1
0
Fork 0
mirror of https://github.com/beefytech/Beef.git synced 2025-06-08 19:48:20 +02:00
Beef/IDEHelper/Compiler/BfExprEvaluator.cpp
2022-01-18 10:34:33 -05:00

23040 lines
786 KiB
C++

#pragma warning(push)
#pragma warning(disable:4800)
#pragma warning(disable:4244)
#pragma warning(disable:4141)
#pragma warning(disable:4624)
#pragma warning(disable:4146)
#pragma warning(disable:4267)
#pragma warning(disable:4291)
#include "BfExprEvaluator.h"
#include "BfConstResolver.h"
#include "BfAutoComplete.h"
#include "BeefySysLib/util/PerfTimer.h"
#include "BeefySysLib/util/BeefPerf.h"
#include "BfParser.h"
#include "BfMangler.h"
#include "BfResolvePass.h"
#include "BfUtil.h"
#include "BfDeferEvalChecker.h"
#include "BfVarDeclChecker.h"
#include "BfFixits.h"
#include "CeMachine.h"
#pragma warning(pop)
#pragma warning(disable:4996)
#include "BeefySysLib/util/AllocDebug.h"
USING_NS_BF;
using namespace llvm;
//////////////////////////////////////////////////////////////////////////
DeferredTupleAssignData::~DeferredTupleAssignData()
{
for (auto entry : mChildren)
{
delete entry.mExprEvaluator;
delete entry.mInnerTuple;
}
}
//////////////////////////////////////////////////////////////////////////
BfBaseClassWalker::BfBaseClassWalker(BfType* typeA, BfType* typeB, BfModule* module)
{
mMayBeFromInterface = false;
if (typeB == typeA)
typeB = NULL;
if ((typeA != NULL) && (!typeA->IsInterface()))
mTypes[0] = typeA->ToTypeInstance();
else
mTypes[0] = NULL;
if ((typeB != NULL) && (!typeB->IsInterface()))
mTypes[1] = typeB->ToTypeInstance();
else
mTypes[1] = NULL;
if ((typeA != NULL) && (typeA->IsGenericParam()))
{
mMayBeFromInterface = true;
AddConstraints(typeA, module->GetGenericParamInstance((BfGenericParamType*)typeA));
}
if ((typeB != NULL) && (typeB->IsGenericParam()))
{
mMayBeFromInterface = true;
AddConstraints(typeB, module->GetGenericParamInstance((BfGenericParamType*)typeB));
}
}
/*BfBaseClassWalker::BfBaseClassWalker(BfTypeInstance* typeA, BfTypeInstance* typeB)
{
mTypes[0] = typeA;
mTypes[1] = typeB;
}*/
BfBaseClassWalker::BfBaseClassWalker()
{
mMayBeFromInterface = false;
mTypes[0] = NULL;
mTypes[1] = NULL;
}
void BfBaseClassWalker::AddConstraints(BfType* srcType, BfGenericParamInstance* genericParam)
{
if (genericParam->mTypeConstraint != NULL)
{
auto typeInst = genericParam->mTypeConstraint->ToTypeInstance();
{
Entry entry(srcType, typeInst);
if ((typeInst != NULL) && (!mManualList.Contains(entry)))
mManualList.Add(entry);
}
}
for (auto typeInst : genericParam->mInterfaceConstraints)
{
Entry entry(srcType, typeInst);
if ((typeInst != NULL) && (!mManualList.Contains(entry)))
mManualList.Add(entry);
}
}
BfBaseClassWalker::Entry BfBaseClassWalker::Next()
{
if (!mManualList.IsEmpty())
{
auto entry = mManualList.back();
mManualList.pop_back();
return entry;
}
// Check the most specific type instance first (highest inheritance level)
auto checkInstance = mTypes[0];
if (mTypes[0] == NULL)
checkInstance = mTypes[1];
else if ((mTypes[1] != NULL) && (mTypes[1]->mInheritDepth > mTypes[0]->mInheritDepth))
checkInstance = mTypes[1];
if (checkInstance == NULL)
return Entry();
// Do it this was so if we reach the same base class for both types that we only handle each base type once
if (checkInstance == mTypes[0])
mTypes[0] = checkInstance->mBaseType;
if (checkInstance == mTypes[1])
mTypes[1] = checkInstance->mBaseType;
Entry entry;
entry.mSrcType = checkInstance;
entry.mTypeInstance = checkInstance;
return entry;
}
//////////////////////////////////////////////////////////////////////////
BfMethodMatcher::BfMethodMatcher(BfAstNode* targetSrc, BfModule* module, const StringImpl& methodName, SizedArrayImpl<BfResolvedArg>& arguments, BfSizedArray<ASTREF(BfTypeReference*)>* methodGenericArguments) :
mArguments(arguments)
{
mTargetSrc = targetSrc;
mModule = module;
mMethodName = methodName;
Init(/*arguments, */methodGenericArguments);
}
BfMethodMatcher::BfMethodMatcher(BfAstNode* targetSrc, BfModule* module, BfMethodInstance* interfaceMethodInstance, SizedArrayImpl<BfResolvedArg>& arguments, BfSizedArray<ASTREF(BfTypeReference*)>* methodGenericArguments) :
mArguments(arguments)
{
mTargetSrc = targetSrc;
mModule = module;
Init(/*arguments, */methodGenericArguments);
mInterfaceMethodInstance = interfaceMethodInstance;
mMethodName = mInterfaceMethodInstance->mMethodDef->mName;
}
void BfMethodMatcher::Init(/*SizedArrayImpl<BfResolvedArg>& arguments, */BfSizedArray<ASTREF(BfTypeReference*)>* methodGenericArguments)
{
//mArguments = arguments;
mActiveTypeDef = NULL;
mBestMethodDef = NULL;
mBackupMethodDef = NULL;
mBackupMatchKind = BackupMatchKind_None;
mBestRawMethodInstance = NULL;
mBestMethodTypeInstance = NULL;
mExplicitInterfaceCheck = NULL;
mSelfType = NULL;
mMethodType = BfMethodType_Normal;
mCheckReturnType = NULL;
mHadExplicitGenericArguments = false;
mHasVarArguments = false;
mInterfaceMethodInstance = NULL;
mFakeConcreteTarget = false;
mBypassVirtual = false;
mAllowStatic = true;
mAllowNonStatic = true;
mSkipImplicitParams = false;
mAllowImplicitThis = false;
mAllowImplicitRef = false;
mAllowImplicitWrap = false;
mHadVarConflictingReturnType = false;
mAutoFlushAmbiguityErrors = true;
mMethodCheckCount = 0;
mCheckedKind = BfCheckedKind_NotSet;
mMatchFailKind = MatchFailKind_None;
mBfEvalExprFlags = BfEvalExprFlags_None;
for (auto& arg : mArguments)
{
auto bfType = arg.mTypedValue.mType;
if (bfType != NULL)
{
mHasVarArguments |= bfType->IsVar();
if (bfType->IsGenericParam())
{
auto genericParamInstance = mModule->GetGenericParamInstance((BfGenericParamType*)bfType);
if ((genericParamInstance->mGenericParamFlags & BfGenericParamFlag_Var) != 0)
mHasVarArguments = true;
}
}
}
if (methodGenericArguments != NULL)
{
for (BfTypeReference* genericArg : *methodGenericArguments)
{
auto genericArgType = mModule->ResolveTypeRef(genericArg);
if ((genericArgType != NULL) && (genericArgType->IsGenericParam()))
{
auto genericParamInstance = mModule->GetGenericParamInstance((BfGenericParamType*)genericArgType);
if ((genericParamInstance->mGenericParamFlags & BfGenericParamFlag_Var) != 0)
mHasVarArguments = true;
}
mExplicitMethodGenericArguments.push_back(genericArgType);
}
mHadExplicitGenericArguments = true;
}
}
bool BfMethodMatcher::IsMemberAccessible(BfTypeInstance* typeInst, BfTypeDef* declaringType)
{
if (!declaringType->mIsPartial)
return true;
if (mActiveTypeDef == NULL)
mActiveTypeDef = mModule->GetActiveTypeDef();
// Note that mActiveTypeDef does not pose a constraint here
if (!typeInst->IsTypeMemberIncluded(declaringType, mActiveTypeDef, mModule))
return false;
auto visibleProjectSet = mModule->GetVisibleProjectSet();
if ((visibleProjectSet != NULL) && (!typeInst->IsTypeMemberAccessible(declaringType, visibleProjectSet)))
{
return false;
}
return true;
}
bool BfGenericInferContext::InferGenericArgument(BfMethodInstance* methodInstance, BfType* argType, BfType* wantType, BfIRValue argValue)
{
if (argType == NULL)
return false;
if (!wantType->IsUnspecializedType())
return true;
bool alreadyChecked = false;
auto _AddToCheckedSet = [](BfType* type, HashSet<BfType*>& checkedTypeSet, bool& alreadyChecked)
{
if (alreadyChecked)
return true;
alreadyChecked = true;
return checkedTypeSet.Add(type);
};
if (wantType->IsGenericParam())
{
auto wantGenericParam = (BfGenericParamType*)wantType;
BfType* methodGenericTypeConstraint = NULL;
auto _SetGeneric = [&]()
{
if (argType != NULL)
{
// Disallow illegal types
if (argType->IsRef())
return;
if (argType->IsNull())
return;
}
if ((*mCheckMethodGenericArguments)[wantGenericParam->mGenericParamIdx] != argType)
{
if (methodGenericTypeConstraint != NULL)
{
if (methodGenericTypeConstraint->IsGenericTypeInstance())
{
auto wantGenericType = (BfTypeInstance*)methodGenericTypeConstraint;
auto checkArgType = argType;
while (checkArgType != NULL)
{
if (checkArgType->IsGenericTypeInstance())
{
auto argGenericType = (BfTypeInstance*)checkArgType;
if (argGenericType->mTypeDef->GetLatest() == wantGenericType->mTypeDef->GetLatest())
{
for (int genericArgIdx = 0; genericArgIdx < (int)argGenericType->mGenericTypeInfo->mTypeGenericArguments.size(); genericArgIdx++)
InferGenericArgument(methodInstance, argGenericType->mGenericTypeInfo->mTypeGenericArguments[genericArgIdx], wantGenericType->mGenericTypeInfo->mTypeGenericArguments[genericArgIdx], BfIRValue());
}
}
else if (checkArgType->IsSizedArray())
{
auto sizedArrayType = (BfSizedArrayType*)checkArgType;
if (wantGenericType->IsInstanceOf(mModule->mCompiler->mSizedArrayTypeDef))
{
InferGenericArgument(methodInstance, sizedArrayType->mElementType, wantGenericType->mGenericTypeInfo->mTypeGenericArguments[0], BfIRValue());
auto intType = mModule->GetPrimitiveType(BfTypeCode_IntPtr);
BfTypedValue arraySize = BfTypedValue(mModule->mBfIRBuilder->CreateConst(BfTypeCode_IntPtr, (uint64)sizedArrayType->mElementCount), intType);
InferGenericArgument(methodInstance, mModule->CreateConstExprValueType(arraySize), wantGenericType->mGenericTypeInfo->mTypeGenericArguments[1], BfIRValue());
}
}
else if (checkArgType->IsPointer())
{
auto pointerType = (BfPointerType*)checkArgType;
if (wantGenericType->IsInstanceOf(mModule->mCompiler->mPointerTTypeDef))
{
InferGenericArgument(methodInstance, pointerType->mElementType, wantGenericType->mGenericTypeInfo->mTypeGenericArguments[0], BfIRValue());
}
}
auto checkTypeInst = checkArgType->ToTypeInstance();
if ((checkTypeInst == NULL) || (!checkTypeInst->mHasParameterizedBase))
break;
checkArgType = checkTypeInst->mBaseType;
}
}
}
}
if ((*mCheckMethodGenericArguments)[wantGenericParam->mGenericParamIdx] == NULL)
mInferredCount++;
(*mCheckMethodGenericArguments)[wantGenericParam->mGenericParamIdx] = argType;
if (!mPrevArgValues.IsEmpty())
mPrevArgValues[wantGenericParam->mGenericParamIdx] = argValue;
};
if (argType->IsVar())
{
_SetGeneric();
return true;
}
if (wantGenericParam->mGenericParamKind == BfGenericParamKind_Method)
{
auto genericParamInst = methodInstance->mMethodInfoEx->mGenericParams[wantGenericParam->mGenericParamIdx];
methodGenericTypeConstraint = genericParamInst->mTypeConstraint;
if ((genericParamInst->mGenericParamFlags & BfGenericParamFlag_Const) != 0)
{
if (argValue.IsConst())
{
argType = mModule->CreateConstExprValueType(BfTypedValue(argValue, argType));
}
else if (!argType->IsConstExprValue())
{
return false;
}
}
if (argType == mModule->mContext->mBfObjectType)
{
if ((genericParamInst->mTypeConstraint != NULL) && (genericParamInst->mTypeConstraint->IsDelegate()))
{
argType = mModule->ResolveGenericType(genericParamInst->mTypeConstraint, NULL, mCheckMethodGenericArguments);
if (argType == NULL)
return true;
}
}
if (mPrevArgValues.IsEmpty())
{
_SetGeneric();
return true;
}
auto prevGenericMethodArg = (*mCheckMethodGenericArguments)[wantGenericParam->mGenericParamIdx];
auto prevArgValue = mPrevArgValues[wantGenericParam->mGenericParamIdx];
if (prevGenericMethodArg == NULL)
{
_SetGeneric();
return true;
}
if ((prevGenericMethodArg->IsIntUnknown()) && (!argType->IsIntUnknown()))
{
// Old int fits into new argType, that's good
if (mModule->CanCast(BfTypedValue(prevArgValue, prevGenericMethodArg), argType))
{
_SetGeneric();
return true;
}
// Doesn't fit, upgrade type to 'int'
argType = mModule->GetPrimitiveType(BfTypeCode_IntPtr);
if (mModule->CanCast(BfTypedValue(prevArgValue, prevGenericMethodArg), argType))
{
_SetGeneric();
return true;
}
}
if (argType->IsIntUnknown())
{
// New int fits into previous arg type, that's good
if (mModule->CanCast(BfTypedValue(argValue, argType), prevGenericMethodArg))
return true;
// Doesn't fit, upgrade type to 'int'
argType = mModule->GetPrimitiveType(BfTypeCode_IntPtr);
}
else
{
// Prev is already best
if (mModule->CanCast(mModule->GetFakeTypedValue(argType), prevGenericMethodArg))
return true;
}
// New best?
if (mModule->CanCast(mModule->GetFakeTypedValue(prevGenericMethodArg), argType))
{
_SetGeneric();
return true;
}
// No implicit conversion, FAIL!
(*mCheckMethodGenericArguments)[wantGenericParam->mGenericParamIdx] = NULL;
return false;
}
return true;
}
if (wantType->IsTuple())
{
if (argType->IsTuple())
{
auto wantTupleType = (BfTupleType*)wantType;
auto argTupleType = (BfTupleType*)argType;
if (wantTupleType->mFieldInstances.size() == argTupleType->mFieldInstances.size())
{
for (int fieldIdx = 0; fieldIdx < (int)wantTupleType->mFieldInstances.size(); fieldIdx++)
{
InferGenericArgument(methodInstance, argTupleType->mFieldInstances[fieldIdx].mResolvedType,
wantTupleType->mFieldInstances[fieldIdx].mResolvedType, BfIRValue());
}
}
}
}
if ((wantType->IsGenericTypeInstance()) && (wantType->IsUnspecializedTypeVariation()))
{
auto wantGenericType = (BfTypeInstance*)wantType;
if (argType->IsGenericParam())
{
auto genericParam = mModule->GetGenericParamInstance((BfGenericParamType*)argType);
if ((genericParam->mGenericParamFlags & BfGenericParamFlag_Var) != 0)
{
InferGenericArgument(methodInstance, mModule->GetPrimitiveType(BfTypeCode_Var), wantType, BfIRValue());
return true;
}
if ((genericParam->mTypeConstraint != NULL) && (genericParam->mTypeConstraint->IsGenericTypeInstance()))
InferGenericArgument(methodInstance, genericParam->mTypeConstraint, wantType, BfIRValue());
}
if (argType->IsVar())
{
for (int genericArgIdx = 0; genericArgIdx < (int)wantGenericType->mGenericTypeInfo->mTypeGenericArguments.size(); genericArgIdx++)
{
BfType* wantGenericArgument = wantGenericType->mGenericTypeInfo->mTypeGenericArguments[genericArgIdx];
if (!wantGenericArgument->IsUnspecializedType())
continue;
InferGenericArgument(methodInstance, mModule->GetPrimitiveType(BfTypeCode_Var), wantGenericArgument, BfIRValue());
}
return true;
}
auto typeInstance = argType->ToTypeInstance();
if (typeInstance == NULL)
return true;
if (wantGenericType->IsInterface())
{
for (auto& ifaceEntry : typeInstance->mInterfaces)
InferGenericArgument(methodInstance, ifaceEntry.mInterfaceType, wantType, BfIRValue());
}
else if (typeInstance->mBaseType != NULL)
InferGenericArgument(methodInstance, typeInstance->mBaseType, wantType, BfIRValue());
if (!argType->IsGenericTypeInstance())
return true;
auto argGenericType = (BfTypeInstance*)argType;
if (argGenericType->mTypeDef != wantGenericType->mTypeDef)
return true;
for (int genericArgIdx = 0; genericArgIdx < (int)argGenericType->mGenericTypeInfo->mTypeGenericArguments.size(); genericArgIdx++)
{
BfType* wantGenericArgument = wantGenericType->mGenericTypeInfo->mTypeGenericArguments[genericArgIdx];
if (!wantGenericArgument->IsUnspecializedType())
continue;
if (!_AddToCheckedSet(argType, mCheckedTypeSet, alreadyChecked))
return true;
InferGenericArgument(methodInstance, argGenericType->mGenericTypeInfo->mTypeGenericArguments[genericArgIdx], wantGenericArgument, BfIRValue());
}
return true;
}
if (wantType->IsRef())
{
auto wantRefType = (BfRefType*)wantType;
if (!argType->IsRef())
{
// Match to non-ref
InferGenericArgument(methodInstance, argType, wantRefType->mElementType, BfIRValue());
return true;
}
auto argRefType = (BfRefType*)argType;
//TODO: We removed this check so we still infer even if we have the wrong ref kind
//if (wantRefType->mRefKind != argRefType->mRefKind)
//return true;
return InferGenericArgument(methodInstance, argRefType->mElementType, wantRefType->mElementType, BfIRValue());
}
if (wantType->IsPointer())
{
if (!argType->IsPointer())
return true;
auto wantPointerType = (BfPointerType*) wantType;
auto argPointerType = (BfPointerType*) argType;
return InferGenericArgument(methodInstance, argPointerType->mElementType, wantPointerType->mElementType, BfIRValue());
}
if (wantType->IsUnknownSizedArrayType())
{
auto wantArrayType = (BfUnknownSizedArrayType*)wantType;
if (argType->IsUnknownSizedArrayType())
{
auto argArrayType = (BfUnknownSizedArrayType*)argType;
InferGenericArgument(methodInstance, argArrayType->mElementCountSource, wantArrayType->mElementCountSource, BfIRValue());
}
else if (argType->IsSizedArray())
{
auto argArrayType = (BfSizedArrayType*)argType;
BfTypedValue sizeValue(mModule->GetConstValue(argArrayType->mElementCount), mModule->GetPrimitiveType(BfTypeCode_IntPtr));
auto sizedType = mModule->CreateConstExprValueType(sizeValue);
InferGenericArgument(methodInstance, sizedType, wantArrayType->mElementCountSource, BfIRValue());
}
}
if (wantType->IsSizedArray())
{
if (argType->IsSizedArray())
{
auto wantArrayType = (BfSizedArrayType*)wantType;
auto argArrayType = (BfSizedArrayType*)argType;
InferGenericArgument(methodInstance, argArrayType->mElementType, wantArrayType->mElementType, BfIRValue());
}
}
if ((wantType->IsDelegate()) || (wantType->IsFunction()))
{
if (((argType->IsDelegate()) || (argType->IsFunction())) &&
(wantType->IsDelegate() == argType->IsDelegate()))
{
if (!_AddToCheckedSet(argType, mCheckedTypeSet, alreadyChecked))
return true;
auto argInvokeMethod = mModule->GetRawMethodByName(argType->ToTypeInstance(), "Invoke");
auto wantInvokeMethod = mModule->GetRawMethodByName(wantType->ToTypeInstance(), "Invoke");
if ((argInvokeMethod != NULL) && (wantInvokeMethod != NULL) && (argInvokeMethod->GetParamCount() == wantInvokeMethod->GetParamCount()))
{
InferGenericArgument(methodInstance, argInvokeMethod->mReturnType, wantInvokeMethod->mReturnType, BfIRValue());
for (int argIdx = 0; argIdx < (int)argInvokeMethod->GetParamCount(); argIdx++)
InferGenericArgument(methodInstance, argInvokeMethod->GetParamType(argIdx), wantInvokeMethod->GetParamType(argIdx), BfIRValue());
}
}
else if (argType->IsMethodRef())
{
auto methodTypeRef = (BfMethodRefType*)argType;
if (!_AddToCheckedSet(argType, mCheckedTypeSet, alreadyChecked))
return true;
auto argInvokeMethod = methodTypeRef->mMethodRef;
auto delegateInfo = wantType->GetDelegateInfo();
auto wantInvokeMethod = mModule->GetRawMethodByName(wantType->ToTypeInstance(), "Invoke");
if ((delegateInfo->mHasExplicitThis) && (argInvokeMethod->HasThis()))
InferGenericArgument(methodInstance, argInvokeMethod->GetParamType(-1), delegateInfo->mParams[0], BfIRValue());
int wantInvokeOffset = delegateInfo->mHasExplicitThis ? 1 : 0;
if ((argInvokeMethod != NULL) && (wantInvokeMethod != NULL) && (argInvokeMethod->GetParamCount() == wantInvokeMethod->GetParamCount() - wantInvokeOffset))
{
InferGenericArgument(methodInstance, argInvokeMethod->mReturnType, wantInvokeMethod->mReturnType, BfIRValue());
for (int argIdx = 0; argIdx < (int)argInvokeMethod->GetParamCount(); argIdx++)
InferGenericArgument(methodInstance, argInvokeMethod->GetParamType(argIdx), wantInvokeMethod->GetParamType(argIdx + wantInvokeOffset), BfIRValue());
}
}
}
return true;
}
bool BfGenericInferContext::InferGenericArguments(BfMethodInstance* methodInstance, int srcGenericIdx)
{
auto& srcGenericArg = (*mCheckMethodGenericArguments)[srcGenericIdx];
if (srcGenericArg == NULL)
return false;
int startInferCount = mInferredCount;
auto srcGenericParam = methodInstance->mMethodInfoEx->mGenericParams[srcGenericIdx];
for (auto ifaceConstraint : srcGenericParam->mInterfaceConstraints)
{
if ((ifaceConstraint->IsUnspecializedTypeVariation()) && (ifaceConstraint->IsGenericTypeInstance()))
{
InferGenericArgument(methodInstance, srcGenericArg, ifaceConstraint, BfIRValue());
auto typeInstance = srcGenericArg->ToTypeInstance();
if ((typeInstance == NULL) && (srcGenericArg->IsWrappableType()))
typeInstance = mModule->GetWrappedStructType(srcGenericArg);
if (typeInstance != NULL)
{
for (auto ifaceEntry : typeInstance->mInterfaces)
InferGenericArgument(methodInstance, ifaceEntry.mInterfaceType, ifaceConstraint, BfIRValue());
}
if (srcGenericArg->IsGenericParam())
{
auto genericParamType = (BfGenericParamType*)srcGenericArg;
BfGenericParamInstance* genericParam = NULL;
if (genericParamType->mGenericParamKind == BfGenericParamKind_Method)
genericParam = mModule->mCurMethodInstance->mMethodInfoEx->mGenericParams[genericParamType->mGenericParamIdx];
else
genericParam = mModule->GetGenericParamInstance(genericParamType);
if (genericParam->mTypeConstraint != NULL)
InferGenericArgument(methodInstance, genericParam->mTypeConstraint, ifaceConstraint, BfIRValue());
for (auto argIfaceConstraint : genericParam->mInterfaceConstraints)
InferGenericArgument(methodInstance, argIfaceConstraint, ifaceConstraint, BfIRValue());
}
}
}
return mInferredCount != startInferCount;
}
void BfGenericInferContext::InferGenericArguments(BfMethodInstance* methodInstance)
{
// Attempt to infer from other generic args
for (int srcGenericIdx = 0; srcGenericIdx < (int)mCheckMethodGenericArguments->size(); srcGenericIdx++)
{
InferGenericArguments(methodInstance, srcGenericIdx);
}
}
int BfMethodMatcher::GetMostSpecificType(BfType* lhs, BfType* rhs)
{
if ((lhs->IsRef()) && (rhs->IsRef()))
return GetMostSpecificType(lhs->GetUnderlyingType(), rhs->GetUnderlyingType());
if ((lhs->IsPointer()) && (rhs->IsPointer()))
return GetMostSpecificType(lhs->GetUnderlyingType(), rhs->GetUnderlyingType());
if ((lhs->IsSizedArray()) && (rhs->IsSizedArray()))
return GetMostSpecificType(lhs->GetUnderlyingType(), rhs->GetUnderlyingType());
if (lhs->IsGenericParam())
return rhs->IsGenericParam() ? -1 : 1;
if (rhs->IsGenericParam())
return 0;
if ((lhs->IsUnspecializedType()) && (lhs->IsGenericTypeInstance()))
{
if ((!rhs->IsUnspecializedType()) || (!rhs->IsGenericTypeInstance()))
return 1;
auto lhsTypeInst = lhs->ToTypeInstance();
auto rhsTypeInst = rhs->ToTypeInstance();
if ((rhsTypeInst == NULL) || (lhsTypeInst == NULL) || (lhsTypeInst->mTypeDef != rhsTypeInst->mTypeDef))
return -1;
bool hadLHSMoreSpecific = false;
bool hadRHSMoreSpecific = false;
for (int generigArgIdx = 0; generigArgIdx < (int)lhsTypeInst->mGenericTypeInfo->mTypeGenericArguments.size(); generigArgIdx++)
{
int argMoreSpecific = GetMostSpecificType(lhsTypeInst->mGenericTypeInfo->mTypeGenericArguments[generigArgIdx],
rhsTypeInst->mGenericTypeInfo->mTypeGenericArguments[generigArgIdx]);
if (argMoreSpecific == 0)
hadLHSMoreSpecific = true;
else if (argMoreSpecific == 1)
hadRHSMoreSpecific = true;
}
if ((hadLHSMoreSpecific) && (!hadRHSMoreSpecific))
return 0;
if ((hadRHSMoreSpecific) && (!hadLHSMoreSpecific))
return 1;
return -1;
}
if (rhs->IsUnspecializedType())
return 0;
return -1;
}
void BfMethodMatcher::CompareMethods(BfMethodInstance* prevMethodInstance, BfTypeVector* prevGenericArgumentsSubstitute,
BfMethodInstance* newMethodInstance, BfTypeVector* genericArgumentsSubstitute,
bool* outNewIsBetter, bool* outNewIsWorse, bool allowSpecializeFail)
{
if (prevMethodInstance == newMethodInstance)
{
*outNewIsBetter = false;
*outNewIsWorse = true;
return;
}
#define SET_BETTER_OR_WORSE(lhs, rhs) \
if ((!isBetter) && (lhs) && !(rhs)) isBetter = true; \
if ((!isWorse) && !(lhs) && (rhs)) isWorse = true;
#define RETURN_BETTER_OR_WORSE(lhs, rhs) \
if ((!isBetter) && (lhs) && !(rhs)) { *outNewIsBetter = true; *outNewIsWorse = false; return; } \
if ((!isWorse) && !(lhs) && (rhs)) { *outNewIsBetter = false; *outNewIsWorse = true; return; };
#define RETURN_RESULTS \
*outNewIsBetter = isBetter; \
*outNewIsWorse = isWorse; \
return;
int numUsedParams = 0;
int prevNumUsedParams = 0;
bool usedExtendedForm = false;
bool prevUsedExtendedForm = false;
bool isBetter = false;
bool isWorse = false;
int argIdx;
BfMethodDef* prevMethodDef = prevMethodInstance->mMethodDef;
BfMethodDef* newMethodDef = newMethodInstance->mMethodDef;
if (prevMethodDef == mBackupMethodDef)
{
// This can happen for extension methods and such
*outNewIsBetter = true;
*outNewIsWorse = false;
return;
}
if (newMethodDef->mExplicitInterface != prevMethodDef->mExplicitInterface)
{
if (mModule->CompareMethodSignatures(newMethodInstance, prevMethodInstance))
{
SET_BETTER_OR_WORSE(newMethodDef->mExplicitInterface != NULL, prevMethodDef->mExplicitInterface != NULL);
*outNewIsBetter = isBetter;
*outNewIsWorse = isWorse;
return;
}
}
bool anyIsExtension = false;
int newImplicitParamCount = newMethodInstance->GetImplicitParamCount();
if (newMethodInstance->mMethodDef->mHasAppend)
newImplicitParamCount++;
if (newMethodInstance->mMethodDef->mMethodType == BfMethodType_Extension)
{
newImplicitParamCount++;
anyIsExtension = true;
}
int prevImplicitParamCount = prevMethodInstance->GetImplicitParamCount();
if (prevMethodInstance->mMethodDef->mHasAppend)
prevImplicitParamCount++;
if (prevMethodInstance->mMethodDef->mMethodType == BfMethodType_Extension)
{
prevImplicitParamCount++;
anyIsExtension = true;
}
int newMethodParamCount = newMethodInstance->GetParamCount();
int prevMethodParamCount = prevMethodInstance->GetParamCount();
bool hadEnoughArgs = newMethodParamCount - newImplicitParamCount < (int)mArguments.size();
bool prevHadEnoughArgs = prevMethodParamCount - prevImplicitParamCount < (int)mArguments.size();
RETURN_BETTER_OR_WORSE(hadEnoughArgs, prevHadEnoughArgs);
bool chainSkip = (newMethodInstance->mChainType == BfMethodChainType_ChainMember) || (newMethodInstance->mChainType == BfMethodChainType_ChainSkip);
bool prevChainSkip = (prevMethodInstance->mChainType == BfMethodChainType_ChainMember) || (prevMethodInstance->mChainType == BfMethodChainType_ChainSkip);
RETURN_BETTER_OR_WORSE(!chainSkip, !prevChainSkip);
if ((!isBetter) && (!isWorse))
{
bool betterByGenericParam = false;
bool worseByGenericParam = false;
bool betterByConstExprParam = false;
bool worseByConstExprParam = false;
bool someArgWasBetter = false;
bool someArgWasWorse = false;
for (argIdx = anyIsExtension ? -1 : 0; argIdx < (int)mArguments.size(); argIdx++)
{
BfTypedValue arg;
BfResolvedArg* resolvedArg = NULL;
bool wasArgDeferred = false;
if (argIdx == -1)
{
arg = mTarget;
}
else
{
resolvedArg = &mArguments[argIdx];
wasArgDeferred = resolvedArg->mArgFlags != 0;
arg = resolvedArg->mTypedValue;
}
int newArgIdx = argIdx + newImplicitParamCount;
int prevArgIdx = argIdx + prevImplicitParamCount;
if (newArgIdx >= newMethodParamCount)
break;
if (prevArgIdx >= prevMethodParamCount)
break;
bool wasGenericParam = (newArgIdx >= 0) && newMethodInstance->WasGenericParam(newArgIdx);
bool prevWasGenericParam = (prevArgIdx >= 0) && prevMethodInstance->WasGenericParam(prevArgIdx);
BfType* paramType = newMethodInstance->GetParamType(newArgIdx, true);
BfType* prevParamType = prevMethodInstance->GetParamType(prevArgIdx, true);
numUsedParams++;
prevNumUsedParams++;
BfType* origParamType = paramType;
BfType* origPrevParamType = prevParamType;
bool paramWasConstExpr = false;
bool prevParamWasConstExpr = false;
bool paramWasUnspecialized = paramType->IsUnspecializedType();
if ((genericArgumentsSubstitute != NULL) && (paramWasUnspecialized))
{
paramType = mModule->ResolveGenericType(paramType, NULL, genericArgumentsSubstitute, allowSpecializeFail);
paramType = mModule->FixIntUnknown(paramType);
}
if (paramType->IsConstExprValue())
{
prevParamWasConstExpr = true;
paramType = ((BfConstExprValueType*)paramType)->mType;
}
bool prevParamWasUnspecialized = prevParamType->IsUnspecializedType();
if ((prevGenericArgumentsSubstitute != NULL) && (prevParamWasUnspecialized))
{
prevParamType = mModule->ResolveGenericType(prevParamType, NULL, prevGenericArgumentsSubstitute, allowSpecializeFail);
prevParamType = mModule->FixIntUnknown(prevParamType);
}
if (prevParamType->IsConstExprValue())
{
prevParamWasConstExpr = true;
prevParamType = ((BfConstExprValueType*)prevParamType)->mType;
}
bool paramsEquivalent = paramType == prevParamType;
if ((prevParamType == NULL) || (paramType == NULL))
{
SET_BETTER_OR_WORSE(paramType != NULL, prevParamType != NULL);
}
else if (paramType != prevParamType)
{
bool isUnspecializedParam = paramType->IsUnspecializedType();
bool isPrevUnspecializedParam = prevParamType->IsUnspecializedType();
SET_BETTER_OR_WORSE((!isUnspecializedParam) && (!paramType->IsVar()),
(!isPrevUnspecializedParam) && (!prevParamType->IsVar()));
// Why did we have this !isUnspecializedParam check? We need the 'canCast' logic still
if ((!isBetter) && (!isWorse) /*&& (!isUnspecializedParam) && (!isPrevUnspecializedParam)*/)
{
SET_BETTER_OR_WORSE((paramType != NULL) && (!paramType->IsUnspecializedType()),
(prevParamType != NULL) && (!prevParamType->IsUnspecializedType()));
if ((!isBetter) && (!isWorse))
{
// The resolved argument type may actually match for both considered functions. IE:
// Method(int8 val) and Method(int16 val) called with Method(0) will create arguments that match their param types
if ((!wasArgDeferred) && (!wasGenericParam) && (IsType(arg, paramType)) && ((resolvedArg == NULL) || (prevParamType != resolvedArg->mBestBoundType)))
isBetter = true;
//else if ((!prevWasGenericParam) && (IsType(arg, prevParamType)) && (!IsType(arg, paramType)))
else if ((!wasArgDeferred) && (!prevWasGenericParam) && (IsType(arg, prevParamType)) && ((resolvedArg == NULL) || (paramType != resolvedArg->mBestBoundType)))
isWorse = true;
else
{
bool canCastFromCurToPrev = mModule->CanCast(mModule->GetFakeTypedValue(paramType), prevParamType);
bool canCastFromPrevToCur = mModule->CanCast(mModule->GetFakeTypedValue(prevParamType), paramType);
if ((canCastFromCurToPrev) && (canCastFromPrevToCur))
paramsEquivalent = true;
if ((canCastFromCurToPrev) && (!canCastFromPrevToCur))
isBetter = true;
else if ((canCastFromPrevToCur) && (!canCastFromCurToPrev))
isWorse = true;
else if ((paramType->IsIntegral()) && (prevParamType->IsIntegral()))
{
if (paramType == arg.mType)
isBetter = true;
else if (prevParamType == arg.mType)
isWorse = true;
else
{
if (paramType->mSize < prevParamType->mSize)
isBetter = true;
else if (paramType->mSize > prevParamType->mSize)
isWorse = true;
else if (paramType->IsSigned())
isBetter = true;
else
isWorse = true;
}
}
else if ((wasArgDeferred) && ((paramType->IsIntegral()) || (prevParamType->IsIntegral())))
{
SET_BETTER_OR_WORSE(paramType->IsIntegral(), prevParamType->IsIntegral());
}
}
}
}
}
if ((!isBetter) && (!isWorse) && (paramsEquivalent))
{
if ((origParamType != origPrevParamType) && (paramWasConstExpr) && (!prevParamWasConstExpr))
betterByConstExprParam = true;
else if ((origParamType != origPrevParamType) && (!paramWasConstExpr) && (prevParamWasConstExpr))
worseByConstExprParam = true;
else if (((paramWasUnspecialized) || (prevParamWasUnspecialized)))
{
int origTypeMoreSpecific = GetMostSpecificType(origParamType, origPrevParamType);
if (origTypeMoreSpecific == 0)
betterByGenericParam = true;
else if (origTypeMoreSpecific == 1)
worseByGenericParam = true;
}
}
if ((newArgIdx >= 0) && (newMethodInstance->GetParamKind(newArgIdx) == BfParamKind_Params))
usedExtendedForm = true;
if ((prevArgIdx >= 0) && (prevMethodInstance->GetParamKind(prevArgIdx) == BfParamKind_Params))
prevUsedExtendedForm = true;
if ((usedExtendedForm) || (prevUsedExtendedForm))
break;
someArgWasBetter |= isBetter;
someArgWasWorse |= isWorse;
isBetter = false;
isWorse = false;
}
isBetter |= someArgWasBetter;
isWorse |= someArgWasWorse;
if ((!isBetter) && (!isWorse))
{
// Don't allow ambiguity
if ((betterByGenericParam && !worseByGenericParam) ||
(!betterByGenericParam && worseByGenericParam))
{
isBetter = betterByGenericParam;
isWorse = worseByGenericParam;
}
}
if ((!isBetter) && (!isWorse))
{
// Don't allow ambiguity
if ((betterByConstExprParam && !worseByConstExprParam) ||
(!betterByConstExprParam && worseByConstExprParam))
{
isBetter = betterByConstExprParam;
isWorse = worseByConstExprParam;
}
}
if ((isBetter) || (isWorse))
{
RETURN_RESULTS;
}
}
// Check for unused extended params as next param - that still counts as using extended form
usedExtendedForm = newMethodInstance->HasParamsArray();
prevUsedExtendedForm = prevMethodInstance->HasParamsArray();
RETURN_BETTER_OR_WORSE(newMethodInstance->GetNumGenericArguments() == 0, prevMethodInstance->GetNumGenericArguments() == 0);
// Not using generic delegate params is better
RETURN_BETTER_OR_WORSE(!newMethodInstance->mHadGenericDelegateParams, !prevMethodInstance->mHadGenericDelegateParams);
// Normal form trumps extended form
RETURN_BETTER_OR_WORSE(!usedExtendedForm, !prevUsedExtendedForm);
// More used params trumps less params
int paramDiff = (int) numUsedParams - (int) prevNumUsedParams;
RETURN_BETTER_OR_WORSE(paramDiff > 0, paramDiff < 0);
// Fewer defaults trumps more defaults
// Since we know the number of used params is the same (previous check), we infer that the rest are defaults
paramDiff = (int) newMethodInstance->GetParamCount() - (int) prevMethodInstance->GetParamCount();
RETURN_BETTER_OR_WORSE(paramDiff < 0, paramDiff > 0);
BfMethodInstance* typeUnspecNewMethodInstance = mModule->GetUnspecializedMethodInstance(newMethodInstance, true);
BfMethodInstance* typeUnspecPrevMethodInstance = mModule->GetUnspecializedMethodInstance(prevMethodInstance, true);
// Check specificity of args
std::function<void(BfType*, BfType*)> _CompareParamTypes = [&](BfType* newType, BfType* prevType)
{
if ((newType->IsGenericParam()) && (prevType->IsGenericParam()))
{
auto newGenericParamType = (BfGenericParamType*)newType;
auto prevGenericParamType = (BfGenericParamType*)prevType;
if ((newGenericParamType->mGenericParamKind == BfGenericParamKind_Method) && (prevGenericParamType->mGenericParamKind == BfGenericParamKind_Method))
{
auto newMethodGenericParam = typeUnspecNewMethodInstance->mMethodInfoEx->mGenericParams[newGenericParamType->mGenericParamIdx];
auto prevMethodGenericParam = typeUnspecPrevMethodInstance->mMethodInfoEx->mGenericParams[prevGenericParamType->mGenericParamIdx];
SET_BETTER_OR_WORSE(mModule->AreConstraintsSubset(prevMethodGenericParam, newMethodGenericParam), mModule->AreConstraintsSubset(newMethodGenericParam, prevMethodGenericParam));
}
}
else if (newType == prevType)
{
if ((newType->IsUnspecializedType()) && (newType->IsGenericTypeInstance()))
{
BfTypeInstance* newGenericType = (BfTypeInstance*)newType;
BfTypeInstance* prevGenericType = (BfTypeInstance*)prevType;
for (int genericArgIdx = 0; genericArgIdx < (int)newGenericType->mGenericTypeInfo->mTypeGenericArguments.size(); genericArgIdx++)
{
_CompareParamTypes(newGenericType->mGenericTypeInfo->mTypeGenericArguments[genericArgIdx], prevGenericType->mGenericTypeInfo->mTypeGenericArguments[genericArgIdx]);
}
}
}
else
{
//TODO: Why did we need this?
