceInst.mInterfaceType;
if (checkInterface->IsIncomplete())
PopulateType(checkInterface, BfPopulateType_Full_Force);
typeInterfaceInst.mStartInterfaceTableIdx = (int)typeInstance->mInterfaceMethodTable.size();
// We don't add to the vtable for interface declarations, we just reference the listed interfaces
if (!typeInstance->IsInterface())
{
auto interfaceTypeDef = checkInterface->mTypeDef;
BF_ASSERT(interfaceTypeDef->mMethods.size() == checkInterface->mMethodInstanceGroups.size());
// Reserve empty entries
for (int methodIdx = 0; methodIdx < (int)interfaceTypeDef->mMethods.size(); methodIdx++)
typeInstance->mInterfaceMethodTable.push_back(BfTypeInterfaceMethodEntry());
}
}
auto checkTypeInstance = typeInstance;
while (checkTypeInstance != NULL)
{
for (auto&& interfaceEntry : checkTypeInstance->mInterfaces)
{
AddDependency(interfaceEntry.mInterfaceType, typeInstance, BfDependencyMap::DependencyFlag_ImplementsInterface);
}
checkTypeInstance = checkTypeInstance->GetImplBaseType();
}
//for (auto& intefaceInst : typeInstance->mInterfaces)
if (typeInstance == mContext->mBfObjectType)
{
BF_ASSERT(typeInstance->mInterfaceMethodTable.size() == 1);
}
if (typeInstance->mTypeDef == mCompiler->mPointerTypeDef)
{
NOP;
}
// Slot interfaces method blocks in vtable
{
int ifaceVirtIdx = 0;
std::unordered_map<BfTypeInstance*, BfTypeInterfaceEntry*> interfaceMap;
BfTypeInstance* checkType = typeInstance->GetImplBaseType();
while (checkType != NULL)
{
for (auto&& ifaceEntry : checkType->mInterfaces)
{
interfaceMap[ifaceEntry.mInterfaceType] = &ifaceEntry;
ifaceVirtIdx = std::max(ifaceVirtIdx, ifaceEntry.mStartVirtualIdx + ifaceEntry.mInterfaceType->mVirtualMethodTableSize);
}
checkType = checkType->GetImplBaseType();
}
for (int iFaceIdx = 0; iFaceIdx < (int)typeInstance->mInterfaces.size(); iFaceIdx++)
{
BfTypeInterfaceEntry& typeInterfaceInst = typeInstance->mInterfaces[iFaceIdx];
auto itr = interfaceMap.find(typeInterfaceInst.mInterfaceType);
if (itr != interfaceMap.end())
{
auto prevEntry = itr->second;
typeInterfaceInst.mStartVirtualIdx = prevEntry->mStartVirtualIdx;
}
else
{
typeInterfaceInst.mStartVirtualIdx = ifaceVirtIdx;
ifaceVirtIdx += typeInterfaceInst.mInterfaceType->mVirtualMethodTableSize;
interfaceMap[typeInterfaceInst.mInterfaceType] = &typeInterfaceInst;
}
}
}
auto isBoxed = typeInstance->IsBoxed();
typeInstance->mNeedsMethodProcessing = false;
typeInstance->mTypeIncomplete = false;
auto checkBaseType = typeInstance->GetImplBaseType();
while (checkBaseType != NULL)
{
PopulateType(checkBaseType, BfPopulateType_Full_Force);
BF_ASSERT((!checkBaseType->IsIncomplete()) || (checkBaseType->mTypeFailed));
checkBaseType = checkBaseType->GetImplBaseType();
}
if ((mCompiler->mOptions.mHasVDataExtender) && (!typeInstance->IsInterface()))
{
// This is the vExt entry for this type instance
BfVirtualMethodEntry entry;
entry.mDeclaringMethod.mMethodNum = -1;
entry.mDeclaringMethod.mTypeInstance = typeInstance;
typeInstance->mVirtualMethodTable.push_back(entry);
typeInstance->mVirtualMethodTableSize++;
}
// Fill out to correct size
if (typeInstance->mHotTypeData != NULL)
{
//auto hotLatestVersionHead = typeInstance->mHotTypeData->GetLatestVersionHead();
int wantVTableSize = typeInstance->GetBaseVTableSize() + (int)typeInstance->mHotTypeData->mVTableEntries.size();
while ((int)typeInstance->mVirtualMethodTable.size() < wantVTableSize)
{
typeInstance->mVirtualMethodTable.push_back(BfVirtualMethodEntry());
typeInstance->mVirtualMethodTableSize++;
}
}
BfAmbiguityContext ambiguityContext;
ambiguityContext.mTypeInstance = typeInstance;
ambiguityContext.mModule = this;
ambiguityContext.mIsProjectSpecific = false;
bool wantsOnDemandMethods = false;
//TODO: Testing having interface methods be "on demand"...
//if (!typeInstance->IsInterface())
//
{
if (typeInstance->IsSpecializedType())
wantsOnDemandMethods = true;
else if ((mCompiler->mOptions.mCompileOnDemandKind != BfCompileOnDemandKind_AlwaysInclude) &&
(!typeInstance->IsUnspecializedTypeVariation()))
{
//if (typeDef->mName->ToString() != "AttributeUsageAttribute")
auto attributeDef = mCompiler->mAttributeTypeDef;
auto attributeType = mContext->mUnreifiedModule->ResolveTypeDef(attributeDef, BfPopulateType_Identity)->ToTypeInstance();
if (!TypeIsSubTypeOf(mCurTypeInstance, attributeType, false))
{
wantsOnDemandMethods = true;
}
}
}
//bool allDeclsRequired = (mIsReified) && (mCompiler->mOptions.mEmitDebugInfo) && ();
bool allDeclsRequired = false;
//if ((mIsReified) && (mCompiler->mOptions.mEmitDebugInfo) && (!mCompiler->mWantsDeferMethodDecls))
// if ((mIsReified) && (mCompiler->mOptions.mEmitDebugInfo))
// {
// allDeclsRequired = true;
// }
HashSet<String> ifaceMethodNameSet;
if (wantsOnDemandMethods)
{
for (int iFaceIdx = newIntefaceStartIdx; iFaceIdx < (int)typeInstance->mInterfaces.size(); iFaceIdx++)
{
BfTypeInterfaceEntry& typeInterfaceInst = typeInstance->mInterfaces[iFaceIdx];
for (auto checkMethodDef : typeInterfaceInst.mInterfaceType->mTypeDef->mMethods)
{
ifaceMethodNameSet.Add(checkMethodDef->mName);
}
}
}
// Generate all methods. Pass 1
for (auto methodDef : typeDef->mMethods)
{
if (methodDef->mMethodType == BfMethodType_CtorClear)
{
NOP;
}
auto methodInstanceGroup = &typeInstance->mMethodInstanceGroups[methodDef->mIdx];
if (methodInstanceGroup->mOnDemandKind == BfMethodOnDemandKind_AlwaysInclude)
continue;
// This should still be set to the default value
BF_ASSERT(methodInstanceGroup->mOnDemandKind == BfMethodOnDemandKind_NotSet);
if ((isBoxed) && (!methodDef->mIsVirtual))
{
if (methodDef->mIsStatic)
continue;
bool boxedRequired = false;
if (((methodDef->mMethodType == BfMethodType_Ctor) && (methodDef->mParams.size() == 0)) ||
(methodDef->mMethodType == BfMethodType_Dtor) ||
((methodDef->mName == BF_METHODNAME_MARKMEMBERS) || (methodDef->mName == BF_METHODNAME_MARKMEMBERS_STATIC) || (methodDef->mName == BF_METHODNAME_INVOKE) || (methodDef->mName == BF_METHODNAME_DYNAMICCAST)) ||
(methodDef->mGenericParams.size() != 0))
boxedRequired = true;
if (!boxedRequired)
{
if (wantsOnDemandMethods)
methodInstanceGroup->mOnDemandKind = BfMethodOnDemandKind_NoDecl_AwaitingReference;
continue;
}
}
if (methodDef->mMethodType == BfMethodType_Ignore)
continue;
if ((methodDef->mName == BF_METHODNAME_DYNAMICCAST) && (typeInstance->IsValueType()))
continue; // This is just a placeholder for boxed types
methodInstanceGroup->mOnDemandKind = BfMethodOnDemandKind_AlwaysInclude;
if (wantsOnDemandMethods)
{
bool implRequired = false;
bool declRequired = false;
if ((!typeInstance->IsGenericTypeInstance()) && (methodDef->mGenericParams.IsEmpty()))
{
// For non-generic methods, declare all methods. This is useful for debug info.
declRequired = true;
}
if (methodDef->mMethodType == BfMethodType_CtorNoBody)
declRequired = true;
if ((methodDef->mIsStatic) &&
((methodDef->mMethodType == BfMethodType_Dtor) || (methodDef->mMethodType == BfMethodType_Ctor)))
{
implRequired = true;
}
if (mCompiler->mOptions.mEnableRealtimeLeakCheck)
{
if ((methodDef->mName == BF_METHODNAME_MARKMEMBERS_STATIC) ||
(methodDef->mName == BF_METHODNAME_FIND_TLS_MEMBERS) ||
((methodDef->mName == BF_METHODNAME_MARKMEMBERS) && (typeInstance->IsObject())))
implRequired = true;
}
BfAttributeDirective* attributes = NULL;
if (auto methodDeclaration = methodDef->GetMethodDeclaration())
attributes = methodDeclaration->mAttributes;
if (auto propertyDeclaration = methodDef->GetPropertyDeclaration())
attributes = propertyDeclaration->mAttributes;
while (attributes != NULL)
{
if (attributes->mAttributeTypeRef != NULL)
{
auto typeRefName = attributes->mAttributeTypeRef->ToString();
if (typeRefName == "AlwaysInclude")
implRequired = true;
else if (typeRefName == "Export")
implRequired = true;
else if (typeRefName == "Test")
implRequired = true;
else
declRequired = true; // We need to create so we can check for AlwaysInclude in included attributes
}
attributes = attributes->mNextAttribute;
}
if ((mProject != NULL) && (mProject->mAlwaysIncludeAll) && (methodDef->mBody != NULL))
{
implRequired = true;
declRequired = true;
}
if (typeInstance->IsInterface())
declRequired = true;
if (methodDef->mIsVirtual)
declRequired = true;
if (!implRequired)
{
// Any interface with the same name causes us to not be on-demand
if (ifaceMethodNameSet.Contains(methodDef->mName))
declRequired = true;
}
// Is this strictly necessary? It will reduce our compilation speed in order to ensure methods are available for debug info
if (allDeclsRequired)
declRequired = true;
if (methodDef->mMethodDeclaration == NULL)
{
// Internal methods don't need decls
if (methodDef->mName == BF_METHODNAME_DEFAULT_EQUALS)
declRequired = false;
}
if (!implRequired)
{
if (!mIsScratchModule)
mOnDemandMethodCount++;
if (!declRequired)
{
methodInstanceGroup->mOnDemandKind = BfMethodOnDemandKind_NoDecl_AwaitingReference;
continue;
}
else
{
methodInstanceGroup->mOnDemandKind = BfMethodOnDemandKind_Decl_AwaitingDecl;
}
}
}
}
BfLogSysM("Starting DoTypeInstanceMethodProcessing %p GetMethodInstance pass. OnDemandMethods: %d\n", typeInstance, mOnDemandMethodCount);
// Pass 2
for (auto methodDef : typeDef->mMethods)
{
auto methodInstanceGroup = &typeInstance->mMethodInstanceGroups[methodDef->mIdx];
if ((methodInstanceGroup->mOnDemandKind != BfMethodOnDemandKind_AlwaysInclude) &&
(methodInstanceGroup->mOnDemandKind != BfMethodOnDemandKind_Decl_AwaitingDecl))
{
BfLogSysM("Skipping GetMethodInstance on MethodDef: %p OnDemandKind: %d\n", methodDef, methodInstanceGroup->mOnDemandKind);
continue;
}
int prevWorklistSize = (int)mContext->mMethodWorkList.size();
auto moduleMethodInstance = GetMethodInstance(typeInstance, methodDef, BfTypeVector(), ((methodDef->mGenericParams.size() != 0) || (typeInstance->IsUnspecializedType())) ? BfGetMethodInstanceFlag_UnspecializedPass : BfGetMethodInstanceFlag_None);
auto methodInstance = moduleMethodInstance.mMethodInstance;
if (methodInstance == NULL)
{
BF_ASSERT(typeInstance->IsGenericTypeInstance() && (typeInstance->mTypeDef->mIsCombinedPartial));
continue;
}
if ((!mCompiler->mIsResolveOnly) &&
((methodInstanceGroup->mOnDemandKind == BfMethodOnDemandKind_Decl_AwaitingReference) || (!typeInstance->IsReified())))
{
bool forceMethodImpl = false;
BfCustomAttributes* customAttributes = methodInstance->GetCustomAttributes();
if ((customAttributes != NULL) && (typeInstance->IsReified()))
{
for (auto& attr : customAttributes->mAttributes)
{
auto attrTypeInst = attr.mType->ToTypeInstance();
auto attrCustomAttributes = attrTypeInst->mCustomAttributes;
if (attrCustomAttributes == NULL)
continue;
for (auto& attrAttr : attrCustomAttributes->mAttributes)
{
if (attrAttr.mType->ToTypeInstance()->mTypeDef == mCompiler->mAttributeUsageAttributeTypeDef)
{
// Check for Flags arg
if (attrAttr.mCtorArgs.size() < 2)
continue;
auto constant = attrTypeInst->mConstHolder->GetConstant(attrAttr.mCtorArgs[1]);
if (constant == NULL)
continue;
if (constant->mTypeCode == BfTypeCode_Boolean)
continue;
if ((constant->mInt8 & BfCustomAttributeFlags_AlwaysIncludeTarget) != 0)
forceMethodImpl = true;
}
}
}
}
if (typeInstance->mTypeDef->mProject->mTargetType == BfTargetType_BeefTest)
{
if ((customAttributes != NULL) && (customAttributes->Contains(mCompiler->mTestAttributeTypeDef)))
{
forceMethodImpl = true;
}
}
if (forceMethodImpl)
{
if (!typeInstance->IsReified())
mContext->mScratchModule->PopulateType(typeInstance, BfPopulateType_Data);
// Reify method
mContext->mScratchModule->GetMethodInstance(typeInstance, methodDef, BfTypeVector());
BF_ASSERT(methodInstanceGroup->mOnDemandKind != BfMethodOnDemandKind_Decl_AwaitingReference);
}
}
bool methodUsedVirtually = false;
if (typeInstance->IsInterface())
{
if ((!methodDef->mIsConcrete) && (!methodDef->mIsStatic) && (!methodInstance->HasSelf()))
SlotInterfaceMethod(methodInstance);
}
else if (!methodDef->IsEmptyPartial())
{
methodUsedVirtually = SlotVirtualMethod(methodInstance, &ambiguityContext);
}
// This is important for reducing latency of autocomplete popup, but it's important we don't allow the autocomplete
// thread to cause any reentry issues by re-populating a type at an "inopportune time". We do allow certain
// reentries in PopulateType, but not when we're resolving fields (for example)
if ((mContext->mFieldResolveReentrys.size() == 0) && (!mContext->mResolvingVarField))
{
disableYield.Release();
mSystem->CheckLockYield();
disableYield.Acquire();
}
}
BF_ASSERT(typeInstance->mVirtualMethodTable.size() == typeInstance->mVirtualMethodTableSize);
if ((isBoxed) && (!typeInstance->IsUnspecializedTypeVariation()))
{
// Any interface method that can be called virtually via an interface pointer needs to go into the boxed type
auto underlyingType = typeInstance->GetUnderlyingType();
BfTypeInstance* underlyingTypeInstance;
if (underlyingType->IsPrimitiveType())
underlyingTypeInstance = GetPrimitiveStructType(((BfPrimitiveType*)underlyingType)->mTypeDef->mTypeCode);
else
underlyingTypeInstance = underlyingType->ToTypeInstance();
if (underlyingTypeInstance != NULL)
{
PopulateType(underlyingTypeInstance, BfPopulateType_Full_Force);
for (int ifaceIdx = 0; ifaceIdx < (int)underlyingTypeInstance->mInterfaces.size(); ifaceIdx++)
{
auto& underlyingIFaceTypeInst = underlyingTypeInstance->mInterfaces[ifaceIdx];
auto& boxedIFaceTypeInst = typeInstance->mInterfaces[ifaceIdx];
BF_ASSERT(underlyingIFaceTypeInst.mInterfaceType == boxedIFaceTypeInst.mInterfaceType);
auto ifaceInst = underlyingIFaceTypeInst.mInterfaceType;
int startIdx = underlyingIFaceTypeInst.mStartInterfaceTableIdx;
int boxedStartIdx = boxedIFaceTypeInst.mStartInterfaceTableIdx;
int iMethodCount = (int)ifaceInst->mMethodInstanceGroups.size();
for (int iMethodIdx = 0; iMethodIdx < iMethodCount; iMethodIdx++)
{
auto matchedMethodRef = &underlyingTypeInstance->mInterfaceMethodTable[iMethodIdx + startIdx].mMethodRef;
auto boxedMatchedMethodRef = &typeInstance->mInterfaceMethodTable[iMethodIdx + boxedStartIdx].mMethodRef;
BfMethodInstance* matchedMethod = *matchedMethodRef;
auto ifaceMethodInst = ifaceInst->mMethodInstanceGroups[iMethodIdx].mDefault;
if (ifaceMethodInst->mVirtualTableIdx != -1)
{
if (matchedMethod == NULL)
{
AssertErrorState();
}
else
{
if (!matchedMethod->mIsForeignMethodDef)
{
BfMethodInstanceGroup* boxedMethodInstanceGroup = &typeInstance->mMethodInstanceGroups[matchedMethod->mMethodDef->mIdx];
if (boxedMethodInstanceGroup->mOnDemandKind == BfMethodOnDemandKind_NoDecl_AwaitingReference)
{
boxedMethodInstanceGroup->mOnDemandKind = BfMethodOnDemandKind_Decl_AwaitingDecl;
if (!mIsScratchModule)
mOnDemandMethodCount++;
}
}
auto moduleMethodInstance = GetMethodInstance(typeInstance, matchedMethod->mMethodDef, BfTypeVector(),
matchedMethod->mIsForeignMethodDef ? BfGetMethodInstanceFlag_ForeignMethodDef : BfGetMethodInstanceFlag_None,
matchedMethod->GetForeignType());
auto methodInstance = moduleMethodInstance.mMethodInstance;
UniqueSlotVirtualMethod(methodInstance);
*boxedMatchedMethodRef = methodInstance;
}
}
}
}
}
}
if (typeInstance->mHotTypeData != NULL)
{
auto latestVersion = typeInstance->mHotTypeData->GetLatestVersion();
auto latestVersionHead = typeInstance->mHotTypeData->GetLatestVersionHead();
if (typeInstance->mHotTypeData->mVTableOrigLength != -1)
{
bool hasSlotError = false;
BF_ASSERT(mCompiler->IsHotCompile());
//typeInstance->mHotTypeData->mDirty = true;
//Val128 vtHash;
Array<int> ifaceMapping;
ifaceMapping.Resize(latestVersionHead->mInterfaceMapping.size());
typeInstance->CalcHotVirtualData(&ifaceMapping);
// Hot swapping allows for interfaces to be added to types or removed from types, but it doesn't allow
// interfaces to be added when the slot number has already been used -- even if the interface using
// that slot has been removed.
for (int slotIdx = 0; slotIdx < (int)ifaceMapping.size(); slotIdx++)
{
int newId = ifaceMapping[slotIdx];
int oldId = 0;
if (slotIdx < (int)latestVersionHead->mInterfaceMapping.size())
oldId = latestVersionHead->mInterfaceMapping[slotIdx];
if ((newId != oldId) && (newId != 0) && (oldId != 0))
{
String interfaceName;
for (auto iface : typeInstance->mInterfaces)
{
if (iface.mInterfaceType->mTypeId == newId)
interfaceName = TypeToString(iface.mInterfaceType);
}
Warn(0, StrFormat("Hot swap detected resolvable interface slot collision with '%s'.", interfaceName.c_str()), typeDef->mTypeDeclaration);
BF_ASSERT(latestVersion != latestVersionHead);
if (!hasSlotError)
{
latestVersion->mInterfaceMapping = ifaceMapping;
}
hasSlotError = true;
}
else if (hasSlotError)
{
if (oldId != 0)
latestVersion->mInterfaceMapping[slotIdx] = oldId;
}
if (oldId != 0)
ifaceMapping[slotIdx] = oldId;
}
latestVersionHead->mInterfaceMapping = ifaceMapping;
if (hasSlotError)
mCompiler->mHotState->mPendingFailedSlottings.Add(typeInstance->mTypeId);
else
mCompiler->mHotState->mPendingFailedSlottings.Remove(typeInstance->mTypeId);
}
}
if ((typeInstance->IsInterface()) && (!typeInstance->IsUnspecializedType()) && (typeInstance->mIsReified) && (typeInstance->mSlotNum == -1) && (mCompiler->IsHotCompile()))
{
mCompiler->mHotState->mHasNewInterfaceTypes = true;
}
if ((!typeInstance->IsInterface()) && (!typeInstance->IsUnspecializedTypeVariation()) && (!isBoxed))
{
if (!typeInstance->mTypeDef->mIsAbstract)
{
for (int methodIdx = 0; methodIdx < (int) typeInstance->mVirtualMethodTable.size(); methodIdx++)
{
auto& methodRef = typeInstance->mVirtualMethodTable[methodIdx].mImplementingMethod;
if (methodRef.mMethodNum == -1)
{
BF_ASSERT(mCompiler->mOptions.mHasVDataExtender);
if (methodRef.mTypeInstance == typeInstance)
{
if (typeInstance->GetImplBaseType() != NULL)
BF_ASSERT(methodIdx == (int)typeInstance->GetImplBaseType()->mVirtualMethodTableSize);
}
continue;
}
auto methodInstance = (BfMethodInstance*)methodRef;
if ((methodInstance != NULL) && (methodInstance->mMethodDef->mIsAbstract))
{
if (methodInstance->mMethodDef->mIsAbstract)
{
if (!typeInstance->IsUnspecializedTypeVariation())
{
if (Fail(StrFormat("'%s' does not implement inherited abstract method '%s'", TypeToString(typeInstance).c_str(), MethodToString(methodInstance).c_str()), typeDef->mTypeDeclaration->mNameNode, true) != NULL)
mCompiler->mPassInstance->MoreInfo("Abstract method declared", methodInstance->mMethodDef->GetRefNode());
}
}
else
{
if (!typeInstance->IsUnspecializedType())
AssertErrorState();
}
}
}
}
std::unordered_set<String> missingIFaceMethodNames;
for (auto& ifaceTypeInst : typeInstance->mInterfaces)
{
auto ifaceInst = ifaceTypeInst.mInterfaceType;
int startIdx = ifaceTypeInst.mStartInterfaceTableIdx;
int iMethodCount = (int)ifaceInst->mMethodInstanceGroups.size();
auto declTypeDef = ifaceTypeInst.mDeclaringType;
for (int iMethodIdx = 0; iMethodIdx < iMethodCount; iMethodIdx++)
{
auto matchedMethodRef = &typeInstance->mInterfaceMethodTable[iMethodIdx + startIdx].mMethodRef;
BfMethodInstance* matchedMethod = *matchedMethodRef;
auto ifaceMethodInst = ifaceInst->mMethodInstanceGroups[iMethodIdx].mDefault;
if ((matchedMethod == NULL) && (ifaceMethodInst != NULL))
{
missingIFaceMethodNames.insert(ifaceMethodInst->mMethodDef->mName);
}
}
}
if (!missingIFaceMethodNames.empty())
{
// Attempt to find matching entries in base types
ambiguityContext.mIsReslotting = true;
auto checkType = typeInstance->GetImplBaseType();
while (checkType != NULL)
{
for (auto& methodGroup : checkType->mMethodInstanceGroups)
{
auto methodInstance = methodGroup.mDefault;
if (methodInstance != NULL)
{
if ((methodInstance->mMethodDef->mProtection != BfProtection_Private) &&
(!methodInstance->mMethodDef->mIsOverride) &&
(missingIFaceMethodNames.find(methodInstance->mMethodDef->mName) != missingIFaceMethodNames.end()))
{
SlotVirtualMethod(methodInstance, &ambiguityContext);
}
}
}
checkType = checkType->GetImplBaseType();
}
}
for (auto& ifaceTypeInst : typeInstance->mInterfaces)
{
auto ifaceInst = ifaceTypeInst.mInterfaceType;
int startIdx = ifaceTypeInst.mStartInterfaceTableIdx;
int iMethodCount = (int)ifaceInst->mMethodInstanceGroups.size();
auto declTypeDef = ifaceTypeInst.mDeclaringType;
for (int iMethodIdx = 0; iMethodIdx < iMethodCount; iMethodIdx++)
{
auto matchedMethodRef = &typeInstance->mInterfaceMethodTable[iMethodIdx + startIdx].mMethodRef;
BfMethodInstance* matchedMethod = *matchedMethodRef;
auto ifaceMethodInst = ifaceInst->mMethodInstanceGroups[iMethodIdx].mDefault;
if (ifaceMethodInst == NULL)
continue;
// Don't even try to match generics
if (!ifaceMethodInst->mMethodDef->mGenericParams.IsEmpty())
continue;
auto iReturnType = ifaceMethodInst->mReturnType;
if (iReturnType->IsSelf())
iReturnType = typeInstance;
if (ifaceMethodInst->mMethodDef->mIsOverride)
continue; // Don't consider overrides here
// If we have "ProjA depends on LibBase", "ProjB depends on LibBase", then a type ClassC in LibBase implementing IFaceD,
// where IFaceD gets extended with MethodE in ProjA, an implementing MethodE is still required to exist on ClassC --
// the visibility is bidirectional. A type ClassF implementing IFaceD inside ProjB will not be required to implement
// MethodE, however
if ((!ifaceInst->IsTypeMemberAccessible(ifaceMethodInst->mMethodDef->mDeclaringType, ifaceTypeInst.mDeclaringType)) &&
(!ifaceInst->IsTypeMemberAccessible(ifaceTypeInst.mDeclaringType, ifaceMethodInst->mMethodDef->mDeclaringType)))
continue;
if (!ifaceInst->IsTypeMemberIncluded(ifaceMethodInst->mMethodDef->mDeclaringType, ifaceTypeInst.mDeclaringType))
continue;
bool hadMatch = matchedMethod != NULL;
bool hadPubFailure = false;
bool hadMutFailure = false;
if (hadMatch)
{
if ((matchedMethod->GetExplicitInterface() == NULL) && (matchedMethod->mMethodDef->mProtection != BfProtection_Public))
{
hadMatch = false;
hadPubFailure = true;
}
if (ifaceMethodInst->mVirtualTableIdx != -1)
{
if (matchedMethod->mReturnType != iReturnType)
hadMatch = false;
}
else
{
// Concrete
if (matchedMethod->mReturnType->IsInterface())
hadMatch = false;
else if (!CanImplicitlyCast(GetFakeTypedValue(matchedMethod->mReturnType), iReturnType))
hadMatch = false;
}
// If we have mExplicitInterface set then we already gave a mut error (if needed)
if ((typeInstance->IsValueType()) && (matchedMethod->GetExplicitInterface() == NULL) &&
(matchedMethod->mMethodDef->mIsMutating) && (!ifaceMethodInst->mMethodDef->mIsMutating))
{
hadMutFailure = true;
hadMatch = false;
}
}
if (!hadMatch)
{
if (!typeInstance->IsUnspecializedTypeVariation())
{
auto bestMethodInst = ifaceMethodInst;
auto bestInterface = ifaceInst;
if (matchedMethod == NULL)
{
bool searchFailed = false;
for (auto& checkIFaceTypeInst : typeInstance->mInterfaces)
{
auto checkIFaceInst = checkIFaceTypeInst.mInterfaceType;
int checkStartIdx = checkIFaceTypeInst.mStartInterfaceTableIdx;
int checkIMethodCount = (int)checkIFaceInst->mMethodInstanceGroups.size();
for (int checkIMethodIdx = 0; checkIMethodIdx < checkIMethodCount; checkIMethodIdx++)
{
auto checkIFaceMethodInst = checkIFaceInst->mMethodInstanceGroups[checkIMethodIdx].mDefault;
if ((checkIFaceMethodInst != NULL) && (checkIFaceMethodInst->mMethodDef->mIsOverride))
{
if (CompareMethodSignatures(checkIFaceMethodInst, ifaceMethodInst))
{
bool isBetter = TypeIsSubTypeOf(checkIFaceInst, bestInterface);
bool isWorse = TypeIsSubTypeOf(bestInterface, checkIFaceInst);
if (isBetter == isWorse)
{
CompareDeclTypes(checkIFaceMethodInst->mMethodDef->mDeclaringType, bestMethodInst->mMethodDef->mDeclaringType, isBetter, isWorse);
}
if ((isBetter) && (!isWorse))
{
bestInterface = checkIFaceInst;
bestMethodInst = checkIFaceMethodInst;
}
else if (isBetter == isWorse)
{
if (!searchFailed)
{
searchFailed = true;
auto error = Fail(StrFormat("There is no most-specific default implementation of '%s'", MethodToString(ifaceMethodInst).c_str()), declTypeDef->mTypeDeclaration->mNameNode);
if (error != NULL)
{
mCompiler->mPassInstance->MoreInfo(StrFormat("'%s' is a candidate",
MethodToString(bestMethodInst).c_str()), bestMethodInst->mMethodDef->GetRefNode());
mCompiler->mPassInstance->MoreInfo(StrFormat("'%s' is a candidate",
MethodToString(checkIFaceMethodInst).c_str()), checkIFaceMethodInst->mMethodDef->GetRefNode());
}
//candidate implementations include '%s' and '%s'",
//TypeToString(checkIFaceInst).c_str(), TypeToString(bestInterface).c_str()), );
}
}
}
}
}
}
if (bestMethodInst->mReturnType != ifaceMethodInst->mReturnType)
{
auto error = Fail(StrFormat("Default interface method '%s' cannot be used does not have the return type '%s'",
MethodToString(bestMethodInst).c_str(), TypeToString(ifaceMethodInst->mReturnType).c_str()), declTypeDef->mTypeDeclaration->mNameNode);
if (error != NULL)
{
mCompiler->mPassInstance->MoreInfo("See original method declaration", ifaceMethodInst->mMethodDef->GetRefNode());
mCompiler->mPassInstance->MoreInfo("See override method declaration", bestMethodInst->mMethodDef->GetRefNode());
}
}
}
if ((bestMethodInst->mMethodDef->HasBody()) && (bestMethodInst->mMethodDef->mGenericParams.size() == 0) && (matchedMethod == NULL))
{
auto methodDef = bestMethodInst->mMethodDef;
BfGetMethodInstanceFlags flags = BfGetMethodInstanceFlag_ForeignMethodDef;
if ((methodDef->mGenericParams.size() != 0) || (typeInstance->IsUnspecializedType()))
flags = (BfGetMethodInstanceFlags)(flags | BfGetMethodInstanceFlag_UnspecializedPass);
auto methodInst = GetMethodInstance(typeInstance, methodDef, BfTypeVector(), flags, ifaceInst);
if (methodInst)
{
*matchedMethodRef = methodInst.mMethodInstance;
BfMethodInstance* newMethodInstance = methodInst.mMethodInstance;
BF_ASSERT(newMethodInstance->mIsForeignMethodDef);
if (newMethodInstance->mMethodInstanceGroup->mOnDemandKind == BfMethodOnDemandKind_Decl_AwaitingReference)
mOnDemandMethodCount++;
continue;
}
}
if (typeInstance->IsBoxed())
{
if (ifaceMethodInst->mMethodDef->mIsStatic)
{
// Skip the statics, those can't be invoked
}
else
{
// The unboxed version should have had the same error
if (!typeInstance->GetUnderlyingType()->IsIncomplete())
AssertErrorState();
}
}
else
{
BfError* error = Fail(StrFormat("'%s' does not implement interface member '%s'", TypeToString(typeInstance).c_str(), MethodToString(ifaceMethodInst).c_str()), declTypeDef->mTypeDeclaration->mNameNode, true);
if ((matchedMethod != NULL) && (error != NULL))
{
if (hadPubFailure)
{
mCompiler->mPassInstance->MoreInfo(StrFormat("'%s' cannot match because because it is not public",
MethodToString(matchedMethod).c_str()), matchedMethod->mMethodDef->mReturnTypeRef);
}
else if (ifaceMethodInst->mReturnType->IsConcreteInterfaceType())
{
mCompiler->mPassInstance->MoreInfo(StrFormat("'%s' cannot match because because it does not have a concrete return type that implements '%s'",
MethodToString(matchedMethod).c_str(), TypeToString(ifaceMethodInst->mReturnType).c_str()), matchedMethod->mMethodDef->mReturnTypeRef);
}
else if (hadMutFailure)
{
mCompiler->mPassInstance->MoreInfo(StrFormat("'%s' cannot match because because it is market as 'mut' but interface method does not allow it",
MethodToString(matchedMethod).c_str()), matchedMethod->mMethodDef->GetMutNode());
mCompiler->mPassInstance->MoreInfo(StrFormat("Declare the interface method as 'mut' to allow matching 'mut' implementations"), ifaceMethodInst->mMethodDef->mMethodDeclaration);
}
else
{
mCompiler->mPassInstance->MoreInfo(StrFormat("'%s' cannot match because because it does not have the return type '%s'",
MethodToString(matchedMethod).c_str(), TypeToString(ifaceMethodInst->mReturnType).c_str()), matchedMethod->mMethodDef->mReturnTypeRef);
if ((ifaceMethodInst->mVirtualTableIdx != -1) && (ifaceMethodInst->mReturnType->IsInterface()))
mCompiler->mPassInstance->MoreInfo("Declare the interface method as 'concrete' to allow matching concrete return values", ifaceMethodInst->mMethodDef->GetMethodDeclaration()->mVirtualSpecifier);
}
}
}
}
// Clear out the entry
*matchedMethodRef = BfMethodRef();
}
}
}
}
ambiguityContext.Finish();
CheckAddFailType();
typeInstance->mDefineState = BfTypeDefineState_DefinedAndMethodsSlotted;
mCompiler->mStats.mTypesPopulated++;
mCompiler->UpdateCompletion();
BfLogSysM("Finished DoTypeInstanceMethodProcessing %p. OnDemandMethods: %d Virtual Size: %d\n", typeInstance, mOnDemandMethodCount, typeInstance->mVirtualMethodTable.size());
}
void BfModule::RebuildMethods(BfTypeInstance* typeInstance)
{
if (typeInstance->IsIncomplete())
return;
typeInstance->mNeedsMethodProcessing = true;
typeInstance->mDefineState = BfTypeDefineState_Defined;
typeInstance->mTypeIncomplete = true;
for (auto& methodInstanceGroup : typeInstance->mMethodInstanceGroups)
{
delete methodInstanceGroup.mDefault;
methodInstanceGroup.mDefault = NULL;
delete methodInstanceGroup.mMethodSpecializationMap;
methodInstanceGroup.mMethodSpecializationMap = NULL;
methodInstanceGroup.mOnDemandKind = BfMethodOnDemandKind_NotSet;
}
BfTypeProcessRequest* typeProcessRequest = mContext->mPopulateTypeWorkList.Alloc();
typeProcessRequest->mType = typeInstance;
BF_ASSERT(typeInstance->mContext == mContext);
mCompiler->mStats.mTypesQueued++;
mCompiler->UpdateCompletion();
