mirror of
https://github.com/beefytech/Beef.git
synced 2025-06-08 03:28:20 +02:00
145 lines
4.4 KiB
C++
145 lines
4.4 KiB
C++
#include "MathUtils.h"
|
|
#include "Sphere.h"
|
|
|
|
USING_NS_BF;
|
|
|
|
bool Beefy::RayIntersectsTriangle(const Vector3& rayOrigin, const Vector3& rayVector, const Vector3& vtx0, const Vector3& vtx1, const Vector3& vtx2, Vector3* outIntersectionPoint, float* outDistance)
|
|
{
|
|
const float EPSILON = 0.0000001f;
|
|
Vector3 edge1, edge2, h, s, q;
|
|
float a, f, u, v;
|
|
edge1 = vtx1 - vtx0;
|
|
edge2 = vtx2 - vtx0;
|
|
|
|
h = Vector3::CrossProduct(rayVector, edge2);//rayVector.crossProduct(edge2);
|
|
a = Vector3::Dot(edge1, h); //edge1.dotProduct(h);
|
|
if (a > -EPSILON && a < EPSILON)
|
|
return false; // This ray is parallel to this triangle.
|
|
f = 1.0f / a;
|
|
s = rayOrigin - vtx0;
|
|
u = f * Vector3::Dot(s, h); //s.dotProduct(h);
|
|
if (u < 0.0 || u > 1.0)
|
|
return false;
|
|
q = Vector3::CrossProduct(s, edge1); //s.crossProduct(edge1);
|
|
v = f * Vector3::Dot(rayVector, q); //rayVector.dotProduct(q);
|
|
if (v < 0.0 || u + v > 1.0)
|
|
return false;
|
|
// At this stage we can compute t to find out where the intersection point is on the line.
|
|
float distance = f * Vector3::Dot(edge2, q); //edge2.dotProduct(q);
|
|
if (distance > EPSILON) // ray intersection
|
|
{
|
|
if (outIntersectionPoint != NULL)
|
|
*outIntersectionPoint = rayOrigin + rayVector * distance;
|
|
if (outDistance != NULL)
|
|
*outDistance = distance;
|
|
return true;
|
|
}
|
|
else // This means that there is a line intersection but not a ray intersection.
|
|
return false;
|
|
}
|
|
|
|
bool Beefy::RayIntersectsCircle(const Vector3& rayOrigin, const Vector3& rayVector, const Sphere& sphere, Vector3* outIntersectionPoint, Vector3* outNormal, float* outDistance)
|
|
{
|
|
Vector3 e = sphere.mCenter - rayOrigin;
|
|
float rSq = sphere.mRadius * sphere.mRadius;
|
|
|
|
float eSq = e.GetMagnitudeSquare();
|
|
float a = Vector3::Dot(e, rayVector); // ray.direction is assumed to be normalized
|
|
float bSq = /*sqrtf(*/eSq - (a * a)/*)*/;
|
|
float f = sqrtf(fabsf((rSq)- /*(b * b)*/bSq));
|
|
|
|
// Assume normal intersection!
|
|
float t = a - f;
|
|
|
|
// No collision has happened
|
|
if (rSq - (eSq - a * a) < 0.0f)
|
|
{
|
|
return false;
|
|
}
|
|
// Ray starts inside the sphere
|
|
else if (eSq < rSq)
|
|
{
|
|
// Just reverse direction
|
|
t = a + f;
|
|
}
|
|
|
|
if (outDistance != NULL)
|
|
*outDistance = t;
|
|
if ((outIntersectionPoint != NULL) || (outNormal != NULL))
|
|
{
|
|
Vector3 intersect = rayOrigin + rayVector * t;
|
|
if (outIntersectionPoint != NULL)
|
|
*outIntersectionPoint = intersect;
|
|
if (outNormal != NULL)
|
|
*outNormal = Vector3::Normalize(intersect - sphere.mCenter);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool Beefy::RayIntersectsAABB(const Vector3& rayOrigin, const Vector3& rayVector, const AABB& aabb, Vector3* outIntersectionPoint, Vector3* outNormal, float* outDistance)
|
|
{
|
|
const Vector3& min = aabb.mMin;
|
|
const Vector3& max = aabb.mMax;
|
|
|
|
// Any component of direction could be 0!
|
|
// Address this by using a small number, close to
|
|
// 0 in case any of directions components are 0
|
|
float t1 = (min.mX - rayOrigin.mX) / ((fabs(rayVector.mX) < 0.00001f) ? 0.00001f : rayVector.mX);
|
|
float t2 = (max.mX - rayOrigin.mX) / ((fabs(rayVector.mX) < 0.00001f) ? 0.00001f : rayVector.mX);
|
|
float t3 = (min.mY - rayOrigin.mY) / ((fabs(rayVector.mY) < 0.00001f) ? 0.00001f : rayVector.mY);
|
|
float t4 = (max.mY - rayOrigin.mY) / ((fabs(rayVector.mY) < 0.00001f) ? 0.00001f : rayVector.mY);
|
|
float t5 = (min.mZ - rayOrigin.mZ) / ((fabs(rayVector.mZ) < 0.00001f) ? 0.00001f : rayVector.mZ);
|
|
float t6 = (max.mZ - rayOrigin.mZ) / ((fabs(rayVector.mZ) < 0.00001f) ? 0.00001f : rayVector.mZ);
|
|
|
|
float tmin = fmaxf(fmaxf(fminf(t1, t2), fminf(t3, t4)), fminf(t5, t6));
|
|
float tmax = fminf(fminf(fmaxf(t1, t2), fmaxf(t3, t4)), fmaxf(t5, t6));
|
|
|
|
// if tmax < 0, ray is intersecting AABB
|
|
// but entire AABB is being it's origin
|
|
if (tmax < 0) {
|
|
return false;
|
|
}
|
|
|
|
// if tmin > tmax, ray doesn't intersect AABB
|
|
if (tmin > tmax) {
|
|
return false;
|
|
}
|
|
|
|
float t_result = tmin;
|
|
|
|
// If tmin is < 0, tmax is closer
|
|
if (tmin < 0.0f) {
|
|
t_result = tmax;
|
|
}
|
|
|
|
if ((outIntersectionPoint != NULL) || (outDistance != NULL))
|
|
{
|
|
Vector3 hitPoint = rayOrigin + rayVector * t_result;
|
|
if (outIntersectionPoint != NULL)
|
|
*outIntersectionPoint = hitPoint;
|
|
if (outDistance != NULL)
|
|
*outDistance = (rayOrigin - hitPoint).GetMagnitude();
|
|
}
|
|
|
|
if (outNormal != NULL)
|
|
{
|
|
static Vector3 normals[] = {
|
|
Vector3(-1, 0, 0),
|
|
Vector3(1, 0, 0),
|
|
Vector3(0, -1, 0),
|
|
Vector3(0, 1, 0),
|
|
Vector3(0, 0, -1),
|
|
Vector3(0, 0, 1)
|
|
};
|
|
float t[] = { t1, t2, t3, t4, t5, t6 };
|
|
|
|
for (int i = 0; i < 6; ++i)
|
|
{
|
|
if (t_result == t[i])
|
|
*outNormal = normals[i];
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|