//isBetter |= mModule->IsTypeMoreSpecific(newType, prevType);
//isWorse |= mModule->IsTypeMoreSpecific(prevType, newType);
}
};
int paramCheckCount = (int)BF_MIN(newMethodInstance->GetParamCount() - newImplicitParamCount, prevMethodInstance->GetParamCount() - prevImplicitParamCount);
for (argIdx = 0; argIdx < (int)paramCheckCount/*mArguments.size()*/; argIdx++)
{
int newArgIdx = argIdx + newImplicitParamCount;
int prevArgIdx = argIdx + prevImplicitParamCount;
_CompareParamTypes(typeUnspecNewMethodInstance->GetParamType(newArgIdx), typeUnspecPrevMethodInstance->GetParamType(prevArgIdx));
}
// Do generic constraint subset test directly to handle cases like "NotDisposed<T>()" vs "NotDisposed<T>() where T : IDisposable"
if ((newMethodInstance->GetNumGenericArguments() > 0) && (newMethodInstance->GetNumGenericArguments() == prevMethodInstance->GetNumGenericArguments()))
{
for (int genericParamIdx = 0; genericParamIdx < (int)newMethodInstance->GetNumGenericArguments(); genericParamIdx++)
{
auto newMethodGenericParam = newMethodInstance->mMethodInfoEx->mGenericParams[genericParamIdx];
auto prevMethodGenericParam = prevMethodInstance->mMethodInfoEx->mGenericParams[genericParamIdx];
SET_BETTER_OR_WORSE(mModule->AreConstraintsSubset(prevMethodGenericParam, newMethodGenericParam), mModule->AreConstraintsSubset(newMethodGenericParam, prevMethodGenericParam));
}
if ((!isBetter) && (!isWorse))
{
SET_BETTER_OR_WORSE(newMethodInstance->HasExternConstraints(), prevMethodInstance->HasExternConstraints());
}
}
if ((isBetter) || (isWorse))
{
RETURN_RESULTS;
}
// For operators, prefer explicit comparison over '<=>' comparison operator
if ((!isBetter) && (!isWorse))
{
if ((prevMethodDef->mIsOperator) && (newMethodDef->mIsOperator))
{
bool newIsComparison = ((BfOperatorDeclaration*)newMethodDef->mMethodDeclaration)->mBinOp == BfBinaryOp_Compare;
bool prevIsComparison = ((BfOperatorDeclaration*)prevMethodDef->mMethodDeclaration)->mBinOp == BfBinaryOp_Compare;
RETURN_BETTER_OR_WORSE(!newIsComparison, !prevIsComparison);
}
}
if ((newMethodInstance->mMethodDef->mExternalConstraints.size() != 0) || (prevMethodInstance->mMethodDef->mExternalConstraints.size() != 0))
{
struct GenericParamPair
{
BfGenericMethodParamInstance* mParams[2];
GenericParamPair()
{
mParams[0] = NULL;
mParams[1] = NULL;
}
};
Dictionary<BfType*, GenericParamPair> externConstraints;
auto _GetParams = [&](int idx, BfMethodInstance* methodInstance)
{
for (int externConstraintIdx = 0; externConstraintIdx < (int)methodInstance->mMethodDef->mExternalConstraints.size(); externConstraintIdx++)
{
auto genericParam = methodInstance->mMethodInfoEx->mGenericParams[methodInstance->mMethodDef->mGenericParams.size() + externConstraintIdx];
BF_ASSERT(genericParam->mExternType != NULL);
GenericParamPair* pairPtr = NULL;
externConstraints.TryAdd(genericParam->mExternType, NULL, &pairPtr);
pairPtr->mParams[idx] = genericParam;
}
};
_GetParams(0, newMethodInstance);
_GetParams(1, prevMethodInstance);
for (auto kv : externConstraints)
{
SET_BETTER_OR_WORSE(mModule->AreConstraintsSubset(kv.mValue.mParams[1], kv.mValue.mParams[0]), mModule->AreConstraintsSubset(kv.mValue.mParams[0], kv.mValue.mParams[1]));
}
if ((isBetter) || (isWorse))
{
RETURN_RESULTS;
}
}
// Does one have a body and one doesn't? Obvious!
isBetter = prevMethodDef->IsEmptyPartial();
isWorse = newMethodDef->IsEmptyPartial();
if ((isBetter) && (isWorse))
{
// If both are empty partials then just bind to either
isWorse = true;
RETURN_RESULTS;
}
// For extensions, select the version in the most-specific project (only applicable for ctors)
if ((!isBetter) && (!isWorse))
{
auto newProject = newMethodDef->mDeclaringType->mProject;
auto prevProject = prevMethodDef->mDeclaringType->mProject;
if (newProject != prevProject)
{
RETURN_BETTER_OR_WORSE(newProject->ContainsReference(prevProject), prevProject->ContainsReference(newProject));
}
}
// If we have conditional type extensions that both define an implementation for a method, use the most-specific conditional extension constraints
auto owner = newMethodInstance->GetOwner();
if ((newMethodDef->mDeclaringType != prevMethodDef->mDeclaringType) && (owner->IsGenericTypeInstance()))
{
auto genericOwner = (BfTypeInstance*)owner;
if (genericOwner->mGenericTypeInfo->mGenericExtensionInfo != NULL)
{
BfGenericExtensionEntry* newGenericExtesionEntry = NULL;
BfGenericExtensionEntry* prevGenericExtesionEntry = NULL;
if ((genericOwner->mGenericTypeInfo->mGenericExtensionInfo->mExtensionMap.TryGetValue(newMethodDef->mDeclaringType, &newGenericExtesionEntry)) &&
(genericOwner->mGenericTypeInfo->mGenericExtensionInfo->mExtensionMap.TryGetValue(prevMethodDef->mDeclaringType, &prevGenericExtesionEntry)))
{
if ((newGenericExtesionEntry->mGenericParams.size() == prevGenericExtesionEntry->mGenericParams.size()))
{
for (int genericParamIdx = 0; genericParamIdx < (int)newGenericExtesionEntry->mGenericParams.size(); genericParamIdx++)
{
auto newMethodGenericParam = newGenericExtesionEntry->mGenericParams[genericParamIdx];
auto prevMethodGenericParam = prevGenericExtesionEntry->mGenericParams[genericParamIdx];
SET_BETTER_OR_WORSE(mModule->AreConstraintsSubset(prevMethodGenericParam, newMethodGenericParam), mModule->AreConstraintsSubset(newMethodGenericParam, prevMethodGenericParam));
}
}
if ((isBetter) || (isWorse))
{
RETURN_RESULTS;
}
}
}
}
RETURN_BETTER_OR_WORSE(newMethodDef->mCheckedKind == mCheckedKind, prevMethodDef->mCheckedKind == mCheckedKind);
RETURN_BETTER_OR_WORSE(newMethodDef->mCommutableKind != BfCommutableKind_Reverse, prevMethodDef->mCommutableKind != BfCommutableKind_Reverse);
// If one of these methods is local to the current extension then choose that one
auto activeDef = mModule->GetActiveTypeDef();
RETURN_BETTER_OR_WORSE(newMethodDef->mDeclaringType == activeDef, prevMethodDef->mDeclaringType == activeDef);
RETURN_BETTER_OR_WORSE(newMethodDef->mDeclaringType->IsExtension(), prevMethodDef->mDeclaringType->IsExtension());
RETURN_BETTER_OR_WORSE(newMethodDef->mIsMutating, prevMethodDef->mIsMutating);
if (newMethodDef->mHasComptime != prevMethodDef->mHasComptime)
{
bool isComptime = (mModule->mIsComptimeModule) || ((mBfEvalExprFlags & BfEvalExprFlags_Comptime) != 0);
RETURN_BETTER_OR_WORSE(newMethodDef->mHasComptime == isComptime, prevMethodDef->mHasComptime == isComptime);
}
RETURN_RESULTS;
}
BfTypedValue BfMethodMatcher::ResolveArgTypedValue(BfResolvedArg& resolvedArg, BfType* checkType, BfTypeVector* genericArgumentsSubstitute, BfType *origCheckType, BfResolveArgFlags flags)
{
BfTypedValue argTypedValue = resolvedArg.mTypedValue;
if ((resolvedArg.mArgFlags & BfArgFlag_DelegateBindAttempt) != 0)
{
BfExprEvaluator exprEvaluator(mModule);
exprEvaluator.mExpectingType = checkType;
BF_ASSERT(resolvedArg.mExpression->IsA<BfDelegateBindExpression>());
auto delegateBindExpr = BfNodeDynCast<BfDelegateBindExpression>(resolvedArg.mExpression);
BfMethodInstance* boundMethodInstance = NULL;
auto bindType = checkType;
if ((bindType == NULL) && (origCheckType != NULL) && (!origCheckType->IsUnspecializedTypeVariation()))
bindType = checkType;
if (exprEvaluator.CanBindDelegate(delegateBindExpr, &boundMethodInstance, bindType, genericArgumentsSubstitute))
{
if (delegateBindExpr->mNewToken == NULL)
{
if (boundMethodInstance->GetOwner()->IsFunction())
{
return BfTypedValue(mModule->mBfIRBuilder->GetFakeVal(), boundMethodInstance->GetOwner());
}
else if ((boundMethodInstance->mDisallowCalling) || ((flags & BfResolveArgFlag_FromGeneric) == 0))
{
argTypedValue = BfTypedValue(mModule->mBfIRBuilder->GetFakeVal(), checkType);
}
else
{
resolvedArg.mExpectedType = checkType;
auto methodRefType = mModule->CreateMethodRefType(boundMethodInstance);
mModule->AddDependency(methodRefType, mModule->mCurTypeInstance, BfDependencyMap::DependencyFlag_Calls);
mModule->AddCallDependency(boundMethodInstance);
argTypedValue = BfTypedValue(mModule->mBfIRBuilder->GetFakeVal(), methodRefType);
}
}
else
argTypedValue = BfTypedValue(BfTypedValueKind_UntypedValue);
}
}
else if ((resolvedArg.mArgFlags & BfArgFlag_LambdaBindAttempt) != 0)
{
if ((argTypedValue) && (argTypedValue.mType->IsMethodRef()) &&
((checkType == NULL) || (!checkType->IsMethodRef())))
{
// This may be from a previous checkMethod, clear it out
argTypedValue = BfTypedValue();
}
BfExprEvaluator exprEvaluator(mModule);
exprEvaluator.mExpectingType = checkType;
BF_ASSERT(resolvedArg.mExpression->IsA<BfLambdaBindExpression>());
auto lambdaBindExpr = (BfLambdaBindExpression*)resolvedArg.mExpression;
if ((checkType != NULL) && (checkType->IsDelegate()))
{
BfMethodInstance* methodInstance = mModule->GetRawMethodInstanceAtIdx(checkType->ToTypeInstance(), 0, "Invoke");
if (methodInstance != NULL)
{
if (methodInstance->GetParamCount() == (int)lambdaBindExpr->mParams.size())
{
if (lambdaBindExpr->mNewToken == NULL)
{
if (!resolvedArg.mTypedValue)
{
// Resolve for real
resolvedArg.mTypedValue = mModule->CreateValueFromExpression(lambdaBindExpr, checkType, (BfEvalExprFlags)((mBfEvalExprFlags & BfEvalExprFlags_InheritFlags) | BfEvalExprFlags_NoCast | BfEvalExprFlags_NoAutoComplete));
}
argTypedValue = resolvedArg.mTypedValue;
}
else
argTypedValue = BfTypedValue(BfTypedValueKind_UntypedValue);
//argTypedValue = BfTypedValue(mModule->mBfIRBuilder->GetFakeVal(), checkType);
}
}
}
else if ((checkType == NULL) && (origCheckType != NULL) && (origCheckType->IsUnspecializedTypeVariation()) && (genericArgumentsSubstitute != NULL) && (origCheckType->IsDelegateOrFunction()))
{
BfMethodInstance* methodInstance = mModule->GetRawMethodInstanceAtIdx(origCheckType->ToTypeInstance(), 0, "Invoke");
if (methodInstance != NULL)
{
if ((methodInstance->mReturnType->IsGenericParam()) && (((BfGenericParamType*)methodInstance->mReturnType)->mGenericParamKind == BfGenericParamKind_Method))
{
bool isValid = true;
int returnMethodGenericArgIdx = ((BfGenericParamType*)methodInstance->mReturnType)->mGenericParamIdx;
if ((*genericArgumentsSubstitute)[returnMethodGenericArgIdx] != NULL)
{
isValid = false;
}
if (methodInstance->mParams.size() != (int)lambdaBindExpr->mParams.size())
isValid = false;
for (auto& param : methodInstance->mParams)
{
if (param.mResolvedType->IsGenericParam())
{
auto genericParamType = (BfGenericParamType*)param.mResolvedType;
if ((genericParamType->mGenericParamKind == BfGenericParamKind_Method) && ((*genericArgumentsSubstitute)[genericParamType->mGenericParamIdx] == NULL))
{
isValid = false;
}
}
}
if (isValid)
{
bool success = false;
(*genericArgumentsSubstitute)[returnMethodGenericArgIdx] = mModule->GetPrimitiveType(BfTypeCode_None);
auto tryType = mModule->ResolveGenericType(origCheckType, NULL, genericArgumentsSubstitute);
if (tryType != NULL)
{
auto inferredReturnType = mModule->CreateValueFromExpression(lambdaBindExpr, tryType, (BfEvalExprFlags)((mBfEvalExprFlags & BfEvalExprFlags_InheritFlags) | BfEvalExprFlags_NoCast | BfEvalExprFlags_InferReturnType | BfEvalExprFlags_NoAutoComplete));
if (inferredReturnType.mType != NULL)
{
(*genericArgumentsSubstitute)[returnMethodGenericArgIdx] = inferredReturnType.mType;
if (((flags & BfResolveArgFlag_FromGenericParam) != 0) && (lambdaBindExpr->mNewToken == NULL))
{
auto resolvedType = mModule->ResolveGenericType(origCheckType, NULL, genericArgumentsSubstitute);
if (resolvedType != NULL)
{
// Resolve for real
resolvedArg.mTypedValue = mModule->CreateValueFromExpression(lambdaBindExpr, resolvedType, (BfEvalExprFlags)((mBfEvalExprFlags & BfEvalExprFlags_InheritFlags) | BfEvalExprFlags_NoCast | BfEvalExprFlags_NoAutoComplete));
argTypedValue = resolvedArg.mTypedValue;
}
}
success = true;
}
}
if (!success)
{
// Put back
(*genericArgumentsSubstitute)[returnMethodGenericArgIdx] = NULL;
}
}
}
}
}
}
else if ((resolvedArg.mArgFlags & BfArgFlag_UnqualifiedDotAttempt) != 0)
{
if ((checkType != NULL) && (checkType->IsPayloadEnum()))
{
// Should we actually check the member name?
argTypedValue = BfTypedValue(BfTypedValueKind_UntypedValue);
}
}
else if ((resolvedArg.mArgFlags & BfArgFlag_UntypedDefault) != 0)
{
if (checkType != NULL)
argTypedValue = BfTypedValue(BfTypedValueKind_UntypedValue);
}
else if ((resolvedArg.mArgFlags & BfArgFlag_DeferredEval) != 0)
{
if (resolvedArg.mExpression != NULL)
{
if ((resolvedArg.mExpectedType != checkType) || (resolvedArg.mExpectedType == NULL)) // Did our last check match for this type?
{
SetAndRestoreValue<bool> prevIgnoreWrites(mModule->mBfIRBuilder->mIgnoreWrites, true);
SetAndRestoreValue<bool> prevIgnoreError(mModule->mIgnoreErrors, true);
bool prevNoBind = false;
if (mModule->mCurMethodState != NULL)
{
prevNoBind = mModule->mCurMethodState->mNoBind;
mModule->mCurMethodState->mNoBind = true;
}
auto prevBlock = mModule->mBfIRBuilder->GetInsertBlock();
BfExprEvaluator exprEvaluator(mModule);
exprEvaluator.mBfEvalExprFlags = (BfEvalExprFlags)(mBfEvalExprFlags & BfEvalExprFlags_InheritFlags);
exprEvaluator.mBfEvalExprFlags = (BfEvalExprFlags)(exprEvaluator.mBfEvalExprFlags | BfEvalExprFlags_AllowIntUnknown | BfEvalExprFlags_NoAutoComplete);
if ((resolvedArg.mArgFlags & BfArgFlag_ParamsExpr) != 0)
exprEvaluator.mBfEvalExprFlags = (BfEvalExprFlags)(exprEvaluator.mBfEvalExprFlags | BfEvalExprFlags_AllowParamsExpr);
auto expectType = checkType;
if (expectType != NULL)
{
if (expectType->IsRef())
{
auto refType = (BfRefType*)expectType;
expectType = refType->mElementType;
}
if ((genericArgumentsSubstitute != NULL) && (expectType->IsUnspecializedType()))
expectType = mModule->ResolveGenericType(expectType, NULL, genericArgumentsSubstitute, true);
}
exprEvaluator.mExpectingType = expectType;
exprEvaluator.Evaluate(resolvedArg.mExpression);
argTypedValue = exprEvaluator.GetResult();
if ((argTypedValue) && (argTypedValue.mType->IsVar()))
argTypedValue = BfTypedValue();
if (mModule->mCurMethodState != NULL)
mModule->mCurMethodState->mNoBind = prevNoBind;
if ((argTypedValue) && (!argTypedValue.mType->IsVar()))
{
if (checkType != NULL)
resolvedArg.mExpectedType = checkType;
auto storeTypedValue = argTypedValue;
if ((storeTypedValue.mValue) & (!storeTypedValue.mValue.IsFake()))
{
// We actually want to ensure that this cached value is a fake val. There are potential cases where a fake val
// won't be generated but we should throw an error, so we need to make sure we actually re-evaluate when the call
// is generated
//storeTypedValue.mValue = mModule->mBfIRBuilder->GetFakeVal();
resolvedArg.mWantsRecalc = true;
}
resolvedArg.mTypedValue = storeTypedValue;
//BF_ASSERT(argTypedValue.mValue.mId != -1);
}
mModule->mBfIRBuilder->SetInsertPoint(prevBlock);
}
}
}
else if ((resolvedArg.mArgFlags & BfArgFlag_VariableDeclaration) != 0)
{
if ((checkType != NULL) && (checkType->IsRef()))
argTypedValue = BfTypedValue(BfTypedValueKind_UntypedValue);
}
return argTypedValue;
}
bool BfMethodMatcher::WantsCheckMethod(BfProtectionCheckFlags& flags, BfTypeInstance* startTypeInstance, BfTypeInstance* checkTypeInstance, BfMethodDef* checkMethod)
{
MatchFailKind matchFailKind = MatchFailKind_None;
if (!mModule->CheckProtection(flags, checkTypeInstance, checkMethod->mDeclaringType->mProject, checkMethod->mProtection, startTypeInstance))
{
if ((mBypassVirtual) &&
((checkMethod->mProtection == BfProtection_Protected) || (checkMethod->mProtection == BfProtection_ProtectedInternal)) &&
(mModule->TypeIsSubTypeOf(mModule->mCurTypeInstance, startTypeInstance)))
{
// Allow explicit 'base' call
}
else
{
return false;
}
}
if (mCheckedKind != checkMethod->mCheckedKind)
{
bool passes = true;
if (mCheckedKind != BfCheckedKind_NotSet)
{
passes = false;
}
else
{
auto defaultCheckedKind = mModule->GetDefaultCheckedKind();
if (defaultCheckedKind != checkMethod->mCheckedKind)
passes = false;
}
if (!passes)
{
return false;
}
}
return true;
}
bool BfMethodMatcher::InferFromGenericConstraints(BfMethodInstance* methodInstance, BfGenericParamInstance* genericParamInst, BfTypeVector* methodGenericArgs)
{
if (!genericParamInst->mExternType->IsGenericParam())
return false;
auto genericParamType = (BfGenericParamType*)genericParamInst->mExternType;
if (genericParamType->mGenericParamKind != BfGenericParamKind_Method)
return false;
BfType* checkArgType = NULL;
for (auto& checkOpConstraint : genericParamInst->mOperatorConstraints)
{
auto leftType = checkOpConstraint.mLeftType;
if ((leftType != NULL) && (leftType->IsUnspecializedType()))
leftType = mModule->ResolveGenericType(leftType, NULL, methodGenericArgs);
if (leftType != NULL)
leftType = mModule->FixIntUnknown(leftType);
auto rightType = checkOpConstraint.mRightType;
if ((rightType != NULL) && (rightType->IsUnspecializedType()))
rightType = mModule->ResolveGenericType(rightType, NULL, methodGenericArgs);
if (rightType != NULL)
rightType = mModule->FixIntUnknown(rightType);
BfConstraintState constraintSet;
constraintSet.mPrevState = mModule->mContext->mCurConstraintState;
constraintSet.mGenericParamInstance = genericParamInst;
constraintSet.mLeftType = leftType;
constraintSet.mRightType = rightType;
SetAndRestoreValue<BfConstraintState*> prevConstraintSet(mModule->mContext->mCurConstraintState, &constraintSet);
if (!mModule->CheckConstraintState(NULL))
return false;
if (checkOpConstraint.mBinaryOp != BfBinaryOp_None)
{
if ((leftType == NULL) || (rightType == NULL))
continue;
BfExprEvaluator exprEvaluator(mModule);
BfTypedValue leftValue(mModule->mBfIRBuilder->GetFakeVal(), leftType);
BfTypedValue rightValue(mModule->mBfIRBuilder->GetFakeVal(), rightType);
//
{
SetAndRestoreValue<bool> prevIgnoreErrors(mModule->mIgnoreErrors, true);
SetAndRestoreValue<bool> prevIgnoreWrites(mModule->mBfIRBuilder->mIgnoreWrites, true);
exprEvaluator.PerformBinaryOperation(NULL, NULL, checkOpConstraint.mBinaryOp, NULL, BfBinOpFlag_NoClassify, leftValue, rightValue);
}
if (exprEvaluator.mResult)
checkArgType = exprEvaluator.mResult.mType;
}
else
{
if (rightType == NULL)
continue;
BfTypedValue rightValue(mModule->mBfIRBuilder->GetFakeVal(), rightType);
StringT<128> failedOpName;
if (checkOpConstraint.mCastToken == BfToken_Implicit)
{
}
else
{
SetAndRestoreValue<bool> prevIgnoreErrors(mModule->mIgnoreErrors, true);
SetAndRestoreValue<bool> prevIgnoreWrites(mModule->mBfIRBuilder->mIgnoreWrites, true);
if (checkOpConstraint.mCastToken == BfToken_Explicit)
{
}
else
{
BfExprEvaluator exprEvaluator(mModule);
exprEvaluator.mResult = rightValue;
exprEvaluator.PerformUnaryOperation(NULL, checkOpConstraint.mUnaryOp, NULL, BfUnaryOpFlag_IsConstraintCheck);
if (exprEvaluator.mResult)
checkArgType = exprEvaluator.mResult.mType;
}
}
}
}
if ((checkArgType == NULL) && ((genericParamInst->mGenericParamFlags & BfGenericParamFlag_ComptypeExpr) != 0))
{
for (auto comptypeConstraint : genericParamInst->mComptypeConstraint)
{
checkArgType = mModule->ResolveGenericMethodTypeRef(comptypeConstraint, methodInstance, genericParamInst, methodGenericArgs);
if (checkArgType == NULL)
return false;
}
}
if (checkArgType == NULL)
return false;
if (checkArgType->IsVar())
return false;
(*methodGenericArgs)[genericParamType->mGenericParamIdx] = checkArgType;
return true;
}
bool BfMethodMatcher::CheckMethod(BfTypeInstance* targetTypeInstance, BfTypeInstance* typeInstance, BfMethodDef* checkMethod, bool isFailurePass)
{
BP_ZONE("BfMethodMatcher::CheckMethod");
BackupMatchKind curMatchKind = BackupMatchKind_None;
bool hadMatch = false;
// Never consider overrides - they only get found at original method declaration
// mBypassVirtual gets set when we are doing an explicit "base" call, or when we are a struct --
// because on structs we know the exact type
if ((checkMethod->mIsOverride) && (!mBypassVirtual) && (!typeInstance->IsValueType()))
return false;
mMethodCheckCount++;
BfMethodInstance* methodInstance = mModule->GetRawMethodInstance(typeInstance, checkMethod);
if (methodInstance == NULL)
{
BFMODULE_FATAL(mModule, "Failed to get raw method in BfMethodMatcher::CheckMethod");
return false;
}
BfMethodInstance* typeUnspecMethodInstance = mModule->GetUnspecializedMethodInstance(methodInstance, true);
BfTypeVector* typeGenericArguments = NULL;
if (typeInstance->mGenericTypeInfo != NULL)
typeGenericArguments = &typeInstance->mGenericTypeInfo->mTypeGenericArguments;
if ((mInterfaceMethodInstance != NULL) && (methodInstance->GetExplicitInterface() != NULL))
{
BfTypeInstance* wantInterface = mInterfaceMethodInstance->mMethodInstanceGroup->mOwner;
if (wantInterface != methodInstance->GetExplicitInterface())
return false;
}
if ((checkMethod->mIsVirtual) && (!checkMethod->mIsOverride) && (!mBypassVirtual) &&
(targetTypeInstance != NULL) && (targetTypeInstance->IsObject()))
{
mModule->PopulateType(targetTypeInstance, BfPopulateType_DataAndMethods);
if ((methodInstance->mVirtualTableIdx < targetTypeInstance->mVirtualMethodTable.mSize) && (methodInstance->mVirtualTableIdx >= 0))
{
BfVirtualMethodEntry& vEntry = targetTypeInstance->mVirtualMethodTable[methodInstance->mVirtualTableIdx];
auto implMethod = (BfMethodInstance*)vEntry.mImplementingMethod;
if ((implMethod != methodInstance) && (implMethod != NULL))
{
SetAndRestoreValue<bool> prevBypassVirtual(mBypassVirtual, true);
return CheckMethod(targetTypeInstance, implMethod->GetOwner(), implMethod->mMethodDef, isFailurePass);
}
}
else
{
// Being in autocomplete mode is the only excuse for not having the virtual method table slotted
if ((!mModule->mCompiler->IsAutocomplete()) && (!targetTypeInstance->mTypeFailed) && (!targetTypeInstance->IsUnspecializedTypeVariation()))
{
mModule->AssertErrorState();
}
}
}
BfGenericInferContext genericInferContext;
genericInferContext.mModule = mModule;
genericInferContext.mCheckMethodGenericArguments = &mCheckMethodGenericArguments;
HashSet<int> allowEmptyGenericSet;
BfAutoComplete* autoComplete = NULL;
if ((mModule->mCompiler->mResolvePassData != NULL) && (!isFailurePass) && ((mBfEvalExprFlags & BfEvalExprFlags_NoAutoComplete) == 0))
autoComplete = mModule->mCompiler->mResolvePassData->mAutoComplete;
if (checkMethod->mMethodType != BfMethodType_Extension)
{
if (((checkMethod->mIsStatic) && (!mAllowStatic)) ||
((!checkMethod->mIsStatic) && (!mAllowNonStatic)))
{
if (!typeInstance->IsFunction())
autoComplete = NULL;
}
}
if ((autoComplete != NULL) && (autoComplete->mIsCapturingMethodMatchInfo))
{
BfAutoComplete::MethodMatchEntry methodMatchEntry;
methodMatchEntry.mMethodDef = checkMethod;
methodMatchEntry.mTypeInstance = typeInstance;
methodMatchEntry.mCurMethodInstance = mModule->mCurMethodInstance;
autoComplete->mMethodMatchInfo->mInstanceList.push_back(methodMatchEntry);
}
BfTypeVector* genericArgumentsSubstitute = NULL;
int argIdx = 0;
int argMatchCount = 0;
bool needInferGenericParams = (checkMethod->mGenericParams.size() != 0) && (!mHadExplicitGenericArguments);
int paramIdx = 0;
BfType* paramsElementType = NULL;
if (checkMethod->mHasAppend)
paramIdx++;
int uniqueGenericStartIdx = mModule->GetLocalInferrableGenericArgCount(checkMethod);
if ((mHadExplicitGenericArguments) && (checkMethod->mGenericParams.size() != mExplicitMethodGenericArguments.size() + uniqueGenericStartIdx))
goto NoMatch;
for (auto& checkGenericArgRef : mCheckMethodGenericArguments)
checkGenericArgRef = NULL;
mCheckMethodGenericArguments.resize(checkMethod->mGenericParams.size());
for (auto& genericArgRef : mCheckMethodGenericArguments)
genericArgRef = NULL;
if (mHadExplicitGenericArguments)
{
if (uniqueGenericStartIdx > 0)
{
genericArgumentsSubstitute = &mCheckMethodGenericArguments;
mCheckMethodGenericArguments.clear();
mCheckMethodGenericArguments.reserve(mExplicitMethodGenericArguments.size() + uniqueGenericStartIdx);
for (int i = 0; i < uniqueGenericStartIdx; i++)
mCheckMethodGenericArguments.Add(NULL);
for (int i = 0; i < (int)mExplicitMethodGenericArguments.size(); i++)
mCheckMethodGenericArguments.Add(mExplicitMethodGenericArguments[i]);
}
else
{
genericArgumentsSubstitute = &mExplicitMethodGenericArguments;
}
}
else if (needInferGenericParams)
genericArgumentsSubstitute = &mCheckMethodGenericArguments;
if ((checkMethod->mIsMutating) && (targetTypeInstance != NULL) && (targetTypeInstance->IsValueType()) &&
((mTarget.IsReadOnly()) || (!mTarget.IsAddr())) &&
(!targetTypeInstance->IsValuelessType()))
{
goto NoMatch;
}
if (mSkipImplicitParams)
{
//paramOfs = methodInstance->GetImplicitParamCount();
//paramIdx += paramOfs;
}
if (needInferGenericParams)
{
genericInferContext.mPrevArgValues.resize(checkMethod->mGenericParams.size());
int paramOfs = methodInstance->GetImplicitParamCount();
int paramCount = methodInstance->GetParamCount();
SizedArray<int, 8> deferredArgs;
int argIdx = 0;
int paramIdx = 0;
if (checkMethod->mHasAppend)
paramIdx++;
if (checkMethod->mMethodType == BfMethodType_Extension)
{
argIdx--;
}
paramIdx += paramOfs;
bool hadInferFailure = false;
int inferParamOffset = paramOfs - argIdx;
int paramsParamIdx = -1;
enum ResultKind
{
ResultKind_Ok,
ResultKind_Failed,
ResultKind_Deferred,
};
auto _CheckArg = [&](int argIdx)
{
paramIdx = argIdx + inferParamOffset;
if ((paramsParamIdx != -1) && (paramIdx > paramsParamIdx))
paramIdx = paramsParamIdx;
auto wantType = methodInstance->GetParamType(paramIdx);
auto checkType = wantType;
auto origCheckType = checkType;
if (checkType->IsGenericParam())
{
BfGenericParamInstance* genericParamInstance = NULL;
auto genericParamType = (BfGenericParamType*)checkType;
checkType = NULL;
if (genericParamType->mGenericParamKind == BfGenericParamKind_Method)
{
if ((genericArgumentsSubstitute != NULL) && (genericParamType->mGenericParamIdx < (int)genericArgumentsSubstitute->size()))
checkType = (*genericArgumentsSubstitute)[genericParamType->mGenericParamIdx];
genericParamInstance = methodInstance->mMethodInfoEx->mGenericParams[genericParamType->mGenericParamIdx];
}
else
genericParamInstance = mModule->GetGenericParamInstance(genericParamType);
if (checkType == NULL)
{
checkType = genericParamInstance->mTypeConstraint;
origCheckType = checkType; // We can do "ResolveGenericType" on this type
}
}
bool attemptedGenericResolve = false;
if ((checkType != NULL) && (genericArgumentsSubstitute != NULL) && (checkType->IsUnspecializedType()))
{
attemptedGenericResolve = true;
checkType = mModule->ResolveGenericType(origCheckType, NULL, genericArgumentsSubstitute);
}
if (wantType->IsUnspecializedType())
{
BfTypedValue argTypedValue;
if (argIdx == -1)
{
if (mOrigTarget)
argTypedValue = mOrigTarget;
else
argTypedValue = mTarget;
}
else
{
BfResolveArgFlags flags = BfResolveArgFlag_FromGeneric;
if (wantType->IsGenericParam())
flags = (BfResolveArgFlags)(flags | BfResolveArgFlag_FromGenericParam);
argTypedValue = ResolveArgTypedValue(mArguments[argIdx], checkType, genericArgumentsSubstitute, origCheckType, flags);
}
if (!argTypedValue.IsUntypedValue())
{
auto type = argTypedValue.mType;
if (!argTypedValue)
{
if ((checkType == NULL) && (attemptedGenericResolve) && (genericInferContext.GetUnresolvedCount() >= 2))
{
deferredArgs.Add(argIdx);
return ResultKind_Deferred;
}
return ResultKind_Failed;
}
if (type->IsVar())
mHasVarArguments = true;
if (methodInstance->GetParamKind(paramIdx) == BfParamKind_Params)
{
paramsParamIdx = paramIdx;
if ((wantType->IsArray()) || (wantType->IsInstanceOf(mModule->mCompiler->mSpanTypeDef)))
wantType = wantType->GetUnderlyingType();
}
genericInferContext.mCheckedTypeSet.Clear();
if (!genericInferContext.InferGenericArgument(methodInstance, type, wantType, argTypedValue.mValue))
return ResultKind_Failed;
}
}
return ResultKind_Ok;
};
for (; argIdx < (int)mArguments.size(); argIdx++)
{
paramIdx = argIdx + inferParamOffset;
if ((paramIdx >= paramCount) && (paramsParamIdx == -1))
break; // Possible for delegate 'params' type methods
auto resultKind = _CheckArg(argIdx);
if (resultKind == ResultKind_Failed)
goto NoMatch;
}
if (!deferredArgs.IsEmpty())
{
genericInferContext.InferGenericArguments(methodInstance);
}
while (!deferredArgs.IsEmpty())
{
int prevDeferredSize = (int)deferredArgs.size();
for (int i = 0; i < prevDeferredSize; i++)
{
auto resultKind = _CheckArg(deferredArgs[i]);
if (resultKind == ResultKind_Failed)
goto NoMatch;
}
deferredArgs.RemoveRange(0, prevDeferredSize);
if (prevDeferredSize == deferredArgs.size())
{
// No progress
goto NoMatch;
}
}
//
{
int paramIdx = (int)mArguments.size() + paramOfs;
while (paramIdx < checkMethod->mParams.size())
{
if ((paramIdx < methodInstance->mDefaultValues.size()) && (methodInstance->mDefaultValues[paramIdx]))
{
auto wantType = methodInstance->GetParamType(paramIdx);
auto checkType = wantType;
if (checkType->IsGenericParam())
{
BfGenericParamInstance* genericParamInstance = NULL;
auto genericParamType = (BfGenericParamType*)checkType;
if (genericParamType->mGenericParamKind == BfGenericParamKind_Method)
{
if ((genericArgumentsSubstitute != NULL) && (genericParamType->mGenericParamIdx < (int)genericArgumentsSubstitute->size()))
checkType = (*genericArgumentsSubstitute)[genericParamType->mGenericParamIdx];
genericParamInstance = methodInstance->mMethodInfoEx->mGenericParams[genericParamType->mGenericParamIdx];
if ((genericParamInstance->mGenericParamFlags & BfGenericParamFlag_Const) != 0)
{
if (mCheckMethodGenericArguments[genericParamType->mGenericParamIdx] == NULL)
allowEmptyGenericSet.Add(genericParamType->mGenericParamIdx);
}
}
}
}
paramIdx++;
}
}
// while (true)
// {
//
// }
//
bool failed = false;
bool inferredAllGenericArguments = false;
for (int pass = 0; true; pass++)
{
bool madeProgress = false;
bool hasUninferred = false;
failed = false;
for (int genericArgIdx = uniqueGenericStartIdx; genericArgIdx < (int)checkMethod->mGenericParams.size(); genericArgIdx++)
{
auto& genericArg = mCheckMethodGenericArguments[genericArgIdx];
if (genericArg == NULL)
{
auto genericParam = methodInstance->mMethodInfoEx->mGenericParams[genericArgIdx];
InferFromGenericConstraints(methodInstance, genericParam, &mCheckMethodGenericArguments);
if (genericArg != NULL)
{
if (inferredAllGenericArguments)
genericInferContext.InferGenericArguments(methodInstance, genericArgIdx);
madeProgress = true;
}
hasUninferred = true;
if (!allowEmptyGenericSet.Contains(genericArgIdx))
failed = true;
}
}
if (!hasUninferred)
break;
if (inferredAllGenericArguments)
{
if (!madeProgress)
break;
}
genericInferContext.InferGenericArguments(methodInstance);
inferredAllGenericArguments = true;
}
if (failed)
goto NoMatch;
}
if (checkMethod->mMethodType == BfMethodType_Extension)
argIdx--;
// Iterate through params
while (true)
{
// Too many arguments
if (paramIdx >= (int)methodInstance->GetParamCount())
{
break;
}
bool isDeferredEval = false;
if ((argIdx >= 0) && (methodInstance->GetParamKind(paramIdx) == BfParamKind_Params) && (paramsElementType == NULL))
{
if (argIdx >= (int) mArguments.size())
break; // No params
BfTypedValue argTypedValue = ResolveArgTypedValue(mArguments[argIdx], NULL, genericArgumentsSubstitute);
if (!argTypedValue)
goto NoMatch;
if ((!argTypedValue.HasType()) && (!mArguments[argIdx].IsDeferredEval()))
goto NoMatch;
auto paramsArrayType = methodInstance->GetParamType(paramIdx);
paramsArrayType = mModule->ResolveGenericType(paramsArrayType, NULL, genericArgumentsSubstitute);
if (paramsArrayType == NULL)
goto NoMatch;
if ((mArguments[argIdx].mArgFlags & BfArgFlag_ParamsExpr) != 0)
{
// Direct-pass params
if ((argTypedValue.IsUntypedValue()) || (mModule->CanCast(argTypedValue, paramsArrayType)))
{
argIdx++;
argMatchCount++;
paramIdx++;
break;
}
goto NoMatch;
}
if ((paramsArrayType->IsArray()) || (paramsArrayType->IsInstanceOf(mModule->mCompiler->mSpanTypeDef)))
{
paramsElementType = paramsArrayType->GetUnderlyingType();
while (argIdx < (int)mArguments.size())
{
argTypedValue = ResolveArgTypedValue(mArguments[argIdx], paramsElementType, genericArgumentsSubstitute);
if (!argTypedValue.HasType())
goto NoMatch;
if (!mModule->CanCast(argTypedValue, paramsElementType))
goto NoMatch;
argIdx++;
argMatchCount++;
}
}
else
goto NoMatch;
break;
}
if (methodInstance->IsImplicitCapture(paramIdx))
{
paramIdx++;
continue;
}
if (argIdx >= (int) mArguments.size())
{
// We have defaults the rest of the way, so that's cool
if (methodInstance->GetParamInitializer(paramIdx) != NULL)
break;
// We have unused params left over
goto NoMatch;
}
auto wantType = methodInstance->GetParamType(paramIdx);
if ((genericArgumentsSubstitute != NULL) && (wantType->IsUnspecializedType()))
{
wantType = typeUnspecMethodInstance->GetParamType(paramIdx);
auto resolvedType = mModule->ResolveGenericType(wantType, typeGenericArguments, genericArgumentsSubstitute, false);
if (resolvedType == NULL)
goto NoMatch;
wantType = resolvedType;
}
wantType = mModule->ResolveSelfType(wantType, typeInstance);
if ((argIdx >= 0) && ((mArguments[argIdx].mArgFlags & BfArgFlag_ParamsExpr) != 0))
{
// We had a 'params' expression but this method didn't have a params slot in this parameter
goto NoMatch;
}
BfTypedValue argTypedValue;
if (argIdx == -1)
argTypedValue = mTarget;
else
argTypedValue = ResolveArgTypedValue(mArguments[argIdx], wantType, genericArgumentsSubstitute);
if (!argTypedValue.IsUntypedValue())
{
if (!argTypedValue.HasType())
{
// Check to see if this is the last argument and that it's a potential enum match
if ((wantType->IsEnum()) && (argIdx == mArguments.size() - 1))
{
if (auto memberRefExpr = BfNodeDynCast<BfMemberReferenceExpression>(mArguments[argIdx].mExpression))
{
if (memberRefExpr->mTarget == NULL)
{
// Is dot expression
curMatchKind = BackupMatchKind_PartialLastArgMatch;
}
}
}
goto NoMatch;
}
else
{
if ((wantType->IsRef()) && (!argTypedValue.mType->IsRef()) &&
((mAllowImplicitRef) || (wantType->IsIn())))
wantType = wantType->GetUnderlyingType();
BfCastFlags castFlags = ((mBfEvalExprFlags & BfEvalExprFlags_FromConversionOp) != 0) ? BfCastFlags_NoConversionOperator : BfCastFlags_None;
if ((mBfEvalExprFlags & BfEvalExprFlags_FromConversionOp_Explicit) != 0)
castFlags = (BfCastFlags)(castFlags | BfCastFlags_Explicit);
if (!mModule->CanCast(argTypedValue, wantType, castFlags))
{
if ((mAllowImplicitWrap) && (argTypedValue.mType->IsWrappableType()) && (mModule->GetWrappedStructType(argTypedValue.mType) == wantType))
{
// Is wrapped type
}
else
goto NoMatch;
}
}
}
paramIdx++;
argIdx++;
argMatchCount++;
if ((autoComplete != NULL) && (autoComplete->mIsCapturingMethodMatchInfo))
{
auto methodMatchInfo = autoComplete->mMethodMatchInfo;
if (!methodMatchInfo->mHadExactMatch)
{
bool isBetter = false;
bool isWorse = false;
int methodIdx = (int)methodMatchInfo->mInstanceList.size() - 1;
if ((methodMatchInfo->mBestIdx != -1) && (methodMatchInfo->mBestIdx < (int)methodMatchInfo->mInstanceList.size()))
{
auto prevMethodMatchEntry = &methodMatchInfo->mInstanceList[methodMatchInfo->mBestIdx];
if (checkMethod->mParams.size() < mArguments.size())
{
isWorse = true;
}
else if ((prevMethodMatchEntry->mMethodDef != NULL) && (prevMethodMatchEntry->mMethodDef->mParams.size() < (int) mArguments.size()))
{
isBetter = true;
}
}
}
}
}
// Too many arguments (not all incoming arguments processed)
if (argIdx < (int)mArguments.size())
{
if (!methodInstance->IsVarArgs())
goto NoMatch;
}
if (mCheckReturnType != NULL)
{
auto wantType = mCheckReturnType;
if ((genericArgumentsSubstitute != NULL) && (wantType->IsUnspecializedType()))
{
auto resolvedType = mModule->ResolveGenericType(wantType, typeGenericArguments, genericArgumentsSubstitute, false);
if (resolvedType == NULL)
goto NoMatch;
wantType = resolvedType;
}
wantType = mModule->ResolveSelfType(wantType, typeInstance);
BfCastFlags castFlags = ((mBfEvalExprFlags & BfEvalExprFlags_FromConversionOp) != 0) ? BfCastFlags_NoConversionOperator : BfCastFlags_None;
if ((mBfEvalExprFlags & BfEvalExprFlags_FromConversionOp_Explicit) != 0)
castFlags = (BfCastFlags)(castFlags | BfCastFlags_Explicit);
if (!mModule->CanCast(mModule->GetFakeTypedValue(methodInstance->mReturnType), wantType, castFlags))
goto NoMatch;
}
if ((genericArgumentsSubstitute != NULL) && (genericArgumentsSubstitute->size() != 0))
{
for (int checkGenericIdx = uniqueGenericStartIdx; checkGenericIdx < (int)genericArgumentsSubstitute->size(); checkGenericIdx++)
{
auto& genericParams = methodInstance->mMethodInfoEx->mGenericParams;
auto genericArg = (*genericArgumentsSubstitute)[checkGenericIdx];
if (genericArg == NULL)
{
if (allowEmptyGenericSet.Contains(checkGenericIdx))
continue;
goto NoMatch;
}
if (genericArg == NULL)
goto NoMatch;
if (!mModule->CheckGenericConstraints(BfGenericParamSource(methodInstance), genericArg, NULL, genericParams[checkGenericIdx], genericArgumentsSubstitute, NULL))
goto NoMatch;
}
}
for (int externConstraintIdx = 0; externConstraintIdx < (int)checkMethod->mExternalConstraints.size(); externConstraintIdx++)
{
auto genericParam = methodInstance->mMethodInfoEx->mGenericParams[checkMethod->mGenericParams.size() + externConstraintIdx];
BF_ASSERT(genericParam->mExternType != NULL);
auto externType = genericParam->mExternType;
BfTypeVector* externGenericArgumentsSubstitute = genericArgumentsSubstitute;
if (externType->IsVar())
{
auto& externConstraint = checkMethod->mExternalConstraints[externConstraintIdx];
if (externConstraint.mTypeRef != NULL)
{
externType = mModule->ResolveGenericMethodTypeRef(externConstraint.mTypeRef, methodInstance, genericParam, genericArgumentsSubstitute);
if (externType == NULL)
goto NoMatch;
}
}
if (!mModule->CheckGenericConstraints(BfGenericParamSource(methodInstance), externType, NULL, genericParam, externGenericArgumentsSubstitute, NULL))
goto NoMatch;
}
// Method is applicable, check to see which method is better
if (mBestMethodDef != NULL)
{
bool isBetter = false;
bool isWorse = false;
BfMethodInstance* prevMethodInstance = mModule->GetRawMethodInstance(mBestMethodTypeInstance, mBestMethodDef);
bool allowSpecializeFail = mModule->mCurTypeInstance->IsUnspecializedType();
if (mModule->mCurMethodInstance != NULL)
allowSpecializeFail = mModule->mCurMethodInstance->mIsUnspecialized;
// if (mModule->mModuleName == "BeefTest_TestProgram")
// {
// OutputDebugStrF("?Prv: %s\n %s\n?New: %s\n %s\n\n",
// mModule->MethodToString(prevMethodInstance, BfMethodNameFlag_None, &mBestMethodGenericArguments).c_str(),
// mModule->MethodToString(prevMethodInstance, BfMethodNameFlag_None).c_str(),
// mModule->MethodToString(methodInstance, BfMethodNameFlag_None, genericArgumentsSubstitute).c_str(),
// mModule->MethodToString(methodInstance, BfMethodNameFlag_None).c_str());
// }
CompareMethods(prevMethodInstance, &mBestMethodGenericArguments, methodInstance, genericArgumentsSubstitute, &isBetter, &isWorse, allowSpecializeFail);
// if (mModule->mModuleName == "BeefTest_TestProgram")
// {
// OutputDebugStrF("%sPrv: %s\n %s\n%sNew: %s\n %s\n\n",
// isWorse ? "*" : " ", mModule->MethodToString(prevMethodInstance, BfMethodNameFlag_None, &mBestMethodGenericArguments).c_str(),
// mModule->MethodToString(prevMethodInstance, BfMethodNameFlag_None).c_str(),
// isBetter ? "*" : " ", mModule->MethodToString(methodInstance, BfMethodNameFlag_None, genericArgumentsSubstitute).c_str(),
// mModule->MethodToString(methodInstance, BfMethodNameFlag_None).c_str());
// }
// If we had both a 'better' and 'worse', that's ambiguous because the methods are each better in different ways (not allowed)
// And if neither better nor worse then they are equally good, which is not allowed either
if (((!isBetter) && (!isWorse)) || ((isBetter) && (isWorse)))
{
if (!mHasVarArguments)
{
// If we are ambiguous based on a subset of an extern 'var' constraint then don't throw an error
auto _CheckMethodInfo = [&](BfMethodInstance* checkMethodInstance)
{
if (checkMethodInstance->mMethodInfoEx == NULL)
return;
for (auto genericParam : checkMethodInstance->mMethodInfoEx->mGenericParams)
{
if ((genericParam->mExternType == NULL) || (!genericParam->mExternType->IsGenericParam()))
continue;
auto genericParamType = (BfGenericParamType*)genericParam->mExternType;
if (genericParamType->mGenericParamKind != BfGenericParamKind_Type)
continue;
auto externGenericParam = mModule->GetGenericParamInstance(genericParamType);
if ((externGenericParam->mGenericParamFlags & BfGenericParamFlag_Var) != 0)
mHasVarArguments = true;
}
};
_CheckMethodInfo(methodInstance);
_CheckMethodInfo(prevMethodInstance);
}
if (mHasVarArguments)
{
if (methodInstance->mReturnType != prevMethodInstance->mReturnType)
mHadVarConflictingReturnType = true;
}
else
{
BfAmbiguousEntry ambiguousEntry;
ambiguousEntry.mMethodInstance = methodInstance;
if (genericArgumentsSubstitute != NULL)
ambiguousEntry.mBestMethodGenericArguments = *genericArgumentsSubstitute;
if (methodInstance->mMethodDef->mGenericParams.size() != 0)
{
BF_ASSERT(!ambiguousEntry.mBestMethodGenericArguments.empty());
}
mAmbiguousEntries.push_back(ambiguousEntry);
goto Done;
}
}
if (!isBetter)
goto Done;
}
if ((autoComplete != NULL) && (autoComplete->mIsCapturingMethodMatchInfo))
{
auto methodMatchInfo = autoComplete->mMethodMatchInfo;
// Try to persist with previous partial match, if we have one - this keeps us from locking onto
// an incorrect method just because it had the current number of params that we've typed so far
if (methodMatchInfo->mPrevBestIdx == -1)
{
methodMatchInfo->mHadExactMatch = true;
methodMatchInfo->mBestIdx = (int) methodMatchInfo->mInstanceList.size() - 1;
}
}
mAmbiguousEntries.Clear();
hadMatch = true;
mBestMethodDef = checkMethod;
mBestRawMethodInstance = methodInstance;
for (auto& arg : mArguments)
arg.mBestBoundType = arg.mTypedValue.mType;
NoMatch:
if (!hadMatch)
{
if (mBestMethodDef != NULL)
return false;
if (checkMethod->mMethodType == BfMethodType_Extension)
{
auto thisParam = methodInstance->GetParamType(0);
auto resolveThisParam = mModule->ResolveGenericType(thisParam, NULL, &mCheckMethodGenericArguments);
if (resolveThisParam == NULL)
return false;
if (!mModule->CanCast(mTarget, resolveThisParam,
((mBfEvalExprFlags & BfEvalExprFlags_FromConversionOp) != 0) ? (BfCastFlags)(BfCastFlags_Explicit | BfCastFlags_NoConversionOperator) : BfCastFlags_Explicit))
return false;
}
if (mBackupMethodDef != NULL)
{
int prevParamDiff = (int)mBackupMethodDef->GetExplicitParamCount() - (int)mArguments.size();
int paramDiff = (int)checkMethod->GetExplicitParamCount() - (int)mArguments.size();
if ((prevParamDiff < 0) && (prevParamDiff > paramDiff))
return false;
if ((prevParamDiff >= 0) && (paramDiff < 0))
return false;
if (argMatchCount < mBackupArgMatchCount)
return false;
else if (argMatchCount == mBackupArgMatchCount)
{
if (curMatchKind < mBackupMatchKind)
return false;
// We search from the most specific type, so don't prefer a less specific type
if (mBestMethodTypeInstance != typeInstance)
return false;
}
}
if ((autoComplete != NULL) && (autoComplete->mIsCapturingMethodMatchInfo))
{
auto methodMatchInfo = autoComplete->mMethodMatchInfo;
if ((methodMatchInfo->mPrevBestIdx == -1) && (!methodMatchInfo->mHadExactMatch))
{
methodMatchInfo->mBestIdx = (int)methodMatchInfo->mInstanceList.size() - 1;
}
}
mBackupMatchKind = curMatchKind;
mBackupMethodDef = checkMethod;
mBackupArgMatchCount = argMatchCount;
// Lie temporarily to store at least one candidate (but mBestMethodDef is still NULL)
hadMatch = true;
}
if (hadMatch)
{
mBestMethodTypeInstance = typeInstance;
if (genericArgumentsSubstitute != &mBestMethodGenericArguments)
{
if (genericArgumentsSubstitute != NULL)
{
for (auto& genericArg : *genericArgumentsSubstitute)
genericArg = mModule->FixIntUnknown(genericArg);
mBestMethodGenericArguments = *genericArgumentsSubstitute;
// #ifdef _DEBUG
// for (auto arg : mBestMethodGenericArguments)
// BF_ASSERT((arg == NULL) || (!arg->IsVar()));
// #endif
}
else
mBestMethodGenericArguments.clear();
}
}
Done:
if ((autoComplete != NULL) && (autoComplete->mIsCapturingMethodMatchInfo) && (genericArgumentsSubstitute != NULL))
{
auto methodMatchInfo = autoComplete->mMethodMatchInfo;
if (!methodMatchInfo->mInstanceList.IsEmpty())
{
methodMatchInfo->mInstanceList[methodMatchInfo->mInstanceList.size() - 1].mGenericArguments = *genericArgumentsSubstitute;
}
}
return mBestMethodDef == checkMethod;
}
void BfMethodMatcher::FlushAmbiguityError()
{
if (!mAmbiguousEntries.empty())
{
if (mModule->PreFail())
{
BfError* error;
if (!mMethodName.empty())
error = mModule->Fail(StrFormat("Ambiguous method call for '%s'", mMethodName.c_str()), mTargetSrc);
else
error = mModule->Fail("Ambiguous method call", mTargetSrc);
if (error != NULL)
{
auto unspecializedType = mModule->GetUnspecializedTypeInstance(mBestMethodTypeInstance);
BfMethodInstance* bestMethodInstance = mModule->GetRawMethodInstance(unspecializedType, mBestMethodDef);
BfTypeVector* typeGenericArguments = NULL;
if (mBestMethodTypeInstance->mGenericTypeInfo != NULL)
typeGenericArguments = &mBestMethodTypeInstance->mGenericTypeInfo->mTypeGenericArguments;
mModule->mCompiler->mPassInstance->MoreInfo(StrFormat("'%s' is a candidate", mModule->MethodToString(bestMethodInstance, BfMethodNameFlag_ResolveGenericParamNames,
typeGenericArguments, mBestMethodGenericArguments.empty() ? NULL : &mBestMethodGenericArguments).c_str()),
bestMethodInstance->mMethodDef->GetRefNode());
for (auto& ambiguousEntry : mAmbiguousEntries)
{
auto typeInstance = ambiguousEntry.mMethodInstance->GetOwner();
auto unspecTypeMethodInstance = mModule->GetUnspecializedMethodInstance(ambiguousEntry.mMethodInstance, true);
BfTypeVector* typeGenericArguments = NULL;
if (typeInstance->mGenericTypeInfo != NULL)
typeGenericArguments = &typeInstance->mGenericTypeInfo->mTypeGenericArguments;
mModule->mCompiler->mPassInstance->MoreInfo(StrFormat("'%s' is a candidate", mModule->MethodToString(unspecTypeMethodInstance, BfMethodNameFlag_ResolveGenericParamNames,
typeGenericArguments, ambiguousEntry.mBestMethodGenericArguments.empty() ? NULL : &ambiguousEntry.mBestMethodGenericArguments).c_str()),
ambiguousEntry.mMethodInstance->mMethodDef->GetRefNode());
}
}
}
mAmbiguousEntries.Clear();
}
}
bool BfMethodMatcher::IsType(BfTypedValue& typedVal, BfType* type)
{
if (typedVal.mType == type)
return true;
if (!typedVal)
return false;
if (!typedVal.mType->IsPrimitiveType())
return false;
if (!type->IsPrimitiveType())
return false;
auto fromPrimType = typedVal.mType->ToPrimitiveType();
if ((fromPrimType->mTypeDef->mTypeCode != BfTypeCode_IntUnknown) &&
(fromPrimType->mTypeDef->mTypeCode != BfTypeCode_UIntUnknown))
return false;
auto constant = mModule->mBfIRBuilder->GetConstant(typedVal.mValue);
if (constant == NULL)
return false;
auto toPrimType = type->ToPrimitiveType();
if (!mModule->mBfIRBuilder->IsInt(toPrimType->mTypeDef->mTypeCode))
return false;
if (type->mSize == 8)
return false;
int64 minVal = -(1LL << (8 * type->mSize - 1));
int64 maxVal = (1LL << (8 * type->mSize - 1)) - 1;
if ((constant->mInt64 >= minVal) && (constant->mInt64 <= maxVal))
return true;
return false;
}
// This method checks all base classes before checking interfaces. Is that correct?