}
BfModule* BfModule::GetModuleFor(BfType* type)
{
auto typeInst = type->ToTypeInstance();
if (typeInst == NULL)
return NULL;
return typeInst->mModule;
}
void BfModule::AddMethodToWorkList(BfMethodInstance* methodInstance)
{
BF_ASSERT(!methodInstance->mMethodDef->mIsAbstract);
if (methodInstance->IsSpecializedByAutoCompleteMethod())
return;
BF_ASSERT(mCompiler->mCompileState != BfCompiler::CompileState_VData);
if ((methodInstance->mIsReified) && (!methodInstance->mIsUnspecialized))
{
BF_ASSERT(mCompiler->mCompileState != BfCompiler::CompileState_Unreified);
}
if (methodInstance->mIsUnspecializedVariation)
{
return;
}
BF_ASSERT(methodInstance->mMethodProcessRequest == NULL);
auto defaultMethod = methodInstance->mMethodInstanceGroup->mDefault;
if (defaultMethod != methodInstance)
{
BF_ASSERT(defaultMethod != NULL);
if (methodInstance->mMethodInstanceGroup->mOnDemandKind == BfMethodOnDemandKind_Decl_AwaitingReference)
{
AddMethodToWorkList(defaultMethod);
}
}
if (methodInstance->mDeclModule != NULL)
{
if (methodInstance->mDeclModule != this)
{
methodInstance->mDeclModule->AddMethodToWorkList(methodInstance);
return;
}
}
else
{
auto module = GetOrCreateMethodModule(methodInstance);
methodInstance->mDeclModule = module;
BfIRValue func = CreateFunctionFrom(methodInstance, false, methodInstance->mAlwaysInline);
methodInstance->mIRFunction = func;
module->mFuncReferences[methodInstance] = func;
module->AddMethodToWorkList(methodInstance);
return;
}
if ((!methodInstance->mIRFunction) && (methodInstance->mIsReified) && (!methodInstance->mIsUnspecialized) &&
(methodInstance->GetImportCallKind() == BfImportCallKind_None))
{
if (!mIsModuleMutable)
PrepareForIRWriting(methodInstance->GetOwner());
BfIRValue func = CreateFunctionFrom(methodInstance, false, methodInstance->mAlwaysInline);
methodInstance->mIRFunction = func;
mFuncReferences[methodInstance] = func;
}
BF_ASSERT(methodInstance->mDeclModule == this);
if (defaultMethod == methodInstance)
{
if (methodInstance->mMethodInstanceGroup->mOnDemandKind != BfMethodOnDemandKind_AlwaysInclude)
{
auto owningModule = methodInstance->GetOwner()->GetModule();
BF_ASSERT(methodInstance->mMethodInstanceGroup->mOnDemandKind != BfMethodOnDemandKind_Referenced);
if (!mIsScratchModule)
{
if (owningModule->mParentModule != NULL)
BF_ASSERT(owningModule->mParentModule->mOnDemandMethodCount > 0);
else
BF_ASSERT(owningModule->mOnDemandMethodCount > 0);
}
methodInstance->mMethodInstanceGroup->mOnDemandKind = BfMethodOnDemandKind_InWorkList;
}
}
else
{
BF_ASSERT(defaultMethod->mMethodInstanceGroup->IsImplemented());
}
BF_ASSERT(methodInstance->mDeclModule != NULL);
auto typeInstance = methodInstance->GetOwner();
BfMethodProcessRequest* methodProcessRequest = mContext->mMethodWorkList.Alloc();
methodProcessRequest->mType = typeInstance;
methodProcessRequest->mMethodInstance = methodInstance;
methodProcessRequest->mRevision = typeInstance->mRevision;
methodProcessRequest->mFromModuleRebuildIdx = mRebuildIdx;
methodProcessRequest->mFromModule = this;
if ((!mCompiler->mIsResolveOnly) && (methodInstance->mIsReified))
BF_ASSERT(mIsModuleMutable || mReifyQueued);
BF_ASSERT(mBfIRBuilder != NULL);
if (methodInstance->mMethodDef->mName == "Hey")
{
NOP;
}
BfLogSysM("Adding to mMethodWorkList Module: %p IncompleteMethodCount: %d Type %p MethodInstance: %p Name:%s TypeRevision: %d ModuleRevision: %d ReqId:%d\n", this, mIncompleteMethodCount, typeInstance, methodInstance, methodInstance->mMethodDef->mName.c_str(), methodProcessRequest->mRevision, methodProcessRequest->mFromModuleRevision, methodProcessRequest->mReqId);
if (mAwaitingFinish)
{
BfLogSysM("Module: %p No longer awaiting finish\n", this);
mAwaitingFinish = false;
}
mCompiler->mStats.mMethodsQueued++;
mCompiler->UpdateCompletion();
mIncompleteMethodCount++;
if (methodInstance->GetNumGenericArguments() != 0)
mHasGenericMethods = true;
methodInstance->mMethodProcessRequest = methodProcessRequest;
}
BfArrayType* BfModule::CreateArrayType(BfType* resolvedType, int dimensions)
{
BF_ASSERT(!resolvedType->IsVar());
auto arrayType = mContext->mArrayTypePool.Get();
arrayType->mContext = mContext;
arrayType->mTypeDef = mCompiler->GetArrayTypeDef(dimensions);
arrayType->mDimensions = dimensions;
arrayType->mTypeGenericArguments.clear();
arrayType->mTypeGenericArguments.push_back(resolvedType);
auto resolvedArrayType = ResolveType(arrayType);
if (resolvedArrayType != arrayType)
mContext->mArrayTypePool.GiveBack(arrayType);
return (BfArrayType*)resolvedArrayType;
}
BfSizedArrayType* BfModule::CreateSizedArrayType(BfType * resolvedType, int size)
{
BF_ASSERT(!resolvedType->IsVar());
auto arrayType = mContext->mSizedArrayTypePool.Get();
arrayType->mContext = mContext;
arrayType->mElementType = resolvedType;
arrayType->mElementCount = size;
auto resolvedArrayType = ResolveType(arrayType);
if (resolvedArrayType != arrayType)
mContext->mSizedArrayTypePool.GiveBack(arrayType);
return (BfSizedArrayType*)resolvedArrayType;
}
BfUnknownSizedArrayType* BfModule::CreateUnknownSizedArrayType(BfType* resolvedType, BfType* sizeParam)
{
BF_ASSERT(!resolvedType->IsVar());
BF_ASSERT(sizeParam->IsGenericParam());
auto arrayType = mContext->mUnknownSizedArrayTypePool.Get();
arrayType->mContext = mContext;
arrayType->mElementType = resolvedType;
arrayType->mElementCount = -1;
arrayType->mElementCountSource = sizeParam;
auto resolvedArrayType = ResolveType(arrayType);
if (resolvedArrayType != arrayType)
mContext->mUnknownSizedArrayTypePool.GiveBack(arrayType);
return (BfUnknownSizedArrayType*)resolvedArrayType;
}
BfPointerType* BfModule::CreatePointerType(BfType* resolvedType)
{
auto pointerType = mContext->mPointerTypePool.Get();
pointerType->mContext = mContext;
pointerType->mElementType = resolvedType;
auto resolvedPointerType = (BfPointerType*)ResolveType(pointerType);
if (resolvedPointerType != pointerType)
mContext->mPointerTypePool.GiveBack(pointerType);
BF_ASSERT(resolvedPointerType->mElementType == resolvedType);
return resolvedPointerType;
}
BfConstExprValueType* BfModule::CreateConstExprValueType(const BfTypedValue& typedValue)
{
auto variant = TypedValueToVariant(NULL, typedValue);
if (variant.mTypeCode == BfTypeCode_None)
return NULL;
auto constExprValueType = mContext->mConstExprValueTypePool.Get();
constExprValueType->mContext = mContext;
constExprValueType->mType = typedValue.mType;
constExprValueType->mValue = variant;
auto resolvedConstExprValueType = (BfConstExprValueType*)ResolveType(constExprValueType);
if (resolvedConstExprValueType != constExprValueType)
mContext->mConstExprValueTypePool.GiveBack(constExprValueType);
BF_ASSERT(resolvedConstExprValueType->mValue.mInt64 == constExprValueType->mValue.mInt64);
return resolvedConstExprValueType;
}
BfTypeInstance* BfModule::GetWrappedStructType(BfType* type, bool allowSpecialized)
{
if (type->IsPointer())
{
if (allowSpecialized)
{
BfPointerType* pointerType = (BfPointerType*)type;
BfTypeVector typeVector;
typeVector.Add(pointerType->mElementType);
return ResolveTypeDef(mCompiler->mPointerTTypeDef, typeVector, BfPopulateType_Data)->ToTypeInstance();
}
else
return ResolveTypeDef(mCompiler->mPointerTTypeDef, BfPopulateType_Data)->ToTypeInstance();
}
else if (type->IsMethodRef())
{
if (allowSpecialized)
{
BfMethodRefType* methodRefType = (BfMethodRefType*)type;
BfTypeVector typeVector;
typeVector.Add(methodRefType);
return ResolveTypeDef(mCompiler->mMethodRefTypeDef, typeVector, BfPopulateType_Data)->ToTypeInstance();
}
else
return ResolveTypeDef(mCompiler->mMethodRefTypeDef, BfPopulateType_Data)->ToTypeInstance();
}
else if (type->IsSizedArray())
{
if (allowSpecialized)
{
if (type->IsUnknownSizedArray())
{
BfUnknownSizedArrayType* sizedArrayType = (BfUnknownSizedArrayType*)type;
BfTypeVector typeVector;
typeVector.Add(sizedArrayType->mElementType);
typeVector.Add(sizedArrayType->mElementCountSource);
return ResolveTypeDef(mCompiler->mSizedArrayTypeDef, typeVector, BfPopulateType_Data)->ToTypeInstance();
}
BfSizedArrayType* sizedArrayType = (BfSizedArrayType*)type;
BfTypeVector typeVector;
typeVector.Add(sizedArrayType->mElementType);
auto sizeValue = BfTypedValue(GetConstValue(BF_MAX(sizedArrayType->mElementCount, 0)), GetPrimitiveType(BfTypeCode_IntPtr));
typeVector.Add(CreateConstExprValueType(sizeValue));
return ResolveTypeDef(mCompiler->mSizedArrayTypeDef, typeVector, BfPopulateType_Data)->ToTypeInstance();
}
else
return ResolveTypeDef(mCompiler->mSizedArrayTypeDef, BfPopulateType_Data)->ToTypeInstance();
}
BF_ASSERT(type->IsPrimitiveType());
return GetPrimitiveStructType(((BfPrimitiveType*)type)->mTypeDef->mTypeCode);
}
BfPrimitiveType* BfModule::GetPrimitiveType(BfTypeCode typeCode)
{
BfPrimitiveType* primType = mContext->mPrimitiveTypes[typeCode];
if (primType == NULL)
{
switch (typeCode)
{
case BfTypeCode_NullPtr:
primType = (BfPrimitiveType*)ResolveTypeDef(mSystem->mTypeNullPtr);
break;
case BfTypeCode_Self:
primType = (BfPrimitiveType*)ResolveTypeDef(mSystem->mTypeSelf);
break;
case BfTypeCode_Dot:
primType = (BfPrimitiveType*)ResolveTypeDef(mSystem->mTypeDot);
break;
case BfTypeCode_Var:
primType = (BfPrimitiveType*)ResolveTypeDef(mSystem->mTypeVar);
break;
case BfTypeCode_Let:
primType = (BfPrimitiveType*)ResolveTypeDef(mSystem->mTypeLet);
break;
case BfTypeCode_None:
primType = (BfPrimitiveType*)ResolveTypeDef(mSystem->mTypeVoid);
break;
case BfTypeCode_Boolean:
primType = (BfPrimitiveType*)ResolveTypeDef(mSystem->mTypeBool);
break;
case BfTypeCode_Int8:
primType = (BfPrimitiveType*)ResolveTypeDef(mSystem->mTypeInt8);
break;
case BfTypeCode_UInt8:
primType = (BfPrimitiveType*)ResolveTypeDef(mSystem->mTypeUInt8);
break;
case BfTypeCode_Int16:
primType = (BfPrimitiveType*)ResolveTypeDef(mSystem->mTypeInt16);
break;
case BfTypeCode_UInt16:
primType = (BfPrimitiveType*)ResolveTypeDef(mSystem->mTypeUInt16);
break;
case BfTypeCode_Int32:
primType = (BfPrimitiveType*)ResolveTypeDef(mSystem->mTypeInt32);
break;
case BfTypeCode_UInt32:
primType = (BfPrimitiveType*)ResolveTypeDef(mSystem->mTypeUInt32);
break;
case BfTypeCode_Int64:
primType = (BfPrimitiveType*)ResolveTypeDef(mSystem->mTypeInt64);
break;
case BfTypeCode_UInt64:
primType = (BfPrimitiveType*)ResolveTypeDef(mSystem->mTypeUInt64);
break;
case BfTypeCode_Char8:
primType = (BfPrimitiveType*)ResolveTypeDef(mSystem->mTypeChar8);
break;
case BfTypeCode_Char16:
primType = (BfPrimitiveType*)ResolveTypeDef(mSystem->mTypeChar16);
break;
case BfTypeCode_Char32:
primType = (BfPrimitiveType*)ResolveTypeDef(mSystem->mTypeChar32);
break;
case BfTypeCode_Single:
primType = (BfPrimitiveType*)ResolveTypeDef(mSystem->mTypeSingle);
break;
case BfTypeCode_Double:
primType = (BfPrimitiveType*)ResolveTypeDef(mSystem->mTypeDouble);
break;
case BfTypeCode_IntPtr:
primType = (BfPrimitiveType*)ResolveTypeDef(mSystem->mTypeIntPtr);
break;
case BfTypeCode_UIntPtr:
primType = (BfPrimitiveType*)ResolveTypeDef(mSystem->mTypeUIntPtr);
break;
case BfTypeCode_IntUnknown:
primType = (BfPrimitiveType*)ResolveTypeDef(mSystem->mTypeIntUnknown);
break;
case BfTypeCode_UIntUnknown:
primType = (BfPrimitiveType*)ResolveTypeDef(mSystem->mTypeUIntUnknown);
break;
default: break;
}
mContext->mPrimitiveTypes[typeCode] = primType;
}
return primType;
}
BfMethodRefType* BfModule::CreateMethodRefType(BfMethodInstance* methodInstance, bool mustAlreadyExist)
{
auto methodRefType = new BfMethodRefType();
methodRefType->mContext = mContext;
//methodRefType->mCaptureType = NULL;
methodRefType->mMethodRef = methodInstance;
methodRefType->mOwner = methodInstance->GetOwner();
methodRefType->mOwnerRevision = methodRefType->mOwner->mRevision;
//methodRefType->mMangledName = BfMangler::Mangle(mCompiler->GetMangleKind(), methodInstance);
methodRefType->mIsAutoCompleteMethod = methodInstance->mIsAutocompleteMethod;
methodRefType->mIsUnspecialized = methodInstance->mIsUnspecialized;
methodRefType->mIsUnspecializedVariation = methodInstance->mIsUnspecializedVariation;
methodRefType->mSize = 0;
BfResolvedTypeSet::LookupContext lookupCtx;
lookupCtx.mModule = this;
BfResolvedTypeSet::Entry* typeEntry = NULL;
auto inserted = mContext->mResolvedTypes.Insert(methodRefType, &lookupCtx, &typeEntry);
if (typeEntry->mValue == NULL)
{
BF_ASSERT(!mustAlreadyExist);
BF_ASSERT(!methodInstance->mHasMethodRefType);
InitType(methodRefType, BfPopulateType_Identity);
methodRefType->mDefineState = BfTypeDefineState_DefinedAndMethodsSlotted;
methodInstance->mHasMethodRefType = true;
methodInstance->mMethodInstanceGroup->mRefCount++;
typeEntry->mValue = methodRefType;
BfLogSysM("Create MethodRefType %p MethodInstance: %p\n", methodRefType, methodInstance);
methodRefType->mRevision = 0;
AddDependency(methodInstance->GetOwner(), methodRefType, BfDependencyMap::DependencyFlag_Calls);
BfTypeVector tupleTypes;
Array<String> tupleNames;
int offset = 0;
methodRefType->mAlign = 1;
int dataIdx = 0;
// CRepr, just because we're lazy (for now)
int implicitParamCount = methodInstance->GetImplicitParamCount();
for (int implicitParamIdx = methodInstance->HasThis() ? -1 : 0; implicitParamIdx < implicitParamCount; implicitParamIdx++)
{
auto paramType = methodInstance->GetParamType(implicitParamIdx);
if (!paramType->IsValuelessType())
{
methodRefType->mDataToParamIdx.Add(implicitParamIdx);
if (implicitParamIdx >= 0)
methodRefType->mParamToDataIdx.Add(dataIdx);
offset = BF_ALIGN(offset, paramType->mAlign);
offset += paramType->mSize;
methodRefType->mAlign = std::max(methodRefType->mAlign, paramType->mAlign);
dataIdx++;
}
else
{
methodRefType->mParamToDataIdx.Add(-1);
}
}
offset = BF_ALIGN(offset, methodRefType->mAlign);
methodRefType->mSize = offset;
// if (!tupleTypes.empty())
// {
// methodRefType->mCaptureType = CreateTupleType(tupleTypes, tupleNames);
// AddDependency(methodRefType->mCaptureType, methodRefType, BfDependencyMap::DependencyFlag_ReadFields);
//
// methodRefType->mSize = methodRefType->mCaptureType->mSize;
// methodRefType->mAlign = methodRefType->mCaptureType->mAlign;
// }
// else
// {
// methodRefType->mSize = 0;
// methodRefType->mAlign = 0;
// }
}
else
{
methodRefType->mMethodRef = NULL;
delete methodRefType;
methodRefType = (BfMethodRefType*)typeEntry->mValue;
}
return methodRefType;
}
BfType* BfModule::FixIntUnknown(BfType* type)
{
if ((type != NULL) && (type->IsPrimitiveType()))
{
auto primType = (BfPrimitiveType*)type;
if (primType->mTypeDef->mTypeCode == BfTypeCode_IntUnknown)
return GetPrimitiveType(BfTypeCode_IntPtr);
if (primType->mTypeDef->mTypeCode == BfTypeCode_UIntUnknown)
return GetPrimitiveType(BfTypeCode_UIntPtr);
}
return type;
}
void BfModule::FixIntUnknown(BfTypedValue& typedVal)
{
if (!typedVal.mValue.IsConst())
{
if ((typedVal.mType != NULL) && (typedVal.mType->IsPrimitiveType()))
{
auto primType = (BfPrimitiveType*)typedVal.mType;
BF_ASSERT((primType->mTypeDef->mTypeCode != BfTypeCode_IntUnknown) && (primType->mTypeDef->mTypeCode != BfTypeCode_UIntUnknown));
}
return;
}
if (!typedVal.mType->IsPrimitiveType())
return;
BfTypeCode wantTypeCode;
auto primType = (BfPrimitiveType*)typedVal.mType;
if (primType->mTypeDef->mTypeCode == BfTypeCode_IntUnknown)
wantTypeCode = BfTypeCode_IntPtr;
else if (primType->mTypeDef->mTypeCode == BfTypeCode_UIntUnknown)
wantTypeCode = BfTypeCode_UIntPtr;
else
return;
auto constant = mBfIRBuilder->GetConstant(typedVal.mValue);
if (mSystem->mPtrSize == 4)
{
if (primType->mTypeDef->mTypeCode == BfTypeCode_IntUnknown)
{
if ((constant->mInt64 >= -0x80000000LL) && (constant->mInt64 <= 0x7FFFFFFFLL))
{
typedVal.mValue = mBfIRBuilder->CreateNumericCast(typedVal.mValue, true, BfTypeCode_IntPtr);
typedVal.mType = GetPrimitiveType(BfTypeCode_IntPtr);
}
else
typedVal.mType = GetPrimitiveType(BfTypeCode_Int64);
return;
}
else
{
if ((constant->mInt64 >= 0) && (constant->mInt64 <= 0xFFFFFFFF))
{
typedVal.mValue = mBfIRBuilder->CreateNumericCast(typedVal.mValue, false, BfTypeCode_IntPtr);
typedVal.mType = GetPrimitiveType(BfTypeCode_UIntPtr);
}
else
typedVal.mType = GetPrimitiveType(BfTypeCode_UInt64);
return;
}
}
typedVal.mType = GetPrimitiveType(wantTypeCode);
}
void BfModule::FixIntUnknown(BfTypedValue& lhs, BfTypedValue& rhs)
{
if ((lhs.mType != NULL) && (lhs.mType->IsIntUnknown()) && (rhs.mType != NULL) && (rhs.mType->IsInteger()))
{
if (CanImplicitlyCast(lhs, rhs.mType))
{
lhs = Cast(NULL, lhs, rhs.mType, BfCastFlags_SilentFail);
if (!lhs)
lhs = GetDefaultTypedValue(GetPrimitiveType(BfTypeCode_IntPtr));
return;
}
}
if ((rhs.mType != NULL) && (rhs.mType->IsIntUnknown()) && (lhs.mType != NULL) && (lhs.mType->IsInteger()))
{
if (CanImplicitlyCast(rhs, lhs.mType))
{
rhs = Cast(NULL, rhs, lhs.mType, BfCastFlags_SilentFail);
if (!rhs)
rhs = GetDefaultTypedValue(GetPrimitiveType(BfTypeCode_IntPtr));
return;
}
}
FixIntUnknown(lhs);
FixIntUnknown(rhs);
}
BfTypeInstance* BfModule::GetPrimitiveStructType(BfTypeCode typeCode)
{
BfTypeInstance* typeInst = NULL;
switch (typeCode)
{
case BfTypeCode_None:
typeInst = ResolveTypeDef(mSystem->FindTypeDef("System.Void"), BfPopulateType_Identity)->ToTypeInstance(); break;
case BfTypeCode_Boolean:
typeInst = ResolveTypeDef(mSystem->FindTypeDef("System.Boolean"), BfPopulateType_Identity)->ToTypeInstance(); break;
case BfTypeCode_Int8:
typeInst = ResolveTypeDef(mSystem->FindTypeDef("System.Int8"), BfPopulateType_Identity)->ToTypeInstance(); break;
case BfTypeCode_UInt8:
typeInst = ResolveTypeDef(mSystem->FindTypeDef("System.UInt8"), BfPopulateType_Identity)->ToTypeInstance(); break;
case BfTypeCode_Int16:
typeInst = ResolveTypeDef(mSystem->FindTypeDef("System.Int16"), BfPopulateType_Identity)->ToTypeInstance(); break;
case BfTypeCode_UInt16:
typeInst = ResolveTypeDef(mSystem->FindTypeDef("System.UInt16"), BfPopulateType_Identity)->ToTypeInstance(); break;
case BfTypeCode_Int32:
typeInst = ResolveTypeDef(mSystem->FindTypeDef("System.Int32"), BfPopulateType_Identity)->ToTypeInstance(); break;
case BfTypeCode_UInt32:
typeInst = ResolveTypeDef(mSystem->FindTypeDef("System.UInt32"), BfPopulateType_Identity)->ToTypeInstance(); break;
case BfTypeCode_Int64:
typeInst = ResolveTypeDef(mSystem->FindTypeDef("System.Int64"), BfPopulateType_Identity)->ToTypeInstance(); break;
case BfTypeCode_UInt64:
typeInst = ResolveTypeDef(mSystem->FindTypeDef("System.UInt64"), BfPopulateType_Identity)->ToTypeInstance(); break;
case BfTypeCode_IntPtr:
case BfTypeCode_IntUnknown:
typeInst = ResolveTypeDef(mSystem->FindTypeDef("System.Int"), BfPopulateType_Identity)->ToTypeInstance(); break;
case BfTypeCode_UIntPtr:
case BfTypeCode_UIntUnknown:
typeInst = ResolveTypeDef(mSystem->FindTypeDef("System.UInt"), BfPopulateType_Identity)->ToTypeInstance(); break;
case BfTypeCode_Char8:
typeInst = ResolveTypeDef(mSystem->FindTypeDef("System.Char8"), BfPopulateType_Identity)->ToTypeInstance(); break;
case BfTypeCode_Char16:
typeInst = ResolveTypeDef(mSystem->FindTypeDef("System.Char16"), BfPopulateType_Identity)->ToTypeInstance(); break;
case BfTypeCode_Char32:
typeInst = ResolveTypeDef(mSystem->FindTypeDef("System.Char32"), BfPopulateType_Identity)->ToTypeInstance(); break;
case BfTypeCode_Single:
typeInst = ResolveTypeDef(mSystem->FindTypeDef("System.Float"), BfPopulateType_Identity)->ToTypeInstance(); break;
case BfTypeCode_Double:
typeInst = ResolveTypeDef(mSystem->FindTypeDef("System.Double"), BfPopulateType_Identity)->ToTypeInstance(); break;
default:
//BF_FATAL("not implemented");
break;
}
return typeInst;
}
BfBoxedType* BfModule::CreateBoxedType(BfType* resolvedTypeRef)
{
bool isStructPtr = false;
if (resolvedTypeRef->IsPrimitiveType())
{
auto primType = (BfPrimitiveType*)resolvedTypeRef;
resolvedTypeRef = GetPrimitiveStructType(primType->mTypeDef->mTypeCode);
if (resolvedTypeRef == NULL)
{
BF_FATAL("Unable to find primitive type");
return NULL;
}
}
else if (resolvedTypeRef->IsPointer())
{
BfPointerType* pointerType = (BfPointerType*)resolvedTypeRef;
if (pointerType->mElementType->IsStruct())
{
resolvedTypeRef = pointerType->mElementType;
isStructPtr = true;
}
else
{
BfTypeVector typeVector;
typeVector.Add(pointerType->mElementType);
resolvedTypeRef = ResolveTypeDef(mCompiler->mPointerTTypeDef, typeVector, BfPopulateType_Data)->ToTypeInstance();
}
}
else if (resolvedTypeRef->IsMethodRef())
{
BfMethodRefType* methodRefType = (BfMethodRefType*)resolvedTypeRef;
BfTypeVector typeVector;
typeVector.Add(methodRefType);
resolvedTypeRef = ResolveTypeDef(mCompiler->mMethodRefTypeDef, typeVector, BfPopulateType_Data)->ToTypeInstance();
}
else if (resolvedTypeRef->IsSizedArray())
{
BfSizedArrayType* sizedArrayType = (BfSizedArrayType*)resolvedTypeRef;
BfTypeVector typeVector;
typeVector.Add(sizedArrayType->mElementType);
auto sizeValue = BfTypedValue(GetConstValue(sizedArrayType->mElementCount), GetPrimitiveType(BfTypeCode_IntPtr));
typeVector.Add(CreateConstExprValueType(sizeValue));
resolvedTypeRef = ResolveTypeDef(mCompiler->mSizedArrayTypeDef, typeVector, BfPopulateType_Data)->ToTypeInstance();
}
BfTypeInstance* typeInst = resolvedTypeRef->ToTypeInstance();
if (typeInst == NULL)
return NULL;
auto boxedType = mContext->mBoxedTypePool.Get();
boxedType->mContext = mContext;
boxedType->mElementType = typeInst;
boxedType->mTypeDef = boxedType->mElementType->mTypeDef;
boxedType->mBoxedFlags = isStructPtr ? BfBoxedType::BoxedFlags_StructPtr : BfBoxedType::BoxedFlags_None;
auto resolvedBoxedType = ResolveType(boxedType);
if (resolvedBoxedType != boxedType)
mContext->mBoxedTypePool.GiveBack(boxedType);
return (BfBoxedType*)resolvedBoxedType;
}
BfTupleType* BfModule::CreateTupleType(const BfTypeVector& fieldTypes, const Array<String>& fieldNames)
{
auto tupleType = mContext->mTupleTypePool.Get();
tupleType->mContext = mContext;
tupleType->mFieldInstances.Resize(fieldTypes.size());
auto baseType = (BfTypeInstance*)ResolveTypeDef(mContext->mCompiler->mValueTypeTypeDef);
tupleType->Init(baseType->mTypeDef->mProject, baseType);
for (int fieldIdx = 0; fieldIdx < (int)fieldTypes.size(); fieldIdx++)
{
BfFieldInstance* fieldInstance = (BfFieldInstance*)&tupleType->mFieldInstances[fieldIdx];
fieldInstance->mFieldIdx = fieldIdx;
fieldInstance->SetResolvedType(fieldTypes[fieldIdx]);
fieldInstance->mOwner = tupleType;
String fieldName;
if (fieldIdx < (int)fieldNames.size())
fieldName = fieldNames[fieldIdx];
if (fieldName.empty())
fieldName = StrFormat("%d", fieldIdx);
BfFieldDef* fieldDef = tupleType->AddField(fieldName);
}
auto resolvedTupleType = ResolveType(tupleType);
if (resolvedTupleType != tupleType)
mContext->mTupleTypePool.GiveBack(tupleType);
return (BfTupleType*)resolvedTupleType;
}
BfTupleType * BfModule::SantizeTupleType(BfTupleType* tupleType)
{
bool needsSanitize = false;
for (int fieldIdx = 0; fieldIdx < (int)tupleType->mFieldInstances.size(); fieldIdx++)
{
BfFieldInstance* fieldInstance = (BfFieldInstance*)&tupleType->mFieldInstances[fieldIdx];
if ((fieldInstance->mResolvedType->IsVar()) || (fieldInstance->mResolvedType->IsLet()))
{
needsSanitize = true;
break;
}
}
if (!needsSanitize)
return tupleType;
BfTypeVector fieldTypes;
Array<String> fieldNames;
for (int fieldIdx = 0; fieldIdx < (int)tupleType->mFieldInstances.size(); fieldIdx++)
{
BfFieldInstance* fieldInstance = (BfFieldInstance*)&tupleType->mFieldInstances[fieldIdx];
auto fieldDef = fieldInstance->GetFieldDef();
if ((fieldInstance->mResolvedType->IsVar()) || (fieldInstance->mResolvedType->IsLet()))
fieldTypes.Add(mContext->mBfObjectType);
else
fieldTypes.Add(fieldInstance->mResolvedType);
if (!fieldDef->IsUnnamedTupleField())
{
for (int i = 0; i < fieldIdx; i++)
fieldNames.Add(String());
fieldNames.Add(fieldDef->mName);
}
}
return CreateTupleType(fieldTypes, fieldNames);
}
BfRefType* BfModule::CreateRefType(BfType* resolvedTypeRef, BfRefType::RefKind refKind)
{
auto refType = mContext->mRefTypePool.Get();
refType->mContext = mContext;
refType->mElementType = resolvedTypeRef;
refType->mRefKind = refKind;
auto resolvedRefType = ResolveType(refType);
if (resolvedRefType != refType)
mContext->mRefTypePool.GiveBack(refType);
return (BfRefType*)resolvedRefType;
}
BfRetTypeType* BfModule::CreateRetTypeType(BfType* resolvedTypeRef)
{
auto retTypeType = mContext->mRetTypeTypePool.Get();
retTypeType->mContext = mContext;
retTypeType->mElementType = resolvedTypeRef;
auto resolvedRetTypeType = ResolveType(retTypeType);
if (resolvedRetTypeType != retTypeType)
mContext->mRetTypeTypePool.GiveBack(retTypeType);
return (BfRetTypeType*)resolvedRetTypeType;
}
BfConcreteInterfaceType* BfModule::CreateConcreteInterfaceType(BfTypeInstance* interfaceType)
{
auto concreteInterfaceType = mContext->mConcreteInterfaceTypePool.Get();
concreteInterfaceType->mContext = mContext;
concreteInterfaceType->mInterface = interfaceType;
auto resolvedConcreteInterfaceType = ResolveType(concreteInterfaceType);
if (resolvedConcreteInterfaceType != concreteInterfaceType)
mContext->mConcreteInterfaceTypePool.GiveBack(concreteInterfaceType);
return (BfConcreteInterfaceType*)resolvedConcreteInterfaceType;
}
BfPointerType* BfModule::CreatePointerType(BfTypeReference* typeRef)
{
auto resolvedTypeRef = ResolveTypeRef(typeRef);
if (resolvedTypeRef == NULL)
return NULL;
return CreatePointerType(resolvedTypeRef);
}
BfType* BfModule::ResolveTypeDef(BfTypeDef* typeDef, BfPopulateType populateType)
{
//BF_ASSERT(typeDef->mTypeCode != BfTypeCode_Extension);
BF_ASSERT(!typeDef->mIsPartial || typeDef->mIsCombinedPartial);
if (typeDef->mGenericParamDefs.size() != 0)
return ResolveTypeDef(typeDef, BfTypeVector(), populateType);
auto typeDefTypeRef = mContext->mTypeDefTypeRefPool.Get();
typeDefTypeRef->mTypeDef = typeDef;
auto resolvedtypeDefType = ResolveTypeRef(typeDefTypeRef, populateType);
if (resolvedtypeDefType == NULL)
{
mContext->mTypeDefTypeRefPool.GiveBack(typeDefTypeRef);
return NULL;
}
mContext->mTypeDefTypeRefPool.GiveBack(typeDefTypeRef);
//BF_ASSERT(resolvedtypeDefType->IsTypeInstance() || resolvedtypeDefType->IsPrimitiveType());
return resolvedtypeDefType;
}
// Get BaseClass even when we haven't populated the type yet2
BfTypeInstance* BfModule::GetBaseType(BfTypeInstance* typeInst)
{
if ((mContext->mCurTypeState != NULL) && (mContext->mCurTypeState->mTypeInstance == typeInst))
{
if (typeInst->mBaseType == NULL)
return NULL;
}
if ((typeInst->mBaseType == NULL) && (typeInst != mContext->mBfObjectType))
PopulateType(typeInst, BfPopulateType_BaseType);
return typeInst->mBaseType;
}
void BfModule::HandleTypeGenericParamRef(BfAstNode* refNode, BfTypeDef* typeDef, int typeGenericParamIdx)
{
if (mCompiler->IsAutocomplete())
{
BfAutoComplete* autoComplete = mCompiler->mResolvePassData->mAutoComplete;
if ((autoComplete != NULL) && (autoComplete->mIsGetDefinition) && (autoComplete->IsAutocompleteNode(refNode)))
{
if ((autoComplete->mDefMethod == NULL) && (autoComplete->mDefField == NULL) &&
(autoComplete->mDefProp == NULL))
{
autoComplete->mDefType = typeDef;
autoComplete->mDefTypeGenericParamIdx = typeGenericParamIdx;
autoComplete->SetDefinitionLocation(refNode);
}
}
}
if (mCompiler->mResolvePassData != NULL)
mCompiler->mResolvePassData->HandleTypeGenericParam(refNode, typeDef, typeGenericParamIdx);
}
void BfModule::HandleMethodGenericParamRef(BfAstNode* refNode, BfTypeDef* typeDef, BfMethodDef* methodDef, int methodGenericParamIdx)
{
if (mCompiler->IsAutocomplete())
{
BfAutoComplete* autoComplete = mCompiler->mResolvePassData->mAutoComplete;
if ((autoComplete != NULL) && (autoComplete->mIsGetDefinition) && (autoComplete->IsAutocompleteNode(refNode)))
{
if ((autoComplete->mDefMethod == NULL) && (autoComplete->mDefField == NULL) &&
(autoComplete->mDefProp == NULL))
{
autoComplete->mDefType = typeDef;
autoComplete->mDefMethod = methodDef;
autoComplete->mDefMethodGenericParamIdx = methodGenericParamIdx;
autoComplete->SetDefinitionLocation(refNode);
}
}
}
if (mCompiler->mResolvePassData != NULL)
mCompiler->mResolvePassData->HandleMethodGenericParam(refNode, typeDef, methodDef, methodGenericParamIdx);
}
BfType* BfModule::ResolveInnerType(BfType* outerType, BfTypeReference* typeRef, BfPopulateType populateType, bool ignoreErrors)
{
BfTypeDef* nestedTypeDef = NULL;
if (outerType->IsBoxed())
outerType = outerType->GetUnderlyingType();
BfNamedTypeReference* namedTypeRef = NULL;
BfGenericInstanceTypeRef* genericTypeRef = NULL;
BfDirectStrTypeReference* directStrTypeRef = NULL;
if ((namedTypeRef = BfNodeDynCast<BfNamedTypeReference>(typeRef)))
{
//TYPEDEF nestedTypeDef = namedTypeRef->mTypeDef;
}
else if ((genericTypeRef = BfNodeDynCast<BfGenericInstanceTypeRef>(typeRef)))
{
namedTypeRef = BfNodeDynCast<BfNamedTypeReference>(genericTypeRef->mElementType);
//TYPEDEF nestedTypeDef = namedTypeRef->mTypeDef;
}
else if ((directStrTypeRef = BfNodeDynCast<BfDirectStrTypeReference>(typeRef)))
{
//
}
BF_ASSERT((namedTypeRef != NULL) || (directStrTypeRef != NULL));
if (nestedTypeDef == NULL)
{
StringView findName;
if (namedTypeRef != NULL)
findName = namedTypeRef->mNameNode->ToStringView();
else
findName = directStrTypeRef->mTypeName;
if (!findName.Contains('.'))