bool BfMethodMatcher::CheckType(BfTypeInstance* typeInstance, BfTypedValue target, bool isFailurePass, bool forceOuterCheck)
{
BfMethodDef* prevBesstMethodDef = mBestMethodDef;
auto curTypeInst = typeInstance;
auto curTypeDef = typeInstance->mTypeDef;
int checkInterfaceIdx = 0;
bool targetIsBase = target.IsBase();
bool checkExtensionBase = false;
if (targetIsBase)
{
if ((curTypeInst == mModule->mCurTypeInstance) && (curTypeInst->mTypeDef->mIsCombinedPartial))
{
checkExtensionBase = true;
}
else
{
curTypeInst = curTypeInst->mBaseType;
}
}
BfTypeInstance* targetTypeInstance = NULL;
if (target.mType != NULL)
targetTypeInstance = target.mType->ToTypeInstance();
while (true)
{
bool doSearch = true;
if ((mMethodType == BfMethodType_Extension) && (!curTypeDef->mHasExtensionMethods))
doSearch = false;
BfMethodDef* nextMethodDef = NULL;
if (doSearch)
{
curTypeDef->PopulateMemberSets();
BfMemberSetEntry* entry;
if (curTypeDef->mMethodSet.TryGetWith(mMethodName, &entry))
nextMethodDef = (BfMethodDef*)entry->mMemberDef;
}
BfProtectionCheckFlags protectionCheckFlags = BfProtectionCheckFlag_None;
if (target)
{
if (mBypassVirtual)
{
// Not an "instance lookup"
}
else
{
protectionCheckFlags = (BfProtectionCheckFlags)(protectionCheckFlags | BfProtectionCheckFlag_InstanceLookup);
}
}
while (nextMethodDef != NULL)
{
bool allowExplicitInterface = curTypeInst->IsInterface() && mBypassVirtual;
auto activeTypeDef = mModule->GetActiveTypeDef();
auto visibleProjectSet = mModule->GetVisibleProjectSet();
bool isDelegate = typeInstance->IsDelegate();
auto checkMethod = nextMethodDef;
nextMethodDef = nextMethodDef->mNextWithSameName;
if (mModule->mContext->mResolvingVarField)
{
bool isResolvingVarField = false;
auto checkTypeState = mModule->mContext->mCurTypeState;
while (checkTypeState != NULL)
{
if ((checkTypeState->mResolveKind == BfTypeState::ResolveKind_ResolvingVarType) &&
(checkTypeState->mType == typeInstance))
isResolvingVarField = true;
checkTypeState = checkTypeState->mPrevState;
}
if (isResolvingVarField)
{
// Don't even consider - we can't do method calls on ourselves when we are resolving var fields, because
// we are not allowed to generate methods when our field types are unknown. We may fix this in the future,
// but currently it breaks out expected order of operations. One issue is that our call signatures change
// depending on whether we are valueless or splattable, which depend on underlying type information
break;
}
}
if ((checkExtensionBase) && (curTypeInst == mModule->mCurTypeInstance))
{
// Accept either a method in the same project but that's the root definition, OR a method that's in a dependent project
bool accept = false;
if (activeTypeDef->mProject == checkMethod->mDeclaringType->mProject)
accept = (activeTypeDef->IsExtension()) && (!checkMethod->mDeclaringType->IsExtension());
else
accept = activeTypeDef->mProject->ContainsReference(checkMethod->mDeclaringType->mProject);
if (!accept)
continue;
}
if ((!allowExplicitInterface) && (checkMethod->mExplicitInterface != NULL) && (mInterfaceMethodInstance == NULL))
{
continue;
}
if (checkMethod->mMethodType != mMethodType)
continue;
// if (checkMethod->mName != mMethodName)
// continue;
if ((checkMethod->mDeclaringType->IsExtension()) && (mModule->mAttributeState != NULL) && (mModule->mAttributeState->mCustomAttributes != NULL) &&
(mModule->mAttributeState->mCustomAttributes->Contains(mModule->mCompiler->mNoExtensionAttributeTypeDef)))
{
mModule->mAttributeState->mUsed = true;
continue;
}
if (!isDelegate)
{
if ((!curTypeInst->IsTypeMemberIncluded(checkMethod->mDeclaringType, activeTypeDef, mModule)) ||
(!curTypeInst->IsTypeMemberAccessible(checkMethod->mDeclaringType, visibleProjectSet)))
continue;
}
MatchFailKind matchFailKind = MatchFailKind_None;
if (!mModule->CheckProtection(protectionCheckFlags, curTypeInst, checkMethod->mDeclaringType->mProject, checkMethod->mProtection, typeInstance))
{
if ((mBypassVirtual) &&
((checkMethod->mProtection == BfProtection_Protected) || (checkMethod->mProtection == BfProtection_ProtectedInternal)) &&
(mModule->TypeIsSubTypeOf(mModule->mCurTypeInstance, typeInstance)))
{
// Allow explicit 'base' call
}
else
{
if (!isFailurePass)
continue;
matchFailKind = MatchFailKind_Protection;
}
}
if (mCheckedKind != checkMethod->mCheckedKind)
{
bool passes = true;
if (mCheckedKind != BfCheckedKind_NotSet)
{
passes = false;
}
else
{
auto defaultCheckedKind = mModule->GetDefaultCheckedKind();
if (defaultCheckedKind != checkMethod->mCheckedKind)
passes = false;
}
if (!passes)
{
if (!isFailurePass)
continue;
matchFailKind = MatchFailKind_CheckedMismatch;
}
}
CheckMethod(targetTypeInstance, curTypeInst, checkMethod, isFailurePass);
if ((isFailurePass) &&
((mBestMethodDef == checkMethod) || (mBackupMethodDef == checkMethod)))
mMatchFailKind = matchFailKind;
}
if ((mBestMethodDef != NULL) && (mMethodType != BfMethodType_Extension))
{
if (mAutoFlushAmbiguityErrors)
FlushAmbiguityError();
return true;
}
auto baseType = curTypeInst->mBaseType;
if (baseType == NULL)
{
//TODO: Why were we doing the interface checking?
if ((curTypeInst->IsInterface()) && (curTypeInst == target.mType))
{
// When we are directly calling on interfaces rather than indirectly matching through binding
baseType = mModule->mContext->mBfObjectType;
}
else if ((curTypeInst != mModule->mContext->mBfObjectType) && (!curTypeInst->IsInterface()))
{
// This can happen for structs
baseType = mModule->mContext->mBfObjectType;
}
else if ((typeInstance->IsInterface()) && (checkInterfaceIdx < (int)typeInstance->mInterfaces.size()))
{
baseType = typeInstance->mInterfaces[checkInterfaceIdx].mInterfaceType;
checkInterfaceIdx++;
}
else
{
break;
}
}
curTypeDef = baseType->mTypeDef;
curTypeInst = baseType;
if ((isFailurePass) && (mBackupMethodDef != NULL))
break;
}
if (mBestMethodDef == NULL)
{
// FAILED, but select the first method which will fire an actual error on param type matching
mBestMethodDef = mBackupMethodDef;
}
if (((mBestMethodDef == NULL) && (!target) && (mAllowImplicitThis)) ||
(forceOuterCheck))
{
// No explicit target - maybe this was a static call in the outer type?
auto outerType = mModule->GetOuterType(typeInstance);
if (outerType != NULL)
CheckOuterTypeStaticMethods(outerType, isFailurePass);
}
if (mAutoFlushAmbiguityErrors)
FlushAmbiguityError();
return mBestMethodDef != prevBesstMethodDef;
}
void BfMethodMatcher::TryDevirtualizeCall(BfTypedValue target, BfTypedValue* origTarget, BfTypedValue* staticResult)
{
if ((mBestMethodDef == NULL) || (target.mType == NULL))
return;
if ((mModule->mCompiler->IsAutocomplete()) || (mModule->mContext->mResolvingVarField))
return;
if ((mModule->mBfIRBuilder->mIgnoreWrites) && (!mBestMethodDef->mIsConcrete) && (!mBestMethodTypeInstance->IsInterface()))
return;
if (mBestMethodTypeInstance->IsInterface())
{
mModule->PopulateType(mBestMethodTypeInstance, BfPopulateType_DataAndMethods);
auto activeTypeDef = mModule->GetActiveTypeDef();
// Statically map this call
auto checkType = target.mType;
if (checkType->IsPointer())
checkType = ((BfPointerType*)checkType)->mElementType;
if (checkType->IsWrappableType())
checkType = mModule->GetWrappedStructType(checkType);
if ((checkType != NULL) && (checkType->IsTypeInstance()) && (!checkType->IsInterface()))
{
BfTypeInterfaceEntry* bestIFaceEntry = NULL;
auto checkTypeInst = checkType->ToTypeInstance();
if (mBestMethodTypeInstance->IsInstanceOf(mModule->mCompiler->mIHashableTypeDef))
{
if ((origTarget != NULL) && (origTarget->mType->IsPointer()) && (staticResult != NULL))
{
BfTypedValue ptrVal = mModule->LoadValue(*origTarget);
*staticResult = BfTypedValue(mModule->mBfIRBuilder->CreatePtrToInt(ptrVal.mValue, BfTypeCode_IntPtr), mModule->GetPrimitiveType(BfTypeCode_IntPtr));
return;
}
}
while (checkTypeInst != NULL)
{
mModule->PopulateType(checkTypeInst, BfPopulateType_DataAndMethods);
for (auto&& iface : checkTypeInst->mInterfaces)
{
//TODO: Why did we have this check? This caused Dictionary to not be able to devirtualize
// calls to TKey GetHashCode when TKey was from a user's project...
/*if (!checkTypeInst->IsTypeMemberAccessible(iface.mDeclaringType, activeTypeDef))
continue;*/
if (iface.mInterfaceType == mBestMethodTypeInstance)
{
if (bestIFaceEntry == NULL)
{
bestIFaceEntry = &iface;
continue;
}
bool isBetter;
bool isWorse;
mModule->CompareDeclTypes(iface.mDeclaringType, bestIFaceEntry->mDeclaringType, isBetter, isWorse);
if (isBetter == isWorse)
{
// Failed
}
else
{
if (isBetter)
bestIFaceEntry = &iface;
}
}
}
if (bestIFaceEntry != NULL)
break;
checkTypeInst = checkTypeInst->mBaseType;
if ((checkTypeInst == NULL) && (checkType->HasWrappedRepresentation()))
{
auto underlyingType = checkType->GetUnderlyingType();
if ((underlyingType != NULL) && (underlyingType->IsWrappableType()))
checkTypeInst = mModule->GetWrappedStructType(underlyingType);
}
}
if (bestIFaceEntry != NULL)
{
auto ifaceMethodEntry = checkTypeInst->mInterfaceMethodTable[bestIFaceEntry->mStartInterfaceTableIdx + mBestMethodDef->mIdx];
BfMethodInstance* bestMethodInstance = ifaceMethodEntry.mMethodRef;
if (bestMethodInstance != NULL)
{
bool isMissingArg = false;
for (auto genericArg : mBestMethodGenericArguments)
{
if (genericArg == NULL)
isMissingArg = true;
}
if (!isMissingArg)
{
// Assert error state?
mBestMethodTypeInstance = ifaceMethodEntry.mMethodRef.mTypeInstance;
mBestMethodDef = bestMethodInstance->mMethodDef;
mBestMethodInstance = mModule->GetMethodInstance(mBestMethodTypeInstance, bestMethodInstance->mMethodDef, mBestMethodGenericArguments,
bestMethodInstance->mIsForeignMethodDef ? BfGetMethodInstanceFlag_ForeignMethodDef : BfGetMethodInstanceFlag_None,
bestMethodInstance->GetForeignType());
}
}
else
{
// Failed
mFakeConcreteTarget = true;
}
}
}
}
if ((target.mType->IsValueType()) && (mBestMethodTypeInstance->IsObject()) && (mBestMethodDef->mIsVirtual))
{
auto structType = target.mType->ToTypeInstance();
auto virtualMethodInstance = mModule->GetMethodInstance(mBestMethodTypeInstance, mBestMethodDef, BfTypeVector());
BF_ASSERT(virtualMethodInstance.mMethodInstance->mVirtualTableIdx != -1);
BfTypeInstance* boxedType;
if (structType->HasOverrideMethods())
{
// We don't actually need this boxed type, so just resolve it unreified
auto useModule = mModule->mContext->mUnreifiedModule;
boxedType = useModule->CreateBoxedType(target.mType);
useModule->PopulateType(boxedType, BfPopulateType_DataAndMethods);
useModule->AddDependency(boxedType, mModule->mCurTypeInstance, BfDependencyMap::DependencyFlag_WeakReference);
}
else
{
boxedType = mModule->mContext->mBfObjectType;
}
auto methodRef = boxedType->mVirtualMethodTable[virtualMethodInstance.mMethodInstance->mVirtualTableIdx];
if (methodRef.mImplementingMethod.mTypeInstance->IsBoxed())
{
auto useModule = mModule->mContext->mUnreifiedModule;
auto boxedMethodInstance = useModule->ReferenceExternalMethodInstance(methodRef.mImplementingMethod);
BfBoxedType* vBoxedType = (BfBoxedType*)methodRef.mImplementingMethod.mTypeInstance;
mBestMethodTypeInstance = vBoxedType->mElementType->ToTypeInstance();
mBestMethodInstance = mModule->GetMethodInstance(mBestMethodTypeInstance, boxedMethodInstance.mMethodInstance->mMethodDef, BfTypeVector());
mBestMethodDef = mBestMethodInstance.mMethodInstance->mMethodDef;
}
else
{
mBestMethodTypeInstance = methodRef.mImplementingMethod.mTypeInstance;
mBestMethodInstance = mModule->ReferenceExternalMethodInstance(methodRef.mImplementingMethod);
mBestMethodDef = mBestMethodInstance.mMethodInstance->mMethodDef;
}
mBypassVirtual = true;
}
}
bool BfMethodMatcher::HasVarGenerics()
{
for (auto genericArg : mBestMethodGenericArguments)
if (genericArg->IsVar())
return true;
for (auto genericArg : mExplicitMethodGenericArguments)
if (genericArg->IsVar())
return true;
return false;
}
void BfMethodMatcher::CheckOuterTypeStaticMethods(BfTypeInstance* typeInstance, bool isFailurePass)
{
bool allowPrivate = true;
bool allowProtected = true;
auto curTypeInst = typeInstance;
auto curTypeDef = typeInstance->mTypeDef;
while (true)
{
curTypeDef->PopulateMemberSets();
BfMethodDef* nextMethodDef = NULL;
BfMemberSetEntry* entry;
if (curTypeDef->mMethodSet.TryGetWith(mMethodName, &entry))
nextMethodDef = (BfMethodDef*)entry->mMemberDef;
while (nextMethodDef != NULL)
{
auto checkMethod = nextMethodDef;
nextMethodDef = nextMethodDef->mNextWithSameName;
// These can only be invoked when the target itself is the interface
if (checkMethod->mExplicitInterface != NULL)
continue;
if ((checkMethod->mMethodType != mMethodType) || (!checkMethod->mIsStatic))
continue;
if (checkMethod->mName != mMethodName)
continue;
if ((!isFailurePass) && (!mModule->CheckProtection(checkMethod->mProtection, NULL, allowProtected, allowPrivate)))
continue;
CheckMethod(typeInstance, curTypeInst, checkMethod, isFailurePass);
}
if (mBestMethodDef != NULL)
return;
auto baseType = curTypeInst->mBaseType;
if (baseType == NULL)
break;
curTypeDef = baseType->mTypeDef;
curTypeInst = baseType;
allowPrivate = false;
if ((isFailurePass) && (mBackupMethodDef != NULL))
break;
}
if (mBestMethodDef == NULL)
{
// FAILED, but select the first method which will fire an actual error on param type matching
mBestMethodDef = mBackupMethodDef;
}
if (mBestMethodDef == NULL)
{
// No explicit target - maybe this was a static call in the outer type?
auto outerType = mModule->GetOuterType(typeInstance);
if (outerType != NULL)
CheckOuterTypeStaticMethods(outerType, isFailurePass);
}
}
//////////////////////////////////////////////////////////////////////////
void BfResolvedArgs::HandleFixits(BfModule* module)
{
auto compiler = module->mCompiler;
if ((!compiler->IsAutocomplete()) || (compiler->mResolvePassData->mResolveType != BfResolveType_GetFixits))
return;
SetAndRestoreValue<bool> ignoreErrors(module->mIgnoreErrors, true);
for (int argIdx = 0; argIdx < (int)mResolvedArgs.size(); argIdx++)
{
auto& resolvedArg = mResolvedArgs[argIdx];
auto expr = BfNodeDynCast<BfExpression>(resolvedArg.mExpression);
if (expr != NULL)
{
module->CreateValueFromExpression(expr, resolvedArg.mExpectedType);
}
}
}
//////////////////////////////////////////////////////////////////////////
BfExprEvaluator::BfExprEvaluator(BfModule* module)
{
mBfEvalExprFlags = BfEvalExprFlags_None;
mModule = module;
mPropDef = NULL;
mPropSrc = NULL;
mPropGetMethodFlags = BfGetMethodInstanceFlag_None;
mPropCheckedKind = BfCheckedKind_NotSet;
mUsedAsStatement = false;
mPropDefBypassVirtual = false;
mExpectingType = NULL;
mFunctionBindResult = NULL;
mExplicitCast = false;
mDeferCallRef = NULL;
mDeferScopeAlloc = NULL;
mPrefixedAttributeState = NULL;
mResolveGenericParam = true;
mNoBind = false;
mResultLocalVar = NULL;
mResultFieldInstance = NULL;
mResultLocalVarField = 0;
mResultLocalVarFieldCount = 0;
mResultLocalVarRefNode = NULL;
mIsVolatileReference = false;
mIsHeapReference = false;
mResultIsTempComposite = false;
mAllowReadOnlyReference = false;
mInsidePendingNullable = false;
mReceivingValue = NULL;
}
BfExprEvaluator::~BfExprEvaluator()
{
}
BfAutoComplete* BfExprEvaluator::GetAutoComplete()
{
if (mModule->mCompiler->mResolvePassData == NULL)
return NULL;
if ((mBfEvalExprFlags & BfEvalExprFlags_NoAutoComplete) != 0)
return NULL;
// For local methods- only process autocomplete on capture phase
if ((mModule->mCurMethodState != NULL) && (mModule->mCurMethodState->mClosureState != NULL) && (!mModule->mCurMethodState->mClosureState->mCapturing))
return NULL;
// if ((mModule->mCurMethodInstance != NULL) && (mModule->mCurMethodInstance->mMethodDef->mIsLocalMethod))
// return NULL;
return mModule->mCompiler->mResolvePassData->mAutoComplete;
}
bool BfExprEvaluator::IsComptime()
{
return (mModule->mIsComptimeModule) || ((mBfEvalExprFlags & BfEvalExprFlags_Comptime) != 0);
}
bool BfExprEvaluator::IsComptimeEntry()
{
if (mModule->mIsComptimeModule)
return false;
return ((mBfEvalExprFlags & BfEvalExprFlags_Comptime) != 0);
}
int BfExprEvaluator::GetStructRetIdx(BfMethodInstance* methodInstance, bool forceStatic)
{
if (IsComptime())
return -1;
return methodInstance->GetStructRetIdx(forceStatic);
}
BfType* BfExprEvaluator::BindGenericType(BfAstNode* node, BfType* bindType)
{
if ((mModule->mCurMethodState == NULL) || (mModule->mCurMethodInstance == NULL) || (bindType == NULL))
return bindType;
if ((mModule->mCurMethodState->mClosureState != NULL) && (mModule->mCurMethodState->mClosureState->mCapturing))
return bindType;
if ((mBfEvalExprFlags & BfEvalExprFlags_DeclType) != 0)
return bindType;
BF_ASSERT(!mModule->mCurMethodInstance->mIsUnspecializedVariation);
auto parser = node->GetSourceData()->ToParserData();
if (parser == NULL)
return bindType;
int64 nodeId = ((int64)parser->mDataId << 32) + node->GetSrcStart();
auto genericTypeBindings = mModule->mCurMethodState->GetRootMethodState()->mGenericTypeBindings;
if (mModule->mCurMethodInstance->mIsUnspecialized)
{
if (!bindType->IsGenericParam())
return bindType;
if (genericTypeBindings == NULL)
return bindType;
(*genericTypeBindings)[nodeId] = bindType;
return bindType;
}
else
{
if (genericTypeBindings == NULL)
return bindType;
BfType** typePtr = NULL;
if (genericTypeBindings->TryGetValue(nodeId, &typePtr))
return *typePtr;
return bindType;
}
}
BfType * BfExprEvaluator::ResolveTypeRef(BfTypeReference* typeRef, BfPopulateType populateType, BfResolveTypeRefFlags resolveFlags)
{
if (mExpectingType != NULL)
{
if (auto namedTypeRef = BfNodeDynCastExact<BfNamedTypeReference>(typeRef))
{
if (namedTypeRef->ToString() == "ExpectedType")
{
return mModule->ResolveTypeResult(typeRef, mExpectingType, populateType, resolveFlags);
}
}
}
return mModule->ResolveTypeRef(typeRef, populateType, resolveFlags);
}
void BfExprEvaluator::ResolveGenericType()
{
if (mResult)
{
if (mModule->IsUnboundGeneric(mResult.mType))
mResult.mType = mModule->GetPrimitiveType(BfTypeCode_Var);
//mResult.mType = mModule->ResolveGenericType(mResult.mType, true);
}
}
void BfExprEvaluator::Evaluate(BfAstNode* astNode, bool propogateNullConditional, bool ignoreNullConditional, bool allowSplat)
{
BP_ZONE("BfExprEvaluator::Evaluate");
// ParenthesizedExpression breaks null conditional chain
if (astNode->IsExact<BfParenthesizedExpression>())
propogateNullConditional = false;
bool scopeWasConditional = false;
BfPendingNullConditional* pendingNullCond = NULL;
mInsidePendingNullable = false;
if (mModule->mCurMethodState != NULL)
{
scopeWasConditional = mModule->mCurMethodState->mCurScope->mIsConditional;
pendingNullCond = mModule->mCurMethodState->mPendingNullConditional;
if (!propogateNullConditional)
mModule->mCurMethodState->mPendingNullConditional = NULL;
if (pendingNullCond != NULL)
{
mInsidePendingNullable = true;
mModule->mCurMethodState->mCurScope->mIsConditional = true;
}
}
astNode->Accept(this);
GetResult();
if ((mResultIsTempComposite) && (mResult.IsAddr()))
mResult.mKind = BfTypedValueKind_TempAddr;
if ((!allowSplat) && (mResult.IsSplat()))
mResult = mModule->AggregateSplat(mResult);
if ((mBfEvalExprFlags & BfEvalExprFlags_AllowIntUnknown) == 0)
mModule->FixIntUnknown(mResult);
if (!mModule->mBfIRBuilder->mIgnoreWrites)
{
if (mResult.mValue.IsConst())
{
auto constant = mModule->mBfIRBuilder->GetConstant(mResult.mValue);
if (constant->mConstType == BfConstType_TypeOf)
{
auto typeOfConst = (BfTypeOf_Const*)constant;
mResult.mValue = mModule->CreateTypeDataRef(typeOfConst->mType);
}
}
}
if (mModule->mCurMethodState != NULL)
{
if (mInsidePendingNullable)
mModule->mCurMethodState->mCurScope->mIsConditional = scopeWasConditional;
if (!propogateNullConditional)
{
if (mModule->mCurMethodState->mPendingNullConditional != NULL)
mResult = mModule->FlushNullConditional(mResult, ignoreNullConditional);
mModule->mCurMethodState->mPendingNullConditional = pendingNullCond;
}
}
}
void BfExprEvaluator::Visit(BfErrorNode* errorNode)
{
mModule->Fail("Invalid token", errorNode);
auto autoComplete = GetAutoComplete();
if (autoComplete != NULL)
{
if (auto tokenNode = BfNodeDynCast<BfTokenNode>(errorNode->mRefNode))
return;
autoComplete->CheckIdentifier(errorNode->mRefNode, true);
}
}
void BfExprEvaluator::Visit(BfTypeReference* typeRef)
{
mResult.mType = ResolveTypeRef(typeRef, BfPopulateType_Declaration);
}
void BfExprEvaluator::Visit(BfAttributedExpression* attribExpr)
{
BfAttributeState attributeState;
attributeState.mSrc = attribExpr->mAttributes;
attributeState.mTarget = (BfAttributeTargets)(BfAttributeTargets_Invocation | BfAttributeTargets_MemberAccess);
if (auto block = BfNodeDynCast<BfBlock>(attribExpr->mExpression))
attributeState.mTarget = BfAttributeTargets_Block;
attributeState.mCustomAttributes = mModule->GetCustomAttributes(attribExpr->mAttributes, attributeState.mTarget);
SetAndRestoreValue<BfAttributeState*> prevAttributeState(mModule->mAttributeState, &attributeState);
if (auto ignoreErrorsAttrib = attributeState.mCustomAttributes->Get(mModule->mCompiler->mIgnoreErrorsAttributeTypeDef))
{
SetAndRestoreValue<bool> ignoreErrors(mModule->mIgnoreErrors, true);
if (!ignoreErrorsAttrib->mCtorArgs.IsEmpty())
{
auto constant = mModule->mCurTypeInstance->mConstHolder->GetConstant(ignoreErrorsAttrib->mCtorArgs[0]);
if (constant->mBool)
attributeState.mFlags = BfAttributeState::Flag_StopOnError;
}
VisitChild(attribExpr->mExpression);
attributeState.mUsed = true;
if ((!mResult) ||
((mResult) && (mResult.mType->IsVar())))
{
if (!mResult)
mModule->Fail("Expression did not result in a value", attribExpr->mExpression);
// Make empty or 'var' resolve as 'false' because var is only valid if we threw errors
mResult = mModule->GetDefaultTypedValue(mModule->GetPrimitiveType(BfTypeCode_Boolean));
}
}
else
{
VisitChild(attribExpr->mExpression);
}
mModule->FinishAttributeState(&attributeState);
}
void BfExprEvaluator::Visit(BfBlock* blockExpr)
{
if (mModule->mCurMethodState == NULL)
{
mModule->Fail("Illegal use of block expression", blockExpr);
return;
}
auto autoComplete = GetAutoComplete();
if ((autoComplete != NULL) && (autoComplete->mMethodMatchInfo != NULL) && (autoComplete->IsAutocompleteNode(blockExpr)))
{
// Don't show outer method match info when our cursor is inside a block (being passed as a parameter)
autoComplete->RemoveMethodMatchInfo();
}
if (blockExpr->mChildArr.IsEmpty())
{
mModule->Fail("An empty block cannot be used as an expression", blockExpr);
return;
}
bool lastWasResultExpr = false;
if (auto lastExpr = BfNodeDynCast<BfExpressionStatement>(blockExpr->mChildArr.GetLast()))
{
if (!lastExpr->IsMissingSemicolon())
mModule->Fail("Expression blocks must end in an expression which is missing its terminating semicolon", lastExpr->mTrailingSemicolon);
}
else if (blockExpr->mChildArr.GetLast()->IsExpression())
{
// Expression
}
else
{
mModule->Fail("Expression blocks must end with an expression", blockExpr);
}
mModule->VisitEmbeddedStatement(blockExpr, this, BfNodeIsA<BfUnscopedBlock>(blockExpr) ? BfEmbeddedStatementFlags_Unscoped : BfEmbeddedStatementFlags_None);
}
bool BfExprEvaluator::CheckVariableDeclaration(BfAstNode* checkNode, bool requireSimpleIfExpr, bool exprMustBeTrue, bool silentFail)
{
BfAstNode* checkChild = checkNode;
bool childWasAndRHS = false;
bool foundIf = false;
auto parentNodeEntry = mModule->mParentNodeEntry;
if (parentNodeEntry != NULL)
{
if (BfNodeIsA<BfInvocationExpression>(parentNodeEntry->mNode))
{
checkChild = parentNodeEntry->mNode;
parentNodeEntry = parentNodeEntry->mPrev;
}
}
auto _Fail = [&](const StringImpl& errorStr, BfAstNode* node)
{
if (!silentFail)
{
auto error = mModule->Fail(errorStr, node);
if ((error != NULL) && (node != checkNode))
{
mModule->mCompiler->mPassInstance->MoreInfo("See variable declaration", checkNode);
}
}
return false;
};
while (parentNodeEntry != NULL)
{
BfAstNode* checkParent = parentNodeEntry->mNode;
if (auto binOpExpr = BfNodeDynCastExact<BfBinaryOperatorExpression>(checkParent))
{
if (binOpExpr->mOp == BfBinaryOp_ConditionalAnd)
{
// This is always okay
childWasAndRHS = (binOpExpr->mRight != NULL) && (binOpExpr->mRight->Contains(checkChild));
}
else if ((binOpExpr->mOp == BfBinaryOp_ConditionalOr) && (!exprMustBeTrue))
{
if ((binOpExpr->mRight != NULL) && (binOpExpr->mRight->Contains(checkChild)))
{
return _Fail("Conditional short-circuiting may skip variable initialization", binOpExpr->mOpToken);
}
}
else
{
if (exprMustBeTrue)
{
return _Fail("Operator cannot be used with variable initialization", binOpExpr->mOpToken);
}
}
}
else if (auto parenExpr = BfNodeDynCast<BfParenthesizedExpression>(checkParent))
{
// This is okay
}
else if (auto unaryOp = BfNodeDynCast<BfUnaryOperatorExpression>(checkParent))
{
if (exprMustBeTrue)
{
return _Fail("Operator cannot be used with variable initialization", unaryOp->mOpToken);
return false;
}
if (childWasAndRHS)
{
return _Fail("Operator may allow conditional short-circuiting to skip variable initialization", unaryOp->mOpToken);
}
}
else if (auto ifStmt = BfNodeDynCast<BfIfStatement>(checkParent))
{
// Done
foundIf = true;
break;
}
else
{
if (requireSimpleIfExpr)
{
return _Fail("Variable declaration expression can only be contained in simple 'if' expressions", checkNode);
}
break;
}
checkChild = parentNodeEntry->mNode;
parentNodeEntry = parentNodeEntry->mPrev;
}
return foundIf;
}
bool BfExprEvaluator::HasVariableDeclaration(BfAstNode* checkNode)
{
BfVarDeclChecker checker;
checker.VisitChild(checkNode);
return checker.mHasVarDecl;
}
void BfExprEvaluator::Visit(BfVariableDeclaration* varDecl)
{
mModule->UpdateExprSrcPos(varDecl);
if ((mModule->mCurMethodState == NULL) || (!mModule->mCurMethodState->mCurScope->mAllowVariableDeclarations))
{
mModule->Fail("Variable declarations are not allowed in this context", varDecl);
if (varDecl->mInitializer != NULL)
{
VisitChild(varDecl->mInitializer);
}
return;
}
CheckVariableDeclaration(varDecl, true, false, false);
if (varDecl->mInitializer == NULL)
{
mModule->Fail("Variable declarations used as expressions must have an initializer", varDecl);
}
BfTupleExpression* tupleVariableDeclaration = BfNodeDynCast<BfTupleExpression>(varDecl->mNameNode);
if (tupleVariableDeclaration != NULL)
{
mModule->Fail("Tuple variable declarations cannot be used as expressions", varDecl);
mModule->HandleTupleVariableDeclaration(varDecl);
}
else
mModule->HandleVariableDeclaration(varDecl, this);
}
void BfExprEvaluator::Visit(BfCaseExpression* caseExpr)
{
if (caseExpr->mEqualsNode != NULL)
{
mModule->Warn(0, "Deprecated case syntax", caseExpr->mEqualsNode);
}
BfTypedValue caseValAddr;
if (caseExpr->mValueExpression != NULL)
caseValAddr = mModule->CreateValueFromExpression(caseExpr->mValueExpression, NULL, (BfEvalExprFlags)(mBfEvalExprFlags & BfEvalExprFlags_InheritFlags));
if ((caseValAddr.mType != NULL) && (caseValAddr.mType->IsPointer()))
{
caseValAddr = mModule->LoadValue(caseValAddr);
caseValAddr = BfTypedValue(caseValAddr.mValue, caseValAddr.mType->GetUnderlyingType(), true);
}
if (caseValAddr.mType != NULL)
mModule->mBfIRBuilder->PopulateType(caseValAddr.mType);
if ((mModule->mCurMethodState != NULL) && (mModule->mCurMethodState->mDeferredLocalAssignData != NULL))
mModule->mCurMethodState->mDeferredLocalAssignData->BreakExtendChain();
if (auto bindExpr = BfNodeDynCast<BfEnumCaseBindExpression>(caseExpr->mCaseExpression))
{
if (caseValAddr)
{
BfTypedValue enumTagVal;
if (caseValAddr.mType->IsPayloadEnum())
{
int dscrDataIdx;
auto dscrType = caseValAddr.mType->ToTypeInstance()->GetDiscriminatorType(&dscrDataIdx);
enumTagVal = BfTypedValue(mModule->ExtractValue(caseValAddr, dscrDataIdx), dscrType);
}
else
enumTagVal = mModule->GetDefaultTypedValue(mModule->GetPrimitiveType(BfTypeCode_Int32));
mResult = mModule->HandleCaseBind(caseValAddr, enumTagVal, bindExpr);
return;
}
}
bool isPayloadEnum = (caseValAddr.mType != NULL) && (caseValAddr.mType->IsPayloadEnum());
auto tupleExpr = BfNodeDynCast<BfTupleExpression>(caseExpr->mCaseExpression);
if ((caseValAddr) &&
((isPayloadEnum) || (tupleExpr != NULL)))
{
bool hasVariable = false;
bool hasOut = false;
bool clearOutOnMismatch = false;
if (auto invocateExpr = BfNodeDynCast<BfInvocationExpression>(caseExpr->mCaseExpression))
{
for (auto arg : invocateExpr->mArguments)
{
if (auto varDecl = BfNodeDynCast<BfVariableDeclaration>(arg))
{
hasVariable = true;
}
else if (auto unaryOpExpr = BfNodeDynCast<BfUnaryOperatorExpression>(arg))
{
if (unaryOpExpr->mOpToken->mToken == BfToken_Out)
{
hasOut = true;
}
}
}
}
if (hasVariable)
{
CheckVariableDeclaration(caseExpr, false, true, false);
}
// We can avoid clearing on mismatch if we can be sure we ONLY enter the true block on a match.