{
if (outerType->IsTypeInstance())
{
auto outerTypeInstance = outerType->ToTypeInstance();
for (int pass = 0; pass < 2; pass++)
{
bool isFailurePass = pass == 1;
bool allowPrivate = (mCurTypeInstance != NULL) &&
((mCurTypeInstance == outerTypeInstance) || TypeHasParent(mCurTypeInstance->mTypeDef, outerTypeInstance->mTypeDef));
bool allowProtected = allowPrivate;/*(mCurTypeInstance != NULL) &&
(allowPrivate || (mCurTypeInstance->mSkipTypeProtectionChecks) || TypeIsSubTypeOf(mCurTypeInstance, outerTypeInstance));*/
auto checkOuterType = outerTypeInstance;
while (checkOuterType != NULL)
{
for (auto checkType : checkOuterType->mTypeDef->mNestedTypes)
{
auto latestCheckType = checkType->GetLatest();
if ((!isFailurePass) && (!CheckProtection(latestCheckType->mProtection, allowProtected, allowPrivate)))
continue;
if (checkType->mName->mString == findName)
{
if (isFailurePass)
{
// This is the one error we don't ignore when ignoreErrors is set
Fail(StrFormat("'%s.%s' is inaccessible due to its protection level", TypeToString(checkOuterType).c_str(), BfTypeUtils::TypeToString(typeRef).c_str()), typeRef); // CS0122
}
nestedTypeDef = checkType;
break;
}
}
if (nestedTypeDef != NULL)
break;
allowPrivate = false;
checkOuterType = GetBaseType(checkOuterType);
}
if (nestedTypeDef != NULL)
break;
}
}
}
if (nestedTypeDef == NULL)
{
if (!mIgnoreErrors && !ignoreErrors)
{
StringT<64> name;
name.Append(findName);
Fail(StrFormat("'%s' does not contain a definition for '%s'", TypeToString(outerType).c_str(), name.c_str()), typeRef);
}
return NULL;
}
}
SetAndRestoreValue<bool> prevIgnoreErrors(mIgnoreErrors, ignoreErrors || mIgnoreErrors);
if ((genericTypeRef != NULL) || (outerType->IsGenericTypeInstance()))
{
BfTypeVector genericArgs;
if (outerType->IsGenericTypeInstance())
{
auto genericTypeInst = (BfGenericTypeInstance*)outerType;
genericArgs = genericTypeInst->mTypeGenericArguments;
}
if (genericTypeRef != NULL)
{
for (auto genericArgTypeRef : genericTypeRef->mGenericArguments)
{
auto genericArgType = ResolveTypeRef(genericArgTypeRef, BfPopulateType_IdentityNoRemapAlias);
if (genericArgType == NULL)
return NULL;
genericArgs.push_back(genericArgType);
}
}
if (genericArgs.size() != nestedTypeDef->mGenericParamDefs.size())
{
if (populateType == BfPopulateType_TypeDef)
{
// Probably from inside ResolveGenericInstanceDef, just return unresolved typedef
genericArgs.clear();
}
else
{
ShowGenericArgCountError(typeRef, (int)nestedTypeDef->mGenericParamDefs.size() - (int)nestedTypeDef->mOuterType->mGenericParamDefs.size());
return NULL;
}
}
if (nestedTypeDef->mIsPartial)
{
nestedTypeDef = GetCombinedPartialTypeDef(nestedTypeDef);
if (nestedTypeDef == NULL)
return NULL;
}
return ResolveTypeDef(nestedTypeDef, genericArgs, BfPopulateType_IdentityNoRemapAlias);
}
else
{
if (nestedTypeDef->mIsPartial)
{
nestedTypeDef = GetCombinedPartialTypeDef(nestedTypeDef);
if (nestedTypeDef == NULL)
return NULL;
}
return ResolveTypeDef(nestedTypeDef, BfPopulateType_IdentityNoRemapAlias);
}
return NULL;
}
BfTypeDef* BfModule::GetCombinedPartialTypeDef(BfTypeDef* typeDef)
{
BF_ASSERT(!typeDef->mIsExplicitPartial);
if (!typeDef->mIsPartial)
return typeDef;
auto result = mSystem->FindTypeDef(typeDef->mFullName.ToString(), (int)typeDef->mGenericParamDefs.size());
return result;
}
BfTypeInstance* BfModule::GetOuterType(BfType* type)
{
if (type == NULL)
return NULL;
if (type->IsBoxed())
return GetOuterType(((BfBoxedType*)type)->mElementType);
auto typeInst = type->ToTypeInstance();
if ((typeInst == NULL) || (typeInst->mTypeDef->mOuterType == NULL))
return NULL;
auto outerTypeDef = typeInst->mTypeDef->mOuterType;
if (outerTypeDef->mIsPartial)
{
outerTypeDef = GetCombinedPartialTypeDef(outerTypeDef);
if (outerTypeDef == NULL)
return NULL;
}
BfTypeVector typeGenericArguments;
if (type->IsGenericTypeInstance())
{
auto genericType = (BfGenericTypeInstance*)type;
typeGenericArguments = genericType->mTypeGenericArguments;
}
BF_ASSERT((intptr)typeGenericArguments.size() >= (intptr)outerTypeDef->mGenericParamDefs.size());
typeGenericArguments.resize(outerTypeDef->mGenericParamDefs.size());
auto outerType = ResolveTypeDef(outerTypeDef, typeGenericArguments, BfPopulateType_Declaration);
if (outerType == NULL)
return NULL;
return outerType->ToTypeInstance();
}
bool BfModule::IsInnerType(BfType* checkInnerType, BfType* checkOuterType)
{
BfType* outerType = GetOuterType(checkInnerType);
if (outerType == NULL)
return false;
if (outerType == checkOuterType)
return true;
return IsInnerType(outerType, checkOuterType);
}
bool BfModule::IsInnerType(BfTypeDef* checkInnerType, BfTypeDef* checkOuterType)
{
BF_ASSERT(!checkOuterType->mIsPartial);
if (checkInnerType->mNestDepth <= checkOuterType->mNestDepth)
return false;
while (true)
{
BfTypeDef* outerType = checkInnerType->mOuterType;
if (outerType == NULL)
return false;
if (outerType->mIsPartial)
outerType = mSystem->GetCombinedPartial(outerType);
if (outerType == checkOuterType)
return true;
checkInnerType = checkInnerType->mOuterType;
}
}
BfType* BfModule::ResolveTypeDef(BfTypeDef* typeDef, const BfTypeVector& genericArgs, BfPopulateType populateType)
{
if (typeDef->mGenericParamDefs.size() == 0)
return ResolveTypeDef(typeDef, populateType);
if ((typeDef == mCompiler->mArray1TypeDef) || (typeDef == mCompiler->mArray2TypeDef))
{
auto arrayInstType = mContext->mArrayTypeInstancePool.Get();
arrayInstType->mContext = mContext;
if (typeDef == mCompiler->mArray1TypeDef)
arrayInstType->mDimensions = 1;
else
arrayInstType->mDimensions = 2;
auto typeRef = mContext->mTypeDefTypeRefPool.Get();
typeRef->mTypeDef = typeDef;
arrayInstType->mTypeDef = typeDef;
arrayInstType->mIsUnspecialized = false;
arrayInstType->mTypeGenericArguments.clear();
for (auto genericArg : genericArgs)
{
arrayInstType->mIsUnspecialized |= genericArg->IsGenericParam();
arrayInstType->mTypeGenericArguments.push_back(genericArg);
}
if (genericArgs.size() == 0)
{
for (int i = 0; i < (int)typeDef->mGenericParamDefs.size(); i++)
{
auto genericParamTypeRef = GetGenericParamType(BfGenericParamKind_Type, i);
arrayInstType->mTypeGenericArguments.push_back(genericParamTypeRef);
arrayInstType->mIsUnspecialized = true;
}
}
auto resolvedType = ResolveType(arrayInstType, populateType);
if (resolvedType != arrayInstType)
{
mContext->mArrayTypeInstancePool.GiveBack(arrayInstType);
mContext->mTypeDefTypeRefPool.GiveBack(typeRef);
}
BF_ASSERT((resolvedType == NULL) || resolvedType->IsTypeInstance() || resolvedType->IsPrimitiveType());
return resolvedType;
}
BfGenericTypeInstance* genericInstType;
if (typeDef->mTypeCode == BfTypeCode_TypeAlias)
genericInstType = mContext->mGenericTypeAliasPool.Get();
else
genericInstType = mContext->mGenericTypeInstancePool.Get();
genericInstType->mContext = mContext;
auto typeRef = mContext->mTypeDefTypeRefPool.Get();
typeRef->mTypeDef = typeDef;
genericInstType->mTypeDef = typeDef;
genericInstType->mIsUnspecialized = false;
genericInstType->mTypeGenericArguments.clear();
for (auto genericArg : genericArgs)
{
genericInstType->mIsUnspecialized |= genericArg->IsGenericParam();
genericInstType->mTypeGenericArguments.push_back(genericArg);
}
if (genericArgs.size() == 0)
{
for (int i = 0; i < (int)typeDef->mGenericParamDefs.size(); i++)
{
auto genericParamTypeRef = GetGenericParamType(BfGenericParamKind_Type, i);
genericInstType->mTypeGenericArguments.push_back(genericParamTypeRef);
genericInstType->mIsUnspecialized = true;
}
}
auto resolvedType = ResolveType(genericInstType, populateType);
if (resolvedType != genericInstType)
{
if (typeDef->mTypeCode == BfTypeCode_TypeAlias)
mContext->mGenericTypeAliasPool.GiveBack((BfGenericTypeAliasType*)genericInstType);
else
mContext->mGenericTypeInstancePool.GiveBack(genericInstType);
mContext->mTypeDefTypeRefPool.GiveBack(typeRef);
}
BF_ASSERT((resolvedType == NULL) || resolvedType->IsTypeInstance() || resolvedType->IsPrimitiveType());
return resolvedType;
}
int checkIdx = 0;
BfTypeDef* BfModule::ResolveGenericInstanceDef(BfGenericInstanceTypeRef* genericTypeRef)
{
BfTypeReference* typeRef = genericTypeRef->mElementType;
int numGenericParams = genericTypeRef->GetGenericArgCount();
BfTypeDef* curTypeDef = NULL;
if (mCurTypeInstance != NULL)
curTypeDef = mCurTypeInstance->mTypeDef;
if (auto directTypeDef = BfNodeDynCast<BfDirectTypeReference>(typeRef))
{
auto typeInst = directTypeDef->mType->ToTypeInstance();
return typeInst->mTypeDef;
}
auto namedTypeRef = BfNodeDynCast<BfNamedTypeReference>(typeRef);
auto directStrTypeDef = BfNodeDynCastExact<BfDirectStrTypeReference>(typeRef);
if ((namedTypeRef != NULL) || (directStrTypeDef != NULL))
{
BfTypeLookupError error;
error.mRefNode = typeRef;
BfTypeDef* typeDef = FindTypeDef(typeRef, NULL, &error, numGenericParams);
if (typeDef != NULL)
{
BfAutoComplete* autoComplete = NULL;
if (mCompiler->IsAutocomplete())
autoComplete = mCompiler->mResolvePassData->mAutoComplete;
if ((autoComplete != NULL) && (autoComplete->mIsGetDefinition) && (autoComplete->IsAutocompleteNode(typeRef)))
{
if ((autoComplete->mDefMethod == NULL) && (autoComplete->mDefField == NULL) &&
(autoComplete->mDefProp == NULL) && (typeDef->mTypeDeclaration != NULL))
{
autoComplete->mDefType = typeDef;
autoComplete->SetDefinitionLocation(typeDef->mTypeDeclaration->mNameNode);
}
}
if (mCompiler->mResolvePassData != NULL)
mCompiler->mResolvePassData->HandleTypeReference(typeRef, typeDef);
return typeDef;
}
if (mCurTypeInstance != NULL)
{
bool wasGenericParam = false;
// Check generics first
if (typeRef->IsA<BfNamedTypeReference>())
{
String findName = typeRef->ToString();
if ((mCurTypeInstance != NULL) && (mCurTypeInstance->IsGenericTypeInstance()))
{
auto genericTypeInst = (BfGenericTypeInstance*)mCurTypeInstance;
for (int genericParamIdx = 0; genericParamIdx < (int)curTypeDef->mGenericParamDefs.size(); genericParamIdx++)
{
String genericName = curTypeDef->mGenericParamDefs[genericParamIdx]->mName;
if (genericName == findName)
wasGenericParam = true;
}
}
if (mCurMethodInstance != NULL)
{
for (int genericParamIdx = 0; genericParamIdx < (int)mCurMethodInstance->mMethodDef->mGenericParams.size(); genericParamIdx++)
{
String genericName = mCurMethodInstance->mMethodDef->mGenericParams[genericParamIdx]->mName;
if (genericName == findName)
wasGenericParam = true;
}
}
}
if (wasGenericParam)
Fail("Cannot use generic param as generic instance type", typeRef);
}
//if (mCurTypeInstance != NULL)
//{
// String findName;
// if (directStrTypeDef != NULL)
// findName = directStrTypeDef->mTypeName;
// else
// findName = namedTypeRef->mNameNode->ToString();
// auto outerTypeInstance = mCurTypeInstance;
// for (int pass = 0; pass < 2; pass++)
// {
// bool isFailurePass = pass == 1;
// bool allowPrivate = true;
// bool allowProtected = true;
// auto checkOuterType = outerTypeInstance;
// while (checkOuterType != NULL)
// {
// for (auto checkType : checkOuterType->mTypeDef->mNestedTypes)
// {
// if ((!isFailurePass) && (!CheckProtection(checkType->mProtection, allowProtected, allowPrivate)))
// continue;
// if (checkType->mName->mString == findName)
// {
// if (isFailurePass)
// {
// // This is the one error we don't ignore when ignoreErrors is set
// Fail(StrFormat("'%s.%s' is inaccessible due to its protection level", TypeToString(checkOuterType).c_str(), BfTypeUtils::TypeToString(namedTypeRef).c_str()), namedTypeRef); // CS0122
// }
// return checkType;
// }
// }
// allowPrivate = false;
// if (checkOuterType == mContext->mBfObjectType)
// break;
// checkOuterType = GetBaseType(checkOuterType);
// }
// }
//}
if (typeDef == NULL)
{
TypeRefNotFound(typeRef);
return NULL;
}
}
if (auto qualifiedTypeRef = BfNodeDynCast<BfQualifiedTypeReference>(typeRef))
{
BfAutoParentNodeEntry autoParentNodeEntry(this, genericTypeRef);
auto type = ResolveTypeRef(qualifiedTypeRef, BfPopulateType_TypeDef);
if (type == NULL)
return NULL;
auto typeInst = type->ToTypeInstance();
if (typeInst != NULL)
return typeInst->mTypeDef;
}
Fail("Invalid generic type", typeRef);
return NULL;
}
BfType* BfModule::ResolveGenericType(BfType* unspecializedType, const BfTypeVector& methodGenericArguments, bool allowFail)
{
if (unspecializedType->IsGenericParam())
{
auto genericParam = (BfGenericParamType*)unspecializedType;
if (genericParam->mGenericParamKind == BfGenericParamKind_Method)
{
if (genericParam->mGenericParamIdx < (int)methodGenericArguments.size())
{
return methodGenericArguments[genericParam->mGenericParamIdx];
}
BF_ASSERT(allowFail);
}
return unspecializedType;
}
if (unspecializedType->IsUnknownSizedArray())
{
auto* arrayType = (BfUnknownSizedArrayType*)unspecializedType;
auto elementType = ResolveGenericType(arrayType->mElementType, methodGenericArguments, allowFail);
if (elementType == NULL)
return NULL;
auto sizeType = ResolveGenericType(arrayType->mElementCountSource, methodGenericArguments, allowFail);
if (sizeType == NULL)
return NULL;
if (sizeType->IsConstExprValue())
{
return CreateSizedArrayType(elementType, ((BfConstExprValueType*)sizeType)->mValue.mInt32);
}
return CreateUnknownSizedArrayType(elementType, sizeType);
}
if (unspecializedType->IsSizedArray())
{
auto* arrayType = (BfSizedArrayType*)unspecializedType;
auto elementType = ResolveGenericType(arrayType->mElementType, methodGenericArguments, allowFail);
if (elementType == NULL)
return NULL;
return CreateSizedArrayType(elementType, (int)arrayType->mElementCount);
}
if (unspecializedType->IsRef())
{
auto refType = (BfRefType*)unspecializedType;
auto elementType = ResolveGenericType(refType->GetUnderlyingType(), methodGenericArguments, allowFail);
if (elementType == NULL)
return NULL;
return CreateRefType(elementType, refType->mRefKind);
}
if (unspecializedType->IsArray())
{
auto arrayType = (BfArrayType*)unspecializedType;
auto elementType = ResolveGenericType(arrayType->GetUnderlyingType(), methodGenericArguments, allowFail);
if (elementType == NULL)
return NULL;
return CreateArrayType(elementType, arrayType->mDimensions);
}
if (unspecializedType->IsGenericTypeInstance())
{
auto genericTypeInst = (BfGenericTypeInstance*)unspecializedType;
BfTypeVector genericArgs;
for (auto genericArg : genericTypeInst->mTypeGenericArguments)
{
if (genericArg->IsUnspecializedType())
{
auto resolvedArg = ResolveGenericType(genericArg, methodGenericArguments, allowFail);
if (resolvedArg == NULL)
return NULL;
genericArgs.push_back(resolvedArg);
}
else
genericArgs.push_back(genericArg);
}
return ResolveTypeDef(genericTypeInst->mTypeDef, genericArgs);
}
if (unspecializedType->IsTuple())
{
auto tupleType = (BfTupleType*)unspecializedType;
Array<String> names;
BfTypeVector genericArgs;
bool hadChange = false;
for (auto& fieldInstance : tupleType->mFieldInstances)
{
names.push_back(fieldInstance.GetFieldDef()->mName);
auto origGenericArg = fieldInstance.mResolvedType;
auto newGenericArg = ResolveGenericType(origGenericArg, methodGenericArguments, allowFail);
if (newGenericArg == NULL)
return NULL;
if (newGenericArg != origGenericArg)
hadChange = true;
genericArgs.push_back(newGenericArg);
}
if (!hadChange)
return unspecializedType;
return CreateTupleType(genericArgs, names);
}
return unspecializedType;
}
BfType* BfModule::ResolveType(BfType* lookupType, BfPopulateType populateType)
{
BfResolvedTypeSet::LookupContext lookupCtx;
lookupCtx.mModule = this;
BfResolvedTypeSet::Entry* resolvedEntry = NULL;
bool inserted = mContext->mResolvedTypes.Insert(lookupType, &lookupCtx, &resolvedEntry);
if (!inserted)
{
auto resolvedTypeRef = resolvedEntry->mValue;
PopulateType(resolvedTypeRef, populateType);
return resolvedTypeRef;
}
if (lookupType->IsGenericTypeInstance())
CheckUnspecializedGenericType((BfGenericTypeInstance*)lookupType, populateType);
if (lookupType->IsTuple())
{
auto tupleType = (BfTupleType*)lookupType;
tupleType->Finish();
}
resolvedEntry->mValue = lookupType;
if (!InitType(lookupType, populateType))
return NULL;
return lookupType;
}
bool BfModule::IsUnboundGeneric(BfType* type)
{
if (type->IsVar())
return true;
if (!type->IsGenericParam())
return false;
auto genericParamInst = GetGenericParamInstance((BfGenericParamType*)type);
return (genericParamInst->mGenericParamFlags & BfGenericParamFlag_Var) != 0;
}
BfGenericParamInstance* BfModule::GetGenericTypeParamInstance(int genericParamIdx)
{
// When we're evaluating a method, make sure the params refer back to that method context
auto curTypeInstance = mCurTypeInstance;
if (mCurMethodInstance != NULL)
curTypeInstance = mCurMethodInstance->mMethodInstanceGroup->mOwner;
BfGenericTypeInstance* genericTypeInst = curTypeInstance->ToGenericTypeInstance();
if ((genericTypeInst->IsIncomplete()) && (genericTypeInst->mGenericParams.size() == 0))
{
// Set this to NULL so we don't recurse infinitely
SetAndRestoreValue<BfTypeInstance*> prevTypeInst(mCurTypeInstance, NULL);
PopulateType(genericTypeInst, BfPopulateType_Declaration);
}
if (genericTypeInst->mGenericExtensionInfo != NULL)
{
auto activeTypeDef = GetActiveTypeDef(NULL, true);
if ((activeTypeDef->mTypeDeclaration != genericTypeInst->mTypeDef->mTypeDeclaration) && (activeTypeDef->IsExtension()))
{
BfTypeDef* lookupTypeDef = activeTypeDef;
while (lookupTypeDef->mNestDepth > genericTypeInst->mTypeDef->mNestDepth)
lookupTypeDef = lookupTypeDef->mOuterType;
BfGenericExtensionEntry* genericExEntry;
if (genericTypeInst->mGenericExtensionInfo->mExtensionMap.TryGetValue(lookupTypeDef, &genericExEntry))
{
return genericExEntry->mGenericParams[genericParamIdx];
}
else
{
if ((mCompiler->mResolvePassData == NULL) || (mCompiler->mResolvePassData->mAutoComplete == NULL))
{
BF_FATAL("Invalid GetGenericParamInstance with extension");
}
}
}
}
BF_ASSERT(genericTypeInst != NULL);
return genericTypeInst->mGenericParams[genericParamIdx];
}
BfGenericParamInstance* BfModule::GetGenericParamInstance(BfGenericParamType* type)
{
if (type->mGenericParamKind == BfGenericParamKind_Method)
return mCurMethodInstance->mMethodInfoEx->mGenericParams[type->mGenericParamIdx];
return GetGenericTypeParamInstance(type->mGenericParamIdx);
}
BfType* BfModule::ResolveTypeResult(BfTypeReference* typeRef, BfType* resolvedTypeRef, BfPopulateType populateType, BfResolveTypeRefFlags resolveFlags)
{
if (mCompiler->mIsResolveOnly)
{
BfSourceData* typeRefSource = NULL;
if (typeRef->IsTemporary())
{
BfTypeReference* checkTypeRef = typeRef;
if (auto genericTypeRef = BfNodeDynCast<BfGenericInstanceTypeRef>(checkTypeRef))
checkTypeRef = genericTypeRef->mElementType;
if (auto namedTypeRef = BfNodeDynCast<BfNamedTypeReference>(checkTypeRef))
typeRefSource = namedTypeRef->mNameNode->GetSourceData();
}
else
typeRefSource = typeRef->GetSourceData();
if ((mCompiler->mResolvePassData->mSourceClassifier != NULL) && (typeRefSource != NULL) && (mCompiler->mResolvePassData->mParser != NULL) &&
(typeRefSource == mCompiler->mResolvePassData->mParser->mSourceData))
{
//TODO: By only breaking out for "mIgnoreErrors", we classified elements (below) even when a resolvedTypeRef was not found!
//Why did we have this mIgnoreErrors check in there?
// if ((resolvedTypeRef == NULL) && (mIgnoreErrors))
if (resolvedTypeRef == NULL)
{
return NULL;
}
BfTypeInstance* resolvedTypeInstance = NULL;
if (resolvedTypeRef != NULL)
resolvedTypeInstance = resolvedTypeRef->ToTypeInstance();
bool isNamespace = false;
auto checkTypeRef = typeRef;
if (auto elementedTypeRef = BfNodeDynCast<BfElementedTypeRef>(checkTypeRef))
checkTypeRef = elementedTypeRef->mElementType;
if (!mIsInsideAutoComplete)
{
if ((resolvedTypeInstance != NULL) && (resolvedTypeInstance->mTypeDef->IsGlobalsContainer()))
{
isNamespace = true;
}
else
{
//TODO: This broke colorizing of inner expressions for things like "T2[T3]"
//mCompiler->mResolvePassData->mSourceClassifier->VisitChildNoRef(typeRef);
}
}
while (auto qualifiedTypeRef = BfNodeDynCast<BfQualifiedTypeReference>(checkTypeRef))
{
StringView leftString = qualifiedTypeRef->mLeft->ToStringView();
BfSizedAtomComposite leftComposite;
bool isValid = mSystem->ParseAtomComposite(leftString, leftComposite);
mCompiler->mResolvePassData->mSourceClassifier->SetElementType(qualifiedTypeRef->mRight, isNamespace ? BfSourceElementType_Namespace : BfSourceElementType_TypeRef);
if (resolvedTypeInstance == NULL)
{
if ((isValid) && (mCompiler->mSystem->ContainsNamespace(leftComposite, mCurTypeInstance->mTypeDef->mProject)))
isNamespace = true;
}
else if ((isValid) && (resolvedTypeInstance->mTypeDef->mNamespace.EndsWith(leftComposite)))
isNamespace = true;
checkTypeRef = qualifiedTypeRef->mLeft;
}
if (auto namedTypeRef = BfNodeDynCast<BfNamedTypeReference>(checkTypeRef))
{
auto checkNameNode = namedTypeRef->mNameNode;
while (auto qualifiedNameNode = BfNodeDynCast<BfQualifiedNameNode>(checkNameNode))
{
StringView leftString = qualifiedNameNode->mLeft->ToStringView();
BfSizedAtomComposite leftComposite;
bool isValid = mSystem->ParseAtomComposite(leftString, leftComposite);
mCompiler->mResolvePassData->mSourceClassifier->SetElementType(qualifiedNameNode->mRight, isNamespace ? BfSourceElementType_Namespace : BfSourceElementType_TypeRef);
if (resolvedTypeInstance == NULL)
{
if ((isValid) && (mCompiler->mSystem->ContainsNamespace(leftComposite, mCurTypeInstance->mTypeDef->mProject)))
isNamespace = true;
}
else if ((isValid) && (resolvedTypeInstance->mTypeDef->mNamespace.EndsWith(leftComposite)))
isNamespace = true;
checkNameNode = qualifiedNameNode->mLeft;
}
mCompiler->mResolvePassData->mSourceClassifier->SetElementType(checkNameNode, isNamespace ? BfSourceElementType_Namespace : BfSourceElementType_TypeRef);
}
}
bool isGetDefinition = false;
BfAutoComplete* autoComplete = NULL;
if (mCompiler->IsAutocomplete())
autoComplete = mCompiler->mResolvePassData->mAutoComplete;
if (autoComplete != NULL)
{
isGetDefinition = autoComplete->mIsGetDefinition;
}
if (((mCompiler->mResolvePassData->mGetSymbolReferenceKind == BfGetSymbolReferenceKind_Type) || (isGetDefinition)) &&
((resolveFlags & BfResolveTypeRefFlag_FromIndirectSource) == 0) && (resolvedTypeRef != NULL) && (typeRefSource != NULL))
{
BfAstNode* elementTypeRef = typeRef;
if (auto namedTypeRef = BfNodeDynCast<BfNamedTypeReference>(elementTypeRef))
elementTypeRef = namedTypeRef->mNameNode;
if (elementTypeRef != NULL)
{
BfType* elementType = resolvedTypeRef;
if (BfTypeInstance* elementTypeInst = elementType->ToTypeInstance())
{
mCompiler->mResolvePassData->HandleTypeReference(elementTypeRef, elementTypeInst->mTypeDef);
if (mCompiler->IsAutocomplete())
{
BfAutoComplete* autoComplete = mCompiler->mResolvePassData->mAutoComplete;
if ((autoComplete->mIsGetDefinition) && (autoComplete->IsAutocompleteNode(elementTypeRef)))
{
BfAstNode* baseNode = elementTypeRef;
while (true)
{
if (auto qualifiedTypeRef = BfNodeDynCast<BfQualifiedTypeReference>(baseNode))
{
baseNode = qualifiedTypeRef->mRight;
}
else if (auto elementedTypeRef = BfNodeDynCast<BfElementedTypeRef>(baseNode))
{
baseNode = elementedTypeRef->mElementType;
}
else if (auto namedTypeRef = BfNodeDynCast<BfNamedTypeReference>(baseNode))
{
baseNode = namedTypeRef->mNameNode;
}
else if (auto qualifiedNameNode = BfNodeDynCast<BfQualifiedNameNode>(baseNode))
{
baseNode = qualifiedNameNode->mRight;
}
else if (auto declTypeRef = BfNodeDynCast<BfDeclTypeRef>(baseNode))
{
baseNode = NULL;
break;
}
else
break;
}
if ((baseNode != NULL) && (autoComplete->IsAutocompleteNode(baseNode)))
{
// We didn't have this mDefType check before - why? We always want to catch the FIRST definition,
// so 'Type?' will catch on 'Type' and not 'Type?'
if ((autoComplete->mDefType == NULL) &&
(autoComplete->mDefMethod == NULL) && (autoComplete->mDefField == NULL) &&
(autoComplete->mDefProp == NULL) && (elementTypeInst->mTypeDef->mTypeDeclaration != NULL))
{
autoComplete->mDefType = elementTypeInst->mTypeDef;
autoComplete->SetDefinitionLocation(elementTypeInst->mTypeDef->mTypeDeclaration->mNameNode);
}
}
}
}
}
}
}
}
if (resolvedTypeRef == NULL)
return NULL;
if (resolvedTypeRef->IsTuple())
{
// Add the fields from the tuple as references since those inner fields types would have been explicitly stated, so we need
// to make sure to record the current type instance as a referring type. This mostly matters for symbol renaming.
BfTupleType* payloadTupleType = (BfTupleType*)resolvedTypeRef;
for (auto& payloadFieldInst : payloadTupleType->mFieldInstances)
{
auto payloadFieldType = payloadFieldInst.mResolvedType;
AddDependency(payloadFieldType, mCurTypeInstance, BfDependencyMap::DependencyFlag_TypeReference);
}
}
else if (resolvedTypeRef->IsDelegateFromTypeRef() || resolvedTypeRef->IsFunctionFromTypeRef())
{
auto delegateType = (BfDelegateType*)resolvedTypeRef;
auto invokeMethod = GetDelegateInvokeMethod(delegateType);
AddDependency(invokeMethod->mReturnType, mCurTypeInstance, BfDependencyMap::DependencyFlag_TypeReference);
for (auto& param : invokeMethod->mParams)
{
AddDependency(param.mResolvedType, mCurTypeInstance, BfDependencyMap::DependencyFlag_TypeReference);
}
}
BfGenericTypeInstance* genericTypeInstance = NULL;
if (resolvedTypeRef != NULL)
genericTypeInstance = resolvedTypeRef->ToGenericTypeInstance();
bool hadError = false;
hadError = !PopulateType(resolvedTypeRef, populateType);
if ((genericTypeInstance != NULL) && (genericTypeInstance != mCurTypeInstance) && (populateType > BfPopulateType_Identity))
{
if (((genericTypeInstance->mHadValidateErrors) || (!genericTypeInstance->mValidatedGenericConstraints) || (genericTypeInstance->mIsUnspecializedVariation)) &&
((mCurMethodInstance == NULL) || (!mCurMethodInstance->mIsUnspecializedVariation)) &&
((mCurTypeInstance == NULL) || (!mCurTypeInstance->IsUnspecializedTypeVariation())))
ValidateGenericConstraints(typeRef, genericTypeInstance, false);
}
if (populateType != BfPopulateType_IdentityNoRemapAlias)
{
while ((resolvedTypeRef != NULL) && (resolvedTypeRef->IsTypeAlias()))
{
if (mCurTypeInstance != NULL)
AddDependency(resolvedTypeRef, mCurTypeInstance, BfDependencyMap::DependencyFlag_NameReference);
resolvedTypeRef = resolvedTypeRef->GetUnderlyingType();
}
}
return resolvedTypeRef;
}
void BfModule::ShowAmbiguousTypeError(BfAstNode* refNode, BfTypeDef* typeDef, BfTypeDef* otherTypeDef)
{
BfType* type = ResolveTypeDef(typeDef, BfPopulateType_Identity);
if (type == NULL)
return;
BfType* otherType = ResolveTypeDef(otherTypeDef, BfPopulateType_Identity);
if (otherType == NULL)
return;
auto error = Fail(StrFormat("'%s' is an ambiguous reference between '%s' and '%s'",
refNode->ToString().c_str(), TypeToString(type, BfTypeNameFlags_None).c_str(), TypeToString(otherType, BfTypeNameFlags_None).c_str()), refNode); // CS0104
if (error != NULL)
{
mCompiler->mPassInstance->MoreInfo("See first definition", typeDef->mTypeDeclaration->mNameNode);
mCompiler->mPassInstance->MoreInfo("See second definition", otherTypeDef->mTypeDeclaration->mNameNode);
}
}
void BfModule::ShowGenericArgCountError(BfTypeReference* typeRef, int wantedGenericParams)
{
BfGenericInstanceTypeRef* genericTypeInstRef = BfNodeDynCast<BfGenericInstanceTypeRef>(typeRef);
BfAstNode* lastNode = typeRef;
int genericArgDiffCount;
if (genericTypeInstRef != NULL)
{
genericArgDiffCount = (int)genericTypeInstRef->mGenericArguments.size() - wantedGenericParams;
lastNode = genericTypeInstRef->mOpenChevron;
if (genericTypeInstRef->mCloseChevron != NULL)
lastNode = genericTypeInstRef->mCloseChevron;
if (genericTypeInstRef->mGenericArguments.size() > wantedGenericParams)
{
lastNode = genericTypeInstRef->mGenericArguments[wantedGenericParams];
if (genericArgDiffCount == 1)
Fail("Too many generic parameters, expected one fewer", lastNode);
else
Fail(StrFormat("Too many generic parameters, expected %d fewer", genericArgDiffCount), lastNode);
return;
}
}
else
genericArgDiffCount = -wantedGenericParams;
if (wantedGenericParams == 1)
Fail("Too few generic parameters, expected one more", lastNode);
else
Fail(StrFormat("Too few generic parameters, expected %d more", -genericArgDiffCount), lastNode);
}
BfTypeDef* BfModule::GetActiveTypeDef(BfTypeInstance* typeInstanceOverride, bool useMixinDecl)
{
BfTypeDef* useTypeDef = NULL;
BfTypeInstance* typeInstance = (typeInstanceOverride != NULL) ? typeInstanceOverride : mCurTypeInstance;
if (typeInstance != NULL)
useTypeDef = typeInstance->mTypeDef;
if ((mCurMethodState != NULL) && (mCurMethodState->mMixinState != NULL) && (useMixinDecl))
useTypeDef = mCurMethodState->mMixinState->mMixinMethodInstance->mMethodDef->mDeclaringType;
else if ((mCurMethodInstance != NULL) && (mCurMethodInstance->mMethodDef->mDeclaringType != NULL))
useTypeDef = mCurMethodInstance->mMethodDef->mDeclaringType;
else if (mContext->mCurTypeState != NULL)
{
if ((mContext->mCurTypeState->mCurFieldDef != NULL) && (mContext->mCurTypeState->mCurFieldDef->mDeclaringType != NULL))
useTypeDef = mContext->mCurTypeState->mCurFieldDef->mDeclaringType;
else if (mContext->mCurTypeState->mCurTypeDef != NULL)
useTypeDef = mContext->mCurTypeState->mCurTypeDef;
}
return useTypeDef;
}
BfTypeDef* BfModule::FindTypeDefRaw(const BfAtomComposite& findName, int numGenericArgs, BfTypeInstance* typeInstance, BfTypeDef* useTypeDef, BfTypeLookupError* error)
{
if ((findName.mSize == 1) && (findName.mParts[0]->mIsSystemType))
{
//BP_ZONE("BfModule::FindTypeDefRaw_1");
return mSystem->FindTypeDef(findName, 0, useTypeDef->mProject);
}
BfTypeInstance* skipCheckBaseType = NULL;
if ((mContext->mCurTypeState != NULL) && (mContext->mCurTypeState->mCurBaseTypeRef != NULL))
skipCheckBaseType = mContext->mCurTypeState->mTypeInstance;
BfTypeDefLookupContext lookupCtx;
bool allowPrivate = true;
int curPri = 1000;
auto checkTypeInst = typeInstance;
BfTypeDef* protErrorTypeDef = NULL;
BfTypeInstance* protErrorOuterType = NULL;
if (!lookupCtx.HasValidMatch())
{
std::function<bool(BfTypeInstance*)> _CheckType = [&](BfTypeInstance* typeInstance)
{
auto checkTypeInst = typeInstance;
allowPrivate = true;
while (checkTypeInst != NULL)
{
if (!checkTypeInst->mTypeDef->mNestedTypes.IsEmpty())
{
if (mSystem->FindTypeDef(findName, numGenericArgs, useTypeDef->mProject, checkTypeInst->mTypeDef->mFullNameEx, allowPrivate, &lookupCtx))
{
if (lookupCtx.HasValidMatch())
return true;
if ((lookupCtx.mBestTypeDef->mProtection == BfProtection_Private) && (!allowPrivate))
{
protErrorTypeDef = lookupCtx.mBestTypeDef;
protErrorOuterType = checkTypeInst;
}
}
}
if (checkTypeInst == skipCheckBaseType)
break;
if (checkTypeInst->mTypeDef == mCompiler->mNullableTypeDef)
{
NOP;
}
checkTypeInst = GetBaseType(checkTypeInst);
allowPrivate = false;
}
checkTypeInst = typeInstance;
allowPrivate = true;
while (checkTypeInst != NULL)
{
auto outerTypeInst = GetOuterType(checkTypeInst);
if (outerTypeInst != NULL)
{
if (_CheckType(outerTypeInst))
return true;
}
if (checkTypeInst == skipCheckBaseType)
break;
checkTypeInst = GetBaseType(checkTypeInst);
allowPrivate = false;
}
return false;
};
_CheckType(typeInstance);
}
if (!lookupCtx.HasValidMatch())
{
if (mSystem->mTypeDefs.TryGet(findName, NULL))
mSystem->FindTypeDef(findName, numGenericArgs, useTypeDef->mProject, BfAtomComposite(), allowPrivate, &lookupCtx);
for (auto& checkNamespace : useTypeDef->mNamespaceSearch)
{
BfAtom* atom = findName.mParts[0];
BfAtom* prevAtom = checkNamespace.mParts[checkNamespace.mSize - 1];
if (atom->mPrevNamesMap.ContainsKey(prevAtom))
mSystem->FindTypeDef(findName, numGenericArgs, useTypeDef->mProject, checkNamespace, allowPrivate, &lookupCtx);
}
}
if ((error != NULL) && (lookupCtx.mAmbiguousTypeDef != NULL))
{
if (error->mErrorKind == BfTypeLookupError::BfErrorKind_None)
error->mErrorKind = BfTypeLookupError::BfErrorKind_Ambiguous;
error->mAmbiguousTypeDef = lookupCtx.mAmbiguousTypeDef;
if (error->mRefNode != NULL)
ShowAmbiguousTypeError(error->mRefNode, lookupCtx.mBestTypeDef, lookupCtx.mAmbiguousTypeDef);
}
if ((protErrorTypeDef != NULL) && (lookupCtx.mBestTypeDef == protErrorTypeDef) && (error != NULL) && (error->mRefNode != NULL))
Fail(StrFormat("'%s.%s' is inaccessible due to its protection level", TypeToString(protErrorOuterType).c_str(), findName.ToString().c_str()), error->mRefNode); // CS0122
return lookupCtx.mBestTypeDef;
}
BfTypeDef* BfModule::FindTypeDef(const BfAtomComposite& findName, int numGenericArgs, BfTypeInstance* typeInstanceOverride, BfTypeLookupError* error)
{
BP_ZONE("BfModule::FindTypeDef_1");
BfTypeInstance* typeInstance = (typeInstanceOverride != NULL) ? typeInstanceOverride : mCurTypeInstance;
if (typeInstance == NULL)
{
BfProject* project = NULL;
if ((mCompiler->mResolvePassData != NULL) && (mCompiler->mResolvePassData->mParser != NULL))
project = mCompiler->mResolvePassData->mParser->mProject;
BP_ZONE("System.FindTypeDef_2");
BfTypeDef* ambiguousTypeDef = NULL;
BfTypeDef *result = mSystem->FindTypeDef(findName, numGenericArgs, project, Array<BfAtomComposite>(), &ambiguousTypeDef);
if ((ambiguousTypeDef != NULL) && (error != NULL))
{
error->mErrorKind = BfTypeLookupError::BfErrorKind_Ambiguous;
error->mAmbiguousTypeDef = ambiguousTypeDef;
if (error->mRefNode != NULL)
ShowAmbiguousTypeError(error->mRefNode, result, ambiguousTypeDef);
}
return result;
}
auto useTypeDef = GetActiveTypeDef(typeInstanceOverride, true);
if ((mCompiler->mResolvePassData != NULL) && (mCompiler->mResolvePassData->mAutoComplete != NULL))
{
if (mCompiler->mResolvePassData->mAutoCompleteTempTypes.Contains(useTypeDef))
return FindTypeDefRaw(findName, numGenericArgs, typeInstance, useTypeDef, error);
}
BfTypeLookupEntry typeLookupEntry;
typeLookupEntry.mName = findName;
typeLookupEntry.mNumGenericParams = numGenericArgs;
typeLookupEntry.mUseTypeDef = useTypeDef;
BfTypeLookupEntry* typeLookupEntryPtr = NULL;
BfTypeLookupResult* resultPtr = NULL;
if (typeInstance->mLookupResults.TryAdd(typeLookupEntry, &typeLookupEntryPtr, &resultPtr))
{
typeLookupEntryPtr->mAtomUpdateIdx = typeLookupEntry.mName.GetAtomUpdateIdx();
// FindTypeDefRaw may re-enter when finding base types, so we need to expect that resultPtr can change
resultPtr->mForceLookup = true;
resultPtr->mTypeDef = NULL;
int prevAllocSize = (int)typeInstance->mLookupResults.size();
BfTypeLookupError localError;
BfTypeLookupError* errorPtr = (error != NULL) ? error : &localError;
auto typeDef = FindTypeDefRaw(findName, numGenericArgs, typeInstance, useTypeDef, errorPtr);
if (prevAllocSize != typeInstance->mLookupResults.size())
{
bool found = typeInstance->mLookupResults.TryGetValue(typeLookupEntry, &resultPtr);
BF_ASSERT(found);
}
resultPtr->mTypeDef = typeDef;
resultPtr->mForceLookup = errorPtr->mErrorKind != BfTypeLookupError::BfErrorKind_None;
return typeDef;
}
else
{
if (resultPtr->mForceLookup)
return FindTypeDefRaw(findName, numGenericArgs, typeInstance, useTypeDef, error);
else
return resultPtr->mTypeDef;
}
}
BfTypeDef* BfModule::FindTypeDef(const StringImpl& typeName, int numGenericArgs, BfTypeInstance* typeInstanceOverride, BfTypeLookupError* error)
{
BP_ZONE("BfModule::FindTypeDef_4");
BfSizedAtomComposite findName;
if (!mSystem->ParseAtomComposite(typeName, findName))
return NULL;
auto result = FindTypeDef(findName, numGenericArgs, typeInstanceOverride, error);
BF_ASSERT((result == NULL) || (result->mTypeCode != BfTypeCode_Extension));
return result;
}
BfTypeDef* BfModule::FindTypeDef(BfTypeReference* typeRef, BfTypeInstance* typeInstanceOverride, BfTypeLookupError* error, int numGenericParams)
{
BP_ZONE("BfModule::FindTypeDef_5");
if (auto typeDefTypeRef = BfNodeDynCast<BfDirectTypeDefReference>(typeRef))
{
if (typeDefTypeRef->mTypeDef != NULL)
return mSystem->FilterDeletedTypeDef(typeDefTypeRef->mTypeDef);
}
//TODO: When does this get called?
if (auto elementedType = BfNodeDynCast<BfElementedTypeRef>(typeRef))
return FindTypeDef(elementedType->mElementType, typeInstanceOverride, error);
BF_ASSERT(typeRef->IsA<BfNamedTypeReference>() || typeRef->IsA<BfQualifiedTypeReference>() || typeRef->IsA<BfDirectStrTypeReference>());
auto namedTypeRef = BfNodeDynCast<BfNamedTypeReference>(typeRef);
StringView findNameStr;
if (namedTypeRef != NULL)
findNameStr = namedTypeRef->mNameNode->ToStringView();
else
{
auto directStrTypeDef = BfNodeDynCastExact<BfDirectStrTypeReference>(typeRef);
if (directStrTypeDef != NULL)
findNameStr = directStrTypeDef->mTypeName;
else
BF_FATAL("Error?");
}
if (findNameStr.mLength == 6)
{
if (findNameStr == "object")
{
findNameStr = "System.Object";
Fail("'object' alias not supported, use 'Object'", typeRef);
}
else if (findNameStr == "string")
{
findNameStr = "System.String";
Fail("'string' alias not supported, use 'String'", typeRef);
}
}
BfSizedAtomComposite findName;
if (!mSystem->ParseAtomComposite(findNameStr, findName))
{
return NULL;
}
#ifdef BF_AST_HAS_PARENT_MEMBER
if (auto parentGenericTypeRef = BfNodeDynCast<BfGenericInstanceTypeRef>(typeRef->mParent))
{
if (parentGenericTypeRef->mElementType == typeRef)
BF_ASSERT(numGenericParams == parentGenericTypeRef->GetGenericArgCount());
}
#endif
auto typeDef = FindTypeDef(findName, numGenericParams, typeInstanceOverride, error);
//TYPEDEF if (namedTypeRef != NULL)
// namedTypeRef->mTypeDef = typeDef;
return typeDef;
}
void BfModule::CheckTypeRefFixit(BfAstNode* typeRef, const char* appendName)
{
if ((mCompiler->IsAutocomplete()) && (mCompiler->mResolvePassData->mAutoComplete->CheckFixit((typeRef))))
{
String typeName = typeRef->ToString();
if (appendName != NULL)
typeName += appendName;
std::set<String> fixitNamespaces;
//TODO: Do proper value for numGenericArgs
//mSystem->FindFixitNamespaces(typeName, -1, typeRef->GetSourceData()->mProject, fixitNamespaces);
mSystem->FindFixitNamespaces(typeName, -1, mCompiler->mResolvePassData->mParser->mProject, fixitNamespaces);
int insertLoc = 0;
BfUsingFinder usingFinder;
usingFinder.VisitMembers(typeRef->GetSourceData()->mRootNode);
for (auto& namespaceStr : fixitNamespaces)
{
BfParserData* parser = typeRef->GetSourceData()->ToParserData();
if (parser != NULL)
mCompiler->mResolvePassData->mAutoComplete->AddEntry(AutoCompleteEntry("fixit", StrFormat("using %s;\tusing|%s|%d||using %s;", namespaceStr.c_str(), parser->mFileName.c_str(), usingFinder.mLastIdx, namespaceStr.c_str()).c_str()));
}
}
}
void BfModule::CheckIdentifierFixit(BfAstNode* node)
{
//TODO: Check globals, possibly spelling mistakes?
}
void BfModule::TypeRefNotFound(BfTypeReference* typeRef, const char* appendName)
{
if (typeRef->IsTemporary())
return;
Fail("Type could not be found (are you missing a using directive or library reference?)", typeRef);
if (!mIgnoreErrors)
{
while (auto elementedType = BfNodeDynCast<BfElementedTypeRef>(typeRef))
typeRef = elementedType->mElementType;
if (auto namedTypeRef = BfNodeDynCast<BfNamedTypeReference>(typeRef))
{
String findNameStr = namedTypeRef->mNameNode->ToString();
if (appendName != NULL)
findNameStr += appendName;
BfSizedAtomComposite findName;
if ((!mSystem->ParseAtomComposite(findNameStr, findName)) && (mCurTypeInstance != NULL))
{
//BfTypeInstance* typeInstance = (typeInstanceOverride != NULL) ? typeInstanceOverride : mCurTypeInstance;
// We don't need a typeInstanceOverride because that is used to lookup references
// from mixins, but it's the type using the mixin (mCurTypeInstance) that needs
// rebuilding if the lookup fails
BfTypeInstance* typeInstance = mCurTypeInstance;
BfTypeLookupEntry typeLookupEntry;
typeLookupEntry.mNumGenericParams = 0;
typeLookupEntry.mAtomUpdateIdx = mSystem->mAtomUpdateIdx;
typeInstance->mLookupResults.TryAdd(typeLookupEntry, BfTypeLookupResult());
}
}
}
CheckTypeRefFixit(typeRef, appendName);
}
bool BfModule::ValidateTypeWildcard(BfTypeReference* typeRef, bool isAttributeRef)
{
if (typeRef == NULL)
return false;
if (auto wildcardTypeRef = BfNodeDynCast<BfWildcardTypeReference>(typeRef))
return true;
StringT<128> nameStr;
typeRef->ToString(nameStr);
if (isAttributeRef)
nameStr.Append("Attribute");
auto typeDef = mSystem->FindTypeDef(nameStr, (BfProject*)NULL);
if ((typeDef != NULL) && (typeDef->mGenericParamDefs.IsEmpty()))
return true;
if (auto qualifiedTypeRef = BfNodeDynCast<BfQualifiedTypeReference>(typeRef))
{
if (qualifiedTypeRef->mLeft == NULL)
return false;
StringT<128> leftNameStr;
BfType* leftType = NULL;
BfAtomComposite leftComposite;
qualifiedTypeRef->mLeft->ToString(leftNameStr);
if (!mSystem->ParseAtomComposite(leftNameStr, leftComposite))
return false;
if (auto wildcardTypeRef = BfNodeDynCast<BfWildcardTypeReference>(qualifiedTypeRef->mRight))
{
if (mSystem->ContainsNamespace(leftComposite, NULL))
return true;
return ValidateTypeWildcard(qualifiedTypeRef->mLeft, false);
}
}
if (auto genericTypeRef = BfNodeDynCast<BfGenericInstanceTypeRef>(typeRef))
{
StringT<128> nameStr;
genericTypeRef->mElementType->ToString(nameStr);
auto typeDef = mSystem->FindTypeDef(nameStr, (int)genericTypeRef->mGenericArguments.size(), NULL);
if (typeDef == NULL)
return false;
if (typeDef->mGenericParamDefs.size() != genericTypeRef->GetGenericArgCount())
return false;
for (auto genericArgTypeRef : genericTypeRef->mGenericArguments)
{
if ((genericTypeRef != NULL) && (!ValidateTypeWildcard(genericArgTypeRef, false)))
return false;
}
return true;
}
if (auto elementedTypeRef = BfNodeDynCast<BfElementedTypeRef>(typeRef))
{
return ValidateTypeWildcard(elementedTypeRef->mElementType, false);
}
return false;
}
//int sResolveTypeRefIdx = 0;
BfTypedValue BfModule::TryLookupGenericConstVaue(BfIdentifierNode* identifierNode, BfType* expectingType)
{
BfTypeInstance* contextTypeInstance = mCurTypeInstance;
BfMethodInstance* contextMethodInstance = mCurMethodInstance;
if ((mCurMethodState != NULL) && (mCurMethodState->mMixinState != NULL))
{
contextTypeInstance = mCurMethodState->mMixinState->mMixinMethodInstance->GetOwner();
contextMethodInstance = mCurMethodState->mMixinState->mMixinMethodInstance;
}
BfTypeDef* curTypeDef = NULL;
if (contextTypeInstance != NULL)
{
curTypeDef = contextTypeInstance->mTypeDef;
StringT<128> findName;
identifierNode->ToString(findName);
auto genericCheckTypeInstance = contextTypeInstance;
if (contextTypeInstance->IsBoxed())
genericCheckTypeInstance = contextTypeInstance->GetUnderlyingType()->ToTypeInstance();
bool doFakeVal = false;
if (genericCheckTypeInstance->IsUnspecializedTypeVariation())
{
genericCheckTypeInstance = GetUnspecializedTypeInstance(genericCheckTypeInstance);
doFakeVal = true;
}
BfGenericParamDef* genericParamDef = NULL;
BfType* genericParamResult = NULL;
BfType* genericTypeConstraint = NULL;
bool disallowConstExprValue = false;
if ((genericCheckTypeInstance != NULL) && (genericCheckTypeInstance->IsGenericTypeInstance()))
{
auto genericTypeInst = (BfGenericTypeInstance*)genericCheckTypeInstance;
auto* genericParams = &curTypeDef->mGenericParamDefs;
if (genericTypeInst->mGenericExtensionInfo != NULL)
{
auto activeTypeDef = GetActiveTypeDef(NULL, true);
genericParams = &activeTypeDef->mGenericParamDefs;
}
for (int genericParamIdx = (int)genericParams->size() - 1; genericParamIdx >= 0; genericParamIdx--)
{
auto checkGenericParamDef = (*genericParams)[genericParamIdx];
String genericName = checkGenericParamDef->mName;
if (genericName == findName)
{
genericParamDef = checkGenericParamDef;
genericParamResult = genericTypeInst->mTypeGenericArguments[genericParamIdx];
genericTypeConstraint = genericTypeInst->mGenericParams[genericParamIdx]->mTypeConstraint;
HandleTypeGenericParamRef(identifierNode, genericTypeInst->mTypeDef, genericParamIdx);
}
}
}
if ((contextMethodInstance != NULL) && (genericParamResult == NULL))
{
for (int genericParamIdx = (int)contextMethodInstance->mMethodDef->mGenericParams.size() - 1; genericParamIdx >= 0; genericParamIdx--)
{
auto checkGenericParamDef = contextMethodInstance->mMethodDef->mGenericParams[genericParamIdx];
String genericName = checkGenericParamDef->mName;
if (genericName == findName)
{
genericParamDef = checkGenericParamDef;
genericParamResult = contextMethodInstance->mMethodInfoEx->mMethodGenericArguments[genericParamIdx];
genericTypeConstraint = contextMethodInstance->mMethodInfoEx->mGenericParams[genericParamIdx]->mTypeConstraint;
HandleMethodGenericParamRef(identifierNode, contextMethodInstance->GetOwner()->mTypeDef, contextMethodInstance->mMethodDef, genericParamIdx);
}
}
}
if (genericParamResult != NULL)
{
auto typeRefSource = identifierNode->GetSourceData();
if ((mCompiler->mResolvePassData != NULL) && (mCompiler->mResolvePassData->mSourceClassifier != NULL) && (typeRefSource != NULL) && (typeRefSource == mCompiler->mResolvePassData->mParser->mSourceData))
mCompiler->mResolvePassData->mSourceClassifier->SetElementType(identifierNode, BfSourceElementType_TypeRef);
if (genericParamResult->IsConstExprValue())
{
BfConstExprValueType* constExprValueType = (BfConstExprValueType*)genericParamResult;
BfExprEvaluator exprEvaluator(this);
exprEvaluator.mExpectingType = genericTypeConstraint;
exprEvaluator.GetLiteral(identifierNode, constExprValueType->mValue);
// We don't want to validate type here
return exprEvaluator.mResult;
}
else if (genericParamResult->IsGenericParam())
{
if ((doFakeVal) && (genericTypeConstraint != NULL))
{
return BfTypedValue(mBfIRBuilder->GetFakeVal(), genericTypeConstraint);
}
if ((genericParamDef->mGenericParamFlags & BfGenericParamFlag_Const) == 0)
Fail("Only const generic parameters can be used a value", identifierNode);
if ((genericTypeConstraint != NULL) && (expectingType != NULL))
{
if (!CanImplicitlyCast(BfTypedValue(mBfIRBuilder->GetFakeVal(), genericTypeConstraint), expectingType))
{
Fail(StrFormat("Generic constraint '%s' is not convertible to 'int'", TypeToString(genericTypeConstraint).c_str()), identifierNode);
}
}
BfTypedValue result;
result.mType = genericParamResult;
result.mKind = BfTypedValueKind_GenericConstValue;
return result;
}
}
}
return BfTypedValue();
}
BfType* BfModule::ResolveTypeRef(BfTypeReference* typeRef, BfPopulateType populateType, BfResolveTypeRefFlags resolveFlags)
{
BP_ZONE("BfModule::ResolveTypeRef");
if (typeRef == NULL)
{
AssertErrorState();
return NULL;
}
if (resolveFlags & BfResolveTypeRefFlag_AutoComplete)
{
resolveFlags = (BfResolveTypeRefFlags)(resolveFlags & ~BfResolveTypeRefFlag_AutoComplete);
auto autoComplete = mCompiler->GetAutoComplete();
if (autoComplete != NULL)
autoComplete->CheckTypeRef(typeRef, false);
}
if ((resolveFlags & BfResolveTypeRefFlag_AllowRef) == 0)
{
if (auto refTypeRef = BfNodeDynCast<BfRefTypeRef>(typeRef))
{
const char* refTypeStr = BfTokenToString(refTypeRef->mRefToken->mToken);
Fail(StrFormat("Invalid use of '%s'. Only method parameters, return types, and local variables can be declared as %s types", refTypeStr, refTypeStr), refTypeRef->mRefToken);
return ResolveTypeRef(refTypeRef->mElementType);
}
}
if (auto directTypeRef = BfNodeDynCastExact<BfDirectTypeReference>(typeRef))
{
return directTypeRef->mType;
}
if (auto dotType = BfNodeDynCastExact<BfDotTypeReference>(typeRef))
{
Fail("Invalid use of '.'", typeRef);
return NULL;
}
if (auto varRefType = BfNodeDynCastExact<BfVarRefTypeReference>(typeRef))
{
Fail("Invalid use of 'var ref'. Generally references are generated with a 'var' declaration with 'ref' applied to the initializer", typeRef);
return NULL;
}
if (mNoResolveGenericParams)
resolveFlags = (BfResolveTypeRefFlags)(resolveFlags | BfResolveTypeRefFlag_NoResolveGenericParam);
SetAndRestoreValue<bool> prevNoResolveGenericParams(mNoResolveGenericParams, (resolveFlags & BfResolveTypeRefFlag_NoResolveGenericParam) != 0);
//
resolveFlags = (BfResolveTypeRefFlags)(resolveFlags & ~BfResolveTypeRefFlag_NoResolveGenericParam);
BfTypeInstance* contextTypeInstance = mCurTypeInstance;
BfMethodInstance* contextMethodInstance = mCurMethodInstance;
if ((mCurMethodState != NULL) && (mCurMethodState->mMixinState != NULL))
{
contextTypeInstance = mCurMethodState->mMixinState->mMixinMethodInstance->GetOwner();
contextMethodInstance = mCurMethodState->mMixinState->mMixinMethodInstance;
}
BfTypeDef* curTypeDef = NULL;
if (contextTypeInstance != NULL)
{
curTypeDef = contextTypeInstance->mTypeDef;
// Check generics first
auto namedTypeRef = BfNodeDynCastExact<BfNamedTypeReference>(typeRef);
auto directStrTypeRef = BfNodeDynCastExact<BfDirectStrTypeReference>(typeRef);
if (((namedTypeRef != NULL) && (namedTypeRef->mNameNode != NULL)) || (directStrTypeRef != NULL))
{
StringT<128> findName;
if (namedTypeRef != NULL)
namedTypeRef->mNameNode->ToString(findName);
else
findName = directStrTypeRef->mTypeName;
if (findName == "Self")
{
BfType* selfType = mCurTypeInstance;
if (selfType->IsInterface()) // For interfaces, 'Self' refers to the identity of the implementing type, so we use a placeholder
return GetPrimitiveType(BfTypeCode_Self);
else
resolveFlags = (BfResolveTypeRefFlags)(resolveFlags | BfResolveTypeRefFlag_FromIndirectSource);
if (selfType->IsBoxed())
selfType = selfType->GetUnderlyingType();
if ((resolveFlags & BfResolveTypeRefFlag_NoResolveGenericParam) != 0)
{
if ((selfType->IsSpecializedType()) || (selfType->IsUnspecializedTypeVariation()))
selfType = ResolveTypeDef(selfType->ToTypeInstance()->mTypeDef, populateType);
}
if (selfType == NULL)
{
Fail("'Self' type is not usable here", typeRef);
}
return ResolveTypeResult(typeRef, selfType, populateType, resolveFlags);
}
else if (findName == "SelfBase")
{
BfType* selfType = mCurTypeInstance;
if (selfType->IsInterface())
resolveFlags = (BfResolveTypeRefFlags)(resolveFlags | BfResolveTypeRefFlag_FromIndirectSource);
if (selfType->IsBoxed())
selfType = selfType->GetUnderlyingType();
if ((resolveFlags & BfResolveTypeRefFlag_NoResolveGenericParam) != 0)
{
if ((selfType->IsSpecializedType()) || (selfType->IsUnspecializedTypeVariation()))
selfType = ResolveTypeDef(selfType->ToTypeInstance()->mTypeDef, populateType);
}
BfType* baseType = NULL;
if (selfType != NULL)
{
if (selfType->IsTypedPrimitive())
baseType = selfType->GetUnderlyingType();
else
{
auto selfTypeInst = selfType->ToTypeInstance();
if (selfTypeInst != NULL)
{
baseType = selfTypeInst->mBaseType;
}
}
}
if (baseType == NULL)
{
Fail("'SelfBase' type is not usable here", typeRef);
}
return ResolveTypeResult(typeRef, baseType, populateType, resolveFlags);
}
else if (findName == "ExpectedType")
{
Fail("'ExpectedType' is not usable here", typeRef);
return ResolveTypeResult(typeRef, NULL, populateType, resolveFlags);
}
auto genericCheckTypeInstance = contextTypeInstance;
if (contextTypeInstance->IsBoxed())
genericCheckTypeInstance = contextTypeInstance->GetUnderlyingType()->ToTypeInstance();
BfGenericParamDef* genericParamDef = NULL;
BfType* genericParamResult = NULL;
bool disallowConstExprValue = false;
if ((genericCheckTypeInstance != NULL) && (genericCheckTypeInstance->IsGenericTypeInstance()))
{
auto genericTypeInst = (BfGenericTypeInstance*)genericCheckTypeInstance;
auto* genericParams = &curTypeDef->mGenericParamDefs;
if (genericTypeInst->mGenericExtensionInfo != NULL)
{
auto activeTypeDef = GetActiveTypeDef(NULL, true);
genericParams = &activeTypeDef->mGenericParamDefs;
}
for (int genericParamIdx = (int)genericParams->size() - 1; genericParamIdx >= 0; genericParamIdx--)
{
auto checkGenericParamDef = (*genericParams)[genericParamIdx];
String genericName = checkGenericParamDef->mName;
if (genericName == findName)
{
genericParamDef = checkGenericParamDef;
if (((genericParamDef->mGenericParamFlags & BfGenericParamFlag_Const) != 0) &&
((resolveFlags & BfResolveTypeRefFlag_AllowGenericTypeParamConstValue) == 0))
disallowConstExprValue = true;
HandleTypeGenericParamRef(typeRef, curTypeDef, genericParamIdx);
if ((resolveFlags & BfResolveTypeRefFlag_NoResolveGenericParam) != 0)
return GetGenericParamType(BfGenericParamKind_Type, genericParamIdx);
else
{
SetAndRestoreValue<BfGetSymbolReferenceKind> prevSymbolRefKind;
if (mCompiler->mResolvePassData != NULL) // Don't add these typeRefs, they are indirect
prevSymbolRefKind.Init(mCompiler->mResolvePassData->mGetSymbolReferenceKind, BfGetSymbolReferenceKind_None);
genericParamResult = genericTypeInst->mTypeGenericArguments[genericParamIdx];
if ((genericParamResult != NULL) &&
(genericParamResult->IsConstExprValue()) &&
((resolveFlags & BfResolveTypeRefFlag_AllowGenericTypeParamConstValue) == 0))
disallowConstExprValue = true;
}
}
}
}
if ((contextMethodInstance != NULL) && (genericParamResult == NULL))
{
BfMethodInstance* prevMethodInstance = NULL;
// If we're in a closure then use the outside method generic arguments
auto checkMethodInstance = contextMethodInstance;
if ((mCurMethodState != NULL) && (checkMethodInstance->mIsClosure))
{
auto checkMethodState = mCurMethodState;
while (checkMethodState != NULL)
{
if ((checkMethodState->mMethodInstance != NULL) && (checkMethodState->mMethodInstance->mIsClosure))
{
checkMethodInstance = checkMethodState->mPrevMethodState->mMethodInstance;
}
checkMethodState = checkMethodState->mPrevMethodState;
}
}
for (int genericParamIdx = (int)checkMethodInstance->mMethodDef->mGenericParams.size() - 1; genericParamIdx >= 0; genericParamIdx--)
{
auto checkGenericParamDef = checkMethodInstance->mMethodDef->mGenericParams[genericParamIdx];
String genericName = checkGenericParamDef->mName;
if (genericName == findName)
{
genericParamDef = checkGenericParamDef;
if (((genericParamDef->mGenericParamFlags & BfGenericParamFlag_Const) != 0) &&
((resolveFlags & BfResolveTypeRefFlag_AllowGenericMethodParamConstValue) == 0))
disallowConstExprValue = true;
HandleMethodGenericParamRef(typeRef, checkMethodInstance->GetOwner()->mTypeDef, checkMethodInstance->mMethodDef, genericParamIdx);
if ((resolveFlags & BfResolveTypeRefFlag_NoResolveGenericParam) != 0)
return GetGenericParamType(BfGenericParamKind_Method, genericParamIdx);
else
{
SetAndRestoreValue<BfGetSymbolReferenceKind> prevSymbolRefKind;
if (mCompiler->mResolvePassData != NULL) // Don't add these typeRefs, they are indirect
prevSymbolRefKind.Init(mCompiler->mResolvePassData->mGetSymbolReferenceKind, BfGetSymbolReferenceKind_None);
genericParamResult = checkMethodInstance->mMethodInfoEx->mMethodGenericArguments[genericParamIdx];
if ((genericParamResult != NULL) &&
(genericParamResult->IsConstExprValue()) &&
((resolveFlags & BfResolveTypeRefFlag_AllowGenericMethodParamConstValue) == 0))
disallowConstExprValue = true;
}
}
}
}
if (genericParamResult != NULL)
{
if (disallowConstExprValue)
{
Fail("Invalid use of constant generic value", typeRef);
return ResolveTypeResult(typeRef, NULL, populateType, resolveFlags);
}
if (genericParamResult->IsRef())
{
if ((resolveFlags & BfResolveTypeRefFlag_AllowRefGeneric) == 0)
genericParamResult = genericParamResult->GetUnderlyingType();
}
return ResolveTypeResult(typeRef, genericParamResult, populateType, (BfResolveTypeRefFlags)(resolveFlags | BfResolveTypeRefFlag_FromIndirectSource));
}
}
}
BfTypeDef* typeDef = NULL;
if (typeRef->IsNamedTypeReference())
{
BfTypeLookupError error;
error.mRefNode = typeRef;
typeDef = FindTypeDef(typeRef, contextTypeInstance, &error);
if (auto namedTypeRef = BfNodeDynCast<BfNamedTypeReference>(typeRef))
{
if (auto qualifiedNameNode = BfNodeDynCast<BfQualifiedNameNode>(namedTypeRef->mNameNode))
{
// This handles the case where we have an "BaseClass.InnerClass", but the name is qualified as "DerivedClass.InnerClass"
auto leftType = ResolveTypeRef(qualifiedNameNode->mLeft, NULL, BfPopulateType_Identity, (BfResolveTypeRefFlags)(resolveFlags | BfResolveTypeRefFlag_NoResolveGenericParam | BfResolveTypeRefFlag_AllowRef));
if ((leftType != NULL) && (qualifiedNameNode->mRight != NULL))
{
// Try searching within inner type
auto resolvedType = ResolveInnerType(leftType, qualifiedNameNode->mRight, populateType, true);
if (resolvedType != NULL)
{
if (mCurTypeInstance != NULL)
AddDependency(leftType, mCurTypeInstance, BfDependencyMap::DependencyFlag_NameReference);
return ResolveTypeResult(typeRef, resolvedType, populateType, resolveFlags);
}
}
}
}
if ((typeDef == NULL) && (mCurTypeInstance != NULL))
{
// Try searching within inner type
auto checkOuterType = mCurTypeInstance;
while (checkOuterType != NULL)
{
// We check for mBaseType to not be NULL because we can't inherit from an inner type, so don't even search there
// Causes reference cycles (bad).