// An example of requiring clearing is: if ((result case .Ok(out val)) || (force))
if (hasOut)
clearOutOnMismatch = !CheckVariableDeclaration(caseExpr, true, true, true);
bool hadConditional = false;
if (isPayloadEnum)
{
int dscrDataIdx;
auto dscrType = caseValAddr.mType->ToTypeInstance()->GetDiscriminatorType(&dscrDataIdx);
auto enumTagVal = mModule->LoadValue(mModule->ExtractValue(caseValAddr, NULL, 2));
int uncondTagId = -1;
mResult = mModule->TryCaseEnumMatch(caseValAddr, enumTagVal, caseExpr->mCaseExpression, NULL, NULL, NULL, uncondTagId, hadConditional, clearOutOnMismatch);
}
else
{
mResult = mModule->TryCaseTupleMatch(caseValAddr, tupleExpr, NULL, NULL, NULL, hadConditional, clearOutOnMismatch);
}
if (mResult)
return;
}
if ((caseValAddr) && (IsVar(caseValAddr.mType)))
{
auto invocationExpr = BfNodeDynCast<BfInvocationExpression>(caseExpr->mCaseExpression);
if (invocationExpr != NULL)
{
for (auto expr : invocationExpr->mArguments)
{
if (expr == NULL)
continue;
if (auto varDecl = BfNodeDynCast<BfVariableDeclaration>(expr))
{
auto localVar = mModule->HandleVariableDeclaration(varDecl, BfTypedValue());
if (localVar != NULL)
localVar->mReadFromId = 0;
}
}
}
auto boolType = mModule->GetPrimitiveType(BfTypeCode_Boolean);
mResult = mModule->GetDefaultTypedValue(boolType);
return;
}
auto boolType = mModule->GetPrimitiveType(BfTypeCode_Boolean);
BfTypedValue caseMatch;
if (caseExpr->mCaseExpression != NULL)
caseMatch = mModule->CreateValueFromExpression(caseExpr->mCaseExpression, caseValAddr.mType, BfEvalExprFlags_AllowEnumId);
if ((!caseMatch) || (!caseValAddr))
{
mResult = mModule->GetDefaultTypedValue(boolType);
return;
}
if (caseValAddr.mType == caseMatch.mType)
{
if (((caseValAddr.mType->IsEnum()) && (caseValAddr.mType->IsStruct())) &&
((caseMatch) && (caseMatch.mType->IsPayloadEnum()) && (caseMatch.mValue.IsConst())))
{
BfTypedValue enumTagVal = mModule->LoadValue(mModule->ExtractValue(caseValAddr, NULL, 2));
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateCmpEQ(enumTagVal.mValue, caseMatch.mValue), boolType);
return;
}
}
else
{
// We need to get rid of the int-const for the 'scalar match'. We get a full payload enum value so we can
// possibly use it in a user-defined comparison operator
if ((caseMatch.mType->IsStruct()) && (caseMatch.mValue.IsConst()))
{
// Is it possible this could throw an error twice? Hope not.
caseMatch = mModule->CreateValueFromExpression(caseExpr->mCaseExpression, NULL, (BfEvalExprFlags)(mBfEvalExprFlags & BfEvalExprFlags_InheritFlags));
}
}
PerformBinaryOperation(caseExpr->mCaseExpression, caseExpr->mValueExpression, BfBinaryOp_Equality, caseExpr->mEqualsNode, BfBinOpFlag_None, caseValAddr, caseMatch);
}
void BfExprEvaluator::Visit(BfTypedValueExpression* typedValueExpr)
{
mResult = typedValueExpr->mTypedValue;
}
static bool IsCharType(BfTypeCode typeCode)
{
switch (typeCode)
{
case BfTypeCode_Char8:
case BfTypeCode_Char16:
case BfTypeCode_Char32:
return true;
default:
return false;
}
}
bool BfExprEvaluator::IsVar(BfType* type)
{
if (type->IsVar())
return true;
if ((type->IsGenericParam()) && (!mModule->mBfIRBuilder->mIgnoreWrites))
{
BF_ASSERT(mModule->mIsComptimeModule);
return true;
}
return false;
}
void BfExprEvaluator::GetLiteral(BfAstNode* refNode, const BfVariant& variant)
{
switch (variant.mTypeCode)
{
case BfTypeCode_NullPtr:
{
auto nullType = mModule->ResolveTypeDef(mModule->mSystem->mTypeNullPtr);
/*mResult = BfTypedValue(ConstantPointerNull::get((PointerType*) nullType->mIRType), nullType);*/
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateConstNull(), nullType);
}
break;
case BfTypeCode_CharPtr:
{
if ((mExpectingType != NULL) && (mExpectingType->IsSizedArray()))
{
auto sizedArray = (BfSizedArrayType*)mExpectingType;
if (sizedArray->mElementType == mModule->GetPrimitiveType(BfTypeCode_Char8))
{
if (variant.mString->GetLength() > sizedArray->mElementCount)
{
mModule->Fail(StrFormat("String literal is too long to fit into '%s'", mModule->TypeToString(sizedArray).c_str()), refNode);
}
Array<BfIRValue> charValues;
for (int i = 0; i < (int)BF_MIN(variant.mString->GetLength(), sizedArray->mElementCount); i++)
{
char c = (*variant.mString)[i];
charValues.Add(mModule->mBfIRBuilder->CreateConst(BfTypeCode_Char8, (int)(uint8)c));
}
if (sizedArray->mElementCount > charValues.size())
charValues.Add(mModule->mBfIRBuilder->CreateConst(BfTypeCode_Char8, 0));
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateConstAgg(mModule->mBfIRBuilder->MapType(sizedArray), charValues), sizedArray);
return;
}
}
if ((mExpectingType == NULL) || (!mExpectingType->IsPointer()))
{
mResult = BfTypedValue(mModule->GetStringObjectValue(*variant.mString),
mModule->ResolveTypeDef(mModule->mCompiler->mStringTypeDef));
}
else
{
auto charType = mModule->GetPrimitiveType(BfTypeCode_Char8);
auto charPtrType = mModule->CreatePointerType(charType);
mResult = BfTypedValue(mModule->GetStringCharPtr(*variant.mString),
charPtrType);
}
}
break;
case BfTypeCode_Boolean:
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateConst(variant.mTypeCode, variant.mUInt64), mModule->GetPrimitiveType(variant.mTypeCode));
break;
case BfTypeCode_Char8:
case BfTypeCode_Char16:
case BfTypeCode_Char32:
case BfTypeCode_Int8:
case BfTypeCode_UInt8:
case BfTypeCode_Int16:
case BfTypeCode_UInt16:
case BfTypeCode_Int32:
case BfTypeCode_UInt32:
case BfTypeCode_Int64:
case BfTypeCode_UInt64:
case BfTypeCode_IntPtr:
case BfTypeCode_UIntPtr:
case BfTypeCode_IntUnknown:
case BfTypeCode_UIntUnknown:
if ((mExpectingType != NULL) && (mExpectingType->IsIntegral()) && (mExpectingType->IsChar() == IsCharType(variant.mTypeCode)))
{
auto primType = (BfPrimitiveType*)mExpectingType;
if (mModule->mSystem->DoesLiteralFit(primType->mTypeDef->mTypeCode, variant.mUInt64))
{
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateConst(primType->mTypeDef->mTypeCode, variant.mUInt64), mExpectingType);
break;
}
}
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateConst(variant.mTypeCode, variant.mUInt64), mModule->GetPrimitiveType(variant.mTypeCode));
break;
case BfTypeCode_Float:
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateConst(variant.mTypeCode, variant.mSingle), mModule->GetPrimitiveType(variant.mTypeCode));
break;
case BfTypeCode_Double:
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateConst(variant.mTypeCode, variant.mDouble), mModule->GetPrimitiveType(variant.mTypeCode));
break;
default:
mModule->Fail("Invalid literal", refNode);
break;
}
}
void BfExprEvaluator::Visit(BfLiteralExpression* literalExpr)
{
switch (literalExpr->mValue.mWarnType)
{
case BfWarning_BF4201_Only7Hex:
mModule->Warn(BfWarning_BF4201_Only7Hex, "Only 7 hex digits specified. Add a leading zero to clarify intention.", literalExpr);
break;
case BfWarning_BF4202_TooManyHexForInt:
mModule->Warn(BfWarning_BF4202_TooManyHexForInt, "Nine hex digits specified. If an 8-digit hex literal was not intended then add a leading zero to clarify.", literalExpr);
break;
}
GetLiteral(literalExpr, literalExpr->mValue);
}
void BfExprEvaluator::Visit(BfStringInterpolationExpression* stringInterpolationExpression)
{
if (IsComptimeEntry())
{
mModule->Fail("Const evaluation of string interpolation not allowed", stringInterpolationExpression);
}
if ((mBfEvalExprFlags & BfEvalExprFlags_StringInterpolateFormat) != 0)
{
BfVariant variant;
variant.mTypeCode = BfTypeCode_CharPtr;
variant.mString = stringInterpolationExpression->mString;
GetLiteral(stringInterpolationExpression, variant);
return;
}
if (stringInterpolationExpression->mAllocNode != NULL)
{
auto stringType = mModule->ResolveTypeDef(mModule->mCompiler->mStringTypeDef)->ToTypeInstance();
BfTokenNode* newToken = NULL;
BfAllocTarget allocTarget = ResolveAllocTarget(stringInterpolationExpression->mAllocNode, newToken);
CreateObject(NULL, stringInterpolationExpression->mAllocNode, stringType);
BfTypedValue newString = mResult;
BF_ASSERT(newString);
SizedArray<BfExpression*, 2> argExprs;
argExprs.Add(stringInterpolationExpression);
BfSizedArray<BfExpression*> sizedArgExprs(argExprs);
BfResolvedArgs argValues(&sizedArgExprs);
ResolveArgValues(argValues, BfResolveArgsFlag_InsideStringInterpolationAlloc);
MatchMethod(stringInterpolationExpression, NULL, newString, false, false, "AppendF", argValues, NULL);
mResult = newString;
return;
}
mModule->Fail("Invalid use of string interpolation expression. Consider adding an allocation specifier such as 'scope'.", stringInterpolationExpression);
for (auto block : stringInterpolationExpression->mExpressions)
{
VisitChild(block);
}
}
BfTypedValue BfExprEvaluator::LoadLocal(BfLocalVariable* varDecl, bool allowRef)
{
if (!mModule->mIsInsideAutoComplete)
varDecl->mReadFromId = mModule->mCurMethodState->GetRootMethodState()->mCurAccessId++;
// The Beef backend prefers readonly addrs since that reduces register pressure, whereas
// LLVM prefers values to avoid memory loads. This only applies to primitive types...
bool preferValue = (varDecl->mResolvedType->IsPrimitiveType()) && (!mModule->IsTargetingBeefBackend());
BfTypedValue localResult;
if (varDecl->mIsThis)
{
return mModule->GetThis();
}
else if (varDecl->mConstValue)
{
localResult = BfTypedValue(varDecl->mConstValue, varDecl->mResolvedType, false);
}
else if (varDecl->mIsSplat)
{
if ((!preferValue) && (varDecl->mAddr))
localResult = BfTypedValue(varDecl->mAddr, varDecl->mResolvedType, BfTypedValueKind_SplatHead);
else if (!varDecl->mResolvedType->IsValuelessType())
localResult = BfTypedValue(varDecl->mValue, varDecl->mResolvedType, BfTypedValueKind_SplatHead);
else if ((varDecl->mResolvedType->IsRef()) && (!allowRef))
{
BF_ASSERT(varDecl->mResolvedType->IsValuelessType());
localResult = BfTypedValue(varDecl->mValue, varDecl->mResolvedType->GetUnderlyingType());
}
else
localResult = BfTypedValue(varDecl->mValue, varDecl->mResolvedType);
//BF_ASSERT(varDecl->mValue.IsArg());
}
else if ((varDecl->mValue) && ((varDecl->mIsReadOnly && preferValue) || (!varDecl->mAddr)))
{
if ((varDecl->mResolvedType->IsRef()) && (!allowRef))
{
BfRefType* refType = (BfRefType*)varDecl->mResolvedType;
BfType* innerType = refType->mElementType;
if (innerType->IsGenericParam())
{
if (refType->mRefKind == BfRefType::RefKind_Mut)
{
localResult = BfTypedValue(varDecl->mValue, innerType, BfTypedValueKind_MutableValue);
return localResult;
}
else
{
localResult = BfTypedValue(varDecl->mValue, innerType, BfTypedValueKind_Addr);
return localResult;
}
}
localResult = BfTypedValue(varDecl->mValue, innerType, varDecl->mIsReadOnly ? BfTypedValueKind_ReadOnlyAddr : BfTypedValueKind_Addr);
}
else
{
BfTypedValueKind kind;
if ((varDecl->mResolvedType->IsComposite()) && (varDecl->mValue.IsArg()))
{
kind = varDecl->mIsReadOnly ? BfTypedValueKind_ReadOnlyAddr : BfTypedValueKind_Addr;
}
else
kind = BfTypedValueKind_Value;
localResult = BfTypedValue(varDecl->mValue, varDecl->mResolvedType, kind);
}
}
else if (varDecl->mAddr)
{
if ((varDecl->mResolvedType->IsRef()) && (!allowRef))
{
BfRefType* refType = (BfRefType*)varDecl->mResolvedType;
BfType* innerType = refType->mElementType;
if (innerType->IsValuelessType())
{
if (refType->mRefKind == BfRefType::RefKind_Mut)
return BfTypedValue(mModule->mBfIRBuilder->GetFakeVal(), innerType, BfTypedValueKind_MutableValue);
return BfTypedValue(mModule->mBfIRBuilder->GetFakeVal(), innerType, varDecl->mIsReadOnly ? BfTypedValueKind_ReadOnlyAddr : BfTypedValueKind_Addr);
}
if (refType->mRefKind == BfRefType::RefKind_Mut)
{
if (innerType->IsGenericParam())
{
localResult = BfTypedValue(mModule->mBfIRBuilder->CreateAlignedLoad(varDecl->mAddr, varDecl->mResolvedType->mAlign), innerType, BfTypedValueKind_MutableValue);
return localResult;
}
}
localResult = BfTypedValue(mModule->mBfIRBuilder->CreateAlignedLoad(varDecl->mAddr, varDecl->mResolvedType->mAlign), innerType, varDecl->mIsReadOnly ? BfTypedValueKind_ReadOnlyAddr : BfTypedValueKind_Addr);
}
else if (varDecl->mHasLocalStructBacking)
{
// varDecl->mAddr is a "struct**"
localResult = BfTypedValue(mModule->mBfIRBuilder->CreateAlignedLoad(varDecl->mAddr, varDecl->mResolvedType->mAlign), varDecl->mResolvedType, varDecl->mIsReadOnly ? BfTypedValueKind_ReadOnlyAddr : BfTypedValueKind_Addr);
}
else
localResult = BfTypedValue(varDecl->mAddr, varDecl->mResolvedType, varDecl->mIsReadOnly ? BfTypedValueKind_ReadOnlyAddr : BfTypedValueKind_Addr);
}
else if (varDecl->mResolvedType->IsValuelessType())
{
if ((varDecl->mResolvedType->IsRef()) && (!allowRef))
{
BfRefType* refType = (BfRefType*)varDecl->mResolvedType;
BfType* innerType = refType->mElementType;
localResult = BfTypedValue(mModule->mBfIRBuilder->GetFakeVal(), innerType, true);
return localResult;
}
localResult = BfTypedValue(mModule->mBfIRBuilder->GetFakeVal(), varDecl->mResolvedType, true);
}
else if (varDecl->mCompositeCount >= 0)
{
localResult = BfTypedValue(BfIRValue(), mModule->GetPrimitiveType(BfTypeCode_None));
}
else
{
BF_ASSERT((mModule->mCurMethodState->mClosureState != NULL) || (mModule->mBfIRBuilder->mIgnoreWrites));
// Just temporary
auto varType = varDecl->mResolvedType;
auto allocType = varType;
if (varType->IsRef())
{
BfRefType* refType = (BfRefType*)varType;
allocType = refType->mElementType;
}
auto declType = varDecl->mResolvedType;
if (declType->IsRef())
{
BfRefType* refType = (BfRefType*)declType;
declType = refType->mElementType;
}
mModule->PopulateType(allocType);
varDecl->mAddr = mModule->mBfIRBuilder->CreateAlloca(mModule->mBfIRBuilder->MapType(allocType));
localResult = BfTypedValue(varDecl->mAddr, declType, true);
return localResult;
}
if ((varDecl->mIsThis) && (localResult.mKind == BfTypedValueKind_Value))
localResult.mKind = BfTypedValueKind_ThisValue;
return localResult;
}
BfTypedValue BfExprEvaluator::LookupIdentifier(BfAstNode* refNode, const StringImpl& findName, bool ignoreInitialError, bool* hadError)
{
auto identifierNode = BfNodeDynCast<BfIdentifierNode>(refNode);
if (mModule->mCurMethodState != NULL)
{
auto rootMethodState = mModule->mCurMethodState->GetRootMethodState();
auto checkMethodState = mModule->mCurMethodState;
bool isMixinOuterVariablePass = false;
while (checkMethodState != NULL)
{
BP_ZONE("LookupIdentifier:LocalVar");
BfTypeInstance* closureTypeInst = NULL;
if ((checkMethodState->mClosureState != NULL) && (checkMethodState->mClosureState->mClosureType != NULL) && (!checkMethodState->mClosureState->mCapturing))
{
closureTypeInst = mModule->mCurMethodState->mClosureState->mClosureType;
}
int varSkipCount = 0;
StringT<128> wantName;
wantName.Reference(findName);
if (findName.StartsWith('@'))
{
wantName = findName;
while (wantName.StartsWith("@"))
{
if (wantName != "@return")
varSkipCount++;
wantName.Remove(0);
}
}
if (wantName.IsEmpty())
{
mModule->Fail("Shadowed variable name expected after '@'", refNode);
}
BfLocalVarEntry* entry;
if (checkMethodState->mLocalVarSet.TryGetWith<StringImpl&>(wantName, &entry))
{
auto varDecl = entry->mLocalVar;
if (varDecl != NULL)
varSkipCount -= varDecl->mNamePrefixCount;
while ((varSkipCount > 0) && (varDecl != NULL))
{
varDecl = varDecl->mShadowedLocal;
varSkipCount--;
}
if ((varDecl != NULL) && (varDecl->mNotCaptured))
{
mModule->Fail("Local variable is not captured", refNode);
}
if ((varSkipCount == 0) && (varDecl != NULL))
{
if ((closureTypeInst != NULL) && (wantName == "this"))
break;
if ((varDecl->mCompositeCount >= 0) && ((mBfEvalExprFlags & BfEvalExprFlags_AllowParamsExpr) == 0))
{
mModule->Fail("Invalid use of 'params' parameter", refNode);
}
if (varDecl->mResolvedType->IsVoid())
{
if ((varDecl->mIsReadOnly) && (varDecl->mParamIdx == -2) && (varDecl->mParamFailed))
{
BF_ASSERT(mModule->mCurMethodInstance->mMethodDef->mMethodType == BfMethodType_CtorCalcAppend);
mModule->Fail("The result of append allocations cannot be used in append size calculation methods. Consider moving all append allocations to the start of this method body.", refNode);
}
}
BfTypedValue localResult = LoadLocal(varDecl);
auto autoComplete = GetAutoComplete();
if (identifierNode != NULL)
{
if (autoComplete != NULL)
autoComplete->CheckLocalRef(identifierNode, varDecl);
if (((mModule->mCurMethodState->mClosureState == NULL) || (mModule->mCurMethodState->mClosureState->mCapturing)) &&
(mModule->mCompiler->mResolvePassData != NULL) && (mModule->mCurMethodInstance != NULL) && (!mModule->mCurMethodState->IsTemporary()))
mModule->mCompiler->mResolvePassData->HandleLocalReference(identifierNode, varDecl->mNameNode, mModule->mCurTypeInstance->mTypeDef, rootMethodState->mMethodInstance->mMethodDef, varDecl->mLocalVarId);
}
if (!isMixinOuterVariablePass)
{
mResultLocalVar = varDecl;
mResultFieldInstance = NULL;
mResultLocalVarRefNode = identifierNode;
}
return localResult;
}
}
// Check for the captured locals. It's important we do it here so we get local-first precedence still
if (closureTypeInst != NULL)
{
int varSkipCount = 0;
StringT<128> wantName;
wantName.Reference(findName);
closureTypeInst->mTypeDef->PopulateMemberSets();
BfMemberSetEntry* memberSetEntry = NULL;
if (closureTypeInst->mTypeDef->mFieldSet.TryGetWith((StringImpl&)wantName, &memberSetEntry))
{
auto fieldDef = (BfFieldDef*)memberSetEntry->mMemberDef;
while ((varSkipCount > 0) && (fieldDef != NULL))
{
fieldDef = fieldDef->mNextWithSameName;
varSkipCount--;
}
auto& field = closureTypeInst->mFieldInstances[fieldDef->mIdx];
if (!field.mResolvedType->IsValuelessType())
{
if (mModule->mCurMethodState->mClosureState->mCapturing)
{
mModule->mCurMethodState->mClosureState->mReferencedOuterClosureMembers.Add(&field);
return mModule->GetDefaultTypedValue(field.mResolvedType);
}
auto localVar = mModule->mCurMethodState->mLocals[0];
auto thisValue = localVar->mValue;
mModule->mBfIRBuilder->PopulateType(localVar->mResolvedType);
BfTypedValue result = BfTypedValue(mModule->mBfIRBuilder->CreateInBoundsGEP(thisValue, 0, field.mDataIdx), field.mResolvedType, true);
if (field.mResolvedType->IsRef())
{
auto refType = (BfRefType*)field.mResolvedType;
auto underlyingType = refType->GetUnderlyingType();
result = BfTypedValue(mModule->mBfIRBuilder->CreateLoad(result.mValue), underlyingType, true);
}
else if (fieldDef->mIsReadOnly)
result = mModule->LoadValue(result);
mResultLocalVar = localVar;
mResultFieldInstance = &field;
mResultLocalVarField = -(field.mMergedDataIdx + 1);
return result;
}
}
}
if ((checkMethodState->mClosureState != NULL) && (checkMethodState->mClosureState->mCapturing) /*&& (checkMethodState->mClosureState->mIsLocalMethod)*/)
{
checkMethodState = checkMethodState->mPrevMethodState;
continue;
}
// Allow local mixin to see outside variables during its processing -- since we don't actually "capture" those into params
bool isLocalMixinProcessing = false;
if ((checkMethodState->mClosureState != NULL) && (!checkMethodState->mClosureState->mCapturing) && (closureTypeInst == NULL) &&
(mModule->mCurMethodInstance->mMethodDef->mMethodType == BfMethodType_Mixin))
isLocalMixinProcessing = true;
if (!isLocalMixinProcessing)
break;
isMixinOuterVariablePass = true;
checkMethodState = checkMethodState->mPrevMethodState;
}
}
if ((mModule->mCurMethodInstance == NULL) && (mModule->mCurTypeInstance != NULL) && (mModule->mCurTypeInstance->IsEnum()))
{
if (findName == "_")
{
BfFieldDef* resolvingFieldDef = NULL;
auto checkTypeState = mModule->mContext->mCurTypeState;
while (checkTypeState != NULL)
{
if (checkTypeState->mCurFieldDef != NULL)
{
if (checkTypeState->mType == mModule->mCurTypeInstance)
resolvingFieldDef = checkTypeState->mCurFieldDef;
}
checkTypeState = checkTypeState->mPrevState;
}
if ((resolvingFieldDef != NULL) &&
(mModule->mCompiler->mResolvePassData != NULL) &&
(mModule->mCompiler->mResolvePassData->mParser == resolvingFieldDef->mFieldDeclaration->GetParser()) &&
(GetAutoComplete() != NULL))
{
return mModule->GetDefaultTypedValue(mModule->mCurTypeInstance);
}
else if ((resolvingFieldDef != NULL) && (resolvingFieldDef->mIdx > 0))
{
auto enumType = mModule->mCurTypeInstance;
if (!enumType->mFieldInstances.IsEmpty())
{
auto fieldInstance = &mModule->mCurTypeInstance->mFieldInstances[resolvingFieldDef->mIdx - 1];
if ((fieldInstance->mConstIdx != -1) &&
(fieldInstance->mResolvedType == mModule->mCurTypeInstance))
{
auto foreignConst = enumType->mConstHolder->GetConstantById(fieldInstance->mConstIdx);
auto retVal = mModule->ConstantToCurrent(foreignConst, enumType->mConstHolder, enumType);
return BfTypedValue(retVal, enumType);
}
}
}
}
}
BfTypedValue thisValue = mModule->GetThis();
bool forcedIFaceLookup = false;
if ((mModule->mCurMethodInstance != NULL) && (mModule->mCurMethodInstance->mIsForeignMethodDef))
{
thisValue.mType = mModule->mCurMethodInstance->GetForeignType();
forcedIFaceLookup = true;
}
if (thisValue)
{
if (findName == "this")
return thisValue;
if (findName == "base")
{
auto baseValue = thisValue;
if (baseValue.IsThis())
baseValue.ToBase();
if (mModule->GetActiveTypeDef()->mTypeCode != BfTypeCode_Extension)
{
MakeBaseConcrete(baseValue);
}
return baseValue;
}
if (!mModule->mCurMethodState->HasNonStaticMixin())
{
mResultLocalVar = mModule->GetThisVariable();
mResultFieldInstance = NULL;
mResultLocalVarRefNode = identifierNode;
}
}
if (!thisValue.HasType())
{
if ((mModule->mContext->mCurTypeState != NULL) && (mModule->mContext->mCurTypeState->mType == mModule->mCurTypeInstance) &&
(mModule->mContext->mCurTypeState->mResolveKind == BfTypeState::ResolveKind_Attributes))
{
// Can't do static lookups yet
}
else
thisValue = BfTypedValue(mModule->mCurTypeInstance);
}
BfTypedValue result;
if (thisValue.HasType())
{
result = LookupField(identifierNode, thisValue, findName, BfLookupFieldFlag_IsImplicitThis);
if (mResultFieldInstance == NULL)
{
mResultLocalVar = NULL;
mResultLocalVarRefNode = NULL;
}
}
if (mPropDef != NULL)
{
if (forcedIFaceLookup)
{
if (mPropTarget == thisValue)
{
mPropDefBypassVirtual = true;
mOrigPropTarget = mModule->GetThis();
}
}
}
if ((!result) && (mPropDef == NULL))
{
if (mModule->mContext->mCurTypeState != NULL)
{
// This is not necessarily true since we changed ConstResolver
//BF_ASSERT(mModule->mCurTypeInstance == mModule->mContext->mCurTypeState->mTypeInstance);
BfGlobalLookup globalLookup;
globalLookup.mKind = BfGlobalLookup::Kind_Field;
globalLookup.mName = findName;
mModule->PopulateGlobalContainersList(globalLookup);
for (auto& globalContainer : mModule->mContext->mCurTypeState->mGlobalContainers)
{
if (globalContainer.mTypeInst == NULL)
continue;
thisValue = BfTypedValue(globalContainer.mTypeInst);
result = LookupField(identifierNode, thisValue, findName);
if ((result) || (mPropDef != NULL))
return result;
}
}
auto staticSearch = mModule->GetStaticSearch();
if (staticSearch != NULL)
{
for (auto typeInst : staticSearch->mStaticTypes)
{
thisValue = BfTypedValue(typeInst);
result = LookupField(identifierNode, thisValue, findName);
if ((result) || (mPropDef != NULL))
return result;
}
}
}
if ((!result) && (identifierNode != NULL))
result = mModule->TryLookupGenericConstVaue(identifierNode, mExpectingType);
return result;
}
BfTypedValue BfExprEvaluator::LookupIdentifier(BfIdentifierNode* identifierNode, bool ignoreInitialError, bool* hadError)
{
auto qualifiedNameNode = BfNodeDynCast<BfQualifiedNameNode>(identifierNode);
if (qualifiedNameNode != NULL)
{
LookupQualifiedName(qualifiedNameNode, ignoreInitialError, hadError);
auto qualifiedResult = mResult;
mResult = BfTypedValue();
return qualifiedResult;
}
StringT<128> identifierStr;
identifierNode->ToString(identifierStr);
return LookupIdentifier(identifierNode, identifierStr, ignoreInitialError, hadError);
}
void BfExprEvaluator::Visit(BfIdentifierNode* identifierNode)
{
auto autoComplete = GetAutoComplete();
if (autoComplete != NULL)
autoComplete->CheckIdentifier(identifierNode, true);
mResult = LookupIdentifier(identifierNode);
if ((!mResult) && (mPropDef == NULL))
{
mModule->CheckTypeRefFixit(identifierNode);
if ((autoComplete != NULL) && (autoComplete->CheckFixit(identifierNode)))
{
if (mModule->mCurMethodInstance != NULL)
{
BfType* fieldType = mExpectingType;
if (fieldType == NULL)
fieldType = mModule->mContext->mBfObjectType;
autoComplete->FixitAddMember(mModule->mCurTypeInstance, fieldType, identifierNode->ToString(), true, mModule->mCurTypeInstance);
if (!mModule->mCurMethodInstance->mMethodDef->mIsStatic)
autoComplete->FixitAddMember(mModule->mCurTypeInstance, fieldType, identifierNode->ToString(), false, mModule->mCurTypeInstance);
for (auto typeDef : mModule->mSystem->mTypeDefs)
{
if (!typeDef->mIsCombinedPartial)
continue;
if (!typeDef->IsGlobalsContainer())
continue;
typeDef->PopulateMemberSets();
String findName = identifierNode->ToString();
BfMemberSetEntry* memberSetEntry;
if ((typeDef->mMethodSet.TryGetWith(findName, &memberSetEntry)) ||
(typeDef->mFieldSet.TryGetWith(findName, &memberSetEntry)) ||
(typeDef->mPropertySet.TryGetWith(findName, &memberSetEntry)))
{
if (mModule->GetActiveTypeDef()->mProject->ContainsReference(typeDef->mProject))
autoComplete->FixitAddNamespace(identifierNode, typeDef->mNamespace.ToString());
}
}
}
}
if ((mBfEvalExprFlags & BfEvalExprFlags_NoLookupError) == 0)
mModule->Fail("Identifier not found", identifierNode);
}
}
void BfExprEvaluator::Visit(BfAttributedIdentifierNode* attrIdentifierNode)
{
if ((mModule->mAttributeState != NULL))
{
mModule->mAttributeState->mCustomAttributes = mModule->GetCustomAttributes(attrIdentifierNode->mAttributes, mModule->mAttributeState->mTarget);
VisitChild(attrIdentifierNode->mIdentifier);
}
else
{
BfAttributeState attributeState;
attributeState.mTarget = (BfAttributeTargets)(BfAttributeTargets_MemberAccess);
SetAndRestoreValue<BfAttributeState*> prevAttributeState(mModule->mAttributeState, &attributeState);
mModule->mAttributeState->mCustomAttributes = mModule->GetCustomAttributes(attrIdentifierNode->mAttributes, mModule->mAttributeState->mTarget);
VisitChild(attrIdentifierNode->mIdentifier);
}
}
static int gPropIdx = 0;
void BfExprEvaluator::FixitAddMember(BfTypeInstance* typeInst, BfType* fieldType, const StringImpl& fieldName, bool isStatic)
{
if (fieldType == NULL)
{
fieldType = mExpectingType;
}
if (fieldType != NULL)
{
if (fieldType->IsRef())
fieldType = fieldType->GetUnderlyingType();
}
mModule->mCompiler->mResolvePassData->mAutoComplete->FixitAddMember(typeInst, fieldType, fieldName, isStatic, mModule->mCurTypeInstance);
}
BfTypedValue BfExprEvaluator::LookupField(BfAstNode* targetSrc, BfTypedValue target, const StringImpl& fieldName, BfLookupFieldFlags flags)
{
if ((target.mType != NULL && (target.mType->IsGenericParam())))
{
auto genericParamType = (BfGenericParamType*)target.mType;
auto genericParamInst = mModule->GetGenericParamInstance(genericParamType);
if (target.mValue)
{
for (auto iface : genericParamInst->mInterfaceConstraints)
{
auto result = LookupField(targetSrc, BfTypedValue(target.mValue, iface), fieldName, flags);
if ((result) || (mPropDef != NULL))
{
return result;
}
}
}
bool isUnspecializedSection = false;
if (genericParamType->mGenericParamKind == BfGenericParamKind_Method)
isUnspecializedSection = (mModule->mCurMethodInstance != NULL) && (mModule->mCurMethodInstance->mIsUnspecialized);
else
isUnspecializedSection = (mModule->mCurTypeInstance != NULL) && (mModule->mCurTypeInstance->IsUnspecializedType());
if (isUnspecializedSection)
{
if (genericParamInst->mTypeConstraint != NULL)
{
target.mType = genericParamInst->mTypeConstraint;
if (target.mType->IsWrappableType())
target.mType = mModule->GetWrappedStructType(target.mType);
}
else
target.mType = mModule->mContext->mBfObjectType;
if ((genericParamInst->mGenericParamFlags & BfGenericParamFlag_Var) != 0)
{
target.mType = mModule->GetPrimitiveType(BfTypeCode_Var);
}
}
else
{
if ((genericParamInst->mGenericParamFlags & BfGenericParamFlag_Var) != 0)
{
//target.mType = mModule->ResolveGenericType(mResult.mType);
}
else if (genericParamInst->mTypeConstraint != NULL)
{
target = mModule->Cast(targetSrc, target, genericParamInst->mTypeConstraint);
BF_ASSERT(target);
}
else
{
// This shouldn't occur - this would infer that we are accessing a member of Object or something...
//target.mType = mModule->ResolveGenericType(mResult.mType);
}
}
}
if ((target.mType != NULL) && (IsVar(target.mType)))
return BfTypedValue(mModule->GetDefaultValue(target.mType), target.mType, true);
BfTypeInstance* startCheckType = mModule->mCurTypeInstance;
mPropDef = NULL;
mPropDefBypassVirtual = false;
if (target)
{
if ((!target.mType->IsValueType()) && (target.IsAddr()))
target = mModule->LoadValue(target);
if (target.mType->IsPrimitiveType())
{
auto primType = (BfPrimitiveType*)target.mType;
startCheckType = mModule->GetPrimitiveStructType(primType->mTypeDef->mTypeCode);
}
else
{
startCheckType = target.mType->ToTypeInstance();
if ((startCheckType == NULL) && (target.mType->IsPointer()))
{
startCheckType = ((BfPointerType*)target.mType)->mElementType->ToTypeInstance();
if ((startCheckType != NULL) && (!startCheckType->IsValueType()))
return BfTypedValue();
}
}
//BF_ASSERT(startCheckType != NULL);
}
else if (target.mType != NULL)
{
startCheckType = target.mType->ToTypeInstance();
}
if ((startCheckType != NULL) && (startCheckType->mBaseType == NULL))
{
if (startCheckType->mDefineState == BfTypeDefineState_ResolvingBaseType)
{
// Fixes cases where we have something like 'Base[Value]' as a base typeref
return BfTypedValue();
}
mModule->PopulateType(startCheckType, BfPopulateType_BaseType);
}
if ((startCheckType != NULL) && (mModule->mContext->mCurTypeState != NULL))
{
// Don't allow lookups yet
if ((mModule->mContext->mCurTypeState->mResolveKind == BfTypeState::ResolveKind_Attributes) &&
(startCheckType == mModule->mContext->mCurTypeState->mType))
return BfTypedValue();
}
String findName;
int varSkipCount = 0;
if (fieldName.StartsWith('@'))
{
findName = fieldName;
while (findName.StartsWith('@'))
{
findName.Remove(0);
varSkipCount++;
}
}
else
findName.Reference(fieldName);
auto activeTypeDef = mModule->GetActiveTypeDef();
for (int pass = 0; pass < 2; pass++)
{
auto curCheckType = startCheckType;
bool isFailurePass = pass == 1;
bool isBaseLookup = false;
while (curCheckType != NULL)
{
curCheckType->mTypeDef->PopulateMemberSets();
BfFieldDef* nextField = NULL;
BfMemberSetEntry* entry;
if (curCheckType->mTypeDef->mFieldSet.TryGetWith(findName, &entry))
nextField = (BfFieldDef*)entry->mMemberDef;
if (nextField != NULL)
varSkipCount -= nextField->mNamePrefixCount;
while ((varSkipCount > 0) && (nextField != NULL))
{
nextField = nextField->mNextWithSameName;
varSkipCount--;
}
BfProtectionCheckFlags protectionCheckFlags = BfProtectionCheckFlag_None;
if (target)
{
if ((flags & (BfLookupFieldFlag_IsImplicitThis | BfLookupFieldFlag_BaseLookup)) != 0)
{
// Not an "instance lookup"
}
else
{
protectionCheckFlags = (BfProtectionCheckFlags)(protectionCheckFlags | BfProtectionCheckFlag_InstanceLookup);
}
}
BfFieldDef* matchedField = NULL;
while (nextField != NULL)
{
if ((flags & BfLookupFieldFlag_BindOnly) != 0)
break;
auto field = nextField;
nextField = nextField->mNextWithSameName;
if (((flags & BfLookupFieldFlag_IgnoreProtection) == 0) && (!isFailurePass) &&
(!mModule->CheckProtection(protectionCheckFlags, curCheckType, field->mDeclaringType->mProject, field->mProtection, startCheckType)))
{
continue;
}
bool isResolvingFields = curCheckType->mResolvingConstField || curCheckType->mResolvingVarField;
if (curCheckType->mFieldInstances.IsEmpty())
{
mModule->PopulateType(curCheckType, BfPopulateType_Data);
}
BF_ASSERT(field->mIdx < (int)curCheckType->mFieldInstances.size());
auto fieldInstance = &curCheckType->mFieldInstances[field->mIdx];
if (!fieldInstance->mFieldIncluded)
continue;
if (curCheckType->IsUnspecializedType())
{
// The check for non-unspecialized types is already handled in mFieldIncluded
if (!curCheckType->IsTypeMemberIncluded(field->mDeclaringType, activeTypeDef, mModule))
continue;
}
if (!curCheckType->IsTypeMemberAccessible(field->mDeclaringType, activeTypeDef))
continue;
if (matchedField != NULL)
{
auto error = mModule->Fail(StrFormat("Ambiguous reference to field '%s.%s'", mModule->TypeToString(curCheckType).c_str(), fieldName.c_str()), targetSrc);
if (error != NULL)
{
mModule->mCompiler->mPassInstance->MoreInfo(StrFormat("See field declaration in project '%s'", matchedField->mDeclaringType->mProject->mName.c_str()), matchedField->mFieldDeclaration);
mModule->mCompiler->mPassInstance->MoreInfo(StrFormat("See field declaration in project '%s'", field->mDeclaringType->mProject->mName.c_str()), field->mFieldDeclaration);
break;
}
}
matchedField = field;
}
if (matchedField != NULL)
{
auto field = matchedField;
auto fieldInstance = &curCheckType->mFieldInstances[field->mIdx];
bool isResolvingFields = curCheckType->mResolvingConstField || curCheckType->mResolvingVarField;
if (field->mIsVolatile)
mIsVolatileReference = true;
if (isFailurePass)
{
mModule->Fail(StrFormat("'%s.%s' is inaccessible due to its protection level", mModule->TypeToString(curCheckType).c_str(), field->mName.c_str()), targetSrc);
}
auto resolvePassData = mModule->mCompiler->mResolvePassData;
if ((resolvePassData != NULL) && (resolvePassData->mGetSymbolReferenceKind == BfGetSymbolReferenceKind_Field))
{
resolvePassData->HandleFieldReference(targetSrc, curCheckType->mTypeDef, field);
}
if ((!curCheckType->mTypeFailed) && (!isResolvingFields) && (curCheckType->IsIncomplete()))
{
if ((fieldInstance->mResolvedType == NULL) ||
(!field->mIsStatic))
mModule->PopulateType(curCheckType, BfPopulateType_Data);
}
if (fieldInstance->mResolvedType == NULL)
{
BF_ASSERT((curCheckType->mTypeFailed) || (isResolvingFields));
return BfTypedValue();
}
if (fieldInstance->mFieldIdx == -1)
{
mModule->AssertErrorState();
return BfTypedValue();
}
mResultFieldInstance = fieldInstance;
// Are we accessing a 'var' field that has not yet been resolved?
if (IsVar(fieldInstance->mResolvedType))
{
// This can happen if we have one var field referencing another var field
fieldInstance->mResolvedType = mModule->ResolveVarFieldType(curCheckType, fieldInstance, field);
if (fieldInstance->mResolvedType == NULL)
return BfTypedValue();
}
auto resolvedFieldType = fieldInstance->mResolvedType;
if (fieldInstance->mIsEnumPayloadCase)
{
resolvedFieldType = curCheckType;
}
mModule->PopulateType(resolvedFieldType, BfPopulateType_Data);
mModule->AddDependency(curCheckType, mModule->mCurTypeInstance, field->mIsConst ? BfDependencyMap::DependencyFlag_ConstValue : BfDependencyMap::DependencyFlag_ReadFields);
if (fieldInstance->mHadConstEval)
{
mModule->AddDependency(curCheckType, mModule->mCurTypeInstance, BfDependencyMap::DependencyFlag_ConstEvalConstField);
if ((mModule->mContext->mCurTypeState != NULL) && (mModule->mContext->mCurTypeState->mCurFieldDef != NULL))
{
// If we're initializing another const field then also set it as having const eval
auto resolvingFieldInstance = &mModule->mContext->mCurTypeState->mType->ToTypeInstance()->mFieldInstances[mModule->mContext->mCurTypeState->mCurFieldDef->mIdx];
if (resolvingFieldInstance->GetFieldDef()->mIsConst)
resolvingFieldInstance->mHadConstEval = true;
}
}
auto autoComplete = GetAutoComplete();
if (autoComplete != NULL)
{
autoComplete->CheckFieldRef(BfNodeDynCast<BfIdentifierNode>(targetSrc), fieldInstance);
if ((autoComplete->mResolveType == BfResolveType_GetResultString) && (autoComplete->IsAutocompleteNode(targetSrc)))
{
autoComplete->mResultString = ":";
autoComplete->mResultString += mModule->TypeToString(fieldInstance->mResolvedType);
autoComplete->mResultString += " ";
autoComplete->mResultString += mModule->TypeToString(curCheckType);
autoComplete->mResultString += ".";
autoComplete->mResultString += field->mName;
if (fieldInstance->mConstIdx != -1)
{
String constStr = autoComplete->ConstantToString(curCheckType->mConstHolder, BfIRValue(BfIRValueFlags_Const, fieldInstance->mConstIdx));
if (!constStr.IsEmpty())
{
autoComplete->mResultString += " = ";
if (constStr.StartsWith(':'))
autoComplete->mResultString.Append(StringView(constStr, 1, constStr.mLength - 1));
else
autoComplete->mResultString += constStr;
}
}
auto fieldDecl = fieldInstance->GetFieldDef()->mFieldDeclaration;
if ((fieldDecl != NULL) && (fieldDecl->mDocumentation != NULL))
{
String docString;
fieldDecl->mDocumentation->GetDocString(docString);
autoComplete->mResultString += "\x03";
autoComplete->mResultString += docString;
}
}
}
if (field->mIsStatic)
{
if ((target) && ((flags & BfLookupFieldFlag_IsImplicitThis) == 0) && (!curCheckType->mTypeDef->IsGlobalsContainer()))
{
//CS0176: Member 'Program.sVal' cannot be accessed with an instance reference; qualify it with a type name instead
mModule->Fail(StrFormat("Member '%s.%s' cannot be accessed with an instance reference; qualify it with a type name instead",
mModule->TypeToString(curCheckType).c_str(), field->mName.c_str()), targetSrc);
}
// Target must be an implicit 'this', or an error (accessing a static with a non-static target).
// Not actually needed in either case since this is a static lookup.
mResultLocalVar = NULL;
}
bool isConst = false;
if (field->mIsConst)
{
isConst = true;
auto fieldDef = fieldInstance->GetFieldDef();
if ((resolvedFieldType->IsPointer()) && (fieldDef->mIsExtern))
isConst = false;
}
if (resolvedFieldType->IsValuelessType())
{
return BfTypedValue(BfIRValue::sValueless, resolvedFieldType, true);
}
if (isConst)
{
if (fieldInstance->mIsEnumPayloadCase)
{
auto dscrType = curCheckType->GetDiscriminatorType();
mModule->mBfIRBuilder->PopulateType(curCheckType);
int tagIdx = -fieldInstance->mDataIdx - 1;
if ((mBfEvalExprFlags & BfEvalExprFlags_AllowEnumId) != 0)
{
return BfTypedValue(mModule->mBfIRBuilder->CreateConst(dscrType->mTypeDef->mTypeCode, tagIdx), fieldInstance->mOwner);
}
mModule->PopulateType(fieldInstance->mOwner, BfPopulateType_Data);
if (auto fieldTypeInstance = fieldInstance->mResolvedType->ToTypeInstance())
{
bool hasFields = false;
for (auto& fieldInstance : fieldTypeInstance->mFieldInstances)
{
if (!fieldInstance.mResolvedType->IsVoid())
hasFields = true;
}
if (hasFields)
mModule->FailAfter("Enum payload arguments expected", targetSrc);
}
SizedArray<BfIRValue, 3> values;
values.Add(mModule->mBfIRBuilder->CreateConstAggZero(mModule->mBfIRBuilder->MapType(curCheckType->mBaseType)));
values.Add(mModule->GetDefaultValue(curCheckType->GetUnionInnerType()));
values.Add(mModule->mBfIRBuilder->CreateConst(dscrType->mTypeDef->mTypeCode, tagIdx));
return BfTypedValue(mModule->mBfIRBuilder->CreateConstAgg(mModule->mBfIRBuilder->MapType(curCheckType), values), curCheckType);
}
if (fieldInstance->mConstIdx == -1)
{
if ((mBfEvalExprFlags & BfEvalExprFlags_DeclType) != 0)
{
// We don't need a real value
return BfTypedValue(mModule->GetDefaultValue(resolvedFieldType), resolvedFieldType);
}
curCheckType->mModule->ResolveConstField(curCheckType, fieldInstance, field);
if (fieldInstance->mConstIdx == -1)
return BfTypedValue(mModule->GetDefaultValue(resolvedFieldType), resolvedFieldType);
}
BF_ASSERT(fieldInstance->mConstIdx != -1);
auto foreignConst = curCheckType->mConstHolder->GetConstantById(fieldInstance->mConstIdx);
auto retVal = mModule->ConstantToCurrent(foreignConst, curCheckType->mConstHolder, resolvedFieldType);
return BfTypedValue(retVal, resolvedFieldType);
}
else if (field->mIsStatic)
{
mModule->CheckStaticAccess(curCheckType);
auto retVal = mModule->ReferenceStaticField(fieldInstance);
bool isStaticCtor = (mModule->mCurMethodInstance != NULL) &&
(mModule->mCurMethodInstance->mMethodDef->IsCtorOrInit()) &&
(mModule->mCurMethodInstance->mMethodDef->mIsStatic);
if ((field->mIsReadOnly) && (!isStaticCtor))
{
if (retVal.IsAddr())
retVal.mKind = BfTypedValueKind_ReadOnlyAddr;
}
else
mIsHeapReference = true;
return retVal;
}
else if (!target)
{
if (mModule->PreFail())
{
if ((flags & BfLookupFieldFlag_CheckingOuter) != 0)
mModule->Fail(StrFormat("An instance reference is required to reference non-static outer field '%s.%s'", mModule->TypeToString(curCheckType).c_str(), field->mName.c_str()),
targetSrc);
else if ((mModule->mCurMethodInstance != NULL) && (mModule->mCurMethodInstance->mMethodDef->mMethodType == BfMethodType_CtorCalcAppend))
mModule->Fail(StrFormat("Cannot reference field '%s' before append allocations", field->mName.c_str()), targetSrc);
else
mModule->Fail(StrFormat("Cannot reference non-static field '%s' from a static method", field->mName.c_str()), targetSrc);
}
return mModule->GetDefaultTypedValue(resolvedFieldType, false, BfDefaultValueKind_Addr);
}
if ((mResultLocalVar != NULL) && (fieldInstance->mMergedDataIdx != -1))
{
if (mResultLocalVarFieldCount != 1)
{
fieldInstance->GetDataRange(mResultLocalVarField, mResultLocalVarFieldCount);
mResultLocalVarRefNode = targetSrc;
}
}
if ((curCheckType->IsIncomplete()) && (!curCheckType->mNeedsMethodProcessing))
{
BF_ASSERT(curCheckType->mTypeFailed || (mModule->mCurMethodState == NULL) || (mModule->mCurMethodState->mTempKind != BfMethodState::TempKind_None) || (mModule->mCompiler->IsAutocomplete()));
return mModule->GetDefaultTypedValue(resolvedFieldType);
}
bool isTemporary = target.IsTempAddr();
bool wantsLoadValue = false;
bool wantsReadOnly = false;
if ((field->mIsReadOnly) && (mModule->mCurMethodInstance != NULL) && ((!mModule->mCurMethodInstance->mMethodDef->IsCtorOrInit()) || (!target.IsThis())))
wantsReadOnly = true;
bool isComposite = target.mType->IsComposite();
if ((isComposite) && (!target.mType->IsTypedPrimitive()) && (!target.IsAddr()))
isTemporary = true;
if ((isComposite) && (!target.IsAddr()))
wantsLoadValue = true;
if ((target.mType->IsWrappableType()) && (!target.mType->IsPointer()))
{
BfTypeInstance* primStructType = mModule->GetWrappedStructType(target.mType);
BfIRValue allocaInst = mModule->CreateAlloca(primStructType, true, "tmpStruct");
BfIRValue elementAddr = mModule->mBfIRBuilder->CreateInBoundsGEP(allocaInst, 0, 1);
mModule->mBfIRBuilder->CreateStore(target.mValue, elementAddr);
target = BfTypedValue(allocaInst, primStructType, true);
}
if (target.IsCopyOnMutate())
target = mModule->CopyValue(target);
BfTypedValue targetValue;
if ((isBaseLookup) && (!target.IsSplat()))
{
if ((!isComposite) || (target.IsAddr()))
targetValue = BfTypedValue(mModule->mBfIRBuilder->CreateBitCast(target.mValue, mModule->mBfIRBuilder->MapTypeInstPtr(curCheckType)), curCheckType);
else
{
BfIRValue curVal = target.mValue;
auto baseCheckType = target.mType->ToTypeInstance();
while (baseCheckType != curCheckType)
{
curVal = mModule->mBfIRBuilder->CreateExtractValue(curVal, 0);
baseCheckType = baseCheckType->mBaseType;
}
targetValue = BfTypedValue(curVal, curCheckType);
}
}
else
targetValue = target;
bool doAccessCheck = true;
if ((flags & BfLookupFieldFlag_BindOnly) != 0)
doAccessCheck = false;
if ((mModule->mAttributeState != NULL) && (mModule->mAttributeState->mCustomAttributes != NULL) && (mModule->mAttributeState->mCustomAttributes->Contains(mModule->mCompiler->mDisableObjectAccessChecksAttributeTypeDef)))
doAccessCheck = false;
if (target.IsThis())
{
if (!mModule->mCurMethodState->mMayNeedThisAccessCheck)
doAccessCheck = false;
}
if (doAccessCheck)
mModule->EmitObjectAccessCheck(target);
if (fieldInstance->mDataIdx < 0)
{
BF_ASSERT(curCheckType->mTypeFailed);
return mModule->GetDefaultTypedValue(resolvedFieldType);
}
BfTypedValue retVal;
if (target.IsSplat())
{
retVal = mModule->ExtractValue(targetValue, fieldInstance, fieldInstance->mDataIdx);
}
else if ((target.mType->IsStruct()) && (!target.IsAddr()))
{
mModule->mBfIRBuilder->PopulateType(targetValue.mType);
retVal = BfTypedValue(mModule->mBfIRBuilder->CreateExtractValue(targetValue.mValue, fieldInstance->mDataIdx/*, field->mName*/),
resolvedFieldType);
}
else
{
mModule->mBfIRBuilder->PopulateType(curCheckType);
if ((targetValue.IsAddr()) && (!curCheckType->IsValueType()))
targetValue = mModule->LoadValue(targetValue);
retVal = BfTypedValue(mModule->mBfIRBuilder->CreateInBoundsGEP(targetValue.mValue, 0, fieldInstance->mDataIdx/*, field->mName*/),
resolvedFieldType, target.IsReadOnly() ? BfTypedValueKind_ReadOnlyAddr : BfTypedValueKind_Addr);
}
if (!retVal.IsSplat())
{
if (curCheckType->mIsUnion)
{
BfIRType llvmPtrType = mModule->mBfIRBuilder->GetPointerTo(mModule->mBfIRBuilder->MapType(resolvedFieldType));
retVal.mValue = mModule->mBfIRBuilder->CreateBitCast(retVal.mValue, llvmPtrType);
}
}
if (wantsLoadValue)
retVal = mModule->LoadValue(retVal, NULL, mIsVolatileReference);
else
{
if ((wantsReadOnly) && (retVal.IsAddr())&& (!retVal.IsReadOnly()))
retVal.mKind = BfTypedValueKind_ReadOnlyAddr;
mIsHeapReference = true;
}
if (isTemporary)
{
if (retVal.IsAddr())
retVal.mKind = BfTypedValueKind_TempAddr;
}
return retVal;
}
BfPropertyDef* nextProp = NULL;
if (curCheckType->mTypeDef->mPropertySet.TryGetWith(fieldName, &entry))
nextProp = (BfPropertyDef*)entry->mMemberDef;
if (nextProp != NULL)
{
BfCheckedKind checkedKind = BfCheckedKind_NotSet;
bool isInlined = false;
if ((mModule->mAttributeState != NULL) && (mModule->mAttributeState->mCustomAttributes != NULL))
{
if (mModule->mAttributeState->mCustomAttributes->Contains(mModule->mCompiler->mInlineAttributeTypeDef))
{
isInlined = true;
mModule->mAttributeState->mUsed = true;
}
if (mModule->mAttributeState->mCustomAttributes->Contains(mModule->mCompiler->mCheckedAttributeTypeDef))
{
checkedKind = BfCheckedKind_Checked;
mModule->mAttributeState->mUsed = true;
}
if (mModule->mAttributeState->mCustomAttributes->Contains(mModule->mCompiler->mUncheckedAttributeTypeDef))
{
checkedKind = BfCheckedKind_Unchecked;
mModule->mAttributeState->mUsed = true;
}
}
BfPropertyDef* matchedProp = NULL;
while (nextProp != NULL)
{
auto prop = nextProp;
nextProp = nextProp->mNextWithSameName;
if ((!isFailurePass) && (!mModule->CheckProtection(protectionCheckFlags, curCheckType, prop->mDeclaringType->mProject, prop->mProtection, startCheckType)))
{
continue;
}
if (!prop->mMethods.IsEmpty())
{
BfMethodDef* checkMethod = prop->mMethods[0];;
// Properties with explicit interfaces or marked as overrides can only be called indirectly
if ((checkMethod->mExplicitInterface != NULL) || (checkMethod->mIsOverride))
continue;
}
if ((!target.IsStatic()) || (prop->mIsStatic))
{
if (!mModule->IsInSpecializedSection())
{
if ((!curCheckType->IsTypeMemberIncluded(prop->mDeclaringType, activeTypeDef, mModule)) ||
(!curCheckType->IsTypeMemberAccessible(prop->mDeclaringType, mModule->GetVisibleProjectSet())))
continue;
}
if (matchedProp != NULL)
{
if (mModule->PreFail())
{
auto error = mModule->Fail(StrFormat("Ambiguous reference to property '%s.%s'", mModule->TypeToString(curCheckType).c_str(), fieldName.c_str()), targetSrc);
if (error != NULL)
{
mModule->mCompiler->mPassInstance->MoreInfo(StrFormat("See property declaration in project '%s'", matchedProp->mDeclaringType->mProject->mName.c_str()), matchedProp->mFieldDeclaration);
mModule->mCompiler->mPassInstance->MoreInfo(StrFormat("See property declaration in project '%s'", prop->mDeclaringType->mProject->mName.c_str()), prop->mFieldDeclaration);
break;
}
}
}
matchedProp = prop;
}
}
if (matchedProp != NULL)
{
auto prop = matchedProp;
gPropIdx++;
mModule->SetElementType(targetSrc, BfSourceElementType_Method);
mPropSrc = targetSrc;
mPropDef = prop;
mPropCheckedKind = checkedKind;
if (isInlined)
mPropGetMethodFlags = (BfGetMethodInstanceFlags)(mPropGetMethodFlags | BfGetMethodInstanceFlag_ForceInline);
if ((mModule->mAttributeState != NULL) && (mModule->mAttributeState->mCustomAttributes != NULL))
{
if (mModule->mAttributeState->mCustomAttributes->Contains(mModule->mCompiler->mFriendAttributeTypeDef))
{
mPropGetMethodFlags = (BfGetMethodInstanceFlags)(mPropGetMethodFlags | BfGetMethodInstanceFlag_Friend);
mModule->mAttributeState->mUsed = true;
}
if (mModule->mAttributeState->mCustomAttributes->Contains(mModule->mCompiler->mDisableObjectAccessChecksAttributeTypeDef))
{
mPropGetMethodFlags = (BfGetMethodInstanceFlags)(mPropGetMethodFlags | BfGetMethodInstanceFlag_DisableObjectAccessChecks);
mModule->mAttributeState->mUsed = true;
}
}
if (mPropDef->mIsStatic)
{
if ((target) && ((flags & BfLookupFieldFlag_IsImplicitThis) == 0) && (!curCheckType->mTypeDef->IsGlobalsContainer()))
{
//CS0176: Member 'Program.sVal' cannot be accessed with an instance reference; qualify it with a type name instead
mModule->Fail(StrFormat("Property '%s.%s' cannot be accessed with an instance reference; qualify it with a type name instead",
mModule->TypeToString(curCheckType).c_str(), mPropDef->mName.c_str()), targetSrc);
}
}
if (prop->mIsStatic)
mPropTarget = BfTypedValue(curCheckType);
else if (isBaseLookup)
{
if (target.mValue.IsFake())
{
mPropTarget = BfTypedValue(target.mValue, curCheckType, target.mKind);
}
else
{
mPropTarget = mModule->Cast(targetSrc, target, curCheckType);
BF_ASSERT(mPropTarget);
}
}
else
mPropTarget = target;
if (mPropTarget.mType->IsStructPtr())
{
mPropTarget = mModule->LoadValue(mPropTarget);
mPropTarget = BfTypedValue(mPropTarget.mValue, mPropTarget.mType->GetUnderlyingType(), mPropTarget.IsReadOnly() ? BfTypedValueKind_ReadOnlyAddr : BfTypedValueKind_Addr);
}
mOrigPropTarget = mPropTarget;
auto autoComplete = GetAutoComplete();
auto resolvePassData = mModule->mCompiler->mResolvePassData;
if (((autoComplete != NULL) && (autoComplete->mIsGetDefinition)) ||
((resolvePassData != NULL) && (resolvePassData->mGetSymbolReferenceKind == BfGetSymbolReferenceKind_Property)))
{
BfPropertyDef* basePropDef = mPropDef;
BfTypeInstance* baseTypeInst = curCheckType;
mModule->GetBasePropertyDef(basePropDef, baseTypeInst);
resolvePassData->HandlePropertyReference(targetSrc, baseTypeInst->mTypeDef, basePropDef);
if ((autoComplete != NULL) && (autoComplete->IsAutocompleteNode(targetSrc)))
{
if (autoComplete->mIsGetDefinition)
{
//NOTE: passing 'force=true' in here causes https://github.com/beefytech/Beef/issues/1064
autoComplete->SetDefinitionLocation(basePropDef->GetRefNode());
}
autoComplete->mDefProp = basePropDef;
autoComplete->mDefType = baseTypeInst->mTypeDef;
}
}
if ((autoComplete != NULL) && (autoComplete->mResolveType == BfResolveType_GetResultString) && (autoComplete->IsAutocompleteNode(targetSrc)))
{
BfPropertyDef* basePropDef = mPropDef;
BfTypeInstance* baseTypeInst = curCheckType;
mModule->GetBasePropertyDef(basePropDef, baseTypeInst);
autoComplete->mResultString = ":";
autoComplete->mResultString += mModule->TypeToString(baseTypeInst);
autoComplete->mResultString += ".";
autoComplete->mResultString += basePropDef->mName;
}
// Check for direct auto-property access
if ((startCheckType == mModule->mCurTypeInstance) && ((flags & BfLookupFieldFlag_BindOnly) == 0))
{
if (auto propertyDeclaration = BfNodeDynCast<BfPropertyDeclaration>(mPropDef->mFieldDeclaration))
{
if ((curCheckType->mTypeDef->HasAutoProperty(propertyDeclaration)) && (propertyDeclaration->mVirtualSpecifier == NULL))
{
BfMethodDef* getter = GetPropertyMethodDef(mPropDef, BfMethodType_PropertyGetter, BfCheckedKind_NotSet, mPropTarget);
BfMethodDef* setter = GetPropertyMethodDef(mPropDef, BfMethodType_PropertySetter, BfCheckedKind_NotSet, mPropTarget);
bool optAllowed = true;
if ((getter != NULL) && (getter->mBody != NULL))
optAllowed = false;
if ((setter != NULL) && (setter->mBody != NULL))
optAllowed = false;
if (optAllowed)
{
auto autoFieldName = curCheckType->mTypeDef->GetAutoPropertyName(propertyDeclaration);
auto result = LookupField(targetSrc, target, autoFieldName, (BfLookupFieldFlags)(BfLookupFieldFlag_IgnoreProtection | BfLookupFieldFlag_IsImplicitThis));
if (result)
{
bool needsCopy = true;
if (setter == NULL)
{
if (((mModule->mCurMethodInstance->mMethodDef->mMethodType == BfMethodType_Ctor)) &&
(startCheckType == mModule->mCurTypeInstance))
{
// Allow writing inside ctor
}
else
{
result.MakeReadOnly();
needsCopy = false;
}
}
if (result.mKind == BfTypedValueKind_Addr)
result.mKind = BfTypedValueKind_CopyOnMutateAddr;
mPropDef = NULL;
mPropSrc = NULL;
mOrigPropTarget = NULL;
return result;
}
}
}
}
}
SetAndRestoreValue<BfTypedValue> prevResult(mResult, target);
CheckResultForReading(mResult);
return BfTypedValue();
}
}
isBaseLookup = true;
curCheckType = curCheckType->mBaseType;
}
}
auto outerTypeDef = mModule->GetOuterType(startCheckType);
if (outerTypeDef != NULL)
{
// Check statics in outer type
return LookupField(targetSrc, BfTypedValue(outerTypeDef), fieldName, BfLookupFieldFlag_CheckingOuter);
}
return BfTypedValue();
}
void BfExprEvaluator::ResolveArgValues(BfResolvedArgs& resolvedArgs, BfResolveArgsFlags flags)
{
static int idx = 0;
idx++;
int curIdx = idx;
if (resolvedArgs.mArguments == NULL)
return;
int argCount = (int)resolvedArgs.mArguments->size();
if ((resolvedArgs.mCommas != NULL) && (resolvedArgs.mCommas->size() != 0) && (resolvedArgs.mCommas->size() >= resolvedArgs.mArguments->size()))
{
//mModule->FailAfter("Expression expected", resolvedArgs.mCommas->back());
argCount++;
}
BfAutoComplete* autoComplete = GetAutoComplete();
bool hadIgnoredFixits = false;
if (autoComplete != NULL)
{
hadIgnoredFixits = autoComplete->mIgnoreFixits;
if (flags & BfResolveArgsFlag_DeferFixits)
autoComplete->mIgnoreFixits = true;
}
int deferredArgIdx = 0;
SizedArray<BfExpression*, 8> deferredArgs;
int argIdx = 0;
while (true)
{
//printf("Args: %p %p %d\n", resolvedArgs.mArguments, resolvedArgs.mArguments->mVals, resolvedArgs.mArguments->mSize);
BfExpression* argExpr = NULL;
bool isDeferredArg = false;
int curArgIdx = -1;
if (deferredArgIdx < deferredArgs.size())
{
argExpr = deferredArgs[deferredArgIdx++];
isDeferredArg = true;
}
else if (argIdx >= argCount)
{
break;
}
else
{
curArgIdx = argIdx++;
if (curArgIdx < resolvedArgs.mArguments->size())
argExpr = (*resolvedArgs.mArguments)[curArgIdx];
}
if (argExpr == NULL)
{
if (curArgIdx == 0)
{
if (resolvedArgs.mOpenToken != NULL)
mModule->FailAfter("Expression expected", resolvedArgs.mOpenToken);
}
else if (resolvedArgs.mCommas != NULL)
mModule->FailAfter("Expression expected", (*resolvedArgs.mCommas)[curArgIdx - 1]);
}
if (auto typedValueExpr = BfNodeDynCast<BfTypedValueExpression>(argExpr))
{
BfResolvedArg resolvedArg;
resolvedArg.mTypedValue = typedValueExpr->mTypedValue;
resolvedArg.mExpression = typedValueExpr->mRefNode;
resolvedArgs.mResolvedArgs.push_back(resolvedArg);
continue;
}
BfResolvedArg resolvedArg;
if (isDeferredArg)
resolvedArg.mArgFlags = (BfArgFlags)(resolvedArg.mArgFlags | BfArgFlag_StringInterpolateArg);
BfExprEvaluator exprEvaluator(mModule);
exprEvaluator.mResolveGenericParam = (flags & BfResolveArgsFlag_AllowUnresolvedTypes) == 0;
exprEvaluator.mBfEvalExprFlags = (BfEvalExprFlags)(exprEvaluator.mBfEvalExprFlags | BfEvalExprFlags_AllowRefExpr | BfEvalExprFlags_AllowOutExpr |
(mBfEvalExprFlags & (BfEvalExprFlags_Comptime)));
bool handled = false;
bool evaluated = false;
if (auto interpolateExpr = BfNodeDynCastExact<BfStringInterpolationExpression>(argExpr))
{
if ((interpolateExpr->mAllocNode == NULL) || ((flags & BfResolveArgsFlag_InsideStringInterpolationAlloc) != 0))
{
resolvedArg.mArgFlags = (BfArgFlags)(resolvedArg.mArgFlags | BfArgFlag_StringInterpolateFormat);
for (auto innerExpr : interpolateExpr->mExpressions)
deferredArgs.Add(innerExpr);
}
}
if (auto unaryOpExpr = BfNodeDynCastExact<BfUnaryOperatorExpression>(argExpr))
{
if ((unaryOpExpr->mOp == BfUnaryOp_Cascade) && ((flags & BfResolveArgsFlag_FromIndexer) == 0))
{
if ((mBfEvalExprFlags & BfEvalExprFlags_InCascade) != 0)
mModule->Fail("Cascade already specified on call target", unaryOpExpr->mOpToken);
resolvedArg.mArgFlags = (BfArgFlags)(resolvedArg.mArgFlags | BfArgFlag_Cascade);
argExpr = unaryOpExpr->mExpression;
}
}
bool deferParamEval = false;
if ((flags & BfResolveArgsFlag_DeferParamEval) != 0)
{
if (argExpr != NULL)
{
BfDeferEvalChecker deferEvalChecker;
deferEvalChecker.mDeferDelegateBind = false;
argExpr->Accept(&deferEvalChecker);
deferParamEval = deferEvalChecker.mNeedsDeferEval;
}
}
if (deferParamEval)
{
resolvedArg.mArgFlags = (BfArgFlags)(resolvedArg.mArgFlags | BfArgFlag_DeferredEval);
handled = true;
}
else if (auto delegateBindExpression = BfNodeDynCast<BfDelegateBindExpression>(argExpr))
{
resolvedArg.mArgFlags = (BfArgFlags)(resolvedArg.mArgFlags | BfArgFlag_DelegateBindAttempt);
handled = true;
}
else if (auto lambdaBindExpression = BfNodeDynCast<BfLambdaBindExpression>(argExpr))
{
resolvedArg.mArgFlags = (BfArgFlags)(resolvedArg.mArgFlags | BfArgFlag_LambdaBindAttempt);
handled = true;
}
else if (auto memberRef = BfNodeDynCast<BfMemberReferenceExpression>(argExpr))
{
if (memberRef->mTarget == NULL)
{
resolvedArg.mArgFlags = (BfArgFlags)(resolvedArg.mArgFlags | BfArgFlag_UnqualifiedDotAttempt);
handled = true;
}
}
else if (auto invokeExpr = BfNodeDynCast<BfInvocationExpression>(argExpr))
{
if (auto memberRef = BfNodeDynCast<BfMemberReferenceExpression>(invokeExpr->mTarget))
{
if (memberRef->mTarget == NULL)
{
resolvedArg.mArgFlags = (BfArgFlags)(resolvedArg.mArgFlags | BfArgFlag_UnqualifiedDotAttempt);
handled = true;
}
}
}
else if (auto defaultExpr = BfNodeDynCast<BfDefaultExpression>(argExpr))
{
if (defaultExpr->mTypeRef == NULL)
{
resolvedArg.mArgFlags = (BfArgFlags)(resolvedArg.mArgFlags | BfArgFlag_UntypedDefault);
handled = true;
}
}
else if (auto varDeclExpr = BfNodeDynCast<BfVariableDeclaration>(argExpr))
{
resolvedArg.mArgFlags = (BfArgFlags)(resolvedArg.mArgFlags | BfArgFlag_VariableDeclaration);
handled = true;
}
else if (auto unaryExpr = BfNodeDynCast<BfUnaryOperatorExpression>(argExpr))
{
if (unaryExpr->mOp == BfUnaryOp_Params)
{
resolvedArg.mArgFlags = (BfArgFlags)(resolvedArg.mArgFlags | BfArgFlag_ParamsExpr);
}
}
else if (auto uninitExpr = BfNodeDynCast<BfUninitializedExpression>(argExpr))
{
resolvedArg.mArgFlags = (BfArgFlags)(resolvedArg.mArgFlags | BfArgFlag_UninitializedExpr);
handled = true;
}
/*else if (auto castExpr = BfNodeDynCast<BfCastExpression>(argExpr))
{
if (auto namedTypeRef = BfNodeDynCastExact<BfNamedTypeReference>(castExpr->mTypeRef))
{
if (namedTypeRef->ToString() == "ExpectedType")
{
resolvedArg.mArgFlags = (BfArgFlags)(resolvedArg.mArgFlags | BfArgFlag_ExpectedTypeCast);
handled = true;
}
}
}*/
if ((argExpr != NULL) && (!handled))
{
bool deferParamValues = (flags & BfResolveArgsFlag_DeferParamValues) != 0;
SetAndRestoreValue<bool> ignoreWrites(mModule->mBfIRBuilder->mIgnoreWrites, mModule->mBfIRBuilder->mIgnoreWrites || deferParamValues);
auto prevInsertBlock = mModule->mBfIRBuilder->GetInsertBlock();
if (deferParamValues)
resolvedArg.mArgFlags = (BfArgFlags)(resolvedArg.mArgFlags | BfArgFlag_DeferredValue);
if (!evaluated)
{
exprEvaluator.mBfEvalExprFlags = (BfEvalExprFlags)(exprEvaluator.mBfEvalExprFlags | BfEvalExprFlags_AllowParamsExpr);
if ((resolvedArg.mArgFlags & BfArgFlag_StringInterpolateFormat) != 0)
exprEvaluator.mBfEvalExprFlags = (BfEvalExprFlags)(exprEvaluator.mBfEvalExprFlags | BfEvalExprFlags_StringInterpolateFormat);
exprEvaluator.Evaluate(argExpr, false, false, true);
}
if ((mModule->mCurMethodState != NULL) && (exprEvaluator.mResultLocalVar != NULL) && (exprEvaluator.mResultLocalVarRefNode != NULL))
{
auto localVar = exprEvaluator.mResultLocalVar;
int fieldIdx = mResultLocalVarField - 1;
auto methodState = mModule->mCurMethodState->GetMethodStateForLocal(localVar);
if (localVar->mCompositeCount >= 0)
{
if ((resolvedArg.mArgFlags & BfArgFlag_ParamsExpr) == 0)
mModule->Warn(0, "'params' token expected", argExpr);
for (int compositeIdx = 0; compositeIdx < localVar->mCompositeCount; compositeIdx++)
{
BfResolvedArg compositeResolvedArg;
auto compositeLocalVar = methodState->mLocals[localVar->mLocalVarIdx + compositeIdx + 1];
auto argValue = exprEvaluator.LoadLocal(compositeLocalVar, true);
if (argValue)
{
if (!argValue.mType->IsStruct())
argValue = mModule->LoadValue(argValue, NULL, exprEvaluator.mIsVolatileReference);
}
resolvedArg.mTypedValue = argValue;
resolvedArg.mExpression = argExpr;
resolvedArg.mArgFlags = (BfArgFlags)(resolvedArg.mArgFlags | BfArgFlag_FromParamComposite);
resolvedArgs.mResolvedArgs.push_back(resolvedArg);
}
continue;
}
}
exprEvaluator.CheckResultForReading(exprEvaluator.mResult);
auto argValue = exprEvaluator.mResult;
if (argValue)
{
//resolvedArg.mResolvedType = mModule->ResolveGenericType(argValue.mType);
resolvedArg.mResolvedType = argValue.mType;
if (resolvedArg.mResolvedType->IsRef())
argValue.mKind = BfTypedValueKind_Value;
else if ((!resolvedArg.mResolvedType->IsStruct()) && (!resolvedArg.mResolvedType->IsSizedArray()) && (!resolvedArg.mResolvedType->IsValuelessType()))
argValue = mModule->LoadValue(argValue, NULL, exprEvaluator.mIsVolatileReference);
}
resolvedArg.mTypedValue = argValue;
if (deferParamValues)
mModule->mBfIRBuilder->SetInsertPoint(prevInsertBlock);
}
resolvedArg.mExpression = argExpr;
resolvedArgs.mResolvedArgs.push_back(resolvedArg);
}
if (autoComplete != NULL)
autoComplete->mIgnoreFixits = hadIgnoredFixits;
}
void BfExprEvaluator::PerformCallChecks(BfMethodInstance* methodInstance, BfAstNode* targetSrc)
{
BfCustomAttributes* customAttributes = methodInstance->GetCustomAttributes();
if (customAttributes != NULL)
mModule->CheckErrorAttributes(methodInstance->GetOwner(), methodInstance, customAttributes, targetSrc);
}
BfTypedValue BfExprEvaluator::CreateCall(BfAstNode* targetSrc, BfMethodInstance* methodInstance, BfIRValue func, bool bypassVirtual, SizedArrayImpl<BfIRValue>& irArgs, BfTypedValue* sret, BfCreateCallFlags callFlags)
{
// static int sCallIdx = 0;
// if (!mModule->mCompiler->mIsResolveOnly)
// sCallIdx++;
// int callIdx = sCallIdx;
// if (callIdx == 0x000000E8)
// {
// NOP;
// }
auto methodDef = methodInstance->mMethodDef;
BfIRValue funcCallInst = func;
auto importCallKind = methodInstance->GetImportCallKind();
if ((funcCallInst) && (importCallKind != BfImportCallKind_None))
{
if ((funcCallInst.IsFake()) && (!mModule->mBfIRBuilder->mIgnoreWrites))
{
mModule->mFuncReferences.TryGetValue(methodInstance, &funcCallInst);
}
if ((importCallKind == BfImportCallKind_GlobalVar) &&
(methodInstance->mHotMethod == NULL) &&
(mModule->mCompiler->IsHotCompile()))
{
// This may actually be a BfImportCallKind_GlobalVar_Hot, so check it...
mModule->CheckHotMethod(methodInstance, "");
importCallKind = methodInstance->GetImportCallKind();
}
if (importCallKind == BfImportCallKind_GlobalVar_Hot)
{
//TODO: Check against NULL for calling BfLoadSharedLibraries
auto checkVal = mModule->mBfIRBuilder->CreateLoad(funcCallInst);
BfIRBlock nullBlock = mModule->mBfIRBuilder->CreateBlock("importNull");
BfIRBlock doneBlock = mModule->mBfIRBuilder->CreateBlock("importLoad");
auto condVal = mModule->mBfIRBuilder->CreateIsNull(checkVal);
mModule->mBfIRBuilder->CreateCondBr(condVal, nullBlock, doneBlock);
mModule->mBfIRBuilder->AddBlock(nullBlock);
mModule->mBfIRBuilder->SetInsertPoint(nullBlock);
auto loadSharedLibsFunc = mModule->GetBuiltInFunc(BfBuiltInFuncType_LoadSharedLibraries);
mModule->mBfIRBuilder->CreateCall(loadSharedLibsFunc, SizedArray<BfIRValue, 0>());
mModule->mBfIRBuilder->CreateBr(doneBlock);
mModule->mBfIRBuilder->AddBlock(doneBlock);
mModule->mBfIRBuilder->SetInsertPoint(doneBlock);
funcCallInst = mModule->mBfIRBuilder->CreateLoad(funcCallInst);
}
else
{
funcCallInst = mModule->mBfIRBuilder->CreateLoad(funcCallInst);
}
}
if ((methodInstance->GetOwner()->IsInstanceOf(mModule->mCompiler->mDeferredCallTypeDef)) &&
(methodInstance->mMethodDef->mName == "Cancel"))
{
if (mModule->mCurMethodState != NULL)
mModule->mCurMethodState->mCancelledDeferredCall = true;
}
if (methodDef->mIsNoReturn)
{
mModule->mCurMethodState->SetHadReturn(true);
mModule->mCurMethodState->mLeftBlockUncond = true;
}
if (mModule->mCurTypeInstance != NULL)
{
bool isVirtual = (methodInstance->mVirtualTableIdx != -1) && (!bypassVirtual);
mModule->AddDependency(methodInstance->mMethodInstanceGroup->mOwner, mModule->mCurTypeInstance, isVirtual ? BfDependencyMap::DependencyFlag_VirtualCall : BfDependencyMap::DependencyFlag_Calls);
mModule->AddCallDependency(methodInstance, bypassVirtual);
}
if (methodInstance->GetOwner()->IsUnspecializedType())
{
BF_ASSERT((!methodInstance->mIRFunction) || (methodInstance == mModule->mCurMethodInstance));
}
if (mFunctionBindResult != NULL)
{
BF_ASSERT(mFunctionBindResult->mMethodInstance == NULL);
mFunctionBindResult->mMethodInstance = methodInstance;
for (auto arg : irArgs)
mFunctionBindResult->mIRArgs.push_back(arg);
}
BfType* origReturnType = methodInstance->mReturnType;
/*if (origReturnType->IsSelf())
{
origReturnType = methodInstance->GetOwner();
BF_ASSERT(origReturnType->IsInterface());
}*/
BfType* returnType = origReturnType;
BfTypedValue sretVal;
auto _GetDefaultReturnValue = [&]()
{
if (methodInstance->mVirtualTableIdx == -1)
{
if (methodInstance->GetOwner()->IsInterface())
{
// We're attempting to directly invoke a non-virtual interface method, if we're return an interface then
// it is a concrete interface
if (returnType->IsInterface())
returnType = mModule->CreateConcreteInterfaceType(returnType->ToTypeInstance());
}
}
if ((returnType->IsVar()) && (mExpectingType != NULL))
returnType = mExpectingType;
if (returnType->IsRef())
{
auto result = mModule->GetDefaultTypedValue(returnType->GetUnderlyingType(), true, BfDefaultValueKind_Addr);
if (methodDef->mIsReadOnly)
result.mKind = BfTypedValueKind_ReadOnlyAddr;
return result;
}
else
{
auto val = mModule->GetDefaultTypedValue(returnType, true, (GetStructRetIdx(methodInstance) != -1) ? BfDefaultValueKind_Addr : BfDefaultValueKind_Value);
if (val.mKind == BfTypedValueKind_Addr)
val.mKind = BfTypedValueKind_RestrictedTempAddr;
return val;
}
};
mModule->PopulateType(origReturnType, BfPopulateType_Data);
if (GetStructRetIdx(methodInstance) != -1)
{
// We need to ensure that mReceivingValue has the correct type, otherwise it's possible that a conversion operator needs to be applied
// This happens for returning Result<T>'s with a 'T' value
if ((sret == NULL) && (mReceivingValue != NULL) && (mReceivingValue->mType == returnType))
{
sretVal = *mReceivingValue;
sret = &sretVal;
auto ptrType = mModule->CreatePointerType(returnType);
if (returnType != sret->mType)
{
sret->mValue = mModule->mBfIRBuilder->CreateBitCast(sret->mValue, mModule->mBfIRBuilder->MapType(ptrType));
sret->mType = returnType;
}
mReceivingValue = NULL;
}
if (sret == NULL)
{
sretVal = BfTypedValue(mModule->CreateAlloca(returnType), returnType, BfTypedValueKind_RestrictedTempAddr);
sret = &sretVal;
}
}
else
{
BF_ASSERT(sret == NULL);
}
if ((mModule->mCurMethodState != NULL) && (mModule->mCurMethodState->mClosureState != NULL) && (mModule->mCurMethodState->mClosureState->mCapturing))
{
return _GetDefaultReturnValue();
}
BF_ASSERT(!methodInstance->mDisallowCalling);
if ((mModule->mCompiler->mResolvePassData != NULL) && (mModule->mCompiler->mResolvePassData->mAutoComplete != NULL))
{
bool wantQuickEval = true;
if (IsComptime())
{
auto autoComplete = mModule->mCompiler->mResolvePassData->mAutoComplete;
wantQuickEval =
((autoComplete->mResolveType != BfResolveType_Autocomplete) &&
(autoComplete->mResolveType != BfResolveType_Autocomplete_HighPri) &&
(autoComplete->mResolveType != BfResolveType_GetResultString));
}
if (wantQuickEval)
{
// In an autocomplete pass we may have stale method references that need to be resolved
// in the full classify pass, and in the full classify pass while just refreshing internals, we
// may have NULL funcs temporarily. We simply skip generating the method call here.