if ((checkOuterType != mCurTypeInstance) || (checkOuterType->mBaseType != NULL))
{
auto resolvedType = ResolveInnerType(checkOuterType, typeRef, populateType, true);
if (resolvedType != NULL)
{
if (mCurTypeInstance != NULL)
AddDependency(checkOuterType, mCurTypeInstance, BfDependencyMap::DependencyFlag_NameReference);
return ResolveTypeResult(typeRef, resolvedType, populateType, resolveFlags);
}
}
checkOuterType = GetOuterType(checkOuterType);
}
}
if (typeDef == NULL)
{
#ifdef BF_AST_HAS_PARENT_MEMBER
if (auto parentQualifiedTypeRef = BfNodeDynCast<BfQualifiedTypeReference>(typeRef->mParent))
{
BF_ASSERT(typeRef->mParent == mParentNodeEntry->mNode);
}
#endif
if (mParentNodeEntry != NULL)
{
if (auto parentQualifiedTypeRef = BfNodeDynCast<BfQualifiedTypeReference>(mParentNodeEntry->mNode))
{
if (typeRef == parentQualifiedTypeRef->mLeft)
{
if ((resolveFlags & BfResolveTypeRefFlag_IgnoreLookupError) == 0)
TypeRefNotFound(typeRef);
return ResolveTypeResult(typeRef, NULL, populateType, resolveFlags);
}
}
}
if ((resolveFlags & BfResolveTypeRefFlag_IgnoreLookupError) == 0)
{
TypeRefNotFound(typeRef);
return ResolveTypeResult(typeRef, NULL, populateType, resolveFlags);
}
return NULL;
}
}
else if (auto typeDefTypeRef = BfNodeDynCastExact<BfDirectTypeDefReference>(typeRef))
{
typeDef = typeDefTypeRef->mTypeDef;
}
if (auto qualifiedTypeRef = BfNodeDynCast<BfQualifiedTypeReference>(typeRef))
{
//TODO: Determine why we had this prevIgnoreErrors set here. It causes things like IEnumerator<Hey.Test<INVALIDNAME>> not fail
// properly on INVALIDNAME
SetAndRestoreValue<bool> prevIgnoreErrors(mIgnoreErrors, /*true*/mIgnoreErrors);
StringView leftNameStr;
BfType* leftType = NULL;
BfSizedAtomComposite leftComposite;
bool leftIsValid = false;
//bool leftIsValid = (qualifiedTypeRef->mLeft != NULL) && mSystem->ParseAtomComposite(qualifiedTypeRef->mLeft->ToString(), leftComposite);
if (qualifiedTypeRef->mLeft != NULL)
{
leftNameStr = qualifiedTypeRef->mLeft->ToStringView();
if (mSystem->ParseAtomComposite(leftNameStr, leftComposite))
leftIsValid = true;
}
if ((leftIsValid) && (qualifiedTypeRef->mRight != NULL))
{
StringT<128> findName;
auto genericTypeRef = BfNodeDynCast<BfGenericInstanceTypeRef>(qualifiedTypeRef->mRight);
auto activeTypeDef = GetActiveTypeDef();
BfProject* bfProject = NULL;
if (activeTypeDef != NULL)
bfProject = activeTypeDef->mProject;
if (mSystem->ContainsNamespace(leftComposite, bfProject))
{
qualifiedTypeRef->mLeft->ToString(findName);
findName.Append('.');
if (genericTypeRef != NULL)
genericTypeRef->mElementType->ToString(findName);
else
qualifiedTypeRef->mRight->ToString(findName);
}
else if ((activeTypeDef != NULL) && (activeTypeDef->mNamespace.EndsWith(leftComposite)))
{
// Partial namespace reference, extend to a full reference
findName += activeTypeDef->mNamespace.ToString();
findName.Append('.');
qualifiedTypeRef->mRight->ToString(findName);
}
if (!findName.IsEmpty())
{
int wantNumGenericArgs = 0;
#ifdef BF_AST_HAS_PARENT_MEMBER
if (auto genericTypeParent = BfNodeDynCast<BfGenericInstanceTypeRef>(typeRef->mParent))
{
BF_ASSERT(mParentNodeEntry->mNode == genericTypeParent);
//wantNumGenericArgs = (int)genericTypeParent->mGenericArguments.size();
//genericTypeRef = genericTypeParent;
}
#endif
if (mParentNodeEntry != NULL)
{
if (auto genericTypeParent = BfNodeDynCast<BfGenericInstanceTypeRef>(mParentNodeEntry->mNode))
{
wantNumGenericArgs = (int)genericTypeParent->mGenericArguments.size();
genericTypeRef = genericTypeParent;
}
}
BfTypeDef* ambiguousTypeDef = NULL;
auto typeDef = mSystem->FindTypeDef(findName, wantNumGenericArgs, bfProject, {}, &ambiguousTypeDef);
if (typeDef != NULL)
{
if (ambiguousTypeDef != NULL)
ShowAmbiguousTypeError(typeRef, typeDef, ambiguousTypeDef);
BfTypeVector genericArgs;
if (populateType != BfPopulateType_TypeDef)
{
if (genericTypeRef != NULL)
{
for (auto genericParamTypeRef : genericTypeRef->mGenericArguments)
{
auto genericParam = ResolveTypeRef(genericParamTypeRef, BfPopulateType_Declaration);
if (genericParam == NULL)
return ResolveTypeResult(typeRef, NULL, populateType, resolveFlags);
genericArgs.push_back(genericParam);
}
}
if (typeDef->mGenericParamDefs.size() != genericArgs.size())
{
prevIgnoreErrors.Restore();
BfAstNode* refNode = typeRef;
if (genericTypeRef != NULL)
refNode = genericTypeRef->mOpenChevron;
int wantedGenericParams = (int)typeDef->mGenericParamDefs.size();
if (wantedGenericParams == 1)
Fail("Expected one generic argument", refNode);
else
Fail(StrFormat("Expected %d generic arguments", wantedGenericParams), refNode);
return ResolveTypeResult(typeRef, NULL, populateType, resolveFlags);
}
}
return ResolveTypeResult(typeRef, ResolveTypeDef(typeDef, genericArgs, populateType), populateType, resolveFlags);
}
}
}
if (leftType == NULL)
{
BfAutoParentNodeEntry autoParentNodeEntry(this, qualifiedTypeRef);
leftType = ResolveTypeRef(qualifiedTypeRef->mLeft, BfPopulateType_Declaration, BfResolveTypeRefFlag_IgnoreLookupError); // We throw an error below if we can't find the type
}
if (leftType == NULL)
{
mIgnoreErrors = prevIgnoreErrors.mPrevVal;
BfTypeReference* errorRefNode = qualifiedTypeRef->mLeft;
if ((leftIsValid) && (mCurTypeInstance != NULL) && (mSystem->ContainsNamespace(leftComposite, mCurTypeInstance->mTypeDef->mProject)))
{
// The left was a namespace name, so throw an error on the whole string
errorRefNode = qualifiedTypeRef;
}
TypeRefNotFound(errorRefNode);
return ResolveTypeResult(typeRef, NULL, populateType, resolveFlags);
}
prevIgnoreErrors.Restore();
if (qualifiedTypeRef->mRight == NULL)
{
FailAfter("Expected identifier", qualifiedTypeRef->mDot);
//AssertErrorState();
return ResolveTypeResult(typeRef, NULL, populateType, resolveFlags);
}
auto resolvedType = ResolveInnerType(leftType, qualifiedTypeRef->mRight, populateType);
if ((resolvedType != NULL) && (mCurTypeInstance != NULL))
AddDependency(leftType, mCurTypeInstance, BfDependencyMap::DependencyFlag_NameReference);
return ResolveTypeResult(typeRef, resolvedType, populateType, resolveFlags);
// If we did a ResolveTypeResult, then that may process an alias as the alias-to type instead of the actual alias
//return ResolveInnerType(leftType, qualifiedTypeRef->mRight, populateType);
}
if (auto resolvedTypeRef = BfNodeDynCast<BfResolvedTypeReference>(typeRef))
{
return ResolveTypeResult(typeRef, resolvedTypeRef->mType, populateType, resolveFlags);
}
if (auto retTypeTypeRef = BfNodeDynCastExact<BfRetTypeTypeRef>(typeRef))
{
bool allowThrough = false;
BfType* resolvedType = NULL;
if (retTypeTypeRef->mElementType != NULL)
{
auto innerType = ResolveTypeRef(retTypeTypeRef->mElementType, BfPopulateType_Declaration, BfResolveTypeRefFlag_AllowGenericParamConstValue);
if (innerType != NULL)
{
if ((innerType->IsDelegate()) || (innerType->IsFunction()))
{
PopulateType(innerType, BfPopulateType_DataAndMethods);
BfMethodInstance* invokeMethodInstance = GetRawMethodInstanceAtIdx(innerType->ToTypeInstance(), 0, "Invoke");
if (invokeMethodInstance != NULL)
{
resolvedType = invokeMethodInstance->mReturnType;
return ResolveTypeResult(typeRef, resolvedType, populateType, resolveFlags);
}
}
else if (innerType->IsGenericParam())
{
if ((mCurTypeInstance != NULL) && (mCurTypeInstance->IsUnspecializedTypeVariation()))
{
// We could have case where we have "rettype(@T0)" and @T0 gets a type variation of @M0, but we can't do a
// GetGenericParamInstance on that
allowThrough = true;
}
else
{
auto genericParamInstance = GetGenericParamInstance((BfGenericParamType*)innerType);
if (genericParamInstance->mTypeConstraint != NULL)
{
if ((genericParamInstance->mTypeConstraint->IsDelegate()) || (genericParamInstance->mTypeConstraint->IsFunction()))
{
resolvedType = GetDelegateReturnType(genericParamInstance->mTypeConstraint);
return ResolveTypeResult(typeRef, resolvedType, populateType, resolveFlags);
}
else if ((genericParamInstance->mTypeConstraint->IsTypeInstance()) &&
((genericParamInstance->mTypeConstraint->ToTypeInstance()->mTypeDef == mCompiler->mDelegateTypeDef) ||
(genericParamInstance->mTypeConstraint->ToTypeInstance()->mTypeDef == mCompiler->mFunctionTypeDef)))
{
allowThrough = true;
}
}
}
}
else if (innerType->IsMethodRef())
{
auto methodRefType = (BfMethodRefType*)innerType;
resolvedType = methodRefType->mMethodRef->mReturnType;
return ResolveTypeResult(typeRef, resolvedType, populateType, resolveFlags);
}
}
}
if (!allowThrough)
{
Fail("'rettype' can only be used on delegate or function types", retTypeTypeRef->mRetTypeToken);
return ResolveTypeResult(typeRef, resolvedType, populateType, resolveFlags);
}
}
if (auto refTypeRef = BfNodeDynCastExact<BfRefTypeRef>(typeRef))
{
if ((refTypeRef->mRefToken != NULL) && (refTypeRef->mRefToken->GetToken() == BfToken_Mut) && (refTypeRef->mElementType != NULL))
{
bool needsRefWrap = false;
auto resolvedType = ResolveTypeRef(refTypeRef->mElementType, BfPopulateType_Identity, BfResolveTypeRefFlag_AllowGenericParamConstValue);
if (resolvedType != NULL)
{
if ((resolvedType->IsComposite()) || (resolvedType->IsGenericParam()))
needsRefWrap = true;
}
if (!needsRefWrap)
{
// Non-composites (including pointers) don't actually need ref-wrapping for 'mut'
return ResolveTypeResult(typeRef, resolvedType, populateType, resolveFlags);
}
}
}
BfResolvedTypeSet::LookupContext lookupCtx;
lookupCtx.mRootTypeRef = typeRef;
lookupCtx.mRootTypeDef = typeDef;
lookupCtx.mModule = this;
BfResolvedTypeSet::Entry* resolvedEntry = NULL;
auto inserted = mContext->mResolvedTypes.Insert(typeRef, &lookupCtx, &resolvedEntry);
if (resolvedEntry == NULL)
{
return ResolveTypeResult(typeRef, NULL, populateType, resolveFlags);
}
if (!inserted)
{
BF_ASSERT(resolvedEntry->mValue != NULL);
return ResolveTypeResult(typeRef, resolvedEntry->mValue, populateType, resolveFlags);
}
if (typeRef->IsTypeDefTypeReference())
{
//BF_ASSERT(typeDefTypeRef->mTypeDef != NULL); // Resolved higher up
//auto typeDef = typeDefTypeRef->mTypeDef;
if ((typeDef->mTypeCode >= BfTypeCode_None) && (typeDef->mTypeCode <= BfTypeCode_Double))
{
BfPrimitiveType* primType = new BfPrimitiveType();
primType->mTypeDef = typeDef;
resolvedEntry->mValue = primType;
BF_ASSERT(BfResolvedTypeSet::Hash(primType, &lookupCtx, false) == resolvedEntry->mHash);
InitType(primType, populateType);
return ResolveTypeResult(typeRef, primType, populateType, resolveFlags);
}
if ((mCurTypeInstance != NULL) && (typeDef->mGenericParamDefs.size() != 0))
{
// Try to inherit generic params from current parent
BfTypeDef* outerType = mSystem->GetCombinedPartial(typeDef->mOuterType);
BF_ASSERT(!outerType->mIsPartial);
if (TypeHasParent(mCurTypeInstance->mTypeDef, outerType))
{
BfType* checkCurType = mCurTypeInstance;
if (checkCurType->IsBoxed())
checkCurType = checkCurType->GetUnderlyingType();
if (checkCurType->IsTypeAlias())
checkCurType = GetOuterType(checkCurType);
BF_ASSERT(checkCurType->IsGenericTypeInstance());
int numParentGenericParams = (int)outerType->mGenericParamDefs.size();
int wantedGenericParams = (int)typeDef->mGenericParamDefs.size() - numParentGenericParams;
if (wantedGenericParams != 0)
{
if (wantedGenericParams == 1)
Fail("Expected generic argument", typeRef);
else
Fail(StrFormat("Expected %d generic arguments", wantedGenericParams), typeRef);
mContext->mResolvedTypes.RemoveEntry(resolvedEntry);
return ResolveTypeResult(typeRef, NULL, populateType, resolveFlags);
}
auto parentGenericTypeInstance = (BfGenericTypeInstance*)checkCurType;
BfGenericTypeInstance* genericTypeInst;
if (typeDef->mTypeCode == BfTypeCode_TypeAlias)
{
auto typeAliasType = new BfGenericTypeAliasType();
genericTypeInst = typeAliasType;
}
else
genericTypeInst = new BfGenericTypeInstance();
genericTypeInst->mTypeDef = typeDef;
for (int i = 0; i < numParentGenericParams; i++)
{
genericTypeInst->mGenericParams.push_back(parentGenericTypeInstance->mGenericParams[i]->AddRef());
genericTypeInst->mTypeGenericArguments.push_back(parentGenericTypeInstance->mTypeGenericArguments[i]);
}
CheckUnspecializedGenericType(genericTypeInst, populateType);
resolvedEntry->mValue = genericTypeInst;
BF_ASSERT(BfResolvedTypeSet::Hash(genericTypeInst, &lookupCtx) == resolvedEntry->mHash);
InitType(genericTypeInst, populateType);
return ResolveTypeResult(typeRef, genericTypeInst, populateType, resolveFlags);
}
}
BfTypeInstance* typeInst;
if (typeDef->mTypeCode == BfTypeCode_TypeAlias)
{
auto typeAliasType = new BfTypeAliasType();
typeInst = typeAliasType;
}
else
{
typeInst = new BfTypeInstance();
}
typeInst->mTypeDef = typeDef;
if (typeInst->mTypeDef->mGenericParamDefs.size() != 0)
{
Fail("Generic type arguments expected", typeRef);
delete typeInst;
mContext->mResolvedTypes.RemoveEntry(resolvedEntry);
return ResolveTypeResult(typeRef, NULL, populateType, resolveFlags);
}
resolvedEntry->mValue = typeInst;
BF_ASSERT(BfResolvedTypeSet::Hash(typeInst, &lookupCtx) == resolvedEntry->mHash);
InitType(typeInst, populateType);
return ResolveTypeResult(typeRef, typeInst, populateType, resolveFlags);
}
else if (auto arrayTypeRef = BfNodeDynCast<BfArrayTypeRef>(typeRef))
{
if (arrayTypeRef->mDimensions > 4)
{
Fail("Too many array dimensions, consider using a jagged array.", arrayTypeRef);
mContext->mResolvedTypes.RemoveEntry(resolvedEntry);
return ResolveTypeResult(typeRef, NULL, populateType, resolveFlags);
}
auto elementType = ResolveTypeRef(arrayTypeRef->mElementType, BfPopulateType_Declaration, BfResolveTypeRefFlag_AllowGenericParamConstValue);
if (elementType == NULL)
{
mContext->mResolvedTypes.RemoveEntry(resolvedEntry);
return ResolveTypeResult(typeRef, NULL, populateType, resolveFlags);
}
if ((arrayTypeRef->mDimensions == 1) && (arrayTypeRef->mParams.size() == 1))
{
intptr elementCount = -1;
BfExpression* sizeExpr = BfNodeDynCast<BfExpression>(arrayTypeRef->mParams[0]);
BF_ASSERT(sizeExpr != NULL);
if (sizeExpr != NULL)
{
BfConstResolver constResolver(this);
BfType* intType = GetPrimitiveType(BfTypeCode_IntPtr);
constResolver.mExpectingType = intType;
constResolver.mAllowGenericConstValue = true;
BfTypedValue typedVal;
{
SetAndRestoreValue<bool> prevIgnoreErrors(mIgnoreErrors, true);
typedVal = constResolver.Resolve(sizeExpr);
}
if (typedVal.mKind == BfTypedValueKind_GenericConstValue)
{
BfUnknownSizedArrayType* arrayType = new BfUnknownSizedArrayType();
arrayType->mContext = mContext;
arrayType->mElementType = elementType;
arrayType->mElementCount = -1;
arrayType->mElementCountSource = typedVal.mType;
resolvedEntry->mValue = arrayType;
BF_ASSERT(BfResolvedTypeSet::Hash(arrayType, &lookupCtx) == resolvedEntry->mHash);
InitType(arrayType, populateType);
return ResolveTypeResult(typeRef, arrayType, populateType, resolveFlags);
}
if (typedVal)
typedVal = Cast(sizeExpr, typedVal, intType);
if (typedVal)
{
auto constant = mBfIRBuilder->GetConstant(typedVal.mValue);
if (constant != NULL)
{
if (constant->mConstType == BfConstType_Undef)
elementCount = -1; // Undef marker
else if (BfIRBuilder::IsInt(constant->mTypeCode))
elementCount = constant->mInt32;
}
}
}
/*if (elementCount < 0)
{
Fail(StrFormat("Array length '%d' is illegal", elementCount), arrayTypeRef->mParams[0]);
mContext->mResolvedTypes.RemoveEntry(resolvedEntry);
return CreateSizedArrayType(elementType, 0);
}*/
BfSizedArrayType* arrayType = new BfSizedArrayType();
arrayType->mContext = mContext;
arrayType->mElementType = elementType;
arrayType->mElementCount = elementCount;
arrayType->mWantsGCMarking = false; // Fill in in InitType
resolvedEntry->mValue = arrayType;
BF_ASSERT(BfResolvedTypeSet::Hash(arrayType, &lookupCtx) == resolvedEntry->mHash);
InitType(arrayType, populateType);
return ResolveTypeResult(typeRef, arrayType, populateType, resolveFlags);
}
BfArrayType* arrayType = new BfArrayType();
arrayType->mContext = mContext;
arrayType->mDimensions = arrayTypeRef->mDimensions;
arrayType->mTypeDef = mCompiler->GetArrayTypeDef(arrayType->mDimensions);
arrayType->mTypeGenericArguments.push_back(elementType);
resolvedEntry->mValue = arrayType;
CheckUnspecializedGenericType(arrayType, populateType);
BF_ASSERT(BfResolvedTypeSet::Hash(arrayType, &lookupCtx) == resolvedEntry->mHash);
InitType(arrayType, populateType);
return ResolveTypeResult(typeRef, arrayType, populateType, resolveFlags);
}
else if (auto genericTypeInstRef = BfNodeDynCast<BfGenericInstanceTypeRef>(typeRef))
{
int wantNumGenericParams = genericTypeInstRef->GetGenericArgCount();
BfTypeDef* ambiguousTypeDef = NULL;
BfTypeDef* typeDef = ResolveGenericInstanceDef(genericTypeInstRef);
BfGenericTypeInstance* genericTypeInst;
if ((typeDef != NULL) && (typeDef->mTypeCode == BfTypeCode_TypeAlias))
{
auto typeAliasType = new BfGenericTypeAliasType();
genericTypeInst = typeAliasType;
}
else
genericTypeInst = new BfGenericTypeInstance();
genericTypeInst->mContext = mContext;
if (ambiguousTypeDef != NULL)
ShowAmbiguousTypeError(typeRef, typeDef, ambiguousTypeDef);
if (typeDef == NULL)
{
Fail("Unable to resolve type", typeRef);
delete genericTypeInst;
mContext->mResolvedTypes.RemoveEntry(resolvedEntry);
return ResolveTypeResult(typeRef, NULL, populateType, resolveFlags);
}
BF_ASSERT(typeDef->mDefState != BfTypeDef::DefState_Deleted);
if (typeDef->mGenericParamDefs.size() == 0)
{
Fail("Not a generic type", typeRef);
delete genericTypeInst;
mContext->mResolvedTypes.RemoveEntry(resolvedEntry);
return ResolveTypeResult(typeRef, NULL, populateType, resolveFlags);
}
int startDefGenericParamIdx = 0;
genericTypeInst->mTypeDef = typeDef;
if (mCurTypeInstance != NULL)
{
// Copy generic params for our parent type if the current type instance shares that parent type
//auto outerType = mSystem->GetOuterTypeNonPartial(typeDef);
auto outerType = typeDef->mOuterType;
BfTypeDef* commonOuterType = FindCommonOuterType(mCurTypeInstance->mTypeDef, outerType);
if ((commonOuterType) && (mCurTypeInstance->IsGenericTypeInstance()))
{
startDefGenericParamIdx = (int)commonOuterType->mGenericParamDefs.size();
auto parentTypeInstance = (BfGenericTypeInstance*)mCurTypeInstance;
if (parentTypeInstance->IsTypeAlias())
parentTypeInstance = (BfGenericTypeInstance*)GetOuterType(parentTypeInstance)->ToTypeInstance();
for (int i = 0; i < startDefGenericParamIdx; i++)
{
genericTypeInst->mGenericParams.push_back(parentTypeInstance->mGenericParams[i]->AddRef());
genericTypeInst->mTypeGenericArguments.push_back(parentTypeInstance->mTypeGenericArguments[i]);
auto typeGenericArg = genericTypeInst->mTypeGenericArguments[i];
genericTypeInst->mIsUnspecialized |= typeGenericArg->IsGenericParam() || typeGenericArg->IsUnspecializedType();
}
}
}
Array<BfTypeReference*> genericArguments;
std::function<void(BfTypeReference*)> _GetTypeRefs = [&](BfTypeReference* typeRef)
{
if (auto elementedTypeRef = BfNodeDynCast<BfElementedTypeRef>(typeRef))
{
_GetTypeRefs(elementedTypeRef->mElementType);
}
else if (auto qualifiedTypeRef = BfNodeDynCast<BfQualifiedTypeReference>(typeRef))
{
_GetTypeRefs(qualifiedTypeRef->mLeft);
}
if (auto genericTypeRef = BfNodeDynCast<BfGenericInstanceTypeRef>(typeRef))
{
for (auto genericArg : genericTypeRef->mGenericArguments)
genericArguments.push_back(genericArg);
}
};
_GetTypeRefs(genericTypeInstRef);
int wantedGenericParams = (int)typeDef->mGenericParamDefs.size() - startDefGenericParamIdx;
int genericArgDiffCount = (int)genericArguments.size() - wantedGenericParams;
if (genericArgDiffCount != 0)
{
int innerWantedGenericParams = (int)typeDef->mGenericParamDefs.size();
if (typeDef->mOuterType != NULL)
innerWantedGenericParams -= (int)typeDef->mOuterType->mGenericParamDefs.size();
ShowGenericArgCountError(genericTypeInstRef, innerWantedGenericParams);
delete genericTypeInst;
mContext->mResolvedTypes.RemoveEntry(resolvedEntry);
return ResolveTypeResult(typeRef, NULL, populateType, resolveFlags);
}
int genericParamIdx = 0;
for (auto genericArgRef : genericArguments)
{
auto genericArg = ResolveTypeRef(genericArgRef, BfPopulateType_Identity, BfResolveTypeRefFlag_AllowGenericMethodParamConstValue);
if (genericArg == NULL)
{
delete genericTypeInst;
mContext->mResolvedTypes.RemoveEntry(resolvedEntry);
return ResolveTypeResult(typeRef, NULL, populateType, resolveFlags);
}
genericTypeInst->mTypeGenericArguments.push_back(genericArg);
genericTypeInst->mTypeGenericArgumentRefs.push_back(genericArgRef);
genericParamIdx++;
}
resolvedEntry->mValue = genericTypeInst;
CheckUnspecializedGenericType(genericTypeInst, populateType);
BF_ASSERT(BfResolvedTypeSet::Hash(genericTypeInst, &lookupCtx) == resolvedEntry->mHash);
InitType(genericTypeInst, populateType);
return ResolveTypeResult(typeRef, genericTypeInst, populateType, resolveFlags);
}
else if (auto tupleTypeRef = BfNodeDynCast<BfTupleTypeRef>(typeRef))
{
Array<BfType*> types;
Array<String> names;
for (int fieldIdx = 0; fieldIdx < (int)tupleTypeRef->mFieldTypes.size(); fieldIdx++)
{
BfTypeReference* typeRef = tupleTypeRef->mFieldTypes[fieldIdx];
auto type = ResolveTypeRef(typeRef, BfPopulateType_Identity, BfResolveTypeRefFlag_AllowGenericParamConstValue);
if (type == NULL)
{
mContext->mResolvedTypes.RemoveEntry(resolvedEntry);
return ResolveTypeResult(typeRef, NULL, populateType, resolveFlags);
}
String fieldName;
BfIdentifierNode* identifierNode = NULL;
if (fieldIdx < (int)tupleTypeRef->mFieldNames.size())
identifierNode = tupleTypeRef->mFieldNames[fieldIdx];
if (identifierNode != NULL)
fieldName = identifierNode->ToString();
else
fieldName = StrFormat("%d", fieldIdx);
String typeName = TypeToString(type);
types.push_back(type);
names.push_back(fieldName);
}
auto baseType = (BfTypeInstance*)ResolveTypeDef(mContext->mCompiler->mValueTypeTypeDef, BfPopulateType_Identity);
BfTupleType* tupleType = new BfTupleType();
//TODO: Add to correct project
tupleType->Init(baseType->mTypeDef->mProject, baseType);
tupleType->mFieldInstances.Resize(types.size());
for (int fieldIdx = 0; fieldIdx < (int)types.size(); fieldIdx++)
{
BfFieldDef* fieldDef = tupleType->AddField(names[fieldIdx]);
fieldDef->mProtection = (names[fieldIdx][0] == '_') ? BfProtection_Private : BfProtection_Public;
BfFieldInstance* fieldInstance = &tupleType->mFieldInstances[fieldIdx];
fieldInstance->mFieldIdx = fieldIdx;
fieldInstance->SetResolvedType(types[fieldIdx]);
fieldInstance->mOwner = tupleType;
}
tupleType->Finish();
resolvedEntry->mValue = tupleType;
BF_ASSERT(BfResolvedTypeSet::Hash(tupleType, &lookupCtx) == resolvedEntry->mHash);
InitType(tupleType, populateType);
return ResolveTypeResult(typeRef, tupleType, populateType, resolveFlags);
}
else if (auto nullableTypeRef = BfNodeDynCast<BfNullableTypeRef>(typeRef))
{
BfTypeReference* elementTypeRef = nullableTypeRef->mElementType;
auto typeDef = mCompiler->mNullableTypeDef;
auto elementType = ResolveTypeRef(elementTypeRef, BfPopulateType_Declaration, BfResolveTypeRefFlag_AllowGenericParamConstValue);
if (elementType == NULL)
{
mContext->mResolvedTypes.RemoveEntry(resolvedEntry);
return ResolveTypeResult(typeRef, NULL, populateType, resolveFlags);
}
BfGenericTypeInstance* genericTypeInst = new BfGenericTypeInstance();
genericTypeInst->mContext = mContext;
genericTypeInst->mTypeDef = typeDef;
auto genericParamInstance = new BfGenericTypeParamInstance(typeDef, 0);
genericTypeInst->mGenericParams.push_back(genericParamInstance);
genericTypeInst->mTypeGenericArguments.push_back(elementType);
//genericTypeInst->mIsUnspecialized = elementType->IsGenericParam() || elementType->IsUnspecializedType();
CheckUnspecializedGenericType(genericTypeInst, populateType);
resolvedEntry->mValue = genericTypeInst;
BF_ASSERT(BfResolvedTypeSet::Hash(genericTypeInst, &lookupCtx) == resolvedEntry->mHash);
InitType(genericTypeInst, populateType);
return ResolveTypeResult(typeRef, genericTypeInst, populateType, resolveFlags);
}
else if (auto pointerTypeRef = BfNodeDynCast<BfPointerTypeRef>(typeRef))
{
BfPointerType* pointerType = new BfPointerType();
pointerType->mElementType = ResolveTypeRef(pointerTypeRef->mElementType, BfPopulateType_Declaration, BfResolveTypeRefFlag_AllowGenericParamConstValue);
pointerType->mContext = mContext;
if (pointerType->mElementType == NULL)
{
delete pointerType;
mContext->mResolvedTypes.RemoveEntry(resolvedEntry);
return ResolveTypeResult(typeRef, NULL, populateType, resolveFlags);
}
resolvedEntry->mValue = pointerType;
//int hashVal = mContext->mResolvedTypes.Hash(typeRef, &lookupCtx);
BF_ASSERT(BfResolvedTypeSet::Hash(pointerType, &lookupCtx) == resolvedEntry->mHash);
InitType(pointerType, populateType);
return ResolveTypeResult(typeRef, pointerType, populateType, resolveFlags);
}
else if (auto refTypeRef = BfNodeDynCast<BfRefTypeRef>(typeRef))
{
BfRefType* refType = new BfRefType();
refType->mRefKind = BfRefType::RefKind_Ref;
if (refTypeRef->mRefToken == NULL)
refType->mRefKind = BfRefType::RefKind_Ref;
else if (refTypeRef->mRefToken->GetToken() == BfToken_Out)
refType->mRefKind = BfRefType::RefKind_Out;
else if (refTypeRef->mRefToken->GetToken() == BfToken_Mut)
refType->mRefKind = BfRefType::RefKind_Mut;
refType->mElementType = ResolveTypeRef(refTypeRef->mElementType, BfPopulateType_Declaration, BfResolveTypeRefFlag_AllowGenericParamConstValue);
if (refType->mElementType == NULL)