if ((mBfEvalExprFlags & BfEvalExprFlags_Comptime) != 0)
{
if (methodInstance->mReturnType->IsInstanceOf(mModule->mCompiler->mSpanTypeDef))
{
if ((mExpectingType != NULL) && (mExpectingType->IsSizedArray()))
{
return BfTypedValue(mModule->mBfIRBuilder->GetUndefConstValue(mModule->mBfIRBuilder->MapType(mExpectingType)), mExpectingType);
}
}
auto returnType = methodInstance->mReturnType;
if ((returnType->IsVar()) && (mExpectingType != NULL))
returnType = mExpectingType;
if (methodInstance->mReturnType->IsValuelessType())
return BfTypedValue(mModule->mBfIRBuilder->GetFakeVal(), returnType);
return BfTypedValue(mModule->mBfIRBuilder->GetUndefConstValue(mModule->mBfIRBuilder->MapType(returnType)), returnType);
}
BfTypedValue result;
if (sret != NULL)
result = *sret;
else
result = _GetDefaultReturnValue();
return result;
}
}
bool forceBind = false;
if (mModule->mCompiler->mCEMachine != NULL)
{
bool doConstReturn = false;
if ((mBfEvalExprFlags & BfEvalExprFlags_Comptime) != 0)
{
if (mFunctionBindResult != NULL)
{
forceBind = true;
}
else if ((mBfEvalExprFlags & BfEvalExprFlags_InCascade) != 0)
{
mModule->Fail("Const evaluation not allowed with cascade operator", targetSrc);
}
else if (methodInstance->mIsUnspecialized)
{
doConstReturn = true;
}
else if (((methodInstance->mComptimeFlags & BfComptimeFlag_OnlyFromComptime) != 0) && (!mModule->mIsComptimeModule))
{
// This either generated an error already or this is just the non-const type check pass for a comptime-only method
doConstReturn = true;
}
else if ((mBfEvalExprFlags & BfEvalExprFlags_DisallowComptime) != 0)
{
doConstReturn = true;
}
else if (((callFlags & BfCreateCallFlags_GenericParamThis) != 0) && (methodInstance->GetOwner()->IsInterface()))
{
mModule->Warn(0, "Concrete method may fail to comptime during specialization", targetSrc);
doConstReturn = true;
}
else if (methodDef->mIsVirtual)
{
// This could only really be the case for a Type, since no other 'this' could qualify as const
}
else
{
bool hasUndef = false;
for (auto arg : irArgs)
{
auto constant = mModule->mBfIRBuilder->GetConstant(arg);
if (constant == NULL)
continue;
if (constant->mConstType == BfConstType_Undef)
{
hasUndef = true;
break;
}
}
if (!hasUndef)
{
CeEvalFlags evalFlags = CeEvalFlags_None;
if ((mBfEvalExprFlags & BfEvalExprFlags_NoCeRebuildFlags) != 0)
evalFlags = (CeEvalFlags)(evalFlags | CeEvalFlags_NoRebuild);
auto constRet = mModule->mCompiler->mCEMachine->Call(targetSrc, mModule, methodInstance, irArgs, evalFlags, mExpectingType);
if (constRet)
{
auto constant = mModule->mBfIRBuilder->GetConstant(constRet.mValue);
BF_ASSERT(!constRet.mType->IsVar());
return constRet;
}
if (mModule->mCompiler->mFastFinish)
{
if ((mModule->mCurMethodInstance == NULL) || (!mModule->mCurMethodInstance->mIsAutocompleteMethod))
{
// We didn't properly resolve this so queue for a rebuild later
mModule->DeferRebuildType(mModule->mCurTypeInstance);
}
}
}
doConstReturn = true;
}
}
else if (mModule->mIsComptimeModule)
{
if (methodInstance->mIsUnspecialized)
{
doConstReturn = true;
}
else
{
mModule->mCompiler->mCEMachine->QueueMethod(methodInstance, func);
}
}
if (doConstReturn)
{
if ((returnType->IsVar()) && (mExpectingType != NULL))
returnType = mExpectingType;
if (returnType->IsRef())
{
return _GetDefaultReturnValue();
}
else
{
if (returnType->IsInstanceOf(mModule->mCompiler->mSpanTypeDef))
{
if ((mExpectingType != NULL) && (mExpectingType->IsUndefSizedArray()))
{
if (returnType->GetUnderlyingType() == mExpectingType->GetUnderlyingType())
return mModule->GetDefaultTypedValue(mExpectingType, true, BfDefaultValueKind_Undef);
}
}
return mModule->GetDefaultTypedValue(returnType, true, BfDefaultValueKind_Undef);
}
return _GetDefaultReturnValue();
}
}
if (!forceBind)
{
if (((!func) && (methodInstance->mIsUnspecialized)) || (mModule->mBfIRBuilder->mIgnoreWrites))
{
// We don't actually submit method calls for unspecialized methods
// - this includes all methods in unspecialized types
return _GetDefaultReturnValue();
}
}
if (methodInstance->mVirtualTableIdx != -1)
{
if ((!bypassVirtual) && (mDeferCallRef == NULL))
{
if ((methodDef->mIsOverride) && (mModule->mCurMethodInstance->mIsReified))
{
// Ensure that declaring method gets referenced
auto typeInstance = methodInstance->GetOwner();
auto& vEntry = typeInstance->mVirtualMethodTable[methodInstance->mVirtualTableIdx];
BfMethodInstance* declaringMethodInstance = vEntry.mDeclaringMethod;
if ((declaringMethodInstance->mMethodInstanceGroup->mOnDemandKind < BfMethodOnDemandKind_InWorkList) || (!declaringMethodInstance->mIsReified))
mModule->GetMethodInstance(declaringMethodInstance);
}
auto funcType = mModule->mBfIRBuilder->MapMethod(methodInstance);
auto funcPtrType1 = mModule->mBfIRBuilder->GetPointerTo(funcType);
auto funcPtrType2 = mModule->mBfIRBuilder->GetPointerTo(funcPtrType1);
auto funcPtrType3 = mModule->mBfIRBuilder->GetPointerTo(funcPtrType2);
auto funcPtrType4 = mModule->mBfIRBuilder->GetPointerTo(funcPtrType3);
if (methodInstance->mMethodInstanceGroup->mOwner->IsInterface())
{
if (mModule->mIsComptimeModule)
{
funcCallInst = mModule->mBfIRBuilder->Comptime_GetInterfaceFunc(irArgs[0], methodInstance->mMethodInstanceGroup->mOwner->mTypeId, methodInstance->mMethodDef->mIdx, funcPtrType1);
}
else
{
// IFace dispatch
auto ifaceTypeInst = methodInstance->mMethodInstanceGroup->mOwner;
BfIRValue slotOfs = mModule->GetInterfaceSlotNum(methodInstance->mMethodInstanceGroup->mOwner);
auto vDataPtrPtr = mModule->mBfIRBuilder->CreateBitCast(irArgs[0], funcPtrType4);
auto vDataPtr = mModule->FixClassVData(mModule->mBfIRBuilder->CreateLoad(vDataPtrPtr/*, "vtable"*/));
auto ifacePtrPtr = mModule->mBfIRBuilder->CreateInBoundsGEP(vDataPtr, slotOfs/*, "iface"*/);
auto ifacePtr = mModule->mBfIRBuilder->CreateLoad(ifacePtrPtr);
auto funcPtr = mModule->mBfIRBuilder->CreateInBoundsGEP(ifacePtr, methodInstance->mVirtualTableIdx/*, "vfn"*/);
funcCallInst = mModule->mBfIRBuilder->CreateLoad(funcPtr);
}
}
else if (mModule->mIsComptimeModule)
{
funcCallInst = mModule->mBfIRBuilder->Comptime_GetVirtualFunc(irArgs[0], methodInstance->mVirtualTableIdx, funcPtrType1);
}
else
{
mModule->HadSlotCountDependency();
// Virtual dispatch
// int vDataIdx = 0;
// vDataIdx += 1 + methodInstance->GetOwner()->GetDynCastVDataCount() + mModule->mCompiler->mMaxInterfaceSlots;
BfIRValue vDataPtr;
BfIRValue vDataIdx;
if ((mModule->mCompiler->mOptions.mHasVDataExtender) && (mModule->mCompiler->IsHotCompile()))
{
auto typeInst = methodInstance->mMethodInstanceGroup->mOwner;
int extMethodIdx = (methodInstance->mVirtualTableIdx - typeInst->GetImplBaseVTableSize()) - typeInst->GetOrigSelfVTableSize();
if (extMethodIdx >= 0)
{
BF_ASSERT(mModule->mCompiler->IsHotCompile());
// We have grown outside our original virtual table, Load the new vdataPtr from the mHasVDataExtender
// vDataPtr = obj.vtable.extension.entry[curVersion]
BfIRValue vDataPtrPtr = mModule->mBfIRBuilder->CreateBitCast(irArgs[0], funcPtrType4);
vDataPtr = mModule->FixClassVData(mModule->mBfIRBuilder->CreateLoad(vDataPtrPtr));
// The offset of the vExt is one past the base vtable. When a base class extends its virtual table, an entry
// for that new method is inserted in mVirtualMethodTable (thus increasing the index relative to GetBaseVTableSize()),
// but the actual written vtable position doesn't change, hence offsetting from GetOrigBaseVTableSize()
#ifdef _DEBUG
int vExtIdx = typeInst->GetImplBaseVTableSize();
BF_ASSERT(typeInst->mVirtualMethodTable[vExtIdx].mDeclaringMethod.mMethodNum == -1); // A type entry with a -1 mMethodNum means it's a vtable ext slot
#endif
int vExtOfs = typeInst->GetOrigImplBaseVTableSize();
vDataIdx = mModule->mBfIRBuilder->CreateConst(BfTypeCode_Int32, 1 + mModule->mCompiler->GetDynCastVDataCount() + mModule->mCompiler->mMaxInterfaceSlots);
vDataIdx = mModule->mBfIRBuilder->CreateAdd(vDataIdx, mModule->mBfIRBuilder->CreateConst(BfTypeCode_Int32, vExtOfs));
BfIRValue extendPtr = mModule->mBfIRBuilder->CreateInBoundsGEP(vDataPtr, vDataIdx);
vDataPtr = mModule->mBfIRBuilder->CreateLoad(extendPtr);
vDataIdx = mModule->mBfIRBuilder->CreateConst(BfTypeCode_Int32, extMethodIdx);
}
else
{
// Map this new virtual index back to the original index
//vDataIdx += (methodInstance->mVirtualTableIdx - typeInst->GetBaseVTableSize()) + typeInst->GetOrigBaseVTableSize();
//vDataIdx = mModule->mBfIRBuilder->CreateConst(BfTypeCode_Int32, 1 + methodInstance->GetOwner()->GetDynCastVDataCount() + mModule->mCompiler->mMaxInterfaceSlots);
vDataIdx = mModule->mBfIRBuilder->GetConfigConst(BfIRConfigConst_VirtualMethodOfs, BfTypeCode_Int32);
vDataIdx = mModule->mBfIRBuilder->CreateAdd(vDataIdx, mModule->mBfIRBuilder->CreateConst(BfTypeCode_Int32,
(methodInstance->mVirtualTableIdx - typeInst->GetImplBaseVTableSize()) + typeInst->GetOrigImplBaseVTableSize()));
}
}
else
{
//vDataIdx += methodInstance->mVirtualTableIdx;
//vDataIdx = mModule->mBfIRBuilder->CreateConst(BfTypeCode_Int32, 1 + methodInstance->GetOwner()->GetDynCastVDataCount() + mModule->mCompiler->mMaxInterfaceSlots);
vDataIdx = mModule->mBfIRBuilder->GetConfigConst(BfIRConfigConst_VirtualMethodOfs, BfTypeCode_Int32);
vDataIdx = mModule->mBfIRBuilder->CreateAdd(vDataIdx, mModule->mBfIRBuilder->CreateConst(BfTypeCode_Int32, methodInstance->mVirtualTableIdx));
}
if (!vDataPtr)
{
BfIRValue vDataPtrPtr = mModule->mBfIRBuilder->CreateBitCast(irArgs[0], funcPtrType3);
vDataPtr = mModule->FixClassVData(mModule->mBfIRBuilder->CreateLoad(vDataPtrPtr/*, "vtable"*/));
}
auto funcPtr = mModule->mBfIRBuilder->CreateInBoundsGEP(vDataPtr, vDataIdx/*, "vfn"*/);
funcCallInst = mModule->mBfIRBuilder->CreateLoad(funcPtr);
}
}
}
else // non-virtual
{
if (methodInstance->GetOwner()->IsInterface())
{
// We're attempting to directly invoke a non-virtual interface method, this will happen during the unspecialized pass
// OR if we had an error and didn't find an implementing member in the actual target
if ((!mModule->mCurMethodInstance->mIsUnspecialized) && (!mModule->mCurTypeInstance->IsInterface()))
mModule->AssertErrorState();
if (returnType->IsInterface())
returnType = mModule->CreateConcreteInterfaceType(returnType->ToTypeInstance());
return _GetDefaultReturnValue();
}
}
if (mFunctionBindResult != NULL)
{
mFunctionBindResult->mFunc = funcCallInst;
if (irArgs.size() != 0)
{
auto targetType = methodInstance->mMethodInstanceGroup->mOwner;
if ((targetType->IsValueType()) && (targetType->IsSplattable()) && (!methodDef->HasNoThisSplat()) && (!IsComptime()))
mFunctionBindResult->mTarget = BfTypedValue(irArgs[0], targetType, BfTypedValueKind_SplatHead);
else
mFunctionBindResult->mTarget = BfTypedValue(irArgs[0], targetType, targetType->IsComposite() ? BfTypedValueKind_Addr : BfTypedValueKind_Value);
}
else
{
mFunctionBindResult->mTarget = BfTypedValue();
}
return BfTypedValue();
}
if (methodInstance->mReturnType == NULL)
{
mModule->AssertErrorState();
return BfTypedValue();
}
if (((mModule->mCurMethodInstance != NULL) && (mModule->mCurMethodInstance->mIsUnspecialized)) && (mModule->mBfIRBuilder->mIgnoreWrites))
{
// Don't actually do the call - our target may be a generic param
return _GetDefaultReturnValue();
}
if (mDeferCallRef != NULL)
{
mModule->AddDeferredCall(BfModuleMethodInstance(methodInstance, func), irArgs, mDeferScopeAlloc, mDeferCallRef);
//return _GetDefaultReturnValue();
return mModule->GetFakeTypedValue(returnType);
}
if (!funcCallInst)
{
if ((mModule->HasCompiledOutput()) || (mModule->mCompiler->mOptions.mExtraResolveChecks))
{
// This can happen either from an error, or from the resolver while doing Internals_Changed processing
mModule->AssertErrorState();
}
//return mModule->GetDefaultTypedValue(returnType,/*, true*/false, returnType->IsComposite());
return _GetDefaultReturnValue();
}
bool hasResult = !methodInstance->mReturnType->IsValuelessType();
BfIRValue firstArg;
if (irArgs.size() != 0)
firstArg = irArgs[0];
auto methodInstOwner = methodInstance->GetOwner();
auto expectCallingConvention = mModule->GetIRCallingConvention(methodInstance);
if ((methodInstOwner->IsFunction()) && (methodInstance->GetParamCount() > 0) && (methodInstance->GetParamName(0) == "this"))
{
auto paramType = methodInstance->GetParamType(0);
if (!paramType->IsValueType())
expectCallingConvention = BfIRCallingConv_ThisCall;
}
if ((methodInstance->mAlwaysInline) && (mModule->mCompiler->mOptions.mEmitLineInfo))
{
// Emit a NOP so we always have a "step over" point
mModule->EmitEnsureInstructionAt();
}
if (returnType->IsComposite())
mModule->mBfIRBuilder->PopulateType(returnType);
methodInstance->mMethodInstanceGroup->mHasEmittedReference = true;
BfIRValue callInst;
int callIRArgCount = (int)irArgs.size();
if (sret != NULL)
{
SizedArray<BfIRValue, 8> sretIRArgs;
int sretIdx = GetStructRetIdx(methodInstance);
int inIdx = 0;
for (int outIdx = 0; outIdx < irArgs.size() + 1; outIdx++)
{
if (outIdx == sretIdx)
{
sretIRArgs.Add(sret->mValue);
continue;
}
sretIRArgs.Add(irArgs[inIdx++]);
}
callInst = mModule->mBfIRBuilder->CreateCall(funcCallInst, sretIRArgs);
callIRArgCount++;
}
else
{
callInst = mModule->mBfIRBuilder->CreateCall(funcCallInst, irArgs);
if ((hasResult) && (!methodDef->mName.IsEmpty()) && (!methodInstance->mIsIntrinsic))
mModule->mBfIRBuilder->SetName(callInst, methodDef->mName);
}
if ((expectCallingConvention != BfIRCallingConv_CDecl) && (!methodInstance->mIsIntrinsic))
mModule->mBfIRBuilder->SetCallCallingConv(callInst, expectCallingConvention);
if ((methodDef->mIsNoReturn) && (!methodInstance->mIsIntrinsic))
mModule->mBfIRBuilder->Call_AddAttribute(callInst, -1, BfIRAttribute_NoReturn);
bool hadAttrs = false;
int paramIdx = 0;
bool doingThis = methodInstance->HasThis();
int argIdx = 0;
if (methodDef->mHasExplicitThis)
paramIdx++;
int paramCount = methodInstance->GetParamCount();
for ( ; argIdx < callIRArgCount ; )
{
if (methodInstance->mIsIntrinsic)
break;
if (argIdx == GetStructRetIdx(methodInstance))
{
mModule->mBfIRBuilder->Call_AddAttribute(callInst, argIdx + 1, BfIRAttribute_StructRet);
argIdx++;
continue;
}
auto _HandleParamType = [&] (BfType* paramType)
{
if (paramType->IsStruct())
{
if ((!doingThis) || (!methodDef->mIsMutating && methodInstance->AllowsSplatting(paramIdx)))
{
BfTypeCode loweredTypeCode = BfTypeCode_None;
BfTypeCode loweredTypeCode2 = BfTypeCode_None;
if (paramType->GetLoweredType(BfTypeUsage_Parameter, &loweredTypeCode, &loweredTypeCode2))
{
argIdx++;
if (loweredTypeCode2 != BfTypeCode_None)
argIdx++;
return; // Lowering never requires attributes
}
}
}
int addDeref = -1;
if (paramType->IsRef())
{
auto refType = (BfRefType*)paramType;
auto elementType = refType->mElementType;
mModule->PopulateType(elementType, BfPopulateType_Data);
addDeref = elementType->mSize;
if ((addDeref <= 0) && (!elementType->IsValuelessType()))
mModule->AssertErrorState();
}
if ((paramType->IsComposite()) && (!paramType->IsTypedPrimitive()))
{
if (mModule->mCompiler->mOptions.mAllowStructByVal)
{
//byval
}
else
{
mModule->PopulateType(paramType, BfPopulateType_Data);
auto typeInst = paramType->ToTypeInstance();
if ((typeInst != NULL) && (typeInst->mIsCRepr) && (typeInst->IsSplattable()) && (!IsComptime()))
{
// We're splatting
}
else
{
if (doingThis)
{
mModule->mBfIRBuilder->Call_AddAttribute(callInst, argIdx + 1, BfIRAttribute_NoCapture);
addDeref = paramType->mSize;
}
else if (methodInstance->WantsStructsAttribByVal(paramType))
{
mModule->mBfIRBuilder->Call_AddAttribute(callInst, argIdx + 1, BfIRAttribute_ByVal, mModule->mSystem->mPtrSize);
}
}
}
}
else if (paramType->IsPrimitiveType())
{
auto primType = (BfPrimitiveType*)paramType;
if ((primType->mTypeDef->mTypeCode == BfTypeCode_Boolean) && (!methodInstance->mIsIntrinsic))
mModule->mBfIRBuilder->Call_AddAttribute(callInst, argIdx + 1, BfIRAttribute_ZExt);
}
if (addDeref >= 0)
{
mModule->mBfIRBuilder->Call_AddAttribute(callInst, argIdx + 1, BfIRAttribute_Dereferencable, addDeref);
}
argIdx++;
};
BfType* paramType = NULL;
if (doingThis)
{
int thisIdx = methodInstance->GetThisIdx();
paramType = methodInstance->GetThisType();
if (paramType->IsValuelessType())
{
doingThis = false;
continue;
}
bool isSplatted = methodInstance->GetParamIsSplat(thisIdx) && (!IsComptime()); // (resolvedTypeRef->IsSplattable()) && (!methodDef->mIsMutating);
if (isSplatted)
{
BfTypeUtils::SplatIterate(_HandleParamType, paramType);
doingThis = false;
continue;
}
else
_HandleParamType(paramType);
}
else
{
if (paramIdx >= methodInstance->GetParamCount())
break;
paramType = methodInstance->GetParamType(paramIdx);
BfTypeCode loweredTypeCode = BfTypeCode_None;
BfTypeCode loweredTypeCode2 = BfTypeCode_None;
if (paramType->GetLoweredType(BfTypeUsage_Parameter, &loweredTypeCode, &loweredTypeCode2))
{
argIdx++;
paramIdx++;
if (loweredTypeCode2 != BfTypeCode_None)
argIdx++;
continue;
}
if ((paramType->IsValuelessType()) && (!paramType->IsMethodRef()))
{
paramIdx++;
continue;
}
if ((methodInstance->GetParamIsSplat(paramIdx)) && (!IsComptime()))
{
BfTypeUtils::SplatIterate(_HandleParamType, paramType);
paramIdx++;
continue;
}
else
_HandleParamType(methodInstance->GetParamType(paramIdx));
}
if (doingThis)
doingThis = false;
else
paramIdx++;
//argIdx++;
}
if ((callFlags & BfCreateCallFlags_TailCall) != 0)
mModule->mBfIRBuilder->SetTailCall(callInst);
if (methodDef->mIsNoReturn)
{
mModule->mBfIRBuilder->CreateUnreachable();
// For debuggability when looking back at stack trace
//mModule->ExtendLocalLifetimes(0);
if (mModule->IsTargetingBeefBackend())
{
auto checkScope = mModule->mCurMethodState->mCurScope;
while (checkScope != NULL)
{
mModule->EmitLifetimeEnds(checkScope);
checkScope = checkScope->mPrevScope;
}
// This 'fake' branch extends lifetimes of outer variable scopes
if (mModule->mCurMethodState->mIRExitBlock)
mModule->mBfIRBuilder->CreateBr_Fake(mModule->mCurMethodState->mIRExitBlock);
}
}
else
{
if (mModule->mCurMethodState != NULL)
mModule->mCurMethodState->mMayNeedThisAccessCheck = true;
}
BfTypedValue result;
if (sret != NULL)
result = *sret;
else if (hasResult)
{
BfTypeCode loweredRetType = BfTypeCode_None;
BfTypeCode loweredRetType2 = BfTypeCode_None;
if ((!IsComptime()) && (methodInstance->GetLoweredReturnType(&loweredRetType, &loweredRetType2)) && (loweredRetType != BfTypeCode_None))
{
auto retVal = mModule->CreateAlloca(methodInstance->mReturnType);
BfIRType loweredIRType = mModule->GetIRLoweredType(loweredRetType, loweredRetType2);
loweredIRType = mModule->mBfIRBuilder->GetPointerTo(loweredIRType);
auto castedRetVal = mModule->mBfIRBuilder->CreateBitCast(retVal, loweredIRType);
mModule->mBfIRBuilder->CreateStore(callInst, castedRetVal);
result = BfTypedValue(retVal, methodInstance->mReturnType, BfTypedValueKind_RestrictedTempAddr);
}
else
result = BfTypedValue(callInst, methodInstance->mReturnType);
}
else
result = mModule->GetFakeTypedValue(methodInstance->mReturnType);
if (result.mType->IsRef())
{
result = mModule->RemoveRef(result);
if (methodDef->mIsReadOnly)
{
if (result.mKind == BfTypedValueKind_Addr)
result.mKind = BfTypedValueKind_ReadOnlyAddr;
}
}
return result;
}
BfTypedValue BfExprEvaluator::CreateCall(BfMethodMatcher* methodMatcher, BfTypedValue target)
{
auto& moduleMethodInstance = GetSelectedMethod(*methodMatcher);
if (moduleMethodInstance.mMethodInstance == NULL)
return BfTypedValue();
if ((target) && (target.mType != moduleMethodInstance.mMethodInstance->GetOwner()))
{
auto castedTarget = mModule->Cast(methodMatcher->mTargetSrc, target, moduleMethodInstance.mMethodInstance->GetOwner());
BF_ASSERT(castedTarget);
target = castedTarget;
}
PerformCallChecks(moduleMethodInstance.mMethodInstance, methodMatcher->mTargetSrc);
BfCreateCallFlags callFlags = BfCreateCallFlags_None;
if (methodMatcher->mAllowImplicitRef)
callFlags = (BfCreateCallFlags)(callFlags | BfCreateCallFlags_AllowImplicitRef);
return CreateCall(methodMatcher->mTargetSrc, target, BfTypedValue(), methodMatcher->mBestMethodDef, moduleMethodInstance, callFlags, methodMatcher->mArguments);
}
void BfExprEvaluator::MakeBaseConcrete(BfTypedValue& typedValue)
{
if (typedValue.IsBase())
{
auto baseType = mModule->mCurTypeInstance->mBaseType;
if (baseType == NULL)
baseType = mModule->mContext->mBfObjectType;
mModule->PopulateType(baseType, BfPopulateType_Data);
typedValue = mModule->Cast(NULL, typedValue, baseType, BfCastFlags_Explicit);
}
}
void BfExprEvaluator::SplatArgs(BfTypedValue value, SizedArrayImpl<BfIRValue>& irArgs)
{
if (value.IsSplat())
{
int componentIdx = 0;
BfTypeUtils::SplatIterate([&](BfType* checkType) { irArgs.push_back(mModule->ExtractSplatValue(value, componentIdx++, checkType)); }, value.mType);
return;
}
mModule->mBfIRBuilder->PopulateType(value.mType);
std::function<void(BfTypedValue)> checkTypeLambda = [&](BfTypedValue curValue)
{
BfType* checkType = curValue.mType;
if (checkType->IsStruct())
{
auto checkTypeInstance = checkType->ToTypeInstance();
if ((checkTypeInstance->mBaseType != NULL) && (!checkTypeInstance->mBaseType->IsValuelessType()))
{
BfTypedValue baseValue;
if (curValue.IsAddr())
baseValue = BfTypedValue((!curValue.mValue) ? BfIRValue() : mModule->mBfIRBuilder->CreateInBoundsGEP(curValue.mValue, 0, 0), checkTypeInstance->mBaseType, true);
else
baseValue = BfTypedValue((!curValue.mValue) ? BfIRValue() : mModule->mBfIRBuilder->CreateExtractValue(curValue.mValue, 0), checkTypeInstance->mBaseType);
checkTypeLambda(baseValue);
}
if (checkTypeInstance->mIsUnion)
{
auto unionInnerType = checkTypeInstance->GetUnionInnerType();
if (!unionInnerType->IsValuelessType())
{
BfTypedValue unionValue = mModule->ExtractValue(curValue, NULL, 1);
checkTypeLambda(unionValue);
}
if (checkTypeInstance->IsEnum())
{
BfTypedValue dscrValue = mModule->ExtractValue(curValue, NULL, 2);
checkTypeLambda(dscrValue);
}
}
else
{
for (int fieldIdx = 0; fieldIdx < (int)checkTypeInstance->mFieldInstances.size(); fieldIdx++)
{
auto fieldInstance = (BfFieldInstance*)&checkTypeInstance->mFieldInstances[fieldIdx];
if (fieldInstance->mDataIdx >= 0)
{
BfTypedValue fieldValue = mModule->ExtractValue(curValue, fieldInstance, fieldInstance->mDataIdx);
checkTypeLambda(fieldValue);
}
}
}
}
else if (checkType->IsMethodRef())
{
BF_ASSERT(curValue.IsAddr());
BfMethodRefType* methodRefType = (BfMethodRefType*)checkType;
for (int dataIdx = 0; dataIdx < methodRefType->GetCaptureDataCount(); dataIdx++)
{
auto checkType = methodRefType->GetCaptureType(dataIdx);
if (methodRefType->WantsDataPassedAsSplat(dataIdx))
{
BF_ASSERT(dataIdx == 0);
auto ptrType = mModule->CreatePointerType(checkType);
auto elemPtr = mModule->mBfIRBuilder->CreateBitCast(curValue.mValue, mModule->mBfIRBuilder->MapType(ptrType));
checkTypeLambda(BfTypedValue(elemPtr, checkType, BfTypedValueKind_Addr));
//BfTypedValue fieldValue = mModule->ExtractValue(curValue, fieldInstance, fieldInstance->mDataIdx);
//checkTypeLambda(fieldValue);
}
else
{
auto elemVal = mModule->mBfIRBuilder->CreateInBoundsGEP(curValue.mValue, 0, dataIdx);
if (!checkType->IsComposite())
elemVal = mModule->mBfIRBuilder->CreateLoad(elemVal);
irArgs.Add(elemVal);
//irArgs.Add(mModule->ExtractValue(curValue, dataIdx));
}
}
}
else if (!checkType->IsValuelessType())
{
auto loadedVal = mModule->LoadValue(curValue);
loadedVal = mModule->PrepareConst(loadedVal);
irArgs.push_back(loadedVal.mValue);
}
};
checkTypeLambda(value);
}
void BfExprEvaluator::PushArg(BfTypedValue argVal, SizedArrayImpl<BfIRValue>& irArgs, bool disableSplat, bool disableLowering, bool isIntrinsic)
{
MakeBaseConcrete(argVal);
if (IsVar(argVal.mType))
{
argVal = mModule->GetDefaultTypedValue(mModule->mContext->mBfObjectType);
}
if (argVal.mType->IsValuelessType())
return;
bool wantSplat = false;
if ((argVal.mType->IsSplattable()) && (!disableSplat) && (!IsComptime()))
{
disableLowering = true;
auto argTypeInstance = argVal.mType->ToTypeInstance();
if (!disableSplat)
{
if ((argTypeInstance != NULL) && (argTypeInstance->mIsCRepr))
wantSplat = true;
else if ((int)irArgs.size() + argVal.mType->GetSplatCount() <= mModule->mCompiler->mOptions.mMaxSplatRegs)
wantSplat = true;
}
}
if (wantSplat)
{
SplatArgs(argVal, irArgs);
}
else
{
if (argVal.mType->IsComposite())
{
if ((mBfEvalExprFlags & BfEvalExprFlags_Comptime) != 0)
{
// Const eval entry - we want any incoming consts as they are
}
else if (isIntrinsic)
{
// We can handle composites either by value or not
}
else
argVal = mModule->MakeAddressable(argVal);
if ((!IsComptime()) && (!disableLowering) && (!isIntrinsic))
{
BfTypeCode loweredTypeCode = BfTypeCode_None;
BfTypeCode loweredTypeCode2 = BfTypeCode_None;
if (argVal.mType->GetLoweredType(BfTypeUsage_Parameter, &loweredTypeCode, &loweredTypeCode2))
{
auto primType = mModule->mBfIRBuilder->GetPrimitiveType(loweredTypeCode);
auto ptrType = mModule->mBfIRBuilder->GetPointerTo(primType);
BfIRValue primPtrVal = mModule->mBfIRBuilder->CreateBitCast(argVal.mValue, ptrType);
auto primVal = mModule->mBfIRBuilder->CreateLoad(primPtrVal);
irArgs.push_back(primVal);
if (loweredTypeCode2 != BfTypeCode_None)
{
auto primType2 = mModule->mBfIRBuilder->GetPrimitiveType(loweredTypeCode2);
auto ptrType2 = mModule->mBfIRBuilder->GetPointerTo(primType2);
BfIRValue primPtrVal2;
if (mModule->mBfIRBuilder->GetSize(loweredTypeCode) < mModule->mBfIRBuilder->GetSize(loweredTypeCode2))
primPtrVal2 = mModule->mBfIRBuilder->CreateInBoundsGEP(mModule->mBfIRBuilder->CreateBitCast(primPtrVal, ptrType2), 1);
else
primPtrVal2 = mModule->mBfIRBuilder->CreateBitCast(mModule->mBfIRBuilder->CreateInBoundsGEP(primPtrVal, 1), ptrType2);
auto primVal2 = mModule->mBfIRBuilder->CreateLoad(primPtrVal2);
irArgs.push_back(primVal2);
}
return;
}
}
}
else
argVal = mModule->LoadValue(argVal);
irArgs.push_back(argVal.mValue);
}
}
void BfExprEvaluator::PushThis(BfAstNode* targetSrc, BfTypedValue argVal, BfMethodInstance* methodInstance, SizedArrayImpl<BfIRValue>& irArgs, bool skipMutCheck)
{
MakeBaseConcrete(argVal);
auto methodDef = methodInstance->mMethodDef;
if (methodInstance->IsSkipCall())
return;
if (!argVal)
{
//BF_ASSERT(mFunctionBindResult != NULL);
return;
}
if (methodDef->mIsMutating)
{
bool checkMut = false;
if (argVal.mType->IsGenericParam())
{
// For capturing mutability
if (mResultLocalVar != NULL)
mResultLocalVar->mWrittenToId = mModule->mCurMethodState->GetRootMethodState()->mCurAccessId++;
}
if (((argVal.mType->IsComposite()) || (argVal.mType->IsTypedPrimitive())))
{
if ((argVal.IsReadOnly()) || (!argVal.IsAddr()))
{
if (!skipMutCheck)
{
String err = StrFormat("call mutating method '%s' on", mModule->MethodToString(methodInstance).c_str());
CheckModifyResult(argVal, targetSrc, err.c_str());
}
if (argVal.IsSplat())
{
argVal = mModule->AggregateSplat(argVal);
argVal = mModule->MakeAddressable(argVal);
}
}
else
{
if (mResultLocalVar != NULL)
{
// When we are capturing, we need to note that we require capturing by reference here
mResultLocalVar->mWrittenToId = mModule->mCurMethodState->GetRootMethodState()->mCurAccessId++;
}
}
}
}
if (argVal.mType->IsValuelessType())
return;
auto owner = methodInstance->GetOwner();
bool allowThisSplatting;
if (mModule->mIsComptimeModule)
allowThisSplatting = owner->IsTypedPrimitive() || owner->IsValuelessType();
else
allowThisSplatting = methodInstance->AllowsSplatting(-1);
if ((!allowThisSplatting) || (methodDef->mIsMutating))
{
argVal = mModule->MakeAddressable(argVal);
irArgs.push_back(argVal.mValue);
return;
}
auto thisType = methodInstance->GetThisType();
PushArg(argVal, irArgs, !methodInstance->AllowsSplatting(-1), thisType->IsPointer());
}
void BfExprEvaluator::FinishDeferredEvals(SizedArrayImpl<BfResolvedArg>& argValues)
{
for (int argIdx = 0; argIdx < argValues.size(); argIdx++)
{
auto& argValue = argValues[argIdx].mTypedValue;
if ((argValues[argIdx].mArgFlags & (BfArgFlag_DelegateBindAttempt | BfArgFlag_LambdaBindAttempt | BfArgFlag_UnqualifiedDotAttempt | BfArgFlag_DeferredEval)) != 0)
{
if (!argValue)
{
auto expr = BfNodeDynCast<BfExpression>(argValues[argIdx].mExpression);
if (expr != NULL)
argValue = mModule->CreateValueFromExpression(expr);
}
}
}
}
void BfExprEvaluator::FinishDeferredEvals(BfResolvedArgs& argValues)
{
for (int argIdx = 0; argIdx < (int)argValues.mResolvedArgs.size(); argIdx++)
{
auto& argValue = argValues.mResolvedArgs[argIdx].mTypedValue;
if ((argValues.mResolvedArgs[argIdx].mArgFlags & (BfArgFlag_VariableDeclaration)) != 0)
{
auto variableDeclaration = BfNodeDynCast<BfVariableDeclaration>((*argValues.mArguments)[argIdx]);
if ((variableDeclaration != NULL) && (variableDeclaration->mNameNode != NULL))
{
if (mModule->mCurMethodState == NULL)
{
mModule->Fail("Illegal local variable", variableDeclaration);
}
else
{
BfLocalVariable* localVar = new BfLocalVariable();
localVar->mName = variableDeclaration->mNameNode->ToString();
localVar->mResolvedType = mModule->GetPrimitiveType(BfTypeCode_Var);
localVar->mAddr = mModule->mBfIRBuilder->GetFakeVal();
localVar->mReadFromId = 0;
localVar->mWrittenToId = 0;
localVar->mAssignedKind = BfLocalVarAssignKind_Unconditional;
mModule->CheckVariableDef(localVar);
localVar->Init();
mModule->AddLocalVariableDef(localVar, true);
}
}
}
}
FinishDeferredEvals(argValues.mResolvedArgs);
}
void BfExprEvaluator::AddCallDependencies(BfMethodInstance* methodInstance)
{
if (methodInstance->mReturnType != NULL)
mModule->AddDependency(methodInstance->mReturnType, mModule->mCurTypeInstance, BfDependencyMap::DependencyFlag_LocalUsage);
for (int paramIdx = 0; paramIdx < methodInstance->GetParamCount(); paramIdx++)
{
auto paramType = methodInstance->GetParamType(paramIdx);
mModule->AddDependency(paramType, mModule->mCurTypeInstance, BfDependencyMap::DependencyFlag_LocalUsage);
}
if (methodInstance->mMethodInfoEx != NULL)
{
for (auto genericArg : methodInstance->mMethodInfoEx->mMethodGenericArguments)
{
if (genericArg->IsWrappableType())
genericArg = mModule->GetWrappedStructType(genericArg);
if (genericArg != NULL)
mModule->AddDependency(genericArg, mModule->mCurTypeInstance, BfDependencyMap::DependencyFlag_LocalUsage);
}
}
}
//TODO: delete argumentsZ
BfTypedValue BfExprEvaluator::CreateCall(BfAstNode* targetSrc, const BfTypedValue& inTarget, const BfTypedValue& origTarget, BfMethodDef* methodDef, BfModuleMethodInstance moduleMethodInstance, BfCreateCallFlags callFlags, SizedArrayImpl<BfResolvedArg>& argValues, BfTypedValue* argCascade)
{
bool bypassVirtual = (callFlags & BfCreateCallFlags_BypassVirtual) != 0;
bool skipThis = (callFlags & BfCreateCallFlags_SkipThis) != 0;;
static int sCallIdx = 0;
if (!mModule->mCompiler->mIsResolveOnly)
sCallIdx++;
int callIdx = sCallIdx;
if (callIdx == 0x000020F9)
{
NOP;
}
// Temporarily disable so we don't capture calls in params
SetAndRestoreValue<BfFunctionBindResult*> prevBindResult(mFunctionBindResult, NULL);
SetAndRestoreValue<bool> prevAllowVariableDeclarations;
if (mModule->mCurMethodState != NULL)
prevAllowVariableDeclarations.Init(mModule->mCurMethodState->mCurScope->mAllowVariableDeclarations, false);
BfMethodInstance* methodInstance = moduleMethodInstance.mMethodInstance;
SizedArray<BfIRValue, 4> irArgs;
if ((methodDef->mIsAbstract) && (bypassVirtual))
{
mModule->Fail(StrFormat("Abstract base method '%s' cannot be invoked", mModule->MethodToString(methodInstance).c_str()), targetSrc);
}
bool isSkipCall = moduleMethodInstance.mMethodInstance->IsSkipCall(bypassVirtual);
BfType* returnType = methodInstance->mReturnType;
/*if (returnType->IsSelf())
{
returnType = methodInstance->GetOwner();
BF_ASSERT(returnType->IsInterface());
}*/
Array<BfTypedValue> argCascades;
BfTypedValue target = inTarget;
if (!skipThis)
{
if ((target) && (target.mType->IsFunction()) && (methodInstance->GetOwner() == target.mType))
{
CheckResultForReading(target);
target = mModule->LoadValue(target);
auto funcType = mModule->mBfIRBuilder->MapMethod(moduleMethodInstance.mMethodInstance);
auto funcPtrType = mModule->mBfIRBuilder->GetPointerTo(funcType);
moduleMethodInstance.mFunc = mModule->mBfIRBuilder->CreateIntToPtr(target.mValue, funcPtrType);
}
else if (!methodDef->mIsStatic)
{
if ((!target) && (prevBindResult.mPrevVal != NULL))
{
auto bindResult = prevBindResult.mPrevVal;
if (bindResult->mBindType != NULL)
{
// Allow binding a function to a 'this' type even if no target is specified
auto delegateInfo = bindResult->mBindType->GetDelegateInfo();
if (delegateInfo != NULL)
{
if (delegateInfo->mHasExplicitThis)
{
target = mModule->GetDefaultTypedValue(delegateInfo->mParams[0], false, BfDefaultValueKind_Addr);
bypassVirtual = true;
}
}
else if (bindResult->mBindType->IsFunction())
{
BfMethodInstance* invokeMethodInstance = mModule->GetRawMethodInstanceAtIdx(bindResult->mBindType->ToTypeInstance(), 0, "Invoke");
if (!invokeMethodInstance->mMethodDef->mIsStatic)
{
target = mModule->GetDefaultTypedValue(invokeMethodInstance->GetThisType(), false, BfDefaultValueKind_Addr);
}
}
}
}
if (!target)
{
FinishDeferredEvals(argValues);
auto error = mModule->Fail(StrFormat("An instance reference is required to %s the non-static method '%s'",
(prevBindResult.mPrevVal != NULL) ? "bind" : "invoke",
mModule->MethodToString(methodInstance).c_str()), targetSrc);
if ((error != NULL) && (methodInstance->mMethodDef->GetRefNode() != NULL))
mModule->mCompiler->mPassInstance->MoreInfo(StrFormat("See method declaration"), methodInstance->mMethodDef->GetRefNode());
return mModule->GetDefaultTypedValue(returnType);
}
auto prevResult = mResult;
mResult = target;
CheckResultForReading(mResult);
mResult = prevResult;
if (methodDef->mMethodType != BfMethodType_Ctor)
{
bool doAccessCheck = true;
if (target.IsThis())
{
if (!mModule->mCurMethodState->mMayNeedThisAccessCheck)
doAccessCheck = false;
}
if ((mModule->mAttributeState != NULL) && (mModule->mAttributeState->mCustomAttributes != NULL) && (mModule->mAttributeState->mCustomAttributes->Contains(mModule->mCompiler->mDisableObjectAccessChecksAttributeTypeDef)))
doAccessCheck = false;
if ((doAccessCheck) && (!isSkipCall) && (prevBindResult.mPrevVal == NULL))
mModule->EmitObjectAccessCheck(target);
}
if (((prevBindResult.mPrevVal == NULL) || (!prevBindResult.mPrevVal->mSkipThis)) &&
(!isSkipCall))
{
bool skipMutCheck = false;
if ((prevBindResult.mPrevVal != NULL) && (prevBindResult.mPrevVal->mSkipMutCheck))
{
// If we are binding a delegate, then we will end up making a copy of the target anyway
// so we don't need to do a mutability check
skipMutCheck = true;
}
if (methodDef->mMethodType == BfMethodType_Extension)
PushArg(target, irArgs);
else
PushThis(targetSrc, target, moduleMethodInstance.mMethodInstance, irArgs, skipMutCheck);
}
}
else if (methodDef->mMethodType == BfMethodType_Extension)
{
// Handled in args
}
else
{
mModule->CheckStaticAccess(methodInstance->mMethodInstanceGroup->mOwner);
if (target)
{
FinishDeferredEvals(argValues);
mModule->Fail(StrFormat("Method '%s' cannot be accessed with an instance reference; qualify it with a type name instead",
mModule->MethodToString(methodInstance).c_str()), targetSrc);
return mModule->GetDefaultTypedValue(returnType);
}
}
}
if (isSkipCall)
{
FinishDeferredEvals(argValues);
mModule->EmitEnsureInstructionAt();
return mModule->GetDefaultTypedValue(returnType);
}
int argIdx = 0;
int paramIdx = 0;
BfIRValue expandedParamAlloca;
BfTypedValue expandedParamsArray;
BfType* expandedParamsElementType = NULL;
int extendedParamIdx = 0;
AddCallDependencies(methodInstance);
bool wasCapturingMatchInfo = false;
auto autoComplete = GetAutoComplete();
if (autoComplete != NULL)
{
// Set to false to make sure we don't capture method match info from 'params' array creation
wasCapturingMatchInfo = autoComplete->mIsCapturingMethodMatchInfo;
autoComplete->mIsCapturingMethodMatchInfo = false;
}
defer(
{
if (autoComplete != NULL)
autoComplete->mIsCapturingMethodMatchInfo = wasCapturingMatchInfo;
});
BfScopeData* boxScopeData = mDeferScopeAlloc;
if ((boxScopeData == NULL) && (mModule->mCurMethodState != NULL))
boxScopeData = mModule->mCurMethodState->mCurScope;
bool failed = false;
while (true)
{
int argExprIdx = argIdx;
if (methodDef->mMethodType == BfMethodType_Extension)
argExprIdx--;
bool isThis = (paramIdx == -1) || ((methodDef->mHasExplicitThis) && (paramIdx == 0));
bool isDirectPass = false;
if (paramIdx >= (int)methodInstance->GetParamCount())
{
if (methodInstance->IsVarArgs())
{
if (argExprIdx >= (int)argValues.size())
break;
BfTypedValue argValue = ResolveArgValue(argValues[argExprIdx], NULL);
if (argValue)
{
auto typeInst = argValue.mType->ToTypeInstance();
if (argValue.mType == mModule->GetPrimitiveType(BfTypeCode_Float))
argValue = mModule->Cast(argValues[argExprIdx].mExpression, argValue, mModule->GetPrimitiveType(BfTypeCode_Double));
if ((typeInst != NULL) && (typeInst->IsInstanceOf(mModule->mCompiler->mStringTypeDef)))
{
BfType* charType = mModule->GetPrimitiveType(BfTypeCode_Char8);
BfType* charPtrType = mModule->CreatePointerType(charType);
argValue = mModule->Cast(argValues[argExprIdx].mExpression, argValue, charPtrType);
}
PushArg(argValue, irArgs, true, false);
}
argIdx++;
continue;
}
if (argExprIdx < (int)argValues.size())
{
if (mModule->PreFail())
{
BfAstNode* errorRef = argValues[argExprIdx].mExpression;
if (errorRef == NULL)
errorRef = targetSrc;
BfError* error;
if ((argValues[argExprIdx].mArgFlags & BfArgFlag_StringInterpolateArg) != 0)
{
int checkIdx = argExprIdx - 1;
while (checkIdx >= 0)
{
if ((argValues[checkIdx].mArgFlags & BfArgFlag_StringInterpolateFormat) != 0)
{
errorRef = argValues[checkIdx].mExpression;
break;
}
checkIdx--;
}
error = mModule->Fail("Expanded string interpolation generates too many arguments. If string allocation was intended then consider adding a specifier such as 'scope'.", errorRef);
}
else if ((prevBindResult.mPrevVal != NULL) && (prevBindResult.mPrevVal->mBindType != NULL))
error = mModule->Fail(StrFormat("Method '%s' has too few parameters to bind to '%s'.", mModule->MethodToString(methodInstance).c_str(), mModule->TypeToString(prevBindResult.mPrevVal->mBindType).c_str()), errorRef);
else
error = mModule->Fail(StrFormat("Too many arguments, expected %d fewer.", (int)argValues.size() - argExprIdx), errorRef);
if ((error != NULL) && (methodInstance->mMethodDef->mMethodDeclaration != NULL))
mModule->mCompiler->mPassInstance->MoreInfo(StrFormat("See method declaration"), methodInstance->mMethodDef->GetRefNode());
}
failed = true;
break;
}
break;
}
// Only create actual params if we're not just trying to bind the function
if ((prevBindResult.mPrevVal != NULL) && (!prevBindResult.mPrevVal->mWantsArgs))
break;
BfType* wantType = NULL;
bool wantsSplat = false;
if (expandedParamsElementType != NULL)
{
wantType = expandedParamsElementType;
}
else
{
wantsSplat = methodInstance->GetParamIsSplat(paramIdx) && (!IsComptime());
if (methodInstance->IsImplicitCapture(paramIdx))
{
auto paramType = methodInstance->GetParamType(paramIdx);
if (mModule->mCurMethodInstance->IsMixin())
{
// Don't bother, also- can fail on captures
}
else
{
// static int captureIdx = 0;
// captureIdx++;
// int curCaptureIdx = captureIdx;
//
// if (curCaptureIdx == 0x91)
// {
// NOP;
// }
auto lookupVal = DoImplicitArgCapture(targetSrc, methodInstance, paramIdx, failed, BfImplicitParamKind_General, origTarget);