{
delete refType;
mContext->mResolvedTypes.RemoveEntry(resolvedEntry);
return ResolveTypeResult(typeRef, NULL, populateType, resolveFlags);
}
resolvedEntry->mValue = refType;
BF_ASSERT(BfResolvedTypeSet::Hash(refType, &lookupCtx) == resolvedEntry->mHash);
InitType(refType, populateType);
return ResolveTypeResult(typeRef, refType, populateType, resolveFlags);
}
else if (auto delegateTypeRef = BfNodeDynCast<BfDelegateTypeRef>(typeRef))
{
auto returnType = ResolveTypeRef(delegateTypeRef->mReturnType);
if (returnType == NULL)
{
mContext->mResolvedTypes.RemoveEntry(resolvedEntry);
return ResolveTypeResult(typeRef, NULL, populateType, resolveFlags);
}
auto baseDelegateType = ResolveTypeDef(mCompiler->mDelegateTypeDef)->ToTypeInstance();
BfDelegateType* delegateType = new BfDelegateType();
Val128 hashContext;
BfTypeDef* typeDef = new BfTypeDef();
typeDef->mProject = baseDelegateType->mTypeDef->mProject;
typeDef->mSystem = mCompiler->mSystem;
typeDef->mName = mSystem->mEmptyAtom;
if (delegateTypeRef->mTypeToken->GetToken() == BfToken_Delegate)
{
typeDef->mIsDelegate = true;
typeDef->mTypeCode = BfTypeCode_Object;
}
else
{
typeDef->mIsFunction = true;
typeDef->mTypeCode = BfTypeCode_Struct;
}
BfMethodDef* methodDef = new BfMethodDef();
methodDef->mDeclaringType = typeDef;
methodDef->mName = "Invoke";
methodDef->mProtection = BfProtection_Public;
methodDef->mIdx = 0;
methodDef->mIsStatic = !typeDef->mIsDelegate;
auto directTypeRef = BfAstNode::ZeroedAlloc<BfDirectTypeReference>();
delegateType->mDirectAllocNodes.push_back(directTypeRef);
if (typeDef->mIsDelegate)
directTypeRef->Init(delegateType);
else
directTypeRef->Init(ResolveTypeDef(mCompiler->mFunctionTypeDef));
typeDef->mBaseTypes.push_back(directTypeRef);
directTypeRef = BfAstNode::ZeroedAlloc<BfDirectTypeReference>();
delegateType->mDirectAllocNodes.push_back(directTypeRef);
directTypeRef->Init(returnType);
methodDef->mReturnTypeRef = directTypeRef;
AddDependency(directTypeRef->mType, baseDelegateType, BfDependencyMap::DependencyFlag_ParamOrReturnValue);
auto hashVal = mContext->mResolvedTypes.Hash(typeRef, &lookupCtx);
int paramIdx = 0;
for (auto param : delegateTypeRef->mParams)
{
auto paramType = ResolveTypeRef(param->mTypeRef, BfPopulateType_Declaration, BfResolveTypeRefFlag_AllowRef);
String paramName;
if (param->mNameNode != NULL)
paramName = param->mNameNode->ToString();
if (paramType->IsUnspecializedType())
delegateType->mIsUnspecializedType = true;
if (paramType->IsUnspecializedTypeVariation())
delegateType->mIsUnspecializedTypeVariation = true;
if (!paramType->IsReified())
delegateType->mIsReified = false;
if (paramType->IsGenericParam())
{
delegateType->mIsUnspecializedTypeVariation = true;
}
auto directTypeRef = BfAstNode::ZeroedAlloc<BfDirectTypeReference>();
delegateType->mDirectAllocNodes.push_back(directTypeRef);
directTypeRef->Init(paramType);
BfParameterDef* paramDef = new BfParameterDef();
paramDef->mTypeRef = directTypeRef;
paramDef->mName = paramName;
methodDef->mParams.push_back(paramDef);
paramIdx++;
AddDependency(paramType, baseDelegateType, BfDependencyMap::DependencyFlag_ParamOrReturnValue);
}
typeDef->mMethods.push_back(methodDef);
//
BfDefBuilder::AddMethod(typeDef, BfMethodType_Ctor, BfProtection_Public, false, "");
if (typeDef->mIsDelegate)
BfDefBuilder::AddDynamicCastMethods(typeDef);
delegateType->mContext = mContext;
delegateType->mTypeDef = typeDef;
InitType(delegateType, BfPopulateType_DataAndMethods);
resolvedEntry->mValue = delegateType;
// #ifdef _DEBUG
// if (BfResolvedTypeSet::Hash(delegateType, &lookupCtx) != resolvedEntry->mHash)
// {
// int refHash = BfResolvedTypeSet::Hash(typeRef, &lookupCtx);
// int typeHash = BfResolvedTypeSet::Hash(delegateType, &lookupCtx);
// BF_ASSERT(refHash == typeHash);
// }
// #endif
BF_ASSERT(BfResolvedTypeSet::Hash(delegateType, &lookupCtx) == resolvedEntry->mHash);
return ResolveTypeResult(typeRef, delegateType, populateType, resolveFlags);
}
else if (auto genericParamTypeRef = BfNodeDynCast<BfGenericParamTypeRef>(typeRef))
{
auto genericParamType = GetGenericParamType(genericParamTypeRef->mGenericParamKind, genericParamTypeRef->mGenericParamIdx);
resolvedEntry->mValue = genericParamType;
BF_ASSERT(BfResolvedTypeSet::Hash(genericParamType, &lookupCtx) == resolvedEntry->mHash);
return ResolveTypeResult(typeRef, genericParamType, populateType, resolveFlags);
}
else if (auto retTypeTypeRef = BfNodeDynCast<BfRetTypeTypeRef>(typeRef))
{
auto retTypeType = new BfRetTypeType();
retTypeType->mElementType = ResolveTypeRef(retTypeTypeRef->mElementType, BfPopulateType_Declaration, BfResolveTypeRefFlag_AllowGenericParamConstValue);
// We know this is a generic param type, it can't fail to resolve
BF_ASSERT(retTypeType->mElementType);
resolvedEntry->mValue = retTypeType;
BF_ASSERT(BfResolvedTypeSet::Hash(retTypeType, &lookupCtx) == resolvedEntry->mHash);
InitType(retTypeType, populateType);
return ResolveTypeResult(typeRef, retTypeType, populateType, resolveFlags);
}
else if (auto qualifiedTypeRef = BfNodeDynCast<BfQualifiedTypeReference>(typeRef))
{
auto leftType = ResolveTypeRef(qualifiedTypeRef->mLeft, BfPopulateType_Declaration, BfResolveTypeRefFlag_AllowGenericParamConstValue);
if (leftType == NULL)
return ResolveTypeResult(typeRef, NULL, populateType, resolveFlags);
return ResolveTypeResult(typeRef, ResolveInnerType(leftType, qualifiedTypeRef->mRight), populateType, resolveFlags);
}
else if (auto constTypeRef = BfNodeDynCastExact<BfConstTypeRef>(typeRef))
{
return ResolveTypeRef(constTypeRef->mElementType, populateType, (BfResolveTypeRefFlags)(resolveFlags & BfResolveTypeRefFlag_NoResolveGenericParam));
}
else if (auto constExprTypeRef = BfNodeDynCastExact<BfConstExprTypeRef>(typeRef))
{
auto constExprType = new BfConstExprValueType();
constExprType->mContext = mContext;
BfVariant result;
if (constExprTypeRef->mConstExpr != NULL)
{
BfType* constGenericParam = NULL;
result = mContext->mResolvedTypes.EvaluateToVariant(&lookupCtx, constExprTypeRef->mConstExpr, constGenericParam);
BF_ASSERT(constGenericParam == NULL);
}
constExprType->mType = GetPrimitiveType(result.mTypeCode);
constExprType->mValue = result;
resolvedEntry->mValue = constExprType;
BF_ASSERT(BfResolvedTypeSet::Hash(constExprType, &lookupCtx) == resolvedEntry->mHash);
InitType(constExprType, populateType);
return constExprType;
}
else
{
BF_FATAL("Not implemented!");
NotImpl(typeRef);
return ResolveTypeResult(typeRef, NULL, populateType, resolveFlags);
}
return ResolveTypeResult(typeRef, NULL, populateType, resolveFlags);
}
BfType* BfModule::ResolveTypeRefAllowUnboundGenerics(BfTypeReference* typeRef, BfPopulateType populateType, bool resolveGenericParam)
{
if (auto genericTypeRef = BfNodeDynCast<BfGenericInstanceTypeRef>(typeRef))
{
if (genericTypeRef->mGenericArguments.size() == 0)
{
auto genericTypeDef = ResolveGenericInstanceDef(genericTypeRef);
if (genericTypeDef == NULL)
return NULL;
BfTypeVector typeVector;
for (int i = 0; i < (int)genericTypeDef->mGenericParamDefs.size(); i++)
typeVector.push_back(GetGenericParamType(BfGenericParamKind_Type, i));
return ResolveTypeDef(genericTypeDef, typeVector);
}
}
return ResolveTypeRef(typeRef, populateType, resolveGenericParam ? (BfResolveTypeRefFlags)0 : BfResolveTypeRefFlag_NoResolveGenericParam);
}
// This finds non-default unspecialized generic type instances and converts them into a BfUnspecializedGenericTypeVariation
BfType* BfModule::CheckUnspecializedGenericType(BfGenericTypeInstance* genericTypeInst, BfPopulateType populateType)
{
int argCount = (int)genericTypeInst->mTypeGenericArguments.size();
bool isDefaultUnspecialized = true;
for (int argIdx = 0; argIdx < argCount; argIdx++)
{
auto argType = genericTypeInst->mTypeGenericArguments[argIdx];
if (argType->IsGenericParam())
{
auto genericParamType = (BfGenericParamType*)argType;
if ((genericParamType->mGenericParamKind != BfGenericParamKind_Type) || (genericParamType->mGenericParamIdx != argIdx))
isDefaultUnspecialized = false;
genericTypeInst->mIsUnspecialized = true;
}
else if (argType->IsUnspecializedType())
{
isDefaultUnspecialized = false;
genericTypeInst->mIsUnspecialized = true;
}
else
isDefaultUnspecialized = false;
}
if (genericTypeInst->mIsUnspecialized)
genericTypeInst->mIsUnspecializedVariation = !isDefaultUnspecialized;
return genericTypeInst;
}
BfTypeInstance* BfModule::GetUnspecializedTypeInstance(BfTypeInstance* typeInst)
{
if (!typeInst->IsGenericTypeInstance())
return typeInst;
auto genericTypeInst = (BfGenericTypeInstance*)typeInst;
auto result = ResolveTypeDef(genericTypeInst->mTypeDef, BfPopulateType_Declaration);
BF_ASSERT((result != NULL) && (result->IsUnspecializedType()));
if (result == NULL)
return NULL;
return result->ToTypeInstance();
}
BfType* BfModule::ResolveInnerType(BfType* outerType, BfIdentifierNode* identifier, BfPopulateType populateType, bool ignoreErrors)
{
BfDirectStrTypeReference typeRef;
typeRef.Init(identifier->ToString());
auto type = ResolveInnerType(outerType, &typeRef, populateType, ignoreErrors);
return type;
}
BfType* BfModule::ResolveTypeRef(BfAstNode* astNode, const BfSizedArray<BfTypeReference*>* genericArgs, BfPopulateType populateType, BfResolveTypeRefFlags resolveFlags)
{
if ((genericArgs == NULL) || (genericArgs->size() == 0))
{
if (auto identifier = BfNodeDynCast<BfIdentifierNode>(astNode))
{
BfNamedTypeReference typeRef;
typeRef.mNameNode = identifier;
typeRef.mSrcEnd = 0;
typeRef.mToken = BfToken_None;
auto type = ResolveTypeRef(&typeRef, populateType, resolveFlags);
return type;
}
}
BfAstAllocator alloc;
alloc.mSourceData = astNode->GetSourceData();
std::function<BfTypeReference*(BfAstNode*)> _ConvType = [&] (BfAstNode* astNode) -> BfTypeReference*
{
if (auto typeRef = BfNodeDynCast<BfTypeReference>(astNode))
return typeRef;
BfTypeReference* result = NULL;
if (auto identifier = BfNodeDynCast<BfIdentifierNode>(astNode))
{
auto* typeRef = alloc.Alloc<BfNamedTypeReference>();
typeRef->mNameNode = identifier;
result = typeRef;
}
else if (auto memberRefExpr = BfNodeDynCast<BfMemberReferenceExpression>(astNode))
{
auto qualifiedTypeRef = alloc.Alloc<BfQualifiedTypeReference>();
qualifiedTypeRef->mLeft = _ConvType(memberRefExpr->mTarget);
qualifiedTypeRef->mDot = memberRefExpr->mDotToken;
qualifiedTypeRef->mRight = _ConvType(memberRefExpr->mMemberName);
if ((qualifiedTypeRef->mLeft == NULL) || (qualifiedTypeRef->mRight == NULL))
return NULL;
result = qualifiedTypeRef;
}
if (result == NULL)
return NULL;
result->SetSrcStart(astNode->GetSrcStart());
result->SetSrcEnd(astNode->GetSrcEnd());
return result;
};
auto typeRef = _ConvType(astNode);
if (typeRef == NULL)
return NULL;
if ((genericArgs != NULL) && (genericArgs->size() != 0))
{
auto genericInstanceTypeRef = alloc.Alloc<BfGenericInstanceTypeRef>();
genericInstanceTypeRef->SetSrcStart(typeRef->GetSrcStart());
genericInstanceTypeRef->mElementType = typeRef;
#ifdef BF_AST_HAS_PARENT_MEMBER
typeRef->mParent = genericInstanceTypeRef;
#endif
BfDeferredAstSizedArray<BfTypeReference*> arguments(genericInstanceTypeRef->mGenericArguments, &alloc);
for (auto genericArg : *genericArgs)
{
if (genericArg != NULL)
{
arguments.push_back(genericArg);
genericInstanceTypeRef->SetSrcEnd(genericArg->GetSrcEnd());
}
}
typeRef = genericInstanceTypeRef;
}
return ResolveTypeRef(typeRef, populateType, resolveFlags);
}
// This flow should mirror CastToValue
bool BfModule::CanImplicitlyCast(BfTypedValue typedVal, BfType* toType, BfCastFlags castFlags)
{
BP_ZONE("BfModule::CanImplicitlyCast");
SetAndRestoreValue<bool> prevIgnoreWrites(mBfIRBuilder->mIgnoreWrites, true);
return CastToValue(NULL, typedVal, toType, (BfCastFlags)(castFlags | BfCastFlags_SilentFail));
}
bool BfModule::AreSplatsCompatible(BfType* fromType, BfType* toType, bool* outNeedsMemberCasting)
{
if ((fromType->IsTypeInstance()) && (!fromType->IsSplattable()))
return false;
if ((toType->IsTypeInstance()) && (!toType->IsSplattable()))
return false;
auto _GetTypes = [&](BfType* type, Array<BfType*>& types)
{
BfTypeUtils::SplatIterate([&](BfType* memberType) { types.Add(memberType); }, type);
};
Array<BfType*> fromTypes;
_GetTypes(fromType, fromTypes);
Array<BfType*> toTypes;
_GetTypes(toType, toTypes);
if (toTypes.size() > fromTypes.size())
return false;
for (int i = 0; i < toTypes.size(); i++)
{
BfType* fromMemberType = fromTypes[i];
BfType* toMemberType = toTypes[i];
if (fromMemberType != toMemberType)
{
if ((outNeedsMemberCasting != NULL) &&
(fromMemberType->IsIntPtrable()) && (toMemberType->IsIntPtrable()))
*outNeedsMemberCasting = true;
else
return false;
}
}
return true;
}
BfIRValue BfModule::CastToFunction(BfAstNode* srcNode, BfMethodInstance* methodInstance, BfType* toType, BfCastFlags castFlags)
{
auto invokeMethodInstance = GetDelegateInvokeMethod(toType->ToTypeInstance());
if (invokeMethodInstance->IsExactMatch(methodInstance, false, true))
{
BfModuleMethodInstance methodRefMethod;
if (methodInstance->mDeclModule == this)
methodRefMethod = methodInstance;
else
methodRefMethod = ReferenceExternalMethodInstance(methodInstance);
auto dataType = GetPrimitiveType(BfTypeCode_IntPtr);
if (!methodRefMethod.mFunc)
{
if (HasCompiledOutput())
AssertErrorState();
return GetDefaultValue(dataType);
}
auto bindFuncVal = methodRefMethod.mFunc;
if (mCompiler->mOptions.mAllowHotSwapping)
bindFuncVal = mBfIRBuilder->RemapBindFunction(bindFuncVal);
return mBfIRBuilder->CreatePtrToInt(bindFuncVal, BfTypeCode_IntPtr);
}
if ((castFlags & BfCastFlags_SilentFail) == 0)
{
if (invokeMethodInstance->IsExactMatch(methodInstance, true, true))
{
Fail(StrFormat("Non-static method '%s' cannot match '%s' because it contains captured variables, consider using a delegate or removing captures", MethodToString(methodInstance).c_str(), TypeToString(toType).c_str()), srcNode);
}
else if (invokeMethodInstance->IsExactMatch(methodInstance, false, false))
{
Fail(StrFormat("Non-static method '%s' cannot match '%s', consider adding '%s this' to the function parameters", MethodToString(methodInstance).c_str(), TypeToString(toType).c_str(), TypeToString(methodInstance->GetParamType(-1)).c_str()), srcNode);
}
}
return BfIRValue();
}
BfIRValue BfModule::CastToValue(BfAstNode* srcNode, BfTypedValue typedVal, BfType* toType, BfCastFlags castFlags, BfCastResultFlags* resultFlags)
{
bool explicitCast = (castFlags & BfCastFlags_Explicit) != 0;
bool ignoreErrors = mIgnoreErrors || ((castFlags & BfCastFlags_SilentFail) != 0);
bool ignoreWrites = mBfIRBuilder->mIgnoreWrites;
if (typedVal.mType == toType)
{
if (resultFlags != NULL)
{
if (typedVal.IsAddr())
*resultFlags = (BfCastResultFlags)(*resultFlags | BfCastResultFlags_IsAddr);
if (typedVal.mKind == BfTypedValueKind_TempAddr)
*resultFlags = (BfCastResultFlags)(*resultFlags | BfCastResultFlags_IsTemp);
}
else if (typedVal.IsAddr())
typedVal = LoadValue(typedVal);
return typedVal.mValue;
}
BF_ASSERT(typedVal.mType->mContext == mContext);
BF_ASSERT(toType->mContext == mContext);
if ((typedVal.IsAddr()) && (!typedVal.mType->IsValueType()))
typedVal = LoadValue(typedVal);
//BF_ASSERT(!typedVal.IsAddr() || typedVal.mType->IsGenericParam() || typedVal.mType->IsValueType());
// Ref X to Ref Y, X* to Y*
{
bool checkUnderlying = false;
if (((typedVal.mType->IsRef()) && (toType->IsRef())))
{
auto fromRefType = (BfRefType*)typedVal.mType;
auto toRefType = (BfRefType*)toType;
if (fromRefType->mRefKind == toRefType->mRefKind)
checkUnderlying = true;
else if ((fromRefType->mRefKind == BfRefType::RefKind_Ref) && (toRefType->mRefKind == BfRefType::RefKind_Mut))
checkUnderlying = true; // Allow a ref-to-mut implicit conversion
}
if ((typedVal.mType->IsPointer()) && (toType->IsPointer()))
checkUnderlying = true;
if (checkUnderlying)
{
auto fromInner = typedVal.mType->GetUnderlyingType();
auto toInner = toType->GetUnderlyingType();
if (fromInner == toInner)
{
return typedVal.mValue;
}
// ref int <-> ref int64/int32 (of same size)
if (((fromInner->IsInteger()) && (toInner->IsInteger())) &&
(fromInner->mSize == toInner->mSize) &&
(fromInner->IsSigned() == toInner->IsSigned()))
return typedVal.mValue;
}
}
// Null -> ObjectInst|IFace|ptr
if ((typedVal.mType->IsNull()) &&
((toType->IsObjectOrInterface()) || (toType->IsPointer() || (toType->IsFunction()))))
{
return mBfIRBuilder->CreateBitCast(typedVal.mValue, mBfIRBuilder->MapType(toType));
}
if (explicitCast)
{
// Object -> void*
if ((typedVal.mType->IsObject()) && (toType->IsVoidPtr()))
{
return mBfIRBuilder->CreateBitCast(typedVal.mValue, mBfIRBuilder->MapType(toType));
}
// Func -> void*
if ((typedVal.mType->IsFunction()) && (toType->IsVoidPtr()))
{
return mBfIRBuilder->CreateIntToPtr(typedVal.mValue, mBfIRBuilder->MapType(toType));
}
// void* -> Func
if ((typedVal.mType->IsVoidPtr()) && (toType->IsFunction()))
{
return mBfIRBuilder->CreatePtrToInt(typedVal.mValue, BfTypeCode_IntPtr);
}
// * -> Valueless
if (toType->IsVoid())
return mBfIRBuilder->GetFakeVal();
// void* -> intptr
if ((typedVal.mType->IsPointer()) && (toType->IsIntPtr()))
{
if ((!ignoreErrors) && (!typedVal.mType->GetUnderlyingType()->IsVoid()) && ((castFlags & BfCastFlags_FromCompiler) == 0))
{
Fail(StrFormat("Unable to cast direct from '%s' to '%s', consider casting to void* first", TypeToString(typedVal.mType).c_str(), TypeToString(toType).c_str()), srcNode);
}
auto toPrimitive = (BfPrimitiveType*)toType;
return mBfIRBuilder->CreatePtrToInt(typedVal.mValue, toPrimitive->mTypeDef->mTypeCode);
}
// intptr -> void*
if ((typedVal.mType->IsIntPtr()) && (toType->IsPointer()))
{
if ((!ignoreErrors) && (!toType->GetUnderlyingType()->IsVoid()) && ((castFlags & BfCastFlags_FromCompiler) == 0))
{
Fail(StrFormat("Unable to cast direct from '%s' to '%s', consider casting to void* first", TypeToString(typedVal.mType).c_str(), TypeToString(toType).c_str()), srcNode);
}
return mBfIRBuilder->CreateIntToPtr(typedVal.mValue, mBfIRBuilder->MapType(toType));
}
}
// * <-> Var
if ((typedVal.mType->IsVar()) || (toType->IsVar()))
{
return GetDefaultValue(toType);
}
// Generic param -> *
if ((typedVal.mType->IsGenericParam()) && (!toType->IsGenericParam()))
{
if (toType == mContext->mBfObjectType)
{
// Always allow casting from generic to object
return typedVal.mValue;
}
auto _CheckGenericParamInstance = [&](BfGenericParamInstance* genericParamInst)
{
if ((genericParamInst->mGenericParamFlags & BfGenericParamFlag_Var) != 0)
{
return typedVal.mValue;
}
if (toType->IsInterface())
{
for (auto iface : genericParamInst->mInterfaceConstraints)
if (TypeIsSubTypeOf(iface, toType->ToTypeInstance()))
return GetDefaultValue(toType);
}
if (genericParamInst->mTypeConstraint != NULL)
{
auto constraintTypeInst = genericParamInst->mTypeConstraint->ToTypeInstance();
if ((constraintTypeInst != NULL) && (constraintTypeInst->mTypeDef == mCompiler->mEnumTypeDef))
{
// Enum->int
if (toType->IsInteger())
return GetDefaultValue(toType);
}
auto defaultFromValue = GetDefaultTypedValue(genericParamInst->mTypeConstraint);
auto result = CastToValue(srcNode, defaultFromValue, toType, (BfCastFlags)(castFlags | BfCastFlags_SilentFail));
if (result)
{
if ((genericParamInst->mTypeConstraint->IsDelegate()) && (toType->IsDelegate()))
{
// Don't allow cast when we are constrained by a delegate type, because BfMethodRefs can match and we require an actual alloc
Fail(StrFormat("Unable to cast '%s' to '%s' because delegate constraints allow valueless direct method references", TypeToString(typedVal.mType).c_str(), TypeToString(toType).c_str()), srcNode);
return BfIRValue();
}
return result;
}
}
// Generic constrained with class or pointer type -> void*
if (toType->IsVoidPtr())
{
if ((genericParamInst->mGenericParamFlags & (BfGenericParamFlag_Class | BfGenericParamFlag_StructPtr)) ||
((genericParamInst->mTypeConstraint != NULL) &&
((genericParamInst->mTypeConstraint->IsPointer()) || (genericParamInst->mTypeConstraint->IsObjectOrInterface()))))
{
return GetDefaultValue(toType);
}
}
return BfIRValue();
};
BfIRValue retVal;
// For these casts, it's just important we get *A* value to work with here,
// as this is just use for unspecialized parsing. We don't use the generated code
{
auto genericParamInst = GetGenericParamInstance((BfGenericParamType*)typedVal.mType);
retVal = _CheckGenericParamInstance(genericParamInst);
if (retVal)
return retVal;
}
// Check method generic constraints
if ((mCurMethodInstance != NULL) && (mCurMethodInstance->mIsUnspecialized) && (mCurMethodInstance->mMethodInfoEx != NULL))
{
for (int genericParamIdx = (int)mCurMethodInstance->mMethodInfoEx->mMethodGenericArguments.size();
genericParamIdx < mCurMethodInstance->mMethodInfoEx->mGenericParams.size(); genericParamIdx++)
{
auto genericParamInst = mCurMethodInstance->mMethodInfoEx->mGenericParams[genericParamIdx];
if (genericParamInst->mExternType == typedVal.mType)
{
retVal = _CheckGenericParamInstance(genericParamInst);
if (retVal)
return retVal;
}
}
}
}
// * -> Generic param
if (toType->IsGenericParam())
{
if (explicitCast)
{
// Either an upcast or an unbox
if ((typedVal.mType == mContext->mBfObjectType) || (typedVal.mType->IsInterface()))
{
return GetDefaultValue(toType);
}
}
auto genericParamInst = GetGenericParamInstance((BfGenericParamType*)toType);
if (genericParamInst->mGenericParamFlags & BfGenericParamFlag_Var)
return GetDefaultValue(toType);
if (typedVal.mType->IsNull())
{
bool allowCast = (genericParamInst->mGenericParamFlags & BfGenericParamFlag_Class) || (genericParamInst->mGenericParamFlags & BfGenericParamFlag_StructPtr);
if ((!allowCast) && (genericParamInst->mTypeConstraint != NULL))
allowCast = genericParamInst->mTypeConstraint->IsObject() || genericParamInst->mTypeConstraint->IsPointer();
if (allowCast)
return mBfIRBuilder->CreateBitCast(typedVal.mValue, mBfIRBuilder->MapType(toType));
}
if (genericParamInst->mTypeConstraint != NULL)
{
auto castedVal = CastToValue(srcNode, typedVal, genericParamInst->mTypeConstraint, (BfCastFlags)(castFlags | BfCastFlags_SilentFail));
if (castedVal)
return castedVal;
//TODO: WHy did we do 'GetDefaultValue'? This messes up setting up method param defaults, which is important for inferring const generic params
//return GetDefaultValue(toType);
}
}
if ((typedVal.mType->IsTypeInstance()) && (toType->IsTypeInstance()))
{
auto fromTypeInstance = typedVal.mType->ToTypeInstance();
auto toTypeInstance = toType->ToTypeInstance();
if ((typedVal.mType->IsValueType()) && (toType->IsValueType()))
{
bool allowCast = false;
if (TypeIsSubTypeOf(fromTypeInstance, toTypeInstance))
allowCast = true;
if (allowCast)
{
if (toType->IsValuelessType())
return BfIRValue::sValueless;
}
}
// ObjectInst|IFace -> object|IFace
if ((typedVal.mType->IsObject() || (typedVal.mType->IsInterface())) && ((toType->IsObject() || (toType->IsInterface()))))
{
bool allowCast = false;
if (TypeIsSubTypeOf(fromTypeInstance, toTypeInstance))
allowCast = true;
else if ((explicitCast) &&
((toType->IsInterface()) || (TypeIsSubTypeOf(toTypeInstance, fromTypeInstance))))
{
if (toType->IsObjectOrInterface())
{
if ((castFlags & BfCastFlags_Unchecked) == 0)
EmitDynamicCastCheck(typedVal, toType, true);
}
allowCast = true;
}
if (allowCast)
{
if (ignoreWrites)
return mBfIRBuilder->GetFakeVal();
return mBfIRBuilder->CreateBitCast(typedVal.mValue, mBfIRBuilder->MapType(toType));
}
}
}
// MethodRef -> Function
if ((typedVal.mType->IsMethodRef()) && (toType->IsFunction()))
{
BfMethodInstance* methodInstance = ((BfMethodRefType*)typedVal.mType)->mMethodRef;
auto result = CastToFunction(srcNode, methodInstance, toType, castFlags);
if (result)
return result;
}
// concrete IFace -> object|IFace
if ((typedVal.mType->IsConcreteInterfaceType()) && ((toType->IsObject() || (toType->IsInterface()))))
{
auto concreteInterfaceType = (BfConcreteInterfaceType*)typedVal.mType;
if ((toType->IsObject()) || (concreteInterfaceType->mInterface == toType))
return mBfIRBuilder->CreateBitCast(typedVal.mValue, mBfIRBuilder->MapType(toType));
}
// IFace -> object
if ((typedVal.mType->IsInterface()) && (toType == mContext->mBfObjectType))
return mBfIRBuilder->CreateBitCast(typedVal.mValue, mBfIRBuilder->MapType(toType));
// * -> Pointer
if (toType->IsPointer())
{
// Ptr -> Ptr
if (typedVal.mType->IsPointer())
{
bool allowCast = explicitCast;
auto fromPointerType = (BfPointerType*)typedVal.mType;
auto toPointerType = (BfPointerType*)toType;
auto fromUnderlying = fromPointerType->mElementType;
auto toUnderlying = toPointerType->mElementType;
// Allow cast from T[size]* to T* implicitly
// And from T* to T[size]* explicitly
while (fromUnderlying->IsSizedArray())
fromUnderlying = fromUnderlying->GetUnderlyingType();
while ((toUnderlying->IsSizedArray()) && (explicitCast))
toUnderlying = toUnderlying->GetUnderlyingType();
if ((fromUnderlying == toUnderlying) ||
(TypeIsSubTypeOf(fromUnderlying->ToTypeInstance(), toUnderlying->ToTypeInstance())) ||
(toUnderlying->IsVoid()))
allowCast = true;
if (allowCast)
{
if (ignoreWrites)
return mBfIRBuilder->GetFakeVal();
return mBfIRBuilder->CreateBitCast(typedVal.mValue, mBfIRBuilder->MapType(toType));
}
}
else if (typedVal.mType->IsObject())
{
// ???