if (lookupVal)
{
if (wantsSplat)
{
SplatArgs(lookupVal, irArgs);
}
else if (paramType->IsRef())
{
irArgs.push_back(lookupVal.mValue);
}
else
PushArg(lookupVal, irArgs, true);
}
}
paramIdx++;
continue;
}
wantType = methodInstance->GetParamType(paramIdx);
if (!mModule->mCurTypeInstance->IsInterface())
{
// Resolve `Self` types
if (wantType->IsUnspecializedTypeVariation())
{
SetAndRestoreValue<BfTypeInstance*> prevCurTypeInst(mModule->mCurTypeInstance, methodInstance->GetOwner());
wantType = mModule->ResolveGenericType(wantType, NULL, NULL);
}
}
if (IsVar(wantType))
{
// Case happens when we can't find the argument type
failed = true;
}
BfParamKind paramKind = methodInstance->GetParamKind(paramIdx);
if (paramKind == BfParamKind_Params)
{
//TODO: Check to see if it's a direct array pass
if (argIdx < (int)argValues.size())
{
auto argValue = argValues[argIdx].mTypedValue;
if ((argValue.IsParams()) /*&& (mModule->CanCast(argValue, wantType))*/)
isDirectPass = true;
}
if (!isDirectPass)
{
int numElements = BF_MAX((int)argValues.size() - argIdx, 0);
if (methodDef->mMethodType == BfMethodType_Extension)
numElements++;
if (IsComptimeEntry())
{
if ((wantType->IsArray()) || (wantType->IsInstanceOf(mModule->mCompiler->mSpanTypeDef)))
{
auto genericTypeInst = wantType->ToGenericTypeInstance();
expandedParamsElementType = genericTypeInst->mGenericTypeInfo->mTypeGenericArguments[0];
auto irSizedArrayType = mModule->mBfIRBuilder->GetSizedArrayType(mModule->mBfIRBuilder->MapType(expandedParamsElementType), numElements);
Array<BfIRValue> values;
for (int i = 0; i < numElements; i++)
values.Add(mModule->mBfIRBuilder->GetFakeVal());
expandedParamsArray = BfTypedValue(mModule->mBfIRBuilder->CreateConstAgg(irSizedArrayType, values), wantType);
PushArg(expandedParamsArray, irArgs);
}
}
else if (wantType->IsArray())
{
BfArrayType* arrayType = (BfArrayType*)wantType;
mModule->PopulateType(arrayType, BfPopulateType_DataAndMethods);
expandedParamsElementType = arrayType->mGenericTypeInfo->mTypeGenericArguments[0];
int arrayClassSize = arrayType->mInstSize - expandedParamsElementType->mSize;
expandedParamsArray = BfTypedValue(mModule->AllocFromType(arrayType->GetUnderlyingType(), boxScopeData, BfIRValue(), mModule->GetConstValue(numElements), 1, BfAllocFlags_None),
arrayType, false);
BfResolvedArgs resolvedArgs;
MatchConstructor(targetSrc, NULL, expandedParamsArray, arrayType, resolvedArgs, false, false);
//TODO: Assert 'length' var is at slot 1
auto arrayBits = mModule->mBfIRBuilder->CreateBitCast(expandedParamsArray.mValue, mModule->mBfIRBuilder->MapType(arrayType->mBaseType));
int arrayLengthBitCount = arrayType->GetLengthBitCount();
if (arrayLengthBitCount == 0)
{
mModule->Fail("INTERNAL ERROR: Unable to find array 'length' field", targetSrc);
return BfTypedValue();
}
auto& fieldInstance = arrayType->mBaseType->mFieldInstances[0];
auto addr = mModule->mBfIRBuilder->CreateInBoundsGEP(arrayBits, 0, fieldInstance.mDataIdx);
if (arrayLengthBitCount == 64)
mModule->mBfIRBuilder->CreateAlignedStore(mModule->GetConstValue64(numElements), addr, 8);
else
mModule->mBfIRBuilder->CreateAlignedStore(mModule->GetConstValue32(numElements), addr, 4);
PushArg(expandedParamsArray, irArgs);
}
else if (wantType->IsInstanceOf(mModule->mCompiler->mSpanTypeDef))
{
auto genericTypeInst = wantType->ToGenericTypeInstance();
expandedParamsElementType = genericTypeInst->mGenericTypeInfo->mTypeGenericArguments[0];
expandedParamsArray = BfTypedValue(mModule->CreateAlloca(wantType), wantType, true);
expandedParamAlloca = mModule->CreateAlloca(genericTypeInst->mGenericTypeInfo->mTypeGenericArguments[0], true, NULL, mModule->GetConstValue(numElements));
mModule->mBfIRBuilder->CreateStore(expandedParamAlloca, mModule->mBfIRBuilder->CreateInBoundsGEP(expandedParamsArray.mValue, 0, 1));
mModule->mBfIRBuilder->CreateStore(mModule->GetConstValue(numElements), mModule->mBfIRBuilder->CreateInBoundsGEP(expandedParamsArray.mValue, 0, 2));
PushArg(expandedParamsArray, irArgs);
}
continue;
}
}
}
BfAstNode* arg = NULL;
bool hadMissingArg = false;
if (argExprIdx == -1)
arg = targetSrc;
if (argExprIdx >= 0)
{
if (argExprIdx < (int)argValues.size())
{
arg = argValues[argExprIdx].mExpression;
if (((argValues[argExprIdx].mArgFlags & BfArgFlag_StringInterpolateArg) != 0) && (!expandedParamsArray))
{
BfAstNode* errorRef = arg;
int checkIdx = argExprIdx - 1;
while (checkIdx >= 0)
{
if ((argValues[checkIdx].mArgFlags & BfArgFlag_StringInterpolateFormat) != 0)
{
errorRef = argValues[checkIdx].mExpression;
break;
}
checkIdx--;
}
mModule->Warn(BfWarning_BF4205_StringInterpolationParam, "Expanded string interpolation argument not used as 'params'. If string allocation was intended then consider adding a specifier such as 'scope'.", errorRef);
}
if ((arg == NULL) && (argValues[argExprIdx].mExpression != NULL))
hadMissingArg = true;
}
else
hadMissingArg = true;
}
BfTypedValue argValue;
if (hadMissingArg)
{
if (expandedParamsArray)
break;
if ((argIdx >= (int) methodInstance->mDefaultValues.size()) || (!methodInstance->mDefaultValues[argIdx]))
{
BfAstNode* refNode = targetSrc;
if (argValues.size() > 0)
{
auto checkExpr = argValues.back().mExpression;
if (checkExpr != NULL)
refNode = checkExpr;
}
BfAstNode* prevNode = NULL;
if (targetSrc == NULL)
{
// We must be in BfModule::EmitCtorBody
}
else if (auto tupleExpr = BfNodeDynCastExact<BfTupleExpression>(targetSrc))
{
if (tupleExpr->mCommas.size() > 0)
prevNode = tupleExpr->mCommas.back();
else
prevNode = tupleExpr->mOpenParen;
if (tupleExpr->mCloseParen != NULL)
refNode = tupleExpr->mCloseParen;
}
else if (mModule->mParentNodeEntry != NULL)
{
if (auto objectCreateExpr = BfNodeDynCast<BfObjectCreateExpression>(mModule->mParentNodeEntry->mNode))
{
if (objectCreateExpr->mCommas.size() > 0)
prevNode = objectCreateExpr->mCommas.back();
else
prevNode = objectCreateExpr->mOpenToken;
if (objectCreateExpr->mCloseToken != NULL)
refNode = objectCreateExpr->mCloseToken;
if (auto newNode = BfNodeDynCast<BfNewNode>(objectCreateExpr->mNewNode))
{
if (newNode->mAllocNode == targetSrc)
refNode = targetSrc;
}
}
else if (auto invokeExpr = BfNodeDynCast<BfInvocationExpression>(mModule->mParentNodeEntry->mNode))
{
if (invokeExpr->mCommas.size() > 0)
prevNode = invokeExpr->mCommas.back();
else
prevNode = invokeExpr->mOpenParen;
if (invokeExpr->mCloseParen != NULL)
refNode = invokeExpr->mCloseParen;
}
}
if ((autoComplete != NULL) && (prevNode != NULL))
autoComplete->CheckEmptyStart(prevNode, wantType);
BfError* error = NULL;
if (mModule->mParentNodeEntry != NULL)
{
bool showCtorError = false;
if (auto ctorDeclaration = BfNodeDynCast<BfConstructorDeclaration>(mModule->mParentNodeEntry->mNode))
{
if (ctorDeclaration->mInitializer == NULL)
showCtorError = true;
}
if (auto typerDecl = BfNodeDynCast<BfTypeDeclaration>(mModule->mParentNodeEntry->mNode))
showCtorError = true;
if (showCtorError)
{
if (mModule->PreFail())
{
error = mModule->Fail(StrFormat("No parameterless constructor is available for base class. Consider calling base constructor '%s'.",
mModule->MethodToString(methodInstance).c_str()), refNode);
}
auto srcNode = mModule->mCurMethodInstance->mMethodDef->GetRefNode();
if ((autoComplete != NULL) && (autoComplete->CheckFixit(srcNode)))
autoComplete->FixitAddConstructor(mModule->mCurTypeInstance);
}
}
if (mModule->PreFail())
{
if (error == NULL)
error = mModule->Fail(StrFormat("Not enough parameters specified, expected %d more.", methodInstance->GetParamCount() - paramIdx), refNode);
if ((error != NULL) && (methodInstance->mMethodDef->mMethodDeclaration != NULL))
mModule->mCompiler->mPassInstance->MoreInfo(StrFormat("See method declaration"), methodInstance->mMethodDef->GetRefNode());
}
failed = true;
break;
}
auto foreignDefaultVal = methodInstance->mDefaultValues[argIdx];
auto foreignConst = methodInstance->GetOwner()->mConstHolder->GetConstant(foreignDefaultVal.mValue);
if (foreignConst->mConstType == BfConstType_AggZero)
{
// Allow this
}
else if (foreignConst->mTypeCode == BfTypeCode_NullPtr)
{
if (wantType->IsNullable())
{
argValue = mModule->GetDefaultTypedValue(wantType, false, BfDefaultValueKind_Addr);
}
}
else if (foreignConst->mConstType == BfConstType_GlobalVar)
{
auto globalVar = (BfGlobalVar*)foreignConst;
if (globalVar->mName[0] == '#')
{
if (strcmp(globalVar->mName, "#CallerLineNum") == 0)
{
argValue = BfTypedValue(mModule->GetConstValue(mModule->mCurFilePosition.mCurLine + 1), mModule->GetPrimitiveType(BfTypeCode_Int32));
}
else if (strcmp(globalVar->mName, "#CallerFilePath") == 0)
{
String filePath = "";
if (mModule->mCurFilePosition.mFileInstance != NULL)
filePath = mModule->mCurFilePosition.mFileInstance->mParser->mFileName;
argValue = BfTypedValue(mModule->GetStringObjectValue(filePath),
mModule->ResolveTypeDef(mModule->mCompiler->mStringTypeDef));
}
else if (strcmp(globalVar->mName, "#CallerFileName") == 0)
{
String filePath = "";
if (mModule->mCurFilePosition.mFileInstance != NULL)
filePath = mModule->mCurFilePosition.mFileInstance->mParser->mFileName;
argValue = BfTypedValue(mModule->GetStringObjectValue(GetFileName(filePath)),
mModule->ResolveTypeDef(mModule->mCompiler->mStringTypeDef));
}
else if (strcmp(globalVar->mName, "#CallerFileDir") == 0)
{
String filePath = "";
if (mModule->mCurFilePosition.mFileInstance != NULL)
filePath = mModule->mCurFilePosition.mFileInstance->mParser->mFileName;
argValue = BfTypedValue(mModule->GetStringObjectValue(GetFileDir(filePath)),
mModule->ResolveTypeDef(mModule->mCompiler->mStringTypeDef));
}
else if (strcmp(globalVar->mName, "#CallerTypeName") == 0)
{
String typeName = "";
if (mModule->mCurTypeInstance != NULL)
typeName = mModule->TypeToString(mModule->mCurTypeInstance);
argValue = BfTypedValue(mModule->GetStringObjectValue(typeName),
mModule->ResolveTypeDef(mModule->mCompiler->mStringTypeDef));
}
else if (strcmp(globalVar->mName, "#CallerType") == 0)
{
auto typeType = mModule->ResolveTypeDef(mModule->mCompiler->mTypeTypeDef);
BfType* type = mModule->mCurTypeInstance;
if (type != NULL)
{
mModule->AddDependency(type, mModule->mCurTypeInstance, BfDependencyMap::DependencyFlag_ExprTypeReference);
argValue = BfTypedValue(mModule->CreateTypeDataRef(type), typeType);
}
}
else if (strcmp(globalVar->mName, "#CallerMemberName") == 0)
{
String memberName = "";
if (mModule->mCurMethodInstance != NULL)
memberName = mModule->MethodToString(mModule->mCurMethodInstance);
argValue = BfTypedValue(mModule->GetStringObjectValue(memberName),
mModule->ResolveTypeDef(mModule->mCompiler->mStringTypeDef));
}
else if (strcmp(globalVar->mName, "#CallerProject") == 0)
{
String projectName = "";
if (mModule->mCurMethodInstance != NULL)
projectName = mModule->mCurMethodInstance->mMethodDef->mDeclaringType->mProject->mName;
argValue = BfTypedValue(mModule->GetStringObjectValue(projectName),
mModule->ResolveTypeDef(mModule->mCompiler->mStringTypeDef));
}
else if (strcmp(globalVar->mName, "#ProjectName") == 0)
{
String projectName = methodInstance->mMethodDef->mDeclaringType->mProject->mName;
argValue = BfTypedValue(mModule->GetStringObjectValue(projectName),
mModule->ResolveTypeDef(mModule->mCompiler->mStringTypeDef));
}
else
{
argValue = mModule->GetCompilerFieldValue(globalVar->mName);
}
}
}
else if (foreignConst->mConstType == BfConstType_GEP32_2)
{
auto constGep32_2 = (BfConstantGEP32_2*)foreignConst;
auto gepTarget = methodInstance->GetOwner()->mConstHolder->GetConstantById(constGep32_2->mTarget);
if (gepTarget->mConstType == BfConstType_GlobalVar)
{
auto globalVar = (BfGlobalVar*)gepTarget;
if (globalVar->mName[0] == '#')
{
if (strcmp(globalVar->mName, "#CallerExpression") == 0)
{
int exprIdx = constGep32_2->mIdx1;
if ((exprIdx >= 0) && (exprIdx < (int)argValues.size()))
{
auto expr = argValues[exprIdx].mExpression;
if (expr != NULL)
{
argValue = BfTypedValue(mModule->GetStringObjectValue(expr->ToString()),
mModule->ResolveTypeDef(mModule->mCompiler->mStringTypeDef));
}
}
else
{
mModule->Fail("CallerExpression index out of bounds", targetSrc);
argValue = BfTypedValue(mModule->GetStringObjectValue(""),
mModule->ResolveTypeDef(mModule->mCompiler->mStringTypeDef));
}
}
}
}
}
if (!argValue)
{
argValue = mModule->GetTypedValueFromConstant(foreignConst, methodInstance->GetOwner()->mConstHolder, foreignDefaultVal.mType);
if (!argValue)
mModule->Fail("Default parameter value failed", targetSrc);
mModule->mBfIRBuilder->PopulateType(foreignDefaultVal.mType);
}
}
else
{
if (argExprIdx == -1)
argValue = target;
else
argValue = argValues[argExprIdx].mTypedValue;
if ((argValue.IsParams()) && (!isDirectPass))
{
BfAstNode* refNode = arg;
if (auto unaryOperatorExpr = BfNodeDynCast<BfUnaryOperatorExpression>(refNode))
refNode = unaryOperatorExpr->mOpToken;
mModule->Warn(0, "Unused 'params' expression", refNode);
}
if (wantType->IsMethodRef())
{
auto expr = argValues[argExprIdx].mExpression;
if (expr != NULL)
SetMethodElementType(expr);
if (!argValue)
argValue = mModule->CreateValueFromExpression(BfNodeDynCast<BfExpression>(arg), wantType, (BfEvalExprFlags)((mBfEvalExprFlags & BfEvalExprFlags_InheritFlags) | BfEvalExprFlags_NoCast));
// Add any implicit captures now
auto methodRefType = (BfMethodRefType*)wantType;
BfMethodInstance* useMethodInstance = methodRefType->mMethodRef;
for (int dataIdx = 0; dataIdx < methodRefType->GetCaptureDataCount(); dataIdx++)
{
int paramIdx = methodRefType->GetParamIdxFromDataIdx(dataIdx);
auto lookupVal = DoImplicitArgCapture(arg, useMethodInstance, paramIdx, failed, BfImplicitParamKind_General, argValue);
if (lookupVal)
{
if (methodRefType->WantsDataPassedAsSplat(dataIdx))
SplatArgs(lookupVal, irArgs);
else
{
if (lookupVal.mType->IsComposite())
lookupVal = mModule->MakeAddressable(lookupVal, false);
irArgs.push_back(lookupVal.mValue);
}
}
}
paramIdx++;
argIdx++;
continue;
}
else if (argExprIdx >= 0)
{
BfParamKind paramKind = BfParamKind_Normal;
BfIdentifierNode* paramNameNode = NULL;
if (paramIdx < methodInstance->GetParamCount())
{
paramKind = methodInstance->GetParamKind(paramIdx);
paramNameNode = methodInstance->GetParamNameNode(paramIdx);
}
argValues[argExprIdx].mExpectedType = wantType;
argValue = ResolveArgValue(argValues[argExprIdx], wantType, NULL, paramKind, paramNameNode);
}
}
if (!argValue)
{
failed = true;
}
if (argValue)
{
if ((isThis) && (argValue.mType->IsRef()))
{
// Convert a 'ref this' to a 'this*'
argValue.mType = mModule->CreatePointerType(argValue.mType->GetUnderlyingType());
}
BfAstNode* refNode = arg;
if (refNode == NULL)
refNode = targetSrc;
if ((wantType->IsRef()) && (!argValue.mType->IsRef()) &&
(((callFlags & BfCreateCallFlags_AllowImplicitRef) != 0) || (wantType->IsIn())))
argValue = mModule->ToRef(argValue, (BfRefType*)wantType);
if (mModule->mCurMethodState != NULL)
{
SetAndRestoreValue<BfScopeData*> prevScopeData(mModule->mCurMethodState->mOverrideScope, boxScopeData);
argValue = mModule->Cast(refNode, argValue, wantType);
}
else
argValue = mModule->Cast(refNode, argValue, wantType);
if (!argValue)
{
if ((argExprIdx < (int)argValues.size()) && ((argValues[argExprIdx].mArgFlags & BfArgFlag_StringInterpolateArg) != 0))
{
BfAstNode* errorRef = NULL;
int checkIdx = argExprIdx - 1;
while (checkIdx >= 0)
{
if ((argValues[checkIdx].mArgFlags & BfArgFlag_StringInterpolateFormat) != 0)
{
errorRef = argValues[checkIdx].mExpression;
break;
}
checkIdx--;
}
if (errorRef != NULL)
mModule->Warn(0, "If string allocation was intended then consider adding a specifier such as 'scope'.", errorRef);
}
failed = true;
}
else if ((wantType->IsComposite()) && (!expandedParamsArray))
{
if (methodInstance->mIsIntrinsic)
{
// Intrinsics can handle structs either by value or address
}
else
{
// We need to make a temp and get the addr of that
if ((!wantsSplat) && (!argValue.IsValuelessType()) && (!argValue.IsAddr()) && (!IsComptimeEntry()))
{
argValue = mModule->MakeAddressable(argValue);
}
}
}
else if (!wantType->IsRef())
argValue = mModule->LoadValue(argValue);
}
if ((argExprIdx != -1) && (argExprIdx < (int)argValues.size()) && ((argValues[argExprIdx].mArgFlags & BfArgFlag_Cascade) != 0))
{
mUsedAsStatement = true;
argCascades.Add(argValue);
}
if (expandedParamsArray)
{
if (argValue)
{
if (IsComptimeEntry())
{
auto constant = mModule->mBfIRBuilder->GetConstant(expandedParamsArray.mValue);
BF_ASSERT(constant->mConstType == BfConstType_Agg);
auto constAgg = (BfConstantAgg*)constant;
constAgg->mValues[extendedParamIdx] = argValue.mValue;
}
else if (expandedParamAlloca)
{
argValue = mModule->LoadValue(argValue);
auto addr = mModule->mBfIRBuilder->CreateInBoundsGEP(expandedParamAlloca, extendedParamIdx);
auto storeInst = mModule->mBfIRBuilder->CreateAlignedStore(argValue.mValue, addr, argValue.mType->mAlign);
}
else
{
auto firstElem = mModule->GetFieldByName(expandedParamsArray.mType->ToTypeInstance(), "mFirstElement");
if (firstElem != NULL)
{
argValue = mModule->LoadValue(argValue);
auto firstAddr = mModule->mBfIRBuilder->CreateInBoundsGEP(expandedParamsArray.mValue, 0, firstElem->mDataIdx);
auto indexedAddr = mModule->CreateIndexedValue(argValue.mType, firstAddr, extendedParamIdx);
if (argValue.IsSplat())
mModule->AggregateSplatIntoAddr(argValue, indexedAddr);
else
mModule->mBfIRBuilder->CreateAlignedStore(argValue.mValue, indexedAddr, argValue.mType->mAlign);
}
}
}
extendedParamIdx++;
}
else
{
if ((paramIdx == 0) && (methodInstance->GetParamName(paramIdx) == "this") && (wantType->IsPointer()))
{
auto underlyingType = wantType->GetUnderlyingType();
mModule->PopulateType(underlyingType, BfPopulateType_Data);
if ((underlyingType->IsValuelessType()) && (!underlyingType->IsVoid()))
{
// We don't actually pass a 'this' pointer for mut methods on valueless structs
argIdx++;
paramIdx++;
continue;
}
}
if (argValue)
{
if (isThis)
PushThis(targetSrc, argValue, methodInstance, irArgs);
else if (wantsSplat)
SplatArgs(argValue, irArgs);
else
PushArg(argValue, irArgs, true, false, methodInstance->mIsIntrinsic);
}
paramIdx++;
}
argIdx++;
}
if (failed)
{
// Process the other unused arguments
while (argIdx < argValues.size())
{
mModule->AssertErrorState();
auto argValue = argValues[argIdx].mTypedValue;
if ((argValues[argIdx].mArgFlags & (BfArgFlag_DelegateBindAttempt | BfArgFlag_LambdaBindAttempt | BfArgFlag_UnqualifiedDotAttempt | BfArgFlag_DeferredEval | BfArgFlag_VariableDeclaration | BfArgFlag_UninitializedExpr)) != 0)
{
if (!argValue)
{
auto expr = BfNodeDynCast<BfExpression>(argValues[argIdx].mExpression);
if (expr != NULL)
argValue = mModule->CreateValueFromExpression(expr);
}
}
argIdx++;
}
return mModule->GetDefaultTypedValue(returnType, false, BfDefaultValueKind_Addr);
}
prevBindResult.Restore();
if (!methodDef->mIsStatic)
{
bool ignoreVirtualError = (mModule->mBfIRBuilder->mIgnoreWrites) && (mModule->mCurMethodInstance != NULL) && (mModule->mCurMethodInstance->mIsForeignMethodDef);
if ((methodInstance->GetOwner()->IsInterface()) && (!target.mType->IsGenericParam()) && (!target.mType->IsConcreteInterfaceType()) &&
(!mModule->mCurTypeInstance->IsInterface()) && (!ignoreVirtualError))
{
if (methodInstance->mVirtualTableIdx == -1)
{
mModule->PopulateType(methodInstance->GetOwner(), BfPopulateType_DataAndMethods);
}
if (methodInstance->mVirtualTableIdx == -1)
{
if (methodInstance->mMethodDef->mIsConcrete)
{
mModule->Fail(StrFormat("The method '%s' cannot be invoked from an interface reference because its return value is declared as 'concrete'", mModule->MethodToString(methodInstance).c_str()), targetSrc);
}
else if (methodInstance->HasSelf())
{
mModule->Fail(StrFormat("The method '%s' cannot be invoked from an interface reference because it contains 'Self' type references", mModule->MethodToString(methodInstance).c_str()), targetSrc);
}
else
{
if ((bypassVirtual) && (mModule->mCurTypeInstance->IsInterface()))
{
// Allow a base call to be defined
}
else if ((methodInstance->IsSpecializedGenericMethod()) && (origTarget) && (!origTarget.mType->IsInterface()))
{
if (!mModule->mBfIRBuilder->mIgnoreWrites)
mModule->AssertErrorState();
}
else if ((!mModule->mCurMethodInstance->mIsUnspecialized))
{
// Compiler error?
String errorString = "Unable to dynamically dispatch '%s'";
if (methodInstance->IsSpecializedGenericMethod())
errorString = "Unable to dynamically dispatch '%s' because generic methods can only be directly dispatched";
if (methodInstance->mReturnType->IsConcreteInterfaceType())
errorString = "Unable to dynamically dispatch '%s' because the concrete return type is unknown";
mModule->Fail(StrFormat(errorString.c_str(), mModule->MethodToString(methodInstance).c_str()), targetSrc);
}
//BF_ASSERT(mModule->mCurMethodInstance->mIsUnspecialized);
}
if (mFunctionBindResult != NULL)
{
mFunctionBindResult->mMethodInstance = methodInstance;
mFunctionBindResult->mTarget = target;
mFunctionBindResult->mFunc = moduleMethodInstance.mFunc;
for (auto arg : irArgs)
mFunctionBindResult->mIRArgs.push_back(arg);
}
return mModule->GetDefaultTypedValue(returnType);
}
}
}
else
{
//BF_ASSERT(!methodInstance->GetOwner()->IsInterface());
}
if (target.mType != NULL)
{
// When we call a method from a static ctor, that method could access static fields so we need to make sure
// the type has been initialized
auto targetTypeInst = target.mType->ToTypeInstance();
if (targetTypeInst != NULL)
mModule->CheckStaticAccess(targetTypeInst);
}
if (methodInstance->mReturnType == NULL)
{
mModule->AssertErrorState();
mModule->Fail("Circular reference in method instance", targetSrc);
return BfTypedValue();
}
BfCreateCallFlags physCallFlags = BfCreateCallFlags_None;
if ((origTarget.mType != NULL) && (origTarget.mType->IsGenericParam()))
physCallFlags = (BfCreateCallFlags)(physCallFlags | BfCreateCallFlags_GenericParamThis);
auto func = moduleMethodInstance.mFunc;
BfTypedValue callResult = CreateCall(targetSrc, methodInstance, func, bypassVirtual, irArgs, NULL, physCallFlags);
// This gets triggered for non-sret (ie: comptime) composite returns so they aren't considered readonly
if ((callResult.mKind == BfTypedValueKind_Value) && (!callResult.mValue.IsConst()) &&
(!callResult.mType->IsValuelessType()) && (callResult.mType->IsComposite()) && (!methodInstance->GetLoweredReturnType()))
{
bool makeAddressable = true;
auto typeInstance = callResult.mType->ToTypeInstance();
if ((typeInstance != NULL) && (typeInstance->mHasUnderlyingArray))
makeAddressable = false;
if (makeAddressable)
{
callResult = mModule->MakeAddressable(callResult, true);
}
}
if (argCascades.mSize == 1)
{
if (argCascade == NULL)
return argCascades[0];
*argCascade = argCascades[0];
}
if (argCascades.mSize > 1)
{
if (argCascade == NULL)
return mModule->CreateTuple(argCascades, {});
*argCascade = mModule->CreateTuple(argCascades, {});
}
return callResult;
}
BfTypedValue BfExprEvaluator::MatchConstructor(BfAstNode* targetSrc, BfMethodBoundExpression* methodBoundExpr, BfTypedValue target, BfTypeInstance* targetType, BfResolvedArgs& argValues, bool callCtorBodyOnly, bool allowAppendAlloc, BfTypedValue* appendIndexValue)
{
// Temporarily disable so we don't capture calls in params
SetAndRestoreValue<BfFunctionBindResult*> prevBindResult(mFunctionBindResult, NULL);
static int sCtorCount = 0;
sCtorCount++;
BfMethodMatcher methodMatcher(targetSrc, mModule, "", argValues.mResolvedArgs, NULL);
methodMatcher.mBfEvalExprFlags = mBfEvalExprFlags;
BfTypeVector typeGenericArguments;
auto curTypeInst = targetType;
auto curTypeDef = targetType->mTypeDef;
BfProtectionCheckFlags protectionCheckFlags = BfProtectionCheckFlag_None;
auto activeTypeDef = mModule->GetActiveTypeDef();
auto visibleProjectSet = mModule->GetVisibleProjectSet();
bool isFailurePass = false;
for (int pass = 0; pass < 2; pass++)
{
isFailurePass = pass == 1;
curTypeDef->PopulateMemberSets();
BfMethodDef* nextMethodDef = NULL;
BfMemberSetEntry* entry;
if (curTypeDef->mMethodSet.TryGetWith(String("__BfCtor"), &entry))
nextMethodDef = (BfMethodDef*)entry->mMemberDef;
while (nextMethodDef != NULL)
{
auto checkMethod = nextMethodDef;
nextMethodDef = nextMethodDef->mNextWithSameName;
if ((isFailurePass) && (checkMethod->mMethodDeclaration == NULL))
continue; // Don't match private default ctor if there's a user-defined one
if (checkMethod->mIsStatic)
continue;
if ((checkMethod->mDeclaringType->IsExtension()) && (mModule->mAttributeState != NULL) && (mModule->mAttributeState->mCustomAttributes != NULL) &&
(mModule->mAttributeState->mCustomAttributes->Contains(mModule->mCompiler->mNoExtensionAttributeTypeDef)))
{
mModule->mAttributeState->mUsed = true;
continue;
}
if (!mModule->IsInSpecializedSection())
{
if ((!curTypeInst->IsTypeMemberIncluded(checkMethod->mDeclaringType, activeTypeDef, mModule)) ||
(!curTypeInst->IsTypeMemberAccessible(checkMethod->mDeclaringType, visibleProjectSet)))
continue;
}
auto checkProt = checkMethod->mProtection;
if (!isFailurePass)
{
if (callCtorBodyOnly)
{
if (curTypeDef != mModule->mCurTypeInstance->mTypeDef)
{
// We're calling the base class's ctor from a derived class
if (checkProt <= BfProtection_Private)
continue;
}
}
else
{
if ((checkProt == BfProtection_Protected) || (checkProt == BfProtection_ProtectedInternal)) // Treat protected constructors as private
checkProt = BfProtection_Private;
if (!mModule->CheckProtection(protectionCheckFlags, curTypeInst, checkMethod->mDeclaringType->mProject, checkProt, curTypeInst))
continue;
}
}
methodMatcher.CheckMethod(NULL, curTypeInst, checkMethod, isFailurePass);
}
if ((methodMatcher.mBestMethodDef != NULL) || (methodMatcher.mBackupMethodDef != NULL))
break;
}
if (methodMatcher.mBestMethodDef == NULL)
methodMatcher.mBestMethodDef = methodMatcher.mBackupMethodDef;
if (methodMatcher.mBestMethodDef == NULL)
{
mModule->Fail("No constructor available", targetSrc);
return BfTypedValue();
}
auto methodDef = methodMatcher.mBestMethodDef;
if (mModule->mCompiler->mResolvePassData != NULL)
mModule->mCompiler->mResolvePassData->HandleMethodReference(targetSrc, curTypeInst->mTypeDef->GetDefinition(), methodDef);
// There should always be a constructor
BF_ASSERT(methodMatcher.mBestMethodDef != NULL);
auto moduleMethodInstance = mModule->GetMethodInstance(methodMatcher.mBestMethodTypeInstance, methodMatcher.mBestMethodDef, methodMatcher.mBestMethodGenericArguments);
if (!mModule->CheckUseMethodInstance(moduleMethodInstance.mMethodInstance, targetSrc))
{
return BfTypedValue();
}
BfAutoComplete* autoComplete = GetAutoComplete();
if (autoComplete != NULL)
{
BfTypeInstance* resolvedTypeInstance = target.mType->ToTypeInstance();
auto ctorDecl = BfNodeDynCast<BfConstructorDeclaration>(methodDef->mMethodDeclaration);
if ((autoComplete->mIsGetDefinition) && (autoComplete->IsAutocompleteNode(targetSrc)) && (!BfNodeIsA<BfDelegateBindExpression>(targetSrc)))
{
if ((autoComplete->mDefMethod == NULL) && (autoComplete->mDefField == NULL) &&
(autoComplete->mDefProp == NULL)
&& ((autoComplete->mDefType == NULL) || (autoComplete->mDefType == resolvedTypeInstance->mTypeDef)))
{
// Do we need to do this mDefType setting? If we do, then make sure we only get the element type of generics and such
//autoComplete->mDefType = resolvedTypeInstance->mTypeDef;
if (ctorDecl != NULL)
autoComplete->SetDefinitionLocation(ctorDecl->mThisToken, true);
else if (resolvedTypeInstance->mTypeDef->mTypeDeclaration != NULL)
autoComplete->SetDefinitionLocation(resolvedTypeInstance->mTypeDef->mTypeDeclaration->mNameNode, true);
}
}
else if ((autoComplete->mResolveType == BfResolveType_GetResultString) && (autoComplete->IsAutocompleteNode(targetSrc)) &&
(moduleMethodInstance.mMethodInstance != NULL))
{
autoComplete->mResultString = ":";
autoComplete->mResultString += mModule->MethodToString(moduleMethodInstance.mMethodInstance);
}
}
BfConstructorDeclaration* ctorDecl = (BfConstructorDeclaration*)methodMatcher.mBestMethodDef->mMethodDeclaration;
if ((methodMatcher.mBestMethodDef->mHasAppend) && (targetType->IsObject()))
{
if (!allowAppendAlloc)
{
if (mModule->mCurMethodInstance->mMethodDef->mMethodDeclaration == NULL)
mModule->Fail("Constructors with append allocations cannot be called from a default constructor. Considering adding an explicit default constructor with the [AllowAppend] specifier.", targetSrc);
else
mModule->Fail("Constructors with append allocations cannot be called from a constructor without [AllowAppend] specified.", targetSrc);
}
else
{
BfResolvedArg resolvedArg;
if (appendIndexValue != NULL)
{
resolvedArg.mTypedValue = *appendIndexValue;
}
else
{
auto intPtrType = mModule->GetPrimitiveType(BfTypeCode_IntPtr);
auto intPtrRefType = mModule->CreateRefType(intPtrType);
if (target.mValue.IsFake())
{
resolvedArg.mTypedValue = BfTypedValue(mModule->mBfIRBuilder->GetFakeVal(), intPtrRefType);
}
else
{
BFMODULE_FATAL(mModule, "Bad");
}
}
methodMatcher.mArguments.Insert(0, resolvedArg);
}
}
if (isFailurePass)
mModule->Fail(StrFormat("'%s' is inaccessible due to its protection level", mModule->MethodToString(moduleMethodInstance.mMethodInstance).c_str()), targetSrc);
prevBindResult.Restore();
return CreateCall(methodMatcher.mTargetSrc, target, BfTypedValue(), methodMatcher.mBestMethodDef, moduleMethodInstance, BfCreateCallFlags_None, methodMatcher.mArguments);
}
static int sInvocationIdx = 0;
BfTypedValue BfExprEvaluator::ResolveArgValue(BfResolvedArg& resolvedArg, BfType* wantType, BfTypedValue* receivingValue, BfParamKind paramKind, BfIdentifierNode* paramNameNode)
{
BfTypedValue argValue = resolvedArg.mTypedValue;
if ((resolvedArg.mArgFlags & (BfArgFlag_DelegateBindAttempt | BfArgFlag_LambdaBindAttempt | BfArgFlag_UnqualifiedDotAttempt | BfArgFlag_DeferredEval)) != 0)
{
if ((!argValue) || (argValue.mValue.IsFake()) || (resolvedArg.mWantsRecalc))
{
resolvedArg.mWantsRecalc = false;
auto expr = BfNodeDynCast<BfExpression>(resolvedArg.mExpression);
if (expr != NULL)
{
BfExprEvaluator exprEvaluator(mModule);
exprEvaluator.mReceivingValue = receivingValue;
BfEvalExprFlags flags = (BfEvalExprFlags)((mBfEvalExprFlags & BfEvalExprFlags_InheritFlags) | BfEvalExprFlags_NoCast);
if ((paramKind == BfParamKind_Params) || (paramKind == BfParamKind_DelegateParam))
flags = (BfEvalExprFlags)(flags | BfEvalExprFlags_AllowParamsExpr);
argValue = mModule->CreateValueFromExpression(exprEvaluator, expr, wantType, flags);
if ((argValue) && (argValue.mType != wantType) && (wantType != NULL))
{
if ((mDeferScopeAlloc != NULL) && (wantType == mModule->mContext->mBfObjectType))
{
BfAllocTarget allocTarget(mDeferScopeAlloc);
argValue = mModule->BoxValue(expr, argValue, wantType, allocTarget);
}
else
argValue = mModule->Cast(expr, argValue, wantType);
}
}
}
}
else if ((resolvedArg.mArgFlags & (BfArgFlag_DeferredValue)) != 0)
{
// We should have already had an error on the first call
SetAndRestoreValue<bool> prevIgnoreErrors(mModule->mIgnoreErrors, mModule->mHadBuildError);
auto expr = BfNodeDynCast<BfExpression>(resolvedArg.mExpression);
BF_ASSERT(expr != NULL);
argValue = mModule->CreateValueFromExpression(expr, wantType, (BfEvalExprFlags)((mBfEvalExprFlags & BfEvalExprFlags_InheritFlags) | BfEvalExprFlags_NoCast | BfEvalExprFlags_AllowRefExpr | BfEvalExprFlags_AllowOutExpr));
if ((argValue) && (wantType != NULL))
argValue = mModule->Cast(expr, argValue, wantType);
}
else if ((resolvedArg.mArgFlags & (BfArgFlag_UntypedDefault)) != 0)
{
argValue = mModule->GetDefaultTypedValue(wantType);
}
else if ((resolvedArg.mArgFlags & (BfArgFlag_VariableDeclaration | BfArgFlag_UninitializedExpr)) != 0)
{
auto variableDeclaration = BfNodeDynCast<BfVariableDeclaration>(resolvedArg.mExpression);
auto variableType = wantType;
bool isLet = (variableDeclaration != NULL) && (variableDeclaration->mTypeRef->IsExact<BfLetTypeReference>());
bool isVar = (variableDeclaration == NULL) || (variableDeclaration->mTypeRef->IsExact<BfVarTypeReference>());
if (mModule->mCurMethodState->mPendingNullConditional != NULL)
{
mModule->Fail("Variables cannot be declared in method arguments inside null conditional expressions", variableDeclaration);
}
if ((!isLet) && (!isVar))
{
if (variableType->IsVar())
{
auto resolvedType = mModule->ResolveTypeRef(variableDeclaration->mTypeRef);
if (resolvedType != NULL)
variableType = resolvedType;
}
else
{
mModule->Fail("Only 'ref' or 'var' variables can be declared in method arguments", variableDeclaration);
auto autoComplete = GetAutoComplete();
if (autoComplete != NULL)
autoComplete->CheckTypeRef(variableDeclaration->mTypeRef, true, true);
}
}
else
{
if (variableType->IsVar())
{
mModule->Fail("Variable type required for 'var' parameter types", variableDeclaration);
}
}
if (wantType->IsRef())
{
auto refType = (BfRefType*)wantType;
variableType = refType->mElementType;
}
if ((variableDeclaration != NULL) && (variableDeclaration->mInitializer != NULL))
{
mModule->Fail("Initializers cannot be used when declaring variables for 'out' parameters", variableDeclaration->mEqualsNode);
mModule->CreateValueFromExpression(variableDeclaration->mInitializer, variableType, BfEvalExprFlags_NoCast);
}
BfLocalVariable* localVar = new BfLocalVariable();
if ((variableDeclaration != NULL) && (variableDeclaration->mNameNode != NULL))
{
localVar->mName = variableDeclaration->mNameNode->ToString();
localVar->mNameNode = BfNodeDynCast<BfIdentifierNode>(variableDeclaration->mNameNode);
}
else
{
if (paramNameNode != NULL)
{
localVar->mName = "__";
paramNameNode->ToString(localVar->mName);
localVar->mName += "_";
localVar->mName += StrFormat("%d", mModule->mCurMethodState->GetRootMethodState()->mCurLocalVarId);
}
else
localVar->mName = "__" + StrFormat("%d", mModule->mCurMethodState->GetRootMethodState()->mCurLocalVarId);
}
localVar->mResolvedType = variableType;
if (!variableType->IsValuelessType())
localVar->mAddr = mModule->CreateAlloca(variableType);
localVar->mIsReadOnly = isLet;
localVar->mReadFromId = 0;
localVar->mWrittenToId = 0;
localVar->mAssignedKind = BfLocalVarAssignKind_Unconditional;
mModule->CheckVariableDef(localVar);
localVar->Init();
mModule->AddLocalVariableDef(localVar, true);
CheckVariableDeclaration(resolvedArg.mExpression, false, false, false);
argValue = BfTypedValue(localVar->mAddr, mModule->CreateRefType(variableType, BfRefType::RefKind_Out));
auto curScope = mModule->mCurMethodState->mCurScope;
if (curScope->mScopeKind == BfScopeKind_StatementTarget)
{
// Move this variable into the parent scope
curScope->mLocalVarStart = (int)mModule->mCurMethodState->mLocals.size();
}
}
return argValue;
}
BfTypedValue BfExprEvaluator::CheckEnumCreation(BfAstNode* targetSrc, BfTypeInstance* enumType, const StringImpl& caseName, BfResolvedArgs& argValues)
{
auto activeTypeDef = mModule->GetActiveTypeDef();
mModule->mBfIRBuilder->PopulateType(enumType);
auto resolvePassData = mModule->mCompiler->mResolvePassData;
// if (resolvePassData != NULL)
// {
// if (mModule->mParentNodeEntry != NULL)
// {
// if (auto invocationExpr = BfNodeDynCast<BfInvocationExpression>(mModule->mParentNodeEntry->mNode))
// {
// if (auto memberRefExpr = BfNodeDynCast<BfMemberReferenceExpression>(invocationExpr->mTarget))
// {
// BfAstNode* dotNode = memberRefExpr->mDotToken;
// BfAstNode* nameNode = targetSrc;
// String filter;
// auto autoComplete = resolvePassData->mAutoComplete;
// if ((autoComplete != NULL) && (autoComplete->InitAutocomplete(dotNode, nameNode, filter)))
// autoComplete->AddEnumTypeMembers(enumType, caseName, false, enumType == mModule->mCurTypeInstance);
// }
// }
// }
// }
for (int fieldIdx = 0; fieldIdx < (int)enumType->mFieldInstances.size(); fieldIdx++)
{
auto fieldInstance = &enumType->mFieldInstances[fieldIdx];
auto fieldDef = fieldInstance->GetFieldDef();
if (fieldDef == NULL)
continue;
if ((fieldInstance->mIsEnumPayloadCase) && (fieldDef->mName == caseName))
{
if ((!enumType->IsTypeMemberIncluded(fieldDef->mDeclaringType, activeTypeDef, mModule)) ||
(!enumType->IsTypeMemberAccessible(fieldDef->mDeclaringType, activeTypeDef)))
continue;
auto autoComplete = GetAutoComplete();
if ((autoComplete != NULL) && (autoComplete->mIsCapturingMethodMatchInfo))
{
BfAutoComplete::MethodMatchEntry methodMatchEntry;
methodMatchEntry.mPayloadEnumField = fieldInstance;
methodMatchEntry.mTypeInstance = enumType;
methodMatchEntry.mCurMethodInstance = mModule->mCurMethodInstance;
autoComplete->mMethodMatchInfo->mInstanceList.push_back(methodMatchEntry);
}
if (resolvePassData != NULL)
{
BfAstNode* nameNode = targetSrc;
if (resolvePassData->mGetSymbolReferenceKind == BfGetSymbolReferenceKind_Field)
resolvePassData->HandleFieldReference(nameNode, enumType->mTypeDef, fieldDef);
}
BfIRValue enumValue;
BfTypedValue result;
bool wantConst = IsComptimeEntry();
if (wantConst)
{
NOP;
}
else if ((mReceivingValue != NULL) && (mReceivingValue->mType == enumType) && (mReceivingValue->IsAddr()))
{
result = *mReceivingValue;
mReceivingValue = NULL;
enumValue = result.mValue;
}
else
{
mResultIsTempComposite = true;
enumValue = mModule->CreateAlloca(enumType);
result = BfTypedValue(enumValue, fieldInstance->mOwner, BfTypedValueKind_TempAddr);
}
BF_ASSERT(fieldInstance->mResolvedType->IsTuple());
auto tupleType = (BfTypeInstance*)fieldInstance->mResolvedType;
mModule->mBfIRBuilder->PopulateType(tupleType);
bool constFailed = false;
SizedArray<BfIRValue, 8> constTupleMembers;
BfIRValue fieldPtr;
BfIRValue tuplePtr;
if (wantConst)
{
constTupleMembers.Add(mModule->mBfIRBuilder->CreateConstAggZero(mModule->mBfIRBuilder->MapType(tupleType->mBaseType)));
}
else if (!tupleType->IsValuelessType())
{
fieldPtr = mModule->mBfIRBuilder->CreateInBoundsGEP(enumValue, 0, 1);
auto tuplePtrType = mModule->CreatePointerType(tupleType);
auto mappedPtrType = mModule->mBfIRBuilder->MapType(tuplePtrType);
tuplePtr = mModule->mBfIRBuilder->CreateBitCast(fieldPtr, mappedPtrType);
}
for (int tupleFieldIdx = 0; tupleFieldIdx < (int)tupleType->mFieldInstances.size(); tupleFieldIdx++)
{
auto tupleFieldInstance = &tupleType->mFieldInstances[tupleFieldIdx];
auto resolvedFieldType = tupleFieldInstance->GetResolvedType();
if (tupleFieldIdx >= argValues.mResolvedArgs.size())
{
BfAstNode* refNode = targetSrc;
BfAstNode* prevNode = NULL;
if (mModule->mParentNodeEntry != NULL)
{
if (auto invokeExpr = BfNodeDynCast<BfInvocationExpression>(mModule->mParentNodeEntry->mNode))
{
if (invokeExpr->mCloseParen != NULL)
refNode = invokeExpr->mCloseParen;
}
}
BfError* error = mModule->Fail(StrFormat("Not enough parameters specified, expected %d more.", tupleType->mFieldInstances.size() - (int)argValues.mArguments->size()), refNode);
if (error != NULL)
mModule->mCompiler->mPassInstance->MoreInfo(StrFormat("See enum declaration"), fieldDef->mFieldDeclaration);
if (wantConst)
constFailed = true;
break;
}
BfTypedValue receivingValue;
BfIRValue tupleFieldPtr;
if (tuplePtr)
{
tupleFieldPtr = mModule->mBfIRBuilder->CreateInBoundsGEP(tuplePtr, 0, tupleFieldInstance->mDataIdx);
receivingValue = BfTypedValue(tupleFieldPtr, tupleFieldInstance->mResolvedType, true);
}
auto argValue = ResolveArgValue(argValues.mResolvedArgs[tupleFieldIdx], resolvedFieldType, &receivingValue);
if (!argValue)
{
if (wantConst)
constFailed = true;
continue;
}
if (argValue.IsValuelessType())
{
continue;
}
// Used receiving value?