}
/*else if (typedVal.mType->IsSizedArray())
{
if (typedVal.IsAddr())
{
BfSizedArrayType* arrayType = (BfSizedArrayType*)typedVal.mType;
auto ptrType = CreatePointerType(arrayType->mElementType);
BfTypedValue returnPointer(mBfIRBuilder->CreateBitCast(typedVal.mValue, mBfIRBuilder->MapType(ptrType)), ptrType);
return CastToValue(srcNode, returnPointer, toType, castFlags, silentFail);
}
}*/
}
// Boxing?
bool mayBeBox = false;
if (((typedVal.mType->IsValueType()) || (typedVal.mType->IsPointer()) || (typedVal.mType->IsValuelessType())) &&
((toType->IsInterface()) || (toType == mContext->mBfObjectType)))
{
// Make sure there's no conversion operator before we box
if ((!typedVal.mType->IsRef()) && (!typedVal.mType->IsRetTypeType()))
mayBeBox = true;
}
//TODO: the IsGenericParam is not valid - why did we have that? The generic param could be a struct for example...
if ((explicitCast) && ((typedVal.mType->IsInterface()) || (typedVal.mType == mContext->mBfObjectType) /*|| (typedVal.mType->IsGenericParam())*/) &&
((toType->IsValueType()) || (toType->IsPointer())))
{
if (toType->IsValuelessType())
return BfIRValue::sValueless;
if (ignoreWrites)
return mBfIRBuilder->GetFakeVal();
// Unbox!
if ((castFlags & BfCastFlags_Unchecked) == 0)
{
EmitDynamicCastCheck(typedVal, toType, false);
EmitObjectAccessCheck(typedVal);
}
if (toType->IsNullable())
{
auto toTypeInst = toType->ToTypeInstance();
int valueIdx = toTypeInst->mFieldInstances[0].mDataIdx;
int hasValueIdx = toTypeInst->mFieldInstances[1].mDataIdx;
typedVal = MakeAddressable(typedVal);
auto elementType = toType->GetUnderlyingType();
auto ptrElementType = CreatePointerType(elementType);
auto boolType = GetPrimitiveType(BfTypeCode_Boolean);
auto allocaInst = CreateAlloca(toType, true, "unboxN");
auto prevBB = mBfIRBuilder->GetInsertBlock();
auto nullBB = mBfIRBuilder->CreateBlock("unboxN.null");
auto notNullBB = mBfIRBuilder->CreateBlock("unboxN.notNull");
auto endBB = mBfIRBuilder->CreateBlock("unboxN.end");
auto isNull = mBfIRBuilder->CreateIsNull(typedVal.mValue);
mBfIRBuilder->CreateCondBr(isNull, nullBB, notNullBB);
int dataIdx = toTypeInst->mFieldInstances[1].mDataIdx;
mBfIRBuilder->AddBlock(nullBB);
mBfIRBuilder->SetInsertPoint(nullBB);
auto hasValueAddr = mBfIRBuilder->CreateInBoundsGEP(allocaInst, 0, hasValueIdx); // has_value
mBfIRBuilder->CreateStore(GetConstValue(0, boolType), hasValueAddr);
auto nullableValueAddr = mBfIRBuilder->CreateInBoundsGEP(allocaInst, 0, valueIdx); // value
auto nullableValueBits = mBfIRBuilder->CreateBitCast(nullableValueAddr, mBfIRBuilder->GetPrimitiveType(BfTypeCode_NullPtr));
mBfIRBuilder->CreateMemSet(nullableValueBits, GetConstValue(0, GetPrimitiveType(BfTypeCode_Int8)), GetConstValue(elementType->mSize), elementType->mAlign);
mBfIRBuilder->CreateBr(endBB);
mBfIRBuilder->AddBlock(notNullBB);
mBfIRBuilder->SetInsertPoint(notNullBB);
hasValueAddr = mBfIRBuilder->CreateInBoundsGEP(allocaInst, 0, hasValueIdx); // has_value
mBfIRBuilder->CreateStore(GetConstValue(1, boolType), hasValueAddr);
nullableValueAddr = mBfIRBuilder->CreateInBoundsGEP(allocaInst, 0, valueIdx); // value
auto srcObjBits = mBfIRBuilder->CreateBitCast(typedVal.mValue, mBfIRBuilder->MapType(ptrElementType));
auto boxedValueAddr = mBfIRBuilder->CreateInBoundsGEP(srcObjBits, 1); // Skip over vdata
auto boxedValue = mBfIRBuilder->CreateLoad(boxedValueAddr);
mBfIRBuilder->CreateStore(boxedValue, nullableValueAddr);
mBfIRBuilder->CreateBr(endBB);
mBfIRBuilder->AddBlock(endBB);
mBfIRBuilder->SetInsertPoint(endBB);
if (resultFlags != NULL)
*resultFlags = (BfCastResultFlags)(BfCastResultFlags_IsAddr | BfCastResultFlags_IsTemp);
return allocaInst;
}
auto boxedType = CreateBoxedType(toType);
mBfIRBuilder->PopulateType(boxedType);
AddDependency(boxedType, mCurTypeInstance, BfDependencyMap::DependencyFlag_ReadFields);
auto boxedObj = mBfIRBuilder->CreateBitCast(typedVal.mValue, mBfIRBuilder->MapType(boxedType));
auto valPtr = mBfIRBuilder->CreateInBoundsGEP(boxedObj, 0, 1);
if ((toType->IsPrimitiveType()) || (toType->IsTypedPrimitive()) || (toType->IsPointer()) || (toType->IsSizedArray()) || (toType->IsMethodRef()))
{
valPtr = mBfIRBuilder->CreateBitCast(valPtr, mBfIRBuilder->GetPointerTo(mBfIRBuilder->MapType(toType)));
}
if ((toType->IsComposite()) && (resultFlags != NULL))
{
*resultFlags = BfCastResultFlags_IsAddr;
return valPtr;
}
else
return mBfIRBuilder->CreateLoad(valPtr, false);
}
// Null -> Nullable<T>
if ((typedVal.mType->IsNull()) && (toType->IsNullable()))
{
if (ignoreWrites)
return mBfIRBuilder->GetFakeVal();
if ((castFlags & BfCastFlags_PreferAddr) != 0)
{
auto boolType = GetPrimitiveType(BfTypeCode_Boolean);
auto toTypeInst = toType->ToTypeInstance();
int hasValueIdx = toTypeInst->mFieldInstances[1].mDataIdx;
auto allocaInst = CreateAlloca(toType);
auto hasValueAddr = mBfIRBuilder->CreateInBoundsGEP(allocaInst, 0, hasValueIdx); // has_value
mBfIRBuilder->CreateStore(GetConstValue(0, boolType), hasValueAddr);
auto typedValue = BfTypedValue(allocaInst, toType, true);
if (resultFlags != NULL)
*resultFlags = (BfCastResultFlags)(BfCastResultFlags_IsAddr | BfCastResultFlags_IsTemp);
return allocaInst;
}
auto zeroNullable = mBfIRBuilder->CreateConstStructZero(mBfIRBuilder->MapType(toType));
return zeroNullable;
}
// Nullable<A> -> Nullable<B>
if ((typedVal.mType->IsNullable()) && (toType->IsNullable()))
{
if (ignoreWrites)
return mBfIRBuilder->GetFakeVal();
auto fromNullableType = (BfGenericTypeInstance*)typedVal.mType;
auto toNullableType = (BfGenericTypeInstance*)toType;
BfIRValue srcPtr = typedVal.mValue;
if (!typedVal.IsAddr())
{
auto srcAlloca = CreateAllocaInst(fromNullableType);
mBfIRBuilder->CreateStore(typedVal.mValue, srcAlloca);
srcPtr = srcAlloca;
}
auto srcAddr = mBfIRBuilder->CreateInBoundsGEP(srcPtr, 0, 1); // mValue
auto srcVal = mBfIRBuilder->CreateLoad(srcAddr);
auto toVal = CastToValue(srcNode, BfTypedValue(srcVal, fromNullableType->mTypeGenericArguments[0]), toNullableType->mTypeGenericArguments[0], ignoreErrors ? BfCastFlags_SilentFail : BfCastFlags_None);
if (!toVal)
return BfIRValue();
auto allocaInst = CreateAllocaInst(toNullableType);
auto destAddr = mBfIRBuilder->CreateInBoundsGEP(allocaInst, 0, 1); // mValue
mBfIRBuilder->CreateStore(toVal, destAddr);
srcAddr = mBfIRBuilder->CreateInBoundsGEP(srcPtr, 0, 2); // mHasValue
srcVal = mBfIRBuilder->CreateLoad(srcAddr);
destAddr = mBfIRBuilder->CreateInBoundsGEP(allocaInst, 0, 2); // mHasValue
mBfIRBuilder->CreateStore(srcVal, destAddr);
if (resultFlags != NULL)
*resultFlags = (BfCastResultFlags)(BfCastResultFlags_IsAddr | BfCastResultFlags_IsTemp);
return allocaInst;
}
// Tuple -> Tuple
if ((typedVal.mType->IsTuple()) && (toType->IsTuple()))
{
auto fromTupleType = (BfTupleType*)typedVal.mType;
auto toTupleType = (BfTupleType*)toType;
if (fromTupleType->mFieldInstances.size() == toTupleType->mFieldInstances.size())
{
typedVal = LoadValue(typedVal);
BfIRValue curTupleValue = mBfIRBuilder->CreateUndefValue(mBfIRBuilder->MapType(toTupleType));
for (int valueIdx = 0; valueIdx < (int)fromTupleType->mFieldInstances.size(); valueIdx++)
{
BfFieldInstance* fromFieldInstance = &fromTupleType->mFieldInstances[valueIdx];
BfFieldInstance* toFieldInstance = &toTupleType->mFieldInstances[valueIdx];
if (!explicitCast)
{
BfFieldDef* fromFieldDef = fromFieldInstance->GetFieldDef();
BfFieldDef* toFieldDef = toFieldInstance->GetFieldDef();
// Either the names have to match or one has to be unnamed
if ((!fromFieldDef->IsUnnamedTupleField()) && (!toFieldDef->IsUnnamedTupleField()) &&
(fromFieldDef->mName != toFieldDef->mName))
{
curTupleValue = BfIRValue();
break;
}
}
auto fromFieldType = fromFieldInstance->GetResolvedType();
auto toFieldType = toFieldInstance->GetResolvedType();
if (toFieldType->IsVoid())
continue; // Allow sinking to void
BfIRValue fromFieldValue;
if (fromFieldInstance->mDataIdx >= 0)
fromFieldValue = mBfIRBuilder->CreateExtractValue(typedVal.mValue, fromFieldInstance->mDataIdx);
BfIRValue toFieldValue = CastToValue(srcNode, BfTypedValue(fromFieldValue, fromFieldType), toFieldType, (BfCastFlags)(castFlags | BfCastFlags_Explicit));
if (!toFieldValue)
{
curTupleValue = BfIRValue();
break;
}
if (toFieldInstance->mDataIdx >= 0)
curTupleValue = mBfIRBuilder->CreateInsertValue(curTupleValue, toFieldValue, toFieldInstance->mDataIdx);
}
if (curTupleValue)
return curTupleValue;
}
}
// -> const <value>
if (toType->IsConstExprValue())
{
auto constant = mBfIRBuilder->GetConstant(typedVal.mValue);
if (constant != NULL)
{
BfConstExprValueType* toConstExprValueType = (BfConstExprValueType*)toType;
auto variantVal = TypedValueToVariant(srcNode, typedVal);
if ((mBfIRBuilder->IsInt(variantVal.mTypeCode)) && (mBfIRBuilder->IsInt(toConstExprValueType->mValue.mTypeCode)))
{
if (variantVal.mInt64 == toConstExprValueType->mValue.mInt64)
return typedVal.mValue;
}
else if ((mBfIRBuilder->IsFloat(variantVal.mTypeCode)) && (mBfIRBuilder->IsFloat(toConstExprValueType->mValue.mTypeCode)))
{
if (variantVal.ToDouble() == toConstExprValueType->mValue.ToDouble())
return typedVal.mValue;
}
if (!ignoreErrors)
{
String valStr;
VariantToString(valStr, variantVal);
Fail(StrFormat("Unable to cast '%s %s' to '%s'", TypeToString(typedVal.mType).c_str(), valStr.c_str(), TypeToString(toType).c_str()), srcNode);
}
}
}
if ((typedVal.mType->IsPrimitiveType()) && (toType->IsPrimitiveType()))
{
auto fromPrimType = (BfPrimitiveType*)typedVal.mType;
auto toPrimType = (BfPrimitiveType*)toType;
BfTypeCode fromTypeCode = fromPrimType->mTypeDef->mTypeCode;
BfTypeCode toTypeCode = toPrimType->mTypeDef->mTypeCode;
if (toType->IsIntegral())
{
// Allow constant ints to be implicitly casted to a smaller type if they fit
auto constant = mBfIRBuilder->GetConstant(typedVal.mValue);
if (constant != NULL)
{
if (mBfIRBuilder->IsInt(constant->mTypeCode))
{
int64 srcVal = constant->mInt64;
if (toPrimType->IsChar())
{
if (srcVal == 0)
explicitCast = true;
}
else if ((fromPrimType->IsChar()) && (!toPrimType->IsChar()))
{
// Never allow this
}
else if ((constant->mTypeCode == BfTypeCode_UInt64) && (srcVal < 0))
{
// There's nothing that this could fit into
}
else if (toType->IsSigned())
{
if (toType->mSize == 8) // int64
explicitCast = true;
else
{
int64 minVal = -(1LL << (8 * toType->mSize - 1));
int64 maxVal = (1LL << (8 * toType->mSize - 1)) - 1;
if ((srcVal >= minVal) && (srcVal <= maxVal))
explicitCast = true;
}
}
else if (toType->mSize == 8) // uint64
{
if (srcVal >= 0)
explicitCast = true;
}
else
{
int64 minVal = 0;
int64 maxVal = (1LL << (8 * toType->mSize)) - 1;
if ((srcVal >= minVal) && (srcVal <= maxVal))
explicitCast = true;
}
}
else if (constant->mConstType == BfConstType_Undef)
{
BF_ASSERT(mBfIRBuilder->mIgnoreWrites);
auto undefConst = (BfConstantUndef*)constant;
auto fakeVal = GetFakeTypedValue(GetPrimitiveType(undefConst->mTypeCode));
auto val = CastToValue(srcNode, fakeVal, toType, (BfCastFlags)(castFlags | BfCastFlags_Explicit));
if (val)
return val;
}
}
}
bool allowCast = false;
switch (toTypeCode)
{
case BfTypeCode_Char16:
switch (fromTypeCode)
{
case BfTypeCode_Char8:
allowCast = true; break;
default: break;
}
break;
case BfTypeCode_Int16:
switch (fromTypeCode)
{
case BfTypeCode_Int8:
allowCast = true; break;
case BfTypeCode_UInt8:
allowCast = true; break;
default: break;
}
break;
case BfTypeCode_UInt16:
switch (fromTypeCode)
{
case BfTypeCode_UInt8:
allowCast = true; break;
default: break;
}
break;
case BfTypeCode_Int32:
switch (fromTypeCode)
{
case BfTypeCode_Int8:
case BfTypeCode_Int16:
allowCast = true; break;
case BfTypeCode_IntPtr:
if (mCompiler->mSystem->mPtrSize == 4)
allowCast = true;
break;
case BfTypeCode_UInt8:
case BfTypeCode_UInt16:
allowCast = true; break;
default: break;
}
break;
case BfTypeCode_Char32:
switch (fromTypeCode)
{
case BfTypeCode_Char8:
case BfTypeCode_Char16:
allowCast = true; break;
default: break;
}
break;
case BfTypeCode_UInt32:
switch (fromTypeCode)
{
case BfTypeCode_UInt8:
case BfTypeCode_UInt16:
case BfTypeCode_UInt32:
allowCast = true; break;
case BfTypeCode_UIntPtr:
if (mCompiler->mSystem->mPtrSize == 4)
allowCast = true;
break;
default: break;
}
break;
case BfTypeCode_Int64:
switch (fromTypeCode)
{
case BfTypeCode_Int8:
case BfTypeCode_Int16:
case BfTypeCode_Int32:
case BfTypeCode_IntPtr:
allowCast = true; break;
case BfTypeCode_UInt8:
case BfTypeCode_UInt16:
case BfTypeCode_UInt32:
allowCast = true; break;
default: break;
}
break;
case BfTypeCode_UInt64:
switch (fromTypeCode)
{
case BfTypeCode_UInt8:
case BfTypeCode_UInt16:
case BfTypeCode_UInt32:
case BfTypeCode_UIntPtr:
allowCast = true; break;
default: break;
}
break;
case BfTypeCode_IntPtr:
switch (fromTypeCode)
{
case BfTypeCode_Int8:
case BfTypeCode_Int16:
case BfTypeCode_Int32:
allowCast = true; break;
case BfTypeCode_UInt8:
case BfTypeCode_UInt16:
allowCast = true; break;
case BfTypeCode_UInt32:
case BfTypeCode_Int64:
// It may seem that we want this to require an explicit cast,
// but consider the case of
// int val = Math.Max(intA, intB)
// Math.Max has an int32 and int64 override, so we want the correct one to be chosen and
// to be able to have the int64 return value implicitly used in a 64-bit build
if (mCompiler->mSystem->mPtrSize == 8)
allowCast = true;
break;
default: break;
}
break;
case BfTypeCode_UIntPtr:
switch (fromTypeCode)
{
case BfTypeCode_UInt8:
case BfTypeCode_UInt16:
case BfTypeCode_UInt32:
allowCast = true; break;
case BfTypeCode_UInt64:
if (mCompiler->mSystem->mPtrSize == 8)
allowCast = true;
break;
default: break;
}
break;
case BfTypeCode_Single:
switch (fromTypeCode)
{
case BfTypeCode_Int8:
case BfTypeCode_Int16:
case BfTypeCode_Int32:
case BfTypeCode_Int64:
case BfTypeCode_IntPtr:
case BfTypeCode_IntUnknown:
allowCast = true; break;
case BfTypeCode_UInt8:
case BfTypeCode_UInt16:
case BfTypeCode_UInt32:
case BfTypeCode_UInt64:
case BfTypeCode_UIntPtr:
case BfTypeCode_UIntUnknown:
allowCast = true; break;
default: break;
}
break;
case BfTypeCode_Double:
switch (fromTypeCode)
{
case BfTypeCode_Int8:
case BfTypeCode_Int16:
case BfTypeCode_Int32:
case BfTypeCode_Int64:
case BfTypeCode_IntPtr:
case BfTypeCode_IntUnknown:
allowCast = true; break;
case BfTypeCode_UInt8:
case BfTypeCode_UInt16:
case BfTypeCode_UInt32:
case BfTypeCode_UInt64:
case BfTypeCode_UIntPtr:
case BfTypeCode_UIntUnknown:
allowCast = true; break;
case BfTypeCode_Single:
allowCast = true; break;
default: break;
}
break;
default: break;
}
if (explicitCast)
{
if (((fromPrimType->IsIntegral()) || (fromPrimType->IsFloat())) &&
((toType->IsIntegral()) || (toType->IsFloat())))
allowCast = true;
}
if (allowCast)
{
return mBfIRBuilder->CreateNumericCast(typedVal.mValue, typedVal.mType->IsSigned(), toTypeCode);
}
}
// Check user-defined operators
if ((castFlags & BfCastFlags_NoConversionOperator) == 0)
{
auto fromType = typedVal.mType;
auto fromTypeInstance = typedVal.mType->ToTypeInstance();
auto toTypeInstance = toType->ToTypeInstance();
auto liftedFromType = ((fromTypeInstance != NULL) && fromTypeInstance->IsNullable()) ? fromTypeInstance->GetUnderlyingType() : NULL;
auto liftedToType = ((toTypeInstance != NULL) && toTypeInstance->IsNullable()) ? toTypeInstance->GetUnderlyingType() : NULL;
int bestFromDist = INT_MAX;
BfType* bestFromType = NULL;
int bestNegFromDist = INT_MAX;
BfType* bestNegFromType = NULL;
int bestToDist = INT_MAX;
BfType* bestToType = NULL;
int bestNegToDist = INT_MAX;
BfType* bestNegToType = NULL;
bool isAmbiguousCast = false;
BfIRValue conversionResult;
BfMethodInstance* opMethodInstance = NULL;
BfType* opMethodSrcType = NULL;
// Normal, lifted, execute
for (int pass = 0; pass < 3; pass++)
{
auto checkToType = toType;
auto checkFromType = fromType;
if (pass == 1)
{
if ((bestFromType != NULL) && (bestToType != NULL))
continue;
if (liftedFromType != NULL)
checkFromType = liftedFromType;
if (liftedToType != NULL)
checkToType = liftedToType;
}
else if (pass == 2)
{
if ((bestFromType == NULL) || (bestToType == NULL))
break;
}
BfBaseClassWalker baseClassWalker(fromType, toType, this);
while (true)
{
auto entry = baseClassWalker.Next();
auto checkInstance = entry.mTypeInstance;
if (checkInstance == NULL)
break;
for (auto operatorDef : checkInstance->mTypeDef->mOperators)
{
if (operatorDef->mOperatorDeclaration->mIsConvOperator)
{
if ((!explicitCast) && (operatorDef->mOperatorDeclaration->mExplicitToken != NULL) &&
(operatorDef->mOperatorDeclaration->mExplicitToken->GetToken() == BfToken_Explicit))
continue;
auto methodInst = GetRawMethodInstanceAtIdx(checkInstance, operatorDef->mIdx);
if (methodInst->GetParamCount() != 1)
{
BF_ASSERT(mCompiler->mPassInstance->HasFailed());
continue;
}
auto methodFromType = methodInst->GetParamType(0);
auto methodToType = methodInst->mReturnType;
if (methodFromType->IsSelf())
methodFromType = entry.mSrcType;
if (methodToType->IsSelf())
methodToType = entry.mSrcType;
// Selection pass
if (pass < 2)
{
auto methodCheckFromType = methodFromType;
auto methodCheckToType = methodToType;
if (pass == 1)
{
// Only check inner type on lifted types when we aren't checking conversions within lifted class
// This avoid some infinite conversions
if ((methodCheckFromType->IsNullable()) && (!checkInstance->IsNullable()))
methodCheckFromType = methodCheckFromType->GetUnderlyingType();
if ((methodCheckToType->IsNullable()) && (!checkInstance->IsNullable()))
methodCheckToType = methodCheckToType->GetUnderlyingType();
}
int fromDist = GetTypeDistance(methodCheckFromType, checkFromType);
if (fromDist < 0)
{
// Allow us to cast a constant int to a smaller type if it satisfies the cast operator
if ((typedVal.mValue.IsConst()) && (CanImplicitlyCast(typedVal, methodCheckFromType, BfCastFlags_NoConversionOperator)))
{
fromDist = 0;
}
}
int toDist = GetTypeDistance(methodCheckToType, checkToType);
if ((fromDist == INT_MAX) || (toDist == INT_MAX))
continue;
if (((fromDist >= 0) && (toDist >= 0)) || (explicitCast))
{
if ((fromDist >= 0) && (fromDist < bestFromDist))
{
bestFromDist = fromDist;
bestFromType = methodFromType;
}
if ((toDist >= 0) && (toDist < bestToDist))
{
bestToDist = toDist;
bestToType = methodToType;
}
}
if (explicitCast)
{
fromDist = abs(fromDist);
toDist = abs(toDist);
if ((fromDist >= 0) && (fromDist < bestNegFromDist))
{
bestNegFromDist = fromDist;
bestNegFromType = methodFromType;
}
if ((toDist >= 0) && (toDist < bestNegToDist))
{
bestNegToDist = toDist;
bestNegToType = methodInst->mReturnType;
}
}
}
else if (pass == 2) // Execution Pass
{
if ((methodFromType == bestFromType) && (methodToType == bestToType))
{
// Get in native module so our module doesn't get a reference to it - we may not end up calling it at all!
//BfModuleMethodInstance methodInstance = checkInstance->mModule->GetMethodInstanceAtIdx(checkInstance, operatorDef->mIdx);
BfMethodInstance* methodInstance = GetRawMethodInstanceAtIdx(checkInstance, operatorDef->mIdx);
if (opMethodInstance != NULL)
{
int prevGenericCount = GetGenericParamAndReturnCount(opMethodInstance);
int newGenericCount = GetGenericParamAndReturnCount(methodInstance);
if (newGenericCount > prevGenericCount)
{
// Prefer generic match
opMethodInstance = methodInstance;
opMethodSrcType = entry.mSrcType;
}
else if (newGenericCount < prevGenericCount)
{
// Previous was a generic match
continue;
}
else
{
isAmbiguousCast = true;
break;
}
}
else
{
opMethodInstance = methodInstance;
opMethodSrcType = entry.mSrcType;
}
}
}
}
}
if (isAmbiguousCast)
break;
if (opMethodInstance != NULL)
{
if (mayBeBox)
{
if ((!ignoreErrors) && (Fail("Ambiguous cast, may be conversion operator or may be boxing request", srcNode) != NULL))
mCompiler->mPassInstance->MoreInfo("See conversion operator", opMethodInstance->mMethodDef->GetRefNode());
}
BfModuleMethodInstance moduleMethodInstance = GetMethodInstance(opMethodInstance->GetOwner(), opMethodInstance->mMethodDef, BfTypeVector());
auto methodDeclaration = moduleMethodInstance.mMethodInstance->mMethodDef->GetMethodDeclaration();
if (methodDeclaration->mBody == NULL)
{
// Handle the typedPrim<->underlying part implicitly
if (fromType->IsTypedPrimitive())
{
auto convTypedValue = BfTypedValue(typedVal.mValue, fromType->GetUnderlyingType());
return CastToValue(srcNode, convTypedValue, toType, (BfCastFlags)(castFlags & ~BfCastFlags_Explicit), NULL);
}
else if (toType->IsTypedPrimitive())
{
auto castedVal = CastToValue(srcNode, typedVal, toType->GetUnderlyingType(), (BfCastFlags)(castFlags & ~BfCastFlags_Explicit), NULL);
return castedVal;
}
// Cannot cast (was error)
return BfIRValue();
}
// Actually perform conversion
BfExprEvaluator exprEvaluator(this);
auto castedFromValue = Cast(srcNode, typedVal, bestFromType, castFlags);
if (!castedFromValue)
return BfIRValue();
if (ignoreWrites)
return mBfIRBuilder->GetFakeVal();
SizedArray<BfIRValue, 1> args;
exprEvaluator.PushArg(castedFromValue, args);
auto operatorOut = exprEvaluator.CreateCall(moduleMethodInstance.mMethodInstance, mCompiler->IsSkippingExtraResolveChecks() ? BfIRValue() : moduleMethodInstance.mFunc, false, args);
if ((operatorOut.mType != NULL) && (operatorOut.mType->IsSelf()))
{
BF_ASSERT(IsInGeneric());
operatorOut = GetDefaultTypedValue(opMethodSrcType);
}
return CastToValue(srcNode, operatorOut, toType, castFlags, resultFlags);
}
}
if (bestFromType == NULL)
bestFromType = bestNegFromType;
if (bestToType == NULL)
bestToType = bestNegToType;
}
isAmbiguousCast |= ((bestFromType != NULL) && (bestToType != NULL));
if (isAmbiguousCast)
{
if (!ignoreErrors)
{
const char* errStr = "Ambiguous conversion operators for casting from '%s' to '%s'";
Fail(StrFormat(errStr, TypeToString(typedVal.mType).c_str(), TypeToString(toType).c_str()), srcNode);
}
return BfIRValue();
}
// Check method generic constraints
if ((mCurMethodInstance != NULL) && (mCurMethodInstance->mIsUnspecialized) && (mCurMethodInstance->mMethodInfoEx != NULL))
{
for (int genericParamIdx = 0; genericParamIdx < mCurMethodInstance->mMethodInfoEx->mGenericParams.size(); genericParamIdx++)
{
auto genericParam = mCurMethodInstance->mMethodInfoEx->mGenericParams[genericParamIdx];
for (auto& opConstraint : genericParam->mOperatorConstraints)
{
if ((opConstraint.mCastToken == BfToken_Implicit) ||
((explicitCast) && (opConstraint.mCastToken == BfToken_Explicit)))
{
// If we can convert OUR fromVal to the constraint's fromVal then we may match
if (CanImplicitlyCast(typedVal, opConstraint.mRightType))
{
// .. and we can convert the constraint's toType to OUR toType then we're good
auto opToVal = genericParam->mExternType;
if (CanImplicitlyCast(BfTypedValue(BfIRValue::sValueless, opToVal), toType))
return mBfIRBuilder->GetFakeVal();
}
}
}
}
}
// Check type generic constraints
if ((mCurTypeInstance->IsGenericTypeInstance()) && (mCurTypeInstance->IsUnspecializedType()))
{
auto genericTypeInst = (BfGenericTypeInstance*)mCurTypeInstance;
for (int genericParamIdx = 0; genericParamIdx < genericTypeInst->mGenericParams.size(); genericParamIdx++)
{
auto genericParam = GetGenericTypeParamInstance(genericParamIdx);
for (auto& opConstraint : genericParam->mOperatorConstraints)
{
if ((opConstraint.mCastToken == BfToken_Implicit) ||
((explicitCast) && (opConstraint.mCastToken == BfToken_Explicit)))
{
// If we can convert OUR fromVal to the constraint's fromVal then we may match
if (CanImplicitlyCast(typedVal, opConstraint.mRightType))
{
// .. and we can convert the constraint's toType to OUR toType then we're good
auto opToVal = genericParam->mExternType;
if (CanImplicitlyCast(BfTypedValue(BfIRValue::sValueless, opToVal), toType))
return mBfIRBuilder->GetFakeVal();
}
}
}
}
}
}
// Default typed primitive 'underlying casts' happen after checking cast operators
if (explicitCast)
{
// TypedPrimitive -> Primitive
if ((typedVal.mType->IsTypedPrimitive()) && (toType->IsPrimitiveType()))
{
auto fromTypedPrimitiveType = typedVal.mType->ToTypeInstance();
auto primTypedVal = BfTypedValue(typedVal.mValue, fromTypedPrimitiveType->mFieldInstances.back().mResolvedType, typedVal.IsAddr());
primTypedVal = LoadValue(primTypedVal);
return CastToValue(srcNode, primTypedVal, toType, castFlags);
}
// TypedPrimitive -> TypedPrimitive
if ((typedVal.mType->IsTypedPrimitive()) && (toType->IsTypedPrimitive()))
{
auto fromTypedPrimitiveType = typedVal.mType->ToTypeInstance();
auto toTypedPrimitiveType = toType->ToTypeInstance();
auto fromUnderlyingType = fromTypedPrimitiveType->GetUnderlyingType();
auto toUnderlyingType = toTypedPrimitiveType->GetUnderlyingType();
BfTypedValue underlyingTypedValue(typedVal.mValue, fromUnderlyingType, typedVal.IsAddr());
underlyingTypedValue = LoadValue(underlyingTypedValue);
BfIRValue castedToValue = CastToValue(srcNode, underlyingTypedValue, toUnderlyingType, (BfCastFlags)(castFlags | BfCastFlags_Explicit));
if (castedToValue)
return castedToValue;
}
}
else if ((typedVal.mType->IsTypedPrimitive()) && (toType->IsTypedPrimitive()))
{
if (TypeIsSubTypeOf(typedVal.mType->ToTypeInstance(), toType->ToTypeInstance()))
{
// These have the same underlying primitive type, just keep it all the same
if ((resultFlags != NULL) && (typedVal.IsAddr()))
*resultFlags = BfCastResultFlags_IsAddr;
return typedVal.mValue;
}
}
// Prim -> TypedPrimitive
if ((typedVal.mType->IsPrimitiveType()) && (toType->IsTypedPrimitive()))
{
bool allowCast = explicitCast;
if (toType == mCurTypeInstance)
allowCast = true;
if ((!allowCast) && (typedVal.mType->IsIntegral()) /*&& (!toType->IsEnum())*/)
{
// Allow implicit cast of zero
auto constant = mBfIRBuilder->GetConstant(typedVal.mValue);
if ((constant != NULL) && (mBfIRBuilder->IsInt(constant->mTypeCode)))
{
allowCast = constant->mInt64 == 0;
}
}
if (allowCast)
{
return CastToValue(srcNode, typedVal, toType->GetUnderlyingType(), castFlags);
}
}
if (mayBeBox)
{
BfScopeData* scopeData = NULL;
if (mCurMethodState != NULL)
{
if (mCurMethodState->mOverrideScope)
scopeData = mCurMethodState->mOverrideScope;
else
scopeData = mCurMethodState->mCurScope;
}
if ((castFlags & BfCastFlags_WarnOnBox) != 0)
{
Warn(0, "This implicit boxing will only be in scope during the constructor. Consider using a longer-term allocation such as 'box new'", srcNode);
}
SetAndRestoreValue<bool> prevIgnoreWrites(mBfIRBuilder->mIgnoreWrites, ignoreWrites);
auto value = BoxValue(srcNode, typedVal, toType, scopeData, (castFlags & BfCastFlags_NoBoxDtor) == 0);
if (value)
return value.mValue;
}
if (!ignoreErrors)
{
const char* errStrF = explicitCast ?
"Unable to cast '%s' to '%s'" :
"Unable to implicitly cast '%s' to '%s'";
String errStr = StrFormat(errStrF, TypeToString(typedVal.mType).c_str(), TypeToString(toType).c_str());
printf("Err: %s\n", errStr.c_str());
auto error = Fail(errStr, srcNode);
if ((error != NULL) && (srcNode != NULL))
{
if ((mCompiler->IsAutocomplete()) && (mCompiler->mResolvePassData->mAutoComplete->CheckFixit((srcNode))))
{
SetAndRestoreValue<bool> ignoreWrites(mBfIRBuilder->mIgnoreWrites);
SetAndRestoreValue<bool> ignoreErrors(mIgnoreErrors, true);
if (CastToValue(srcNode, typedVal, toType, (BfCastFlags)(BfCastFlags_Explicit | BfCastFlags_SilentFail)))
{
bool doWrap = false;
if (auto unaryOpExpr = BfNodeDynCast<BfUnaryOperatorExpression>(srcNode))
{
if ((unaryOpExpr->mOp != BfUnaryOp_AddressOf) && (unaryOpExpr->mOp != BfUnaryOp_Dereference))
doWrap = true;
}
if ((srcNode->IsA<BfCastExpression>()) ||
(srcNode->IsA<BfBinaryOperatorExpression>()))
doWrap = true;
BfParserData* parser = srcNode->GetSourceData()->ToParserData();
String typeName = TypeToString(toType);
if (doWrap)
{
mCompiler->mResolvePassData->mAutoComplete->AddEntry(AutoCompleteEntry("fixit",
StrFormat("(%s)\tcast|%s|%d|(%s)(|`%d|)", typeName.c_str(), parser->mFileName.c_str(), srcNode->GetSrcStart(), typeName.c_str(), srcNode->GetSrcLength()).c_str()));
}
else
{
mCompiler->mResolvePassData->mAutoComplete->AddEntry(AutoCompleteEntry("fixit",
StrFormat("(%s)\tcast|%s|%d|(%s)", typeName.c_str(), parser->mFileName.c_str(), srcNode->GetSrcStart(), typeName.c_str()).c_str()));
}
}
}
}
}
return BfIRValue();
}
BfTypedValue BfModule::Cast(BfAstNode* srcNode, const BfTypedValue& typedVal, BfType* toType, BfCastFlags castFlags)
{
bool explicitCast = (castFlags & BfCastFlags_Explicit) != 0;
if (typedVal.mType == toType)
return typedVal;
PopulateType(toType, ((castFlags & BfCastFlags_NoConversionOperator) != 0) ? BfPopulateType_Data : BfPopulateType_DataAndMethods);
if ((castFlags & BfCastFlags_Force) != 0)
{
if (toType->IsValuelessType())
return BfTypedValue(mBfIRBuilder->GetFakeVal(), toType);
if ((typedVal.mType->IsValueType()) && (!typedVal.IsAddr()) && (typedVal.IsSplat()) && (toType->IsValueType()))
{
bool needsMemberCasting = false;
if (AreSplatsCompatible(typedVal.mType, toType, &needsMemberCasting))
{
return BfTypedValue(typedVal.mValue, toType, needsMemberCasting ? BfTypedValueKind_SplatHead_NeedsCasting : BfTypedValueKind_SplatHead);
}
}
if (typedVal.mType->IsValueType())
{
auto addrTypedValue = MakeAddressable(typedVal);
auto toPtrType = CreatePointerType(toType);
return BfTypedValue(mBfIRBuilder->CreateBitCast(addrTypedValue.mValue, mBfIRBuilder->MapType(toPtrType)), toType, BfTypedValueKind_Addr);
}
return BfTypedValue(mBfIRBuilder->CreateBitCast(typedVal.mValue, mBfIRBuilder->MapType(toType)), toType);
}
// This tuple cast may create a new type if the toType contains 'var' entries
if ((typedVal.mType->IsTuple()) && (toType->IsTuple()))
{
//auto loadedVal = LoadValue(typedVal);
PopulateType(toType);
auto fromTupleType = (BfTupleType*)typedVal.mType;
auto toTupleType = (BfTupleType*)toType;
if (fromTupleType == toTupleType)
return typedVal;
if (fromTupleType->mFieldInstances.size() == toTupleType->mFieldInstances.size())
{
BfTypeVector fieldTypes;
Array<String> fieldNames;
bool isCompatible = true;
bool isExactTypeMatch = true;
for (int fieldIdx = 0; fieldIdx < (int)fromTupleType->mFieldInstances.size(); fieldIdx++)
{
auto fromFieldInst = &fromTupleType->mFieldInstances[fieldIdx];
auto toFieldInst = &toTupleType->mFieldInstances[fieldIdx];
auto fromFieldDef = fromFieldInst->GetFieldDef();
auto toFieldDef = toFieldInst->GetFieldDef();
if (!toFieldDef->IsUnnamedTupleField())
{
if ((!fromFieldDef->IsUnnamedTupleField()) &&
(fromFieldDef->mName != toFieldDef->mName))
isCompatible = false;
fieldNames.push_back(toFieldDef->mName);
}
else
fieldNames.push_back("");
if (toFieldInst->mResolvedType->IsVar())
fieldTypes.push_back(fromFieldInst->mResolvedType);
else
{
if (fromFieldInst->mResolvedType != toFieldInst->mResolvedType)
isExactTypeMatch = false;
// The unused-token '?' comes out as 'void', so we allow that to match here. We may want to wrap that with a different fake type
// so we can give normal implicit-cast-to-void errors
if ((fromFieldInst->mResolvedType != toFieldInst->mResolvedType) && (!toFieldInst->mResolvedType->IsVoid()) &&
(!CanImplicitlyCast(GetFakeTypedValue(fromFieldInst->mResolvedType), toFieldInst->mResolvedType)))
isCompatible = false;
fieldTypes.push_back(toFieldInst->mResolvedType);
}
}
auto tupleType = CreateTupleType(fieldTypes, fieldNames);
AddDependency(tupleType, mCurTypeInstance, BfDependencyMap::DependencyFlag_ReadFields);
mBfIRBuilder->PopulateType(tupleType);
if (isExactTypeMatch)
{
if (typedVal.mKind == BfTypedValueKind_TempAddr)
{
return BfTypedValue(mBfIRBuilder->CreateBitCast(typedVal.mValue, mBfIRBuilder->MapTypeInstPtr(tupleType)), tupleType, BfTypedValueKind_TempAddr);
}
else if (typedVal.IsAddr())
{
return BfTypedValue(mBfIRBuilder->CreateBitCast(typedVal.mValue, mBfIRBuilder->MapTypeInstPtr(tupleType)), tupleType, BfTypedValueKind_ReadOnlyAddr);
}
BfIRValue curTupleValue = CreateAlloca(tupleType);
auto loadedVal = LoadValue(typedVal);
mBfIRBuilder->CreateStore(loadedVal.mValue, mBfIRBuilder->CreateBitCast(curTupleValue, mBfIRBuilder->MapTypeInstPtr(fromTupleType)));
return BfTypedValue(curTupleValue, tupleType, BfTypedValueKind_TempAddr);
}
if (isCompatible)
{
BfIRValue curTupleValue = CreateAlloca(tupleType);
for (int fieldIdx = 0; fieldIdx < (int)fromTupleType->mFieldInstances.size(); fieldIdx++)
{
BfFieldInstance* fromFieldInstance = &fromTupleType->mFieldInstances[fieldIdx];
BfFieldInstance* toFieldInstance = &tupleType->mFieldInstances[fieldIdx];
if (toFieldInstance->mDataIdx >= 0)
{
if (fromFieldInstance->mDataIdx >= 0)
{
auto elementVal = ExtractValue(typedVal, fromFieldInstance, fromFieldInstance->mDataIdx);
elementVal = LoadValue(elementVal);
auto castedElementVal = Cast(srcNode, elementVal, toFieldInstance->GetResolvedType(), castFlags);
if (!castedElementVal)
return BfTypedValue();
auto fieldRef = mBfIRBuilder->CreateInBoundsGEP(curTupleValue, 0, toFieldInstance->mDataIdx);
mBfIRBuilder->CreateStore(castedElementVal.mValue, fieldRef);
}
else
isCompatible = false;
}
}
return BfTypedValue(curTupleValue, tupleType, BfTypedValueKind_TempAddr);
}
}
const char* errStr = explicitCast ?