if (argValue.mValue == receivingValue.mValue)
continue;
argValue = mModule->AggregateSplat(argValue);
argValues.mResolvedArgs[tupleFieldIdx].mExpectedType = resolvedFieldType;
if ((argValues.mResolvedArgs[tupleFieldIdx].mArgFlags & (BfArgFlag_DelegateBindAttempt | BfArgFlag_LambdaBindAttempt | BfArgFlag_UnqualifiedDotAttempt)) != 0)
{
auto expr = BfNodeDynCast<BfExpression>(argValues.mResolvedArgs[tupleFieldIdx].mExpression);
BF_ASSERT(expr != NULL);
argValue = mModule->CreateValueFromExpression(expr, resolvedFieldType, (BfEvalExprFlags)(mBfEvalExprFlags & BfEvalExprFlags_InheritFlags));
}
if (argValue)
{
// argValue can have a value even if tuplePtr does not have a value. This can happen if we are assigning to a (void) tuple,
// but we have a value that needs to be attempted to be casted to void
argValue = mModule->Cast(argValues.mResolvedArgs[tupleFieldIdx].mExpression, argValue, resolvedFieldType);
if (wantConst)
{
if (!argValue.mValue.IsConst())
{
mModule->Fail("Field not const", argValues.mResolvedArgs[tupleFieldIdx].mExpression);
constFailed = true;
}
constTupleMembers.Add(argValue.mValue);
}
else if (tupleFieldPtr)
{
argValue = mModule->LoadValue(argValue);
if (argValue)
mModule->mBfIRBuilder->CreateAlignedStore(argValue.mValue, tupleFieldPtr, resolvedFieldType->mAlign);
}
}
else if (wantConst)
constFailed = true;
}
if ((intptr)argValues.mResolvedArgs.size() > tupleType->mFieldInstances.size())
{
BfAstNode* errorRef = argValues.mResolvedArgs[tupleType->mFieldInstances.size()].mExpression;
if (errorRef == NULL)
errorRef = targetSrc;
BfError* error = mModule->Fail(StrFormat("Too many arguments, expected %d fewer.", argValues.mResolvedArgs.size() - tupleType->mFieldInstances.size()), errorRef);
if (error != NULL)
mModule->mCompiler->mPassInstance->MoreInfo(StrFormat("See enum declaration"), fieldDef->mFieldDeclaration);
if (wantConst)
constFailed = true;
}
auto dscrType = enumType->GetDiscriminatorType();
auto dscrField = &enumType->mFieldInstances.back();
int tagIdx = -fieldInstance->mDataIdx - 1;
if ((wantConst) && (!constFailed))
{
auto unionType = enumType->GetUnionInnerType();
auto constTuple = mModule->mBfIRBuilder->CreateConstAgg(mModule->mBfIRBuilder->MapType(tupleType, BfIRPopulateType_Full), constTupleMembers);
Array<uint8> memArr;
memArr.Resize(unionType->mSize);
if (!mModule->mBfIRBuilder->WriteConstant(constTuple, memArr.mVals, tupleType))
{
constFailed = true;
}
else
{
auto unionValue = mModule->mBfIRBuilder->ReadConstant(memArr.mVals, unionType);
if (!unionValue)
{
constFailed = true;
}
else
{
SizedArray<BfIRValue, 3> constEnumMembers;
constEnumMembers.Add(mModule->mBfIRBuilder->CreateConstAggZero(mModule->mBfIRBuilder->MapType(enumType->mBaseType, BfIRPopulateType_Full)));
constEnumMembers.Add(unionValue);
constEnumMembers.Add(mModule->mBfIRBuilder->CreateConst(dscrType->mTypeDef->mTypeCode, tagIdx));
return BfTypedValue(mModule->mBfIRBuilder->CreateConstAgg(mModule->mBfIRBuilder->MapType(enumType, BfIRPopulateType_Full), constEnumMembers), enumType);
}
}
}
if (constFailed)
{
return mModule->GetDefaultTypedValue(enumType, false, BfDefaultValueKind_Addr);
}
auto dscFieldPtr = mModule->mBfIRBuilder->CreateInBoundsGEP(enumValue, 0, dscrField->mDataIdx);
mModule->mBfIRBuilder->CreateAlignedStore(mModule->mBfIRBuilder->CreateConst(dscrType->mTypeDef->mTypeCode, tagIdx), dscFieldPtr, 4);
return result;
}
}
return BfTypedValue();
}
bool BfExprEvaluator::CheckGenericCtor(BfGenericParamType* genericParamType, BfResolvedArgs& argValues, BfAstNode* targetSrc)
{
BfGenericParamFlags genericParamFlags = BfGenericParamFlag_None;
BfType* typeConstraint = NULL;
auto genericParam = mModule->GetMergedGenericParamData((BfGenericParamType*)genericParamType, genericParamFlags, typeConstraint);
bool success = true;
if ((argValues.mArguments != NULL) && (argValues.mArguments->size() != 0))
{
mModule->Fail(StrFormat("Only default parameterless constructors can be called on generic argument '%s'", genericParam->GetGenericParamDef()->mName.c_str()), targetSrc);
success = false;
}
else if ((genericParamFlags & (BfGenericParamFlag_New | BfGenericParamFlag_Struct | BfGenericParamFlag_Var)) == 0)
{
mModule->Fail(StrFormat("Must add 'where %s : new, struct' constraint to generic parameter to instantiate type", genericParam->GetGenericParamDef()->mName.c_str()), targetSrc);
success = false;
}
else if ((genericParamFlags & (BfGenericParamFlag_New | BfGenericParamFlag_Var)) == 0)
{
mModule->Fail(StrFormat("Must add 'where %s : new' constraint to generic parameter to instantiate type", genericParam->GetGenericParamDef()->mName.c_str()), targetSrc);
success = false;
}
else if ((genericParamFlags & (BfGenericParamFlag_Struct | BfGenericParamFlag_Var)) == 0)
{
mModule->Fail(StrFormat("Must add 'where %s : struct' constraint to generic parameter to instantiate type without allocator", genericParam->GetGenericParamDef()->mName.c_str()), targetSrc);
success = false;
}
return success;
}
BfTypedValue BfExprEvaluator::MatchMethod(BfAstNode* targetSrc, BfMethodBoundExpression* methodBoundExpr, BfTypedValue target, bool allowImplicitThis, bool bypassVirtual, const StringImpl& methodName,
BfResolvedArgs& argValues, BfSizedArray<ASTREF(BfTypeReference*)>* methodGenericArguments, BfCheckedKind checkedKind)
{
BP_ZONE("MatchMethod");
if (bypassVirtual)
{
// "bypassVirtual" means that we know for sure that the target is EXACTLY the specified target type,
// not derived from (or implementing) the target type. This cannot apply to interfaces.
BF_ASSERT(!target.mType->IsInterface());
}
auto origTarget = target;
if (mFunctionBindResult != NULL)
{
BF_ASSERT(!mFunctionBindResult->mOrigTarget);
mFunctionBindResult->mOrigTarget = origTarget;
}
if (target)
{
if (target.mType->IsConcreteInterfaceType())
target.mType = target.mType->GetUnderlyingType();
// Turn T* into a T, if we can
if ((target.mType->IsPointer()) && (target.mType->GetUnderlyingType()->IsGenericParam()))
{
auto underlyingType = target.mType->GetUnderlyingType();
auto genericParam = mModule->GetGenericParamInstance((BfGenericParamType*)underlyingType);
if (((genericParam->mTypeConstraint != NULL) && (genericParam->mTypeConstraint->IsValueType())) ||
((genericParam->mGenericParamFlags & (BfGenericParamFlag_Struct)) != 0))
{
target.mType = underlyingType;
}
}
if ((!target.mType->IsGenericParam()) && (!target.IsSplat()) && (!IsVar(target.mType)))
target = MakeCallableTarget(targetSrc, target);
}
// static int sCallIdx = 0;
// if (!mModule->mCompiler->mIsResolveOnly)
// sCallIdx++;
// int callIdx = sCallIdx;
// if (callIdx == 118)
// {
// NOP;
// }
bool prevAllowVariableDeclarations = true;
if (mModule->mCurMethodState != NULL)
{
// Don't allow variable declarations in arguments for this method call
prevAllowVariableDeclarations = mModule->mCurMethodState->mCurScope->mAllowVariableDeclarations;
mModule->mCurMethodState->mCurScope->mAllowVariableDeclarations = false;
}
defer
(
if (mModule->mCurMethodState != NULL)
mModule->mCurMethodState->mCurScope->mAllowVariableDeclarations = prevAllowVariableDeclarations;
);
// Temporarily disable so we don't capture calls in params
SetAndRestoreValue<BfFunctionBindResult*> prevBindResult(mFunctionBindResult, NULL);
sInvocationIdx++;
bool wantCtor = methodName.IsEmpty();
BfAutoComplete::MethodMatchInfo* restoreCapturingMethodMatchInfo = NULL;
auto autoComplete = GetAutoComplete();
if ((autoComplete != NULL) && (autoComplete->mIsCapturingMethodMatchInfo))
{
if ((!targetSrc->IsFromParser(mModule->mCompiler->mResolvePassData->mParser)) ||
((autoComplete->mMethodMatchInfo->mInvocationSrcIdx != -1) && (autoComplete->mMethodMatchInfo->mInvocationSrcIdx != targetSrc->GetSrcStart())))
{
autoComplete->mIsCapturingMethodMatchInfo = false;
restoreCapturingMethodMatchInfo = autoComplete->mMethodMatchInfo;
}
}
defer(
{
if ((restoreCapturingMethodMatchInfo != NULL) && (autoComplete->mMethodMatchInfo == restoreCapturingMethodMatchInfo))
autoComplete->mIsCapturingMethodMatchInfo = true;
});
/*if ((autoComplete != NULL) && (autoComplete->mIsCapturingMethodMatchInfo) && (autoComplete->mMethodMatchInfo->mInstanceList.size() != 0))
autoComplete->mIsCapturingMethodMatchInfo = false;*/
bool isUnboundCall = false;
if (target.mType != NULL)
{
if (target.mType->IsGenericParam())
{
auto genericParamTarget = (BfGenericParamType*) target.mType;
auto genericParamInstance = mModule->GetGenericParamInstance(genericParamTarget);
isUnboundCall = (genericParamInstance->mGenericParamFlags & BfGenericParamFlag_Var) != 0;
if (isUnboundCall)
{
if (mModule->mCurMethodInstance->mIsUnspecialized)
{
auto varType = mModule->GetPrimitiveType(BfTypeCode_Var);
target.mType = varType;
}
}
}
else if (IsVar(target.mType))
isUnboundCall = true;
}
/*if (mPrefixedAttributeState != NULL)
{
auto customAttr = mPrefixedAttributeState->mCustomAttributes->Get(mModule->mCompiler->mUnboundAttributeTypeDef);
if (customAttr != NULL)
{
if (!mModule->IsInGeneric())
{
mModule->Fail("'Unbound' can only be used within generics");
}
mPrefixedAttributeState->mUsed = true;
isUnboundCall = true;
}
}*/
if ((mModule->mAttributeState != NULL) && (mModule->mAttributeState->mCustomAttributes != NULL))
{
auto customAttr = mModule->mAttributeState->mCustomAttributes->Get(mModule->mCompiler->mUnboundAttributeTypeDef);
if (customAttr != NULL)
{
if (!mModule->IsInGeneric())
{
mModule->Fail("'Unbound' can only be used within generics");
}
mModule->mAttributeState->mUsed = true;
isUnboundCall = true;
}
}
if (isUnboundCall)
{
if ((mModule->mCurMethodInstance != NULL) && (mModule->mCurMethodInstance->mIsUnspecialized))
{
auto varType = mModule->GetPrimitiveType(BfTypeCode_Var);
for (int argIdx = 0; argIdx < (int)argValues.mResolvedArgs.size(); argIdx++)
{
if ((argValues.mResolvedArgs[argIdx].mArgFlags & BfArgFlag_DeferredEval) != 0)
{
mModule->CreateValueFromExpression((*argValues.mArguments)[argIdx], varType);
}
}
return BfTypedValue(mModule->GetDefaultValue(varType), varType);
}
}
SetAndRestoreValue<bool> prevNoBind(mNoBind, mNoBind || isUnboundCall);
bool wantsExtensionCheck = target;
auto targetType = target.mType;
BfTypeDef* curTypeDef = NULL;
BfType* selfType = NULL;
BfTypeInstance* targetTypeInst = NULL;
bool checkNonStatic = true;
if (target)
{
if (IsVar(targetType))
return mModule->GetDefaultTypedValue(targetType);
targetTypeInst = targetType->ToTypeInstance();
if (targetTypeInst != NULL)
curTypeDef = targetTypeInst->mTypeDef;
}
else if (targetType != NULL) // Static targeted
{
if (targetType->IsWrappableType())
{
if ((targetType->IsPrimitiveType()) && (methodName.IsEmpty()))
{
if (argValues.mArguments->IsEmpty())
{
return mModule->GetDefaultTypedValue(targetType);
}
else if (argValues.mArguments->mSize == 1)
{
FinishDeferredEvals(argValues);
// This is just a primitive cast
auto& resolvedArg = argValues.mResolvedArgs[0];
BfTypedValue castedValue;
BfTypedValue castTarget = resolvedArg.mTypedValue;
if (resolvedArg.mTypedValue)
{
castTarget = mModule->LoadValue(castTarget);
castedValue = mModule->Cast(targetSrc, castTarget, targetType, BfCastFlags_Explicit);
}
if (!castedValue)
castedValue = mModule->GetDefaultTypedValue(targetType);
return castedValue;
}
}
targetTypeInst = mModule->GetWrappedStructType(targetType);
}
else if (targetType->IsGenericParam())
{
auto genericParamInstance = mModule->GetGenericParamInstance((BfGenericParamType*)targetType);
if (genericParamInstance->mTypeConstraint != NULL)
targetTypeInst = genericParamInstance->mTypeConstraint->ToTypeInstance();
if (genericParamInstance->mGenericParamFlags & BfGenericParamFlag_Var)
{
auto varType = mModule->GetPrimitiveType(BfTypeCode_Var);
return BfTypedValue(mModule->GetDefaultValue(varType), varType);
}
}
else
targetTypeInst = targetType->ToTypeInstance();
if (targetTypeInst == NULL)
{
//mModule->Fail("No static methods available", targetSrc);
//return BfTypedValue();
}
else
{
curTypeDef = targetTypeInst->mTypeDef;
checkNonStatic = false;
}
}
else // Current scopeData
{
if ((mModule->mCurMethodInstance != NULL) && (mModule->mCurMethodInstance->mIsForeignMethodDef) && (mModule->mCurMethodInstance->mMethodInfoEx->mForeignType->IsInterface()))
{
targetTypeInst = mModule->mCurMethodInstance->mMethodInfoEx->mForeignType;
curTypeDef = targetTypeInst->mTypeDef;
checkNonStatic = true;
target = mModule->GetThis();
selfType = mModule->mCurTypeInstance;
//target.mType = targetTypeInst;
}
else
{
curTypeDef = mModule->mCurTypeInstance->mTypeDef;
targetTypeInst = mModule->mCurTypeInstance;
if (mModule->mCurMethodState == NULL)
{
checkNonStatic = false;
}
else
{
if (mModule->mCurMethodState->mMixinState != NULL)
{
targetTypeInst = mModule->mCurMethodState->mMixinState->mMixinMethodInstance->GetOwner();
curTypeDef = targetTypeInst->mTypeDef;
}
if (mModule->mCurMethodState->mTempKind != BfMethodState::TempKind_None)
{
checkNonStatic = mModule->mCurMethodState->mTempKind == BfMethodState::TempKind_NonStatic;
}
else
checkNonStatic = !mModule->mCurMethodInstance->mMethodDef->mIsStatic;
}
}
}
bool isIndirectMethodCall = false;
BfType* lookupType = targetType;
BfTypeInstance* lookupTypeInst = targetTypeInst;
if (targetType != NULL)
{
lookupType = BindGenericType(targetSrc, targetType);
if (lookupType->IsGenericParam())
lookupTypeInst = NULL;
}
BfMethodDef* methodDef = NULL;
BfTypeVector checkMethodGenericArguments;
BfTypeInstance* curTypeInst = targetTypeInst;
BfMethodMatcher methodMatcher(targetSrc, mModule, methodName, argValues.mResolvedArgs, methodGenericArguments);
methodMatcher.mOrigTarget = origTarget;
methodMatcher.mTarget = target;
methodMatcher.mCheckedKind = checkedKind;
methodMatcher.mAllowImplicitThis = allowImplicitThis;
methodMatcher.mAllowStatic = !target.mValue;
methodMatcher.mAllowNonStatic = !methodMatcher.mAllowStatic;
methodMatcher.mAutoFlushAmbiguityErrors = !wantsExtensionCheck;
if (allowImplicitThis)
{
if (mModule->mCurMethodState == NULL)
{
methodMatcher.mAllowStatic = true;
methodMatcher.mAllowNonStatic = false;
}
else if (mModule->mCurMethodState->mTempKind != BfMethodState::TempKind_None)
{
methodMatcher.mAllowNonStatic = mModule->mCurMethodState->mTempKind == BfMethodState::TempKind_NonStatic;
methodMatcher.mAllowStatic = true;
}
else
{
if (!mModule->mCurMethodInstance->mMethodDef->mIsStatic)
methodMatcher.mAllowNonStatic = true;
methodMatcher.mAllowStatic = true;
if (mModule->mCurMethodInstance->mMethodDef->mIsLocalMethod)
{
auto rootMethodState = mModule->mCurMethodState->GetRootMethodState();
methodMatcher.mAllowNonStatic = !rootMethodState->mMethodInstance->mMethodDef->mIsStatic;
}
}
}
if (methodName == BF_METHODNAME_CALCAPPEND)
methodMatcher.mMethodType = BfMethodType_CtorCalcAppend;
BF_ASSERT(methodMatcher.mBestMethodDef == NULL);
BfLocalMethod* matchedLocalMethod = NULL;
if (target.mType == NULL)
{
CheckLocalMethods(targetSrc, curTypeInst, methodName, methodMatcher, BfMethodType_Normal);
if (methodMatcher.mBestMethodDef == NULL)
methodMatcher.mBestMethodDef = methodMatcher.mBackupMethodDef;
if (methodMatcher.mBestMethodDef != NULL)
{
auto rootMethodState = mModule->mCurMethodState->GetRootMethodState();
auto methodDef = methodMatcher.mBestMethodDef;
if (mModule->mCompiler->mResolvePassData != NULL)
{
auto identifierNode = BfNodeDynCast<BfIdentifierNode>(targetSrc);
mModule->mCompiler->mResolvePassData->HandleLocalReference(identifierNode, curTypeInst->mTypeDef, rootMethodState->mMethodInstance->mMethodDef, ~methodDef->mIdx);
auto autoComplete = GetAutoComplete();
if ((autoComplete != NULL) && (autoComplete->IsAutocompleteNode(identifierNode)))
{
autoComplete->SetDefinitionLocation(methodDef->GetRefNode(), true);
if (autoComplete->mDefType == NULL)
{
autoComplete->mDefMethod = mModule->mCurMethodState->GetRootMethodState()->mMethodInstance->mMethodDef;
autoComplete->mDefType = curTypeDef;
autoComplete->mReplaceLocalId = ~methodDef->mIdx;
}
}
if ((autoComplete != NULL) && (autoComplete->mIsCapturingMethodMatchInfo))
{
BfAutoComplete::MethodMatchEntry methodMatchEntry;
methodMatchEntry.mMethodDef = methodDef;
methodMatchEntry.mTypeInstance = mModule->mCurTypeInstance;
methodMatchEntry.mCurMethodInstance = mModule->mCurMethodInstance;
autoComplete->mMethodMatchInfo->mInstanceList.push_back(methodMatchEntry);
}
}
if ((mModule->mCurMethodState->mClosureState != NULL) && (mModule->mCurMethodState->mClosureState->mCapturing))
{
auto methodInstance = mModule->GetRawMethodInstance(methodMatcher.mBestMethodTypeInstance, methodMatcher.mBestMethodDef);
if (methodInstance->mReturnType == NULL)
{
FinishDeferredEvals(argValues);
// If we are recursive then we won't even have a completed methodInstance yet to look at
return mModule->GetDefaultTypedValue(mModule->mContext->mBfObjectType);
}
}
}
}
if (methodMatcher.mBestMethodDef == NULL)
{
if (lookupTypeInst == NULL)
{
if ((lookupType != NULL) && (lookupType->IsConcreteInterfaceType()))
{
auto concreteInterfaceType = (BfConcreteInterfaceType*)lookupType;
lookupTypeInst = concreteInterfaceType->mInterface;
}
else if (isUnboundCall)
{
//auto resolvedType = mModule->ResolveGenericType(lookupType);
}
else if (lookupType->IsGenericParam())
{
auto genericParamTarget = (BfGenericParamType*)lookupType;
auto _HandleGenericParamInstance = [&](BfGenericParamInstance* genericParamInstance)
{
if (genericParamInstance->mTypeConstraint != NULL)
lookupTypeInst = genericParamInstance->mTypeConstraint->ToTypeInstance();
else
lookupTypeInst = mModule->mContext->mBfObjectType;
for (BfType* ifaceInst : genericParamInstance->mInterfaceConstraints)
{
if (ifaceInst->IsUnspecializedType())
ifaceInst = mModule->ResolveType(ifaceInst);
BfTypeInstance* typeInst = ifaceInst->ToTypeInstance();
BF_ASSERT(typeInst != NULL);
if (methodMatcher.CheckType(typeInst, target, false))
methodMatcher.mSelfType = lookupType;
}
};
auto genericParamInstance = mModule->GetGenericParamInstance(genericParamTarget);
_HandleGenericParamInstance(genericParamInstance);
// Check method generic constraints
if ((mModule->mCurMethodInstance != NULL) && (mModule->mCurMethodInstance->mIsUnspecialized) && (mModule->mCurMethodInstance->mMethodInfoEx != NULL))
{
for (int genericParamIdx = (int)mModule->mCurMethodInstance->mMethodInfoEx->mMethodGenericArguments.size();
genericParamIdx < mModule->mCurMethodInstance->mMethodInfoEx->mGenericParams.size(); genericParamIdx++)
{
auto genericParam = mModule->mCurMethodInstance->mMethodInfoEx->mGenericParams[genericParamIdx];
if (genericParam->mExternType == lookupType)
_HandleGenericParamInstance(genericParam);
}
}
}
}
if ((lookupTypeInst != NULL) && (!wantCtor))
{
methodMatcher.mBypassVirtual = bypassVirtual;
methodMatcher.CheckType(lookupTypeInst, target, false);
}
if ((lookupType != NULL) && (lookupType->IsGenericParam()))
{
//lookupType = mModule->ResolveGenericType(lookupType);
if (!lookupType->IsGenericParam())
{
target = MakeCallableTarget(targetSrc, target);
if (target)
{
lookupTypeInst = lookupType->ToTypeInstance();
}
}
}
}
bool isFailurePass = false;
if (methodMatcher.mBestMethodDef == NULL)
{
isFailurePass = true;
if (lookupTypeInst != NULL)
methodMatcher.CheckType(lookupTypeInst, target, true);
}
BfTypedValue staticResult;
//
{
auto devirtTarget = target;
if ((devirtTarget.mType == NULL) && (selfType != NULL))
devirtTarget.mType = selfType;
methodMatcher.TryDevirtualizeCall(devirtTarget, &origTarget, &staticResult);
}
if (staticResult)
return staticResult;
bypassVirtual |= methodMatcher.mBypassVirtual;
if (methodMatcher.mBestMethodDef != NULL)
{
curTypeInst = methodMatcher.mBestMethodTypeInstance;
methodDef = methodMatcher.mBestMethodDef;
}
if ((methodDef) && (!methodDef->mIsStatic) && (!target) && (allowImplicitThis))
{
target = mModule->GetThis();
}
// If we call "GetType" on a value type, statically determine the type rather than boxing and then dispatching
if ((methodDef) && (target) && (curTypeInst == mModule->mContext->mBfObjectType) &&
(methodDef->mName == "GetType") && (target.mType->IsValueType()) && (argValues.mArguments->IsEmpty()))
{
BfType* targetType = target.mType;
if (origTarget)
targetType = origTarget.mType;
auto typeType = mModule->ResolveTypeDef(mModule->mCompiler->mTypeTypeDef);
mModule->AddDependency(targetType, mModule->mCurTypeInstance, BfDependencyMap::DependencyFlag_ExprTypeReference);
return BfTypedValue(mModule->CreateTypeDataRef(targetType), typeType);
}
bool skipThis = false;
BfTypedValue fieldVal;
bool hasFieldVal = false;
// Fail, check for delegate field invocation
if ((methodDef == NULL) && ((methodGenericArguments == NULL) || (methodGenericArguments->size() == 0)))
{
// Check for payload enum initialization first
BfTypedValue enumResult;
BfTypeInstance* enumType = NULL;
if ((!target) && (target.HasType()) && (targetType->IsPayloadEnum()))
{
enumType = targetType->ToTypeInstance();
}
else if ((!target) && (!target.HasType()) && (mModule->mCurTypeInstance->IsPayloadEnum()))
{
enumType = mModule->mCurTypeInstance;
}
if (enumType != NULL)
{
enumResult = CheckEnumCreation(targetSrc, enumType, methodName, argValues);
}
if (enumResult)
{
if (mModule->mCompiler->WantsClassifyNode(targetSrc))
{
mModule->mCompiler->mResolvePassData->mSourceClassifier->SetElementType(targetSrc, BfSourceElementType_Normal);
}
return enumResult;
}
if (allowImplicitThis)
{
auto identifierNode = BfNodeDynCast<BfIdentifierNode>(targetSrc);
if (identifierNode != NULL)
fieldVal = LookupIdentifier(identifierNode);
}
else
{
SetAndRestoreValue<BfEvalExprFlags> prevFlags(mBfEvalExprFlags, (BfEvalExprFlags)(mBfEvalExprFlags & ~BfEvalExprFlags_AllowEnumId));
fieldVal = LookupField(targetSrc, target, methodName);
}
if (fieldVal)
{
hasFieldVal = true;
wantsExtensionCheck = !fieldVal.mType->IsDelegate() && !fieldVal.mType->IsFunction();
}
else if (mPropDef != NULL)
{
hasFieldVal = true;
BfMethodDef* matchedMethod = GetPropertyMethodDef(mPropDef, BfMethodType_PropertyGetter, mPropCheckedKind, mPropTarget);
if (matchedMethod != NULL)
{
auto getMethodInstance = mModule->GetRawMethodInstance(mPropTarget.mType->ToTypeInstance(), matchedMethod);
if ((getMethodInstance != NULL) &&
((getMethodInstance->mReturnType->IsDelegate()) || (getMethodInstance->mReturnType->IsFunction())))
wantsExtensionCheck = false;
}
}
}
if ((!methodDef) && (!target.mValue))
{
// Check to see if we're constructing a struct via a call like: "Struct structVal = Struct()"
int wantNumGenericArgs = 0;
if ((methodGenericArguments != NULL) && (methodGenericArguments->size() > 0))
wantNumGenericArgs = (int)methodGenericArguments->size();
BfTypeInstance* resolvedTypeInstance = NULL;
if (wantCtor)
{
resolvedTypeInstance = targetTypeInst;
}
else if (targetType != NULL)
{
if (auto invocationExpr = BfNodeDynCast<BfInvocationExpression>(methodBoundExpr))
{
auto resolvedType = mModule->ResolveTypeRef(invocationExpr->mTarget, methodGenericArguments);
if (resolvedType != NULL)
resolvedTypeInstance = resolvedType->ToTypeInstance();
}
}
else
{
BfIdentifierNode* identifierNode = BfNodeDynCast<BfIdentifierNode>(targetSrc);
if (identifierNode != NULL)
{
SetAndRestoreValue<bool> prevIgnoreErrors(mModule->mIgnoreErrors, true);
BfType* refType;
if (methodGenericArguments != NULL)
{
refType = mModule->ResolveTypeRef(identifierNode, methodGenericArguments);
}
else
refType = mModule->ResolveTypeRef(identifierNode, NULL);
prevIgnoreErrors.Restore();
if ((refType != NULL) && (refType->IsPrimitiveType()))
{
FinishDeferredEvals(argValues);
if (argValues.mResolvedArgs.IsEmpty())
return mModule->GetDefaultTypedValue(refType);
if (argValues.mResolvedArgs.size() != 1)
{
mModule->Fail("Cast requires one parameter", targetSrc);
return BfTypedValue();
}
// This is just a primitive cast
auto& resolvedArg = argValues.mResolvedArgs[0];
BfTypedValue castedValue;
BfTypedValue castTarget = resolvedArg.mTypedValue;
if (resolvedArg.mTypedValue)
{
castTarget = mModule->LoadValue(castTarget);
castedValue = mModule->Cast(targetSrc, castTarget, refType, BfCastFlags_Explicit);
}
if (!castedValue)
castedValue = mModule->GetDefaultTypedValue(refType);
return castedValue;
}
if (refType != NULL)
{
resolvedTypeInstance = refType->ToTypeInstance();
if (refType->IsGenericParam())
{
CheckGenericCtor((BfGenericParamType*)refType, argValues, targetSrc);
return mModule->GetDefaultTypedValue(refType);
}
}
}
}
if (resolvedTypeInstance != NULL)
{
if ((!resolvedTypeInstance->IsStruct()) && (!resolvedTypeInstance->IsTypedPrimitive()))
{
if (mModule->PreFail())
mModule->Fail("Objects must be allocated through 'new' or 'scope'", targetSrc);
return BfTypedValue();
}
if (auto identifier = BfNodeDynCastExact<BfIdentifierNode>(targetSrc))
mModule->SetElementType(identifier, resolvedTypeInstance->IsEnum() ? BfSourceElementType_Type : BfSourceElementType_Struct);
if (mModule->mCompiler->mResolvePassData != NULL)
{
if (!BfNodeIsA<BfMemberReferenceExpression>(targetSrc))
mModule->mCompiler->mResolvePassData->HandleTypeReference(targetSrc, resolvedTypeInstance->mTypeDef);
}
BfTypedValue structInst;
mModule->PopulateType(resolvedTypeInstance);
if (!resolvedTypeInstance->IsValuelessType())
{
if ((mReceivingValue != NULL) && (mReceivingValue->mType == resolvedTypeInstance) && (mReceivingValue->IsAddr()))
{
structInst = *mReceivingValue;
mReceivingValue = NULL;
}
else
{
auto allocaInst = mModule->CreateAlloca(resolvedTypeInstance);
structInst = BfTypedValue(allocaInst, resolvedTypeInstance, true);
}
mResultIsTempComposite = true;
}
else
{
structInst = BfTypedValue(mModule->mBfIRBuilder->GetFakeVal(), resolvedTypeInstance, true);
}
mResultLocalVar = NULL;
mResultFieldInstance = NULL;
mResultLocalVarRefNode = NULL;
auto result = MatchConstructor(targetSrc, methodBoundExpr, structInst, resolvedTypeInstance, argValues, false, false);
if ((result) && (!result.mType->IsVoid()))
return result;
mModule->ValidateAllocation(resolvedTypeInstance, targetSrc);
mModule->AddDependency(resolvedTypeInstance, mModule->mCurTypeInstance, BfDependencyMap::DependencyFlag_LocalUsage);
if (mUsedAsStatement)
{
mModule->Warn(0, "Struct constructor being used as a statement", targetSrc);
}
return structInst;
}
}
// For for extensions in current type
if (wantsExtensionCheck)
{
auto checkTypeInst = mModule->mCurTypeInstance;
methodMatcher.mMethodType = BfMethodType_Extension;
if (methodMatcher.CheckType(checkTypeInst, BfTypedValue(), false, true))
{
isFailurePass = false;
curTypeInst = methodMatcher.mBestMethodTypeInstance;
methodDef = methodMatcher.mBestMethodDef;
}
}
// Look in globals. Always check for extension methods.
if ((methodDef == NULL) || (wantsExtensionCheck))
{
if (mModule->mContext->mCurTypeState != NULL)
{
BfGlobalLookup globalLookup;
globalLookup.mKind = BfGlobalLookup::Kind_Method;
globalLookup.mName = methodName;
mModule->PopulateGlobalContainersList(globalLookup);
for (auto& globalContainer : mModule->mContext->mCurTypeState->mGlobalContainers)
{
if (globalContainer.mTypeInst == NULL)
continue;
methodMatcher.mMethodType = wantsExtensionCheck ? BfMethodType_Extension : BfMethodType_Normal;
if (methodMatcher.CheckType(globalContainer.mTypeInst, BfTypedValue(), false))
{
isFailurePass = false;
curTypeInst = methodMatcher.mBestMethodTypeInstance;
methodDef = methodMatcher.mBestMethodDef;
}
}
}
}
// Look in static search. Always check for extension methods.
if ((methodDef == NULL) || (wantsExtensionCheck))
{
BfStaticSearch* staticSearch = mModule->GetStaticSearch();
if (staticSearch != NULL)
{
for (auto typeInst : staticSearch->mStaticTypes)
{
methodMatcher.mMethodType = wantsExtensionCheck ? BfMethodType_Extension : BfMethodType_Normal;
if (methodMatcher.CheckType(typeInst, BfTypedValue(), false))
{
isFailurePass = false;
curTypeInst = methodMatcher.mBestMethodTypeInstance;
methodDef = methodMatcher.mBestMethodDef;
}
}
}
}
if ((methodDef == NULL) && (hasFieldVal))
{
if (mPropDef != NULL)
fieldVal = GetResult();
if (fieldVal)
{
if (fieldVal.mType->IsGenericParam())
{
bool delegateFailed = true;
auto genericParamInstance = mModule->GetGenericParamInstance((BfGenericParamType*)fieldVal.mType);
BfTypeInstance* typeInstConstraint = NULL;
if (genericParamInstance->mTypeConstraint != NULL)
typeInstConstraint = genericParamInstance->mTypeConstraint->ToTypeInstance();
if ((typeInstConstraint != NULL) &&
((typeInstConstraint->IsInstanceOf(mModule->mCompiler->mDelegateTypeDef)) || (typeInstConstraint->IsInstanceOf(mModule->mCompiler->mFunctionTypeDef))))
{
MarkResultUsed();
if (argValues.mArguments->size() == 1)
{
BfExprEvaluator exprEvaluator(mModule);
exprEvaluator.mBfEvalExprFlags = BfEvalExprFlags_AllowParamsExpr;
exprEvaluator.Evaluate((*argValues.mArguments)[0]);
if ((mModule->mCurMethodState != NULL) && (exprEvaluator.mResultLocalVar != NULL) && (exprEvaluator.mResultLocalVarRefNode != NULL))
{
auto localVar = exprEvaluator.mResultLocalVar;
if ((localVar->mCompositeCount >= 0) && (localVar->mResolvedType == fieldVal.mType))
{
delegateFailed = false;
if (mModule->mCurMethodInstance->mIsUnspecialized)
{
auto retTypeType = mModule->CreateModifiedTypeType(fieldVal.mType, BfToken_RetType);
return mModule->GetFakeTypedValue(retTypeType);
}
}
}
}
if (delegateFailed)
{
mModule->Fail(StrFormat("Generic delegates can only be invoked with 'params %s' composite parameters", mModule->TypeToString(fieldVal.mType).c_str()), targetSrc);
return BfTypedValue();
}
}
}
if (fieldVal.mType->IsTypeInstance())
{
prevBindResult.Restore();
auto fieldTypeInst = fieldVal.mType->ToTypeInstance();
MarkResultUsed();
if (mFunctionBindResult != NULL)
{
mFunctionBindResult->mOrigTarget = BfTypedValue();
}
return MatchMethod(targetSrc, NULL, fieldVal, false, false, "Invoke", argValues, methodGenericArguments, checkedKind);
}
if (IsVar(fieldVal.mType))
{
FinishDeferredEvals(argValues);
return BfTypedValue(mModule->GetDefaultValue(fieldVal.mType), fieldVal.mType);
}
if (fieldVal.mType->IsGenericParam())
{
auto genericParam = mModule->GetGenericParamInstance((BfGenericParamType*)fieldVal.mType);
BfType* typeConstraint = genericParam->mTypeConstraint;
if ((mModule->mCurMethodInstance != NULL) && (mModule->mCurMethodInstance->mIsUnspecialized) && (mModule->mCurMethodInstance->mMethodInfoEx != NULL))
{
for (int genericParamIdx = (int)mModule->mCurMethodInstance->mMethodInfoEx->mMethodGenericArguments.size();
genericParamIdx < mModule->mCurMethodInstance->mMethodInfoEx->mGenericParams.size(); genericParamIdx++)
{
auto genericParam = mModule->mCurMethodInstance->mMethodInfoEx->mGenericParams[genericParamIdx];
if ((genericParam->mExternType == fieldVal.mType) && (genericParam->mTypeConstraint != NULL))
typeConstraint = genericParam->mTypeConstraint;
}
}
if ((typeConstraint != NULL) &&
((typeConstraint->IsDelegate()) || (typeConstraint->IsFunction())))
{
BfMethodInstance* invokeMethodInstance = mModule->GetRawMethodInstanceAtIdx(typeConstraint->ToTypeInstance(), 0, "Invoke");
methodDef = invokeMethodInstance->mMethodDef;
methodMatcher.mBestMethodInstance = invokeMethodInstance;
methodMatcher.mBestMethodTypeInstance = invokeMethodInstance->GetOwner();
methodMatcher.mBestMethodDef = invokeMethodInstance->mMethodDef;
target = mModule->GetDefaultTypedValue(methodMatcher.mBestMethodTypeInstance);
isFailurePass = false;
isIndirectMethodCall = true;
}
}
else if (fieldVal.mType->IsMethodRef())
{
auto functionBindResults = prevBindResult.mPrevVal;
if (functionBindResults != NULL)
{
functionBindResults->mOrigTarget = fieldVal;
}
origTarget = fieldVal;
auto methodRefType = (BfMethodRefType*)fieldVal.mType;
BfMethodInstance* methodInstance = methodRefType->mMethodRef;
methodDef = methodInstance->mMethodDef;
if (methodDef->mIsLocalMethod)
{
methodMatcher.mBestMethodInstance = mModule->ReferenceExternalMethodInstance(methodInstance);
}
else
{
BfTypeVector methodGenericArguments;
if (methodInstance->mMethodInfoEx != NULL)
methodGenericArguments = methodInstance->mMethodInfoEx->mMethodGenericArguments;
methodMatcher.mBestMethodInstance = mModule->GetMethodInstance(methodInstance->GetOwner(), methodInstance->mMethodDef, methodGenericArguments);
}
methodMatcher.mBestMethodTypeInstance = methodInstance->GetOwner();
if (methodInstance->HasThis())
{
bool failed = false;
target = DoImplicitArgCapture(targetSrc, methodInstance, -1, failed, BfImplicitParamKind_General, origTarget);
}
else if (!methodDef->mIsStatic)
{
auto thisType = methodInstance->GetParamType(-1);
BF_ASSERT(thisType->IsValuelessType());
target = BfTypedValue(mModule->mBfIRBuilder->GetFakeVal(), methodMatcher.mBestMethodTypeInstance);
}
else
target = BfTypedValue(methodMatcher.mBestMethodTypeInstance);
methodMatcher.mBypassVirtual = true;
bypassVirtual = true;
isFailurePass = false;
isIndirectMethodCall = true;
}
if (methodDef == NULL)
{
mModule->Fail(StrFormat("Cannot perform invocation on type '%s'", mModule->TypeToString(fieldVal.mType).c_str()), targetSrc);
return BfTypedValue();
}
}
}
// This will flush out any new ambiguity errors from extension methods
methodMatcher.FlushAmbiguityError();
if (methodDef == NULL)
{
FinishDeferredEvals(argValues);
auto compiler = mModule->mCompiler;
if ((compiler->IsAutocomplete()) && (compiler->mResolvePassData->mAutoComplete->CheckFixit(targetSrc)))
{
mModule->CheckTypeRefFixit(targetSrc);
bool wantStatic = !target.mValue;
if ((targetType == NULL) && (allowImplicitThis))
{
targetType = mModule->mCurTypeInstance;
if (mModule->mCurMethodInstance != NULL)
wantStatic = mModule->mCurMethodInstance->mMethodDef->mIsStatic;
}
if (targetType != NULL)
{
auto typeInst = targetType->ToTypeInstance();
if ((targetType != NULL) && (!methodName.IsEmpty()))
{
BfTypeVector paramTypes;
for (int argIdx = 0; argIdx < (int)argValues.mResolvedArgs.size(); argIdx++)
{
auto& resolvedArg = argValues.mResolvedArgs[argIdx];
paramTypes.Add(resolvedArg.mTypedValue.mType);
}
autoComplete->FixitAddMethod(typeInst, methodName, mExpectingType, paramTypes, wantStatic);
}
}
}
if (methodName.IsEmpty())
{
// Would have caused a parsing error
}
else if (target.mType != NULL)
{
if (mModule->PreFail())
{
if ((origTarget.mType->IsPointer()) && (origTarget.mType->GetUnderlyingType()->IsObjectOrInterface()))
{
mModule->Fail(StrFormat("Methods cannot be called on type '%s' because the type is a pointer to a reference type (ie: a double-reference).",
mModule->TypeToString(origTarget.mType).c_str()), targetSrc);
}
else
mModule->Fail(StrFormat("Method '%s' does not exist in type '%s'", methodName.c_str(), mModule->TypeToString(target.mType).c_str()), targetSrc);
}
}
else
{
if (mModule->PreFail())
mModule->Fail(StrFormat("Method '%s' does not exist", methodName.c_str()), targetSrc);
}
return BfTypedValue();
}
if ((prevBindResult.mPrevVal != NULL) && (methodMatcher.mMethodCheckCount > 1))
prevBindResult.mPrevVal->mCheckedMultipleMethods = true;
BfType* overrideReturnType = NULL;
BfModuleMethodInstance moduleMethodInstance = GetSelectedMethod(targetSrc, curTypeInst, methodDef, methodMatcher, &overrideReturnType);
if ((mModule->mAttributeState != NULL