"Unable to cast '%s' to '%s'" :
"Unable to implicitly cast '%s' to '%s'";
Fail(StrFormat(errStr, TypeToString(typedVal.mType).c_str(), TypeToString(toType).c_str()), srcNode);
return BfTypedValue();
}
// Struct truncate
if ((typedVal.mType->IsStruct()) && (toType->IsStruct()))
{
auto fromStructTypeInstance = typedVal.mType->ToTypeInstance();
auto toStructTypeInstance = toType->ToTypeInstance();
if (TypeIsSubTypeOf(fromStructTypeInstance, toStructTypeInstance))
{
if (typedVal.IsSplat())
{
BF_ASSERT(toStructTypeInstance->IsSplattable() || (toStructTypeInstance->mInstSize == 0));
return BfTypedValue(typedVal.mValue, toStructTypeInstance, typedVal.IsThis() ? BfTypedValueKind_ThisSplatHead : BfTypedValueKind_SplatHead);
}
if (typedVal.IsAddr())
{
BfIRValue castedIRValue;
if (typedVal.mValue.IsFake())
castedIRValue = typedVal.mValue;
else
castedIRValue = mBfIRBuilder->CreateBitCast(typedVal.mValue, mBfIRBuilder->MapTypeInstPtr(toStructTypeInstance));
return BfTypedValue(castedIRValue, toType, typedVal.IsThis() ?
(typedVal.IsReadOnly() ? BfTypedValueKind_ReadOnlyThisAddr : BfTypedValueKind_ThisAddr) :
(typedVal.IsReadOnly() ? BfTypedValueKind_ReadOnlyAddr : BfTypedValueKind_Addr));
}
BfTypedValue curTypedVal = typedVal;
while (curTypedVal.mType != toStructTypeInstance)
{
mBfIRBuilder->PopulateType(curTypedVal.mType);
auto curTypeInstance = curTypedVal.mType->ToTypeInstance();
BfIRValue extractedValue;
if (toStructTypeInstance->IsValuelessType())
extractedValue = mBfIRBuilder->GetFakeVal();
else
extractedValue = mBfIRBuilder->CreateExtractValue(curTypedVal.mValue, 0);
curTypedVal = BfTypedValue(extractedValue, curTypeInstance->mBaseType, typedVal.IsThis() ?
(typedVal.IsReadOnly() ? BfTypedValueKind_ReadOnlyThisValue : BfTypedValueKind_ThisValue) :
BfTypedValueKind_Value);
}
return curTypedVal;
}
}
/*if ((explicitCast) && (toType->IsValuelessType()))
{
return BfTypedValue(mBfIRBuilder->GetFakeVal(), toType);
}*/
BfCastResultFlags castResultFlags = BfCastResultFlags_None;
auto castedValue = CastToValue(srcNode, typedVal, toType, castFlags, &castResultFlags);
if (!castedValue)
return BfTypedValue();
if ((castResultFlags & BfCastResultFlags_IsAddr) != 0)
{
if ((castResultFlags & BfCastResultFlags_IsTemp) != 0)
return BfTypedValue(castedValue, toType, BfTypedValueKind_TempAddr);
return BfTypedValue(castedValue, toType, BfTypedValueKind_Addr);
}
return BfTypedValue(castedValue, toType, BfTypedValueKind_Value);
}
BfPrimitiveType* BfModule::GetIntCoercibleType(BfType* type)
{
if (type->IsSizedArray())
{
auto sizedArray = (BfSizedArrayType*)type;
if ((sizedArray->mElementType->IsChar()) && (sizedArray->mElementType->mSize == 1))
{
auto primType = (BfPrimitiveType*)sizedArray->mElementType;
if (sizedArray->mElementCount == 1)
return GetPrimitiveType(BfTypeCode_UInt8);
if (sizedArray->mElementCount == 2)
return GetPrimitiveType(BfTypeCode_UInt16);
if (sizedArray->mElementCount == 4)
return GetPrimitiveType(BfTypeCode_UInt32);
if (sizedArray->mElementCount == 8)
return GetPrimitiveType(BfTypeCode_UInt64);
}
}
return NULL;
}
BfTypedValue BfModule::GetIntCoercible(const BfTypedValue& typedValue)
{
auto intType = GetIntCoercibleType(typedValue.mType);
if (intType == NULL)
return BfTypedValue();
if (typedValue.mValue.IsConst())
{
auto constant = mBfIRBuilder->GetConstant(typedValue.mValue);
if (constant->mConstType == BfConstType_Array)
{
uint64 intVal = 0;
auto constantArray = (BfConstantArray*)constant;
int memberIdx = 0;
for (int memberIdx = 0; memberIdx < (int)constantArray->mValues.size(); memberIdx++)
{
auto memberConstant = mBfIRBuilder->GetConstant(constantArray->mValues[memberIdx]);
if (memberConstant->mTypeCode == BfTypeCode_Char8)
{
intVal |= (uint64)(memberConstant->mUInt8) << (8 * memberIdx);
//intVal = (intVal << 8) | memberConstant->mUInt8;
}
}
return BfTypedValue(mBfIRBuilder->CreateConst(intType->mTypeDef->mTypeCode, intVal), intType);
}
}
auto convTypedValue = typedValue;
convTypedValue = MakeAddressable(convTypedValue);
auto intPtrType = CreatePointerType(intType);
auto addrVal = mBfIRBuilder->CreateBitCast(convTypedValue.mValue, mBfIRBuilder->MapType(intPtrType));
auto val = mBfIRBuilder->CreateLoad(addrVal);
return BfTypedValue(val, intType);
}
bool BfModule::TypeHasParent(BfTypeDef* checkChildTypeDef, BfTypeDef* checkParentTypeDef)
{
BfTypeDef* checkType = checkChildTypeDef;
while (checkType != NULL)
{
if (checkType == checkParentTypeDef)
return true;
checkType = checkType->mOuterType;
}
return false;
}
BfTypeDef* BfModule::FindCommonOuterType(BfTypeDef* type, BfTypeDef* type2)
{
if ((type == NULL) || (type2 == NULL))
return NULL;
int curNestDepth = std::min(type->mNestDepth, type2->mNestDepth);
while (type->mNestDepth > curNestDepth)
type = type->mOuterType;
while (type2->mNestDepth > curNestDepth)
type2 = type2->mOuterType;
while (curNestDepth >= 0)
{
if ((!type->mIsPartial) && (!type2->mIsPartial))
{
if (type == type2)
return type;
}
else
{
if (type->mFullNameEx == type2->mFullNameEx)
return type;
}
type = type->mOuterType;
type2 = type2->mOuterType;
curNestDepth--;
}
return NULL;
}
bool BfModule::TypeIsSubTypeOf(BfTypeInstance* srcType, BfTypeInstance* wantType, bool checkAccessibility)
{
if ((srcType == NULL) || (wantType == NULL))
return false;
if (srcType == wantType)
return true;
if (srcType->mDefineState < BfTypeDefineState_HasInterfaces)
{
// Type is incomplete. We don't do the IsIncomplete check here because of re-entry
// While handling 'var' resolution, we don't want to force a PopulateType reentry
// but we do have enough information for TypeIsSubTypeOf
PopulateType(srcType, BfPopulateType_Interfaces);
}
if (wantType->IsInterface())
{
BfTypeDef* checkActiveTypeDef = NULL;
bool checkAccessibility = true;
if (IsInSpecializedSection())
{
// When we have a specialized section, the generic params may not be considered "included"
// in the module that contains the generic type definition. We rely on any casting errors
// to be thrown on the unspecialized type pass. We have a similar issue with injecting mixins.
checkAccessibility = false;
}
auto checkType = srcType;
while (checkType != NULL)
{
for (auto ifaceInst : checkType->mInterfaces)
{
if (ifaceInst.mInterfaceType == wantType)
{
if (checkAccessibility)
{
if (checkActiveTypeDef == NULL)
checkActiveTypeDef = GetActiveTypeDef(NULL, false);
// We need to be lenient when validating generic constraints
// Otherwise "T<A> where T : IB" declared in a lib won't be able to match a type B in a using project 'C',
// because this check will see the lib using 'C', which it won't consider visible
if ((checkActiveTypeDef != NULL) &&
((mCurMethodInstance != NULL) && (mContext->mCurTypeState != NULL) && (!mContext->mCurTypeState->mBuildingGenericParams)))
{
if ((!srcType->IsTypeMemberAccessible(ifaceInst.mDeclaringType, checkActiveTypeDef)) ||
(!srcType->IsTypeMemberIncluded(ifaceInst.mDeclaringType, checkActiveTypeDef, this)))
{
continue;
}
}
}
return true;
}
}
checkType = checkType->GetImplBaseType();
if ((checkType != NULL) && (checkType->mDefineState < BfTypeDefineState_HasInterfaces))
{
PopulateType(checkType, BfPopulateType_Interfaces);
}
}
if (srcType->IsTypedPrimitive())
{
BfType* underlyingType = srcType->GetUnderlyingType();
if (underlyingType->IsWrappableType())
{
BfTypeInstance* wrappedType = GetWrappedStructType(underlyingType);
if ((wrappedType != NULL) && (wrappedType != srcType))
return TypeIsSubTypeOf(wrappedType, wantType, checkAccessibility);
}
}
return false;
}
auto srcBaseType = srcType->mBaseType;
return TypeIsSubTypeOf(srcBaseType, wantType);
}
// Positive value means that toType encompasses fromType, negative value means toType is encompassed by formType
// INT_MAX means the types are not related
int BfModule::GetTypeDistance(BfType* fromType, BfType* toType)
{
if (fromType == toType)
return 0;
if (fromType->IsPrimitiveType())
{
if (!toType->IsPrimitiveType())
return INT_MAX;
auto fromPrimType = (BfPrimitiveType*)fromType;
auto toPrimType = (BfPrimitiveType*)toType;
if ((fromPrimType->IsIntegral()) && (toPrimType->IsIntegral()))
{
int fromBitSize = fromPrimType->mSize * 8;
if (fromPrimType->IsSigned())
fromBitSize--;
int toBitSize = toPrimType->mSize * 8;
if (toPrimType->IsSigned())
toBitSize--;
return fromBitSize - toBitSize;
}
if ((fromPrimType->IsFloat()) && (toPrimType->IsFloat()))
{
return (fromPrimType->mSize * 8) - (toPrimType->mSize * 8);
}
if (((fromPrimType->IsIntegral()) || (fromPrimType->IsFloat())) &&
((toPrimType->IsIntegral()) || (toPrimType->IsFloat())))
{
int sizeDiff = (fromPrimType->mSize * 8) - (toPrimType->mSize * 8);
if (sizeDiff < 0)
sizeDiff--;
else
sizeDiff++;
return sizeDiff;
}
return INT_MAX;
}
auto fromTypeInstance = fromType->ToTypeInstance();
auto toTypeInstance = toType->ToTypeInstance();
if ((fromTypeInstance != NULL) != (toTypeInstance != NULL))
return INT_MAX; // Ever valid?
if ((fromTypeInstance != NULL) && (toTypeInstance != NULL))
{
if ((fromTypeInstance->IsNullable()) && (toTypeInstance->IsNullable()))
return GetTypeDistance(fromTypeInstance->GetUnderlyingType(), toTypeInstance->GetUnderlyingType());
int inheritDistance = toTypeInstance->mInheritDepth - fromTypeInstance->mInheritDepth;
auto mostSpecificInstance = (inheritDistance < 0) ? fromTypeInstance : toTypeInstance;
auto leastSpecificInstance = (inheritDistance < 0) ? toTypeInstance : fromTypeInstance;
while (mostSpecificInstance != NULL)
{
if (mostSpecificInstance == leastSpecificInstance)
return inheritDistance;
mostSpecificInstance = mostSpecificInstance->mBaseType;
}
}
return INT_MAX;
}
bool BfModule::IsTypeMoreSpecific(BfType* leftType, BfType* rightType)
{
if (leftType->IsGenericTypeInstance())
{
if (!rightType->IsGenericTypeInstance())
return true;
auto leftGenericType = (BfGenericTypeInstance*)leftType;
auto rightGenericType = (BfGenericTypeInstance*)rightType;
if (leftGenericType->mTypeDef != rightGenericType->mTypeDef)
return false;
bool isBetter = false;
bool isWorse = false;
for (int argIdx = 0; argIdx < (int)leftGenericType->mTypeGenericArguments.size(); argIdx++)
{
if (IsTypeMoreSpecific(leftGenericType->mTypeGenericArguments[argIdx], rightGenericType->mTypeGenericArguments[argIdx]))
isBetter = true;
if (IsTypeMoreSpecific(rightGenericType->mTypeGenericArguments[argIdx], leftGenericType->mTypeGenericArguments[argIdx]))
isWorse = true;
}
return (isBetter) && (!isWorse);
}
return false;
}
StringT<128> BfModule::TypeToString(BfType* resolvedType)
{
BfTypeNameFlags flags = BfTypeNameFlags_None;
if ((mCurTypeInstance == NULL) || (!mCurTypeInstance->IsUnspecializedTypeVariation()))
flags = BfTypeNameFlag_ResolveGenericParamNames;
StringT<128> str;
DoTypeToString(str, resolvedType, flags);
return str;
}
StringT<128> BfModule::TypeToString(BfType* resolvedType, BfTypeNameFlags typeNameFlags, Array<String>* genericMethodParamNameOverrides)
{
StringT<128> str;
DoTypeToString(str, resolvedType, typeNameFlags, genericMethodParamNameOverrides);
return str;
}
void BfModule::VariantToString(StringImpl& str, const BfVariant& variant)
{
switch (variant.mTypeCode)
{
case BfTypeCode_Char8:
case BfTypeCode_Int8:
case BfTypeCode_UInt8:
case BfTypeCode_Int16:
case BfTypeCode_UInt16:
case BfTypeCode_Int32:
str += StrFormat("%d", variant.mInt32);
break;
case BfTypeCode_UInt32:
str += StrFormat("%lu", variant.mUInt32);
break;
case BfTypeCode_Int64:
str += StrFormat("%lld", variant.mInt64);
break;
case BfTypeCode_UInt64:
str += StrFormat("%llu", variant.mInt64);
break;
case BfTypeCode_Single:
{
char cstr[64];
ExactMinimalFloatToStr(variant.mSingle, cstr);
str += cstr;
if (strchr(cstr, '.') == NULL)
str += ".0f";
else
str += "f";
}
break;
case BfTypeCode_Double:
{
char cstr[64];
ExactMinimalDoubleToStr(variant.mDouble, cstr);
str += cstr;
if (strchr(cstr, '.') == NULL)
str += ".0";
}
break;
default: break;
}
}
void BfModule::DoTypeToString(StringImpl& str, BfType* resolvedType, BfTypeNameFlags typeNameFlags, Array<String>* genericMethodNameOverrides)
{
BP_ZONE("BfModule::DoTypeToString");
// This is clearly wrong. If we pass in @T0 from a generic type, this would immediately disable the ability to get its name
/*if (resolvedType->IsUnspecializedType())
typeNameFlags = (BfTypeNameFlags)(typeNameFlags & ~BfTypeNameFlag_ResolveGenericParamNames);*/
if (resolvedType->IsBoxed())
{
auto boxedType = (BfBoxedType*)resolvedType;
str += "boxed ";
DoTypeToString(str, boxedType->mElementType, typeNameFlags, genericMethodNameOverrides);
if (boxedType->mBoxedFlags == BfBoxedType::BoxedFlags_StructPtr)
str += "*";
return;
}
else if ((resolvedType->IsArray()) && ((typeNameFlags & BfTypeNameFlag_UseArrayImplType) == 0))
{
auto arrayType = (BfArrayType*)resolvedType;
DoTypeToString(str, arrayType->mTypeGenericArguments[0], typeNameFlags, genericMethodNameOverrides);
str += "[";
for (int i = 1; i < arrayType->mDimensions; i++)
str += ",";
str += "]";
return;
}
else if ((resolvedType->IsNullable()) && (!resolvedType->IsUnspecializedType()))
{
auto genericType = (BfGenericTypeInstance*)resolvedType;
auto elementType = genericType->mTypeGenericArguments[0];
DoTypeToString(str, elementType, typeNameFlags, genericMethodNameOverrides);
str += "?";
return;
}
else if (resolvedType->IsTuple())
{
BfTupleType* tupleType = (BfTupleType*)resolvedType;
str += "(";
for (int fieldIdx = 0; fieldIdx < (int)tupleType->mFieldInstances.size(); fieldIdx++)
{
if (fieldIdx > 0)
str += ", ";
BfFieldInstance* fieldInstance = &tupleType->mFieldInstances[fieldIdx];
BfFieldDef* fieldDef = fieldInstance->GetFieldDef();
DoTypeToString(str, fieldInstance->GetResolvedType(), (BfTypeNameFlags)(typeNameFlags & ~(BfTypeNameFlag_OmitNamespace | BfTypeNameFlag_OmitOuterType)), genericMethodNameOverrides);
char c = fieldDef->mName[0];
if ((c < '0') || (c > '9'))
{
str += " ";
str += fieldDef->mName;
}
}
str += ")";
return;
}
else if (resolvedType->IsDelegateFromTypeRef() || resolvedType->IsFunctionFromTypeRef())
{
SetAndRestoreValue<BfTypeInstance*> prevTypeInstance(mCurTypeInstance);
auto delegateType = (BfDelegateType*)resolvedType;
if (mCurTypeInstance == delegateType)
{
// Don't try to use ourselves for generic param resolution. This should only happen for debug printings from
// within InitType and such, not actual user-facing display
mCurTypeInstance = NULL;
}
auto methodDef = delegateType->mTypeDef->mMethods[0];
if (resolvedType->IsDelegateFromTypeRef())
str += "delegate ";
else
str += "function ";
DoTypeToString(str, ResolveTypeRef(methodDef->mReturnTypeRef));
str += "(";
for (int paramIdx = 0; paramIdx < methodDef->mParams.size(); paramIdx++)
{
if (paramIdx > 0)
str += ", ";
auto paramDef = methodDef->mParams[paramIdx];
BfTypeNameFlags innerFlags = (BfTypeNameFlags)(typeNameFlags & ~(BfTypeNameFlag_OmitNamespace | BfTypeNameFlag_OmitOuterType));
if (delegateType->mIsUnspecializedTypeVariation)
innerFlags = (BfTypeNameFlags)(innerFlags & ~BfTypeNameFlag_ResolveGenericParamNames);
DoTypeToString(str, ResolveTypeRef(paramDef->mTypeRef), innerFlags, genericMethodNameOverrides);
str += " ";
str += paramDef->mName;
}
str += ")";
return;
}
else if (resolvedType->IsMethodRef())
{
auto methodRefType = (BfMethodRefType*)resolvedType;
BfMethodInstance* methodInstance = methodRefType->mMethodRef;
if (methodRefType->IsDeleting())
{
str += "DELETED METHODREF";
return;
}
if (methodInstance == NULL)
{
str += "method NULL";
return;
}
str += "method ";
str += MethodToString(methodInstance);
return;
}
else if (resolvedType->IsTypeInstance())
{
BfTypeInstance* typeInstance = (BfTypeInstance*)resolvedType;
//auto checkTypeInst = typeInstance;
//auto checkTypeDef = typeInstance->mTypeDef;
bool omitNamespace = (typeNameFlags & BfTypeNameFlag_OmitNamespace) != 0;
if ((typeNameFlags & BfTypeNameFlag_ReduceName) != 0)
{
for (auto& checkNamespace : mCurTypeInstance->mTypeDef->mNamespaceSearch)
{
if (checkNamespace == typeInstance->mTypeDef->mNamespace)
omitNamespace = true;
}
}
if ((!typeInstance->mTypeDef->mNamespace.IsEmpty()) && (!omitNamespace))
{
if (!typeInstance->mTypeDef->mNamespace.IsEmpty())
{
typeInstance->mTypeDef->mNamespace.ToString(str);
if (!typeInstance->mTypeDef->IsGlobalsContainer())
str += '.';
}
}
//_AddTypeName(typeInstance->mTypeDef, 0);
//std::function<void(String& str, BfTypeInstance*, BfTypeDef*, int, BfTypeNameFlags)> _AddTypeName = [&](StringImpl& str, BfTypeInstance*& checkTypeInst, BfTypeDef* checkTypeDef, int depth, BfTypeNameFlags typeNameFlags)
// BfTypeDef* endTypeDef = NULL;
// if ((typeNameFlags & BfTypeNameFlag_ReduceName) != 0)
// {
// auto checkTypeInst = typeInstance;
// auto checkTypeDef = typeInstance->mTypeDef;
//
// auto outerTypeInst = GetOuterType(checkTypeInst);
// if (outerTypeInst == NULL)
// return;
// checkTypeInst = outerTypeInst;
//
// auto checkCurTypeInst = mCurTypeInstance; // Only used for ReduceName
// BfTypeDef* checkCurTypeDef = NULL;
// if (checkCurTypeInst != NULL)
// checkCurTypeDef = checkCurTypeInst->mTypeDef;
//
// while (checkCurTypeDef->mNestDepth > checkTypeDef->mNestDepth)
// {
// checkCurTypeInst = GetOuterType(checkCurTypeInst);
// checkCurTypeDef = checkCurTypeInst->mTypeDef;
// }
//
// if (TypeIsSubTypeOf(checkCurTypeInst, checkTypeInst))
// endTypeDef = checkCurTypeDef;
// }
SizedArray<BfTypeDef*, 8> typeDefStack;
BfTypeDef* endTypeDef = NULL;
if (((typeNameFlags & BfTypeNameFlag_ReduceName) != 0) && (mCurTypeInstance != NULL))
{
auto checkTypeInst = typeInstance;
auto outerTypeInst = GetOuterType(checkTypeInst);
if (outerTypeInst != NULL)
{
checkTypeInst = outerTypeInst;
auto checkTypeDef = checkTypeInst->mTypeDef;
auto checkCurTypeInst = mCurTypeInstance; // Only used for ReduceName
BfTypeDef* checkCurTypeDef = NULL;
if (checkCurTypeInst != NULL)
checkCurTypeDef = checkCurTypeInst->mTypeDef;
while (checkCurTypeDef->mNestDepth > checkTypeDef->mNestDepth)
{
checkCurTypeInst = GetOuterType(checkCurTypeInst);
checkCurTypeDef = checkCurTypeInst->mTypeDef;
}
while (checkTypeDef != NULL)
{
if (TypeIsSubTypeOf(checkCurTypeInst, checkTypeInst))
{
endTypeDef = checkTypeDef;
break;
}
checkCurTypeInst = GetOuterType(checkCurTypeInst);
if (checkCurTypeInst == NULL)
break;
checkCurTypeDef = checkCurTypeInst->mTypeDef;
checkTypeInst = GetOuterType(checkTypeInst);
if (checkTypeInst == NULL)
break;
checkTypeDef = checkTypeInst->mTypeDef;
}
}
}
BfTypeDef* checkTypeDef = typeInstance->mTypeDef;
while (checkTypeDef != NULL)
{
typeDefStack.Add(checkTypeDef);
checkTypeDef = checkTypeDef->mOuterType;
if ((typeNameFlags & BfTypeNameFlag_OmitOuterType) != 0)
break;
if (checkTypeDef == endTypeDef)
break;
}
while (!typeDefStack.IsEmpty())
{
BfTypeDef* checkTypeDef = typeDefStack.back();
int depth = (int)typeDefStack.size() - 1;
typeDefStack.pop_back();
// if (depth > 0)
// {
// if ((typeNameFlags & BfTypeNameFlag_OmitOuterType) != 0)
// return;
//
// if ((typeNameFlags & BfTypeNameFlag_ReduceName) != 0)
// {
// auto outerTypeInst = GetOuterType(checkTypeInst);
// if (outerTypeInst == NULL)
// return;
// checkTypeInst = outerTypeInst;
//
// while (checkCurTypeDef->mNestDepth > checkTypeDef->mNestDepth)
// {
// checkCurTypeInst = GetOuterType(checkCurTypeInst);
// checkCurTypeDef = checkCurTypeInst->mTypeDef;
// }
//
// if (TypeIsSubTypeOf(checkCurTypeInst, checkTypeInst))
// return; // Found outer type
// }
// }
// auto parentTypeDef = checkTypeDef->mOuterType;
// if (parentTypeDef != NULL)
// {
// //_AddTypeName(parentTypeDef, depth + 1);
// typeDefStack.Add(parentTypeDef);
// continue;
// }
if (checkTypeDef->IsGlobalsContainer())
{
if ((typeNameFlags & BfTypeNameFlag_AddGlobalContainerName) != 0)
{
str += "G$";
str += checkTypeDef->mProject->mName;
}
}
else
{
checkTypeDef->mName->ToString(str);
if (!checkTypeDef->mGenericParamDefs.IsEmpty())
{
for (int ofs = 0; ofs < 3; ofs++)
{
int checkIdx = (int)str.length() - 1 - ofs;
if (checkIdx < 0)
break;
if (str[checkIdx] == '`')
{
str.RemoveToEnd(checkIdx);
break;
}
}
}
if (((typeNameFlags & BfTypeNameFlag_DisambiguateDups) != 0) && (checkTypeDef->mDupDetectedRevision != -1))
{
str += StrFormat("_%p", checkTypeDef);
}
}
int prevGenericParamCount = 0;
if (checkTypeDef->mOuterType != NULL)
{
prevGenericParamCount = (int)checkTypeDef->mOuterType->mGenericParamDefs.size();
}
if (resolvedType->IsGenericTypeInstance())
{
auto genericTypeInst = (BfGenericTypeInstance*)resolvedType;
if (prevGenericParamCount != (int)checkTypeDef->mGenericParamDefs.size())
{
str += '<';
for (int i = prevGenericParamCount; i < (int)checkTypeDef->mGenericParamDefs.size(); i++)
{
BfType* typeGenericArg = genericTypeInst->mTypeGenericArguments[i];
if (typeGenericArg->IsGenericParam())
{
if ((typeNameFlags & BfTypeNameFlag_ResolveGenericParamNames) == 0)
{
// We don't want the param names, just the commas (this is an unspecialized type reference)
if (i > prevGenericParamCount)
str += ',';
continue;
}
}
if (i > prevGenericParamCount)
str += ", ";
DoTypeToString(str, typeGenericArg, (BfTypeNameFlags)(typeNameFlags & ~(BfTypeNameFlag_OmitNamespace | BfTypeNameFlag_OmitOuterType)), genericMethodNameOverrides);
}
str += '>';
}
}
if (depth > 0)
str += '.';
};
return;
}
else if (resolvedType->IsPrimitiveType())
{
auto primitiveType = (BfPrimitiveType*)resolvedType;
if (!primitiveType->mTypeDef->mNamespace.IsEmpty())
{
primitiveType->mTypeDef->mNamespace.ToString(str);
str += '.';
primitiveType->mTypeDef->mName->ToString(str);
return;
}
else
{
primitiveType->mTypeDef->mName->ToString(str);
return;
}
}
else if (resolvedType->IsPointer())
{
auto pointerType = (BfPointerType*)resolvedType;
DoTypeToString(str, pointerType->mElementType, typeNameFlags, genericMethodNameOverrides);
str += '*';
return;
}
else if (resolvedType->IsGenericParam())
{
bool doResolveGenericParams = (typeNameFlags & BfTypeNameFlag_ResolveGenericParamNames) != 0;
if ((mCurTypeInstance != NULL) && (mCurTypeInstance->IsUnspecializedTypeVariation()))
doResolveGenericParams = false;
if ((mCurMethodInstance != NULL) && (mCurMethodInstance->mIsUnspecializedVariation))
doResolveGenericParams = false;
auto genericParam = (BfGenericParamType*)resolvedType;
if (!doResolveGenericParams)
{
if (genericParam->mGenericParamKind == BfGenericParamKind_Method)
{
str += StrFormat("@M%d", genericParam->mGenericParamIdx);
return;
}
str += StrFormat("@T%d", genericParam->mGenericParamIdx);
return;
}
if ((genericParam->mGenericParamKind == BfGenericParamKind_Type) && (mCurTypeInstance == NULL))
{
str += StrFormat("@T%d", genericParam->mGenericParamIdx);
return;
}
if (genericParam->mGenericParamKind == BfGenericParamKind_Method)
{
if (genericMethodNameOverrides != NULL)
{
str += (*genericMethodNameOverrides)[genericParam->mGenericParamIdx];
return;
}
if (mCurMethodInstance == NULL)
{
str += StrFormat("@M%d", genericParam->mGenericParamIdx);
return;
}
}
//TEMPORARY
if (genericParam->mGenericParamKind == BfGenericParamKind_Type)
{
auto curTypeInstance = mCurTypeInstance;
if (mCurMethodInstance != NULL)
curTypeInstance = mCurMethodInstance->mMethodInstanceGroup->mOwner;
if ((curTypeInstance == NULL) || (!curTypeInstance->IsGenericTypeInstance()))
{
str += StrFormat("@T%d", genericParam->mGenericParamIdx);
return;
}
}
auto genericParamInstance = GetGenericParamInstance(genericParam);
auto genericParamDef = genericParamInstance->GetGenericParamDef();
if (genericParamDef != NULL)
str += genericParamInstance->GetGenericParamDef()->mName;
else
str += "external generic " + TypeToString(genericParamInstance->mExternType, typeNameFlags, genericMethodNameOverrides);
return;
}
else if (resolvedType->IsRef())
{
auto refType = (BfRefType*)resolvedType;
if (refType->mRefKind == BfRefType::RefKind_Ref)
{
str += "ref ";
DoTypeToString(str, refType->mElementType, typeNameFlags, genericMethodNameOverrides);
return;
}
else if (refType->mRefKind == BfRefType::RefKind_Out)
{
str += "out ";
DoTypeToString(str, refType->mElementType, typeNameFlags, genericMethodNameOverrides);
return;
}
else
{
str += "mut ";
DoTypeToString(str, refType->mElementType, typeNameFlags, genericMethodNameOverrides);
return;
}
}
else if (resolvedType->IsRetTypeType())
{
auto retTypeType = (BfRetTypeType*)resolvedType;
str += "rettype(";
DoTypeToString(str, retTypeType->mElementType, typeNameFlags, genericMethodNameOverrides);
str += ")";
return;
}
else if (resolvedType->IsConcreteInterfaceType())
{
auto concreteTypeType = (BfConcreteInterfaceType*)resolvedType;
str += "concrete ";
DoTypeToString(str, concreteTypeType->mInterface, typeNameFlags, genericMethodNameOverrides);
return;
}
else if (resolvedType->IsUnknownSizedArray())
{
auto arrayType = (BfUnknownSizedArrayType*)resolvedType;
DoTypeToString(str, arrayType->mElementType, typeNameFlags, genericMethodNameOverrides);
str += "[";
DoTypeToString(str, arrayType->mElementCountSource, typeNameFlags, genericMethodNameOverrides);
str += "]";
return;
}
else if (resolvedType->IsSizedArray())
{
auto arrayType = (BfSizedArrayType*)resolvedType;
if (arrayType->mElementCount == -1)
{
DoTypeToString(str, arrayType->mElementType, typeNameFlags, genericMethodNameOverrides);
str += "[?]";
return;
}
DoTypeToString(str, arrayType->mElementType, typeNameFlags, genericMethodNameOverrides);
str += StrFormat("[%d]", arrayType->mElementCount);
return;
}
else if (resolvedType->IsConstExprValue())
{
auto constExprValueType = (BfConstExprValueType*)resolvedType;
str += "const ";
DoTypeToString(str, constExprValueType->mType, typeNameFlags, genericMethodNameOverrides);
str += " ";
VariantToString(str, constExprValueType->mValue);
return;
}
BF_FATAL("Not implemented");
str += "???";
return;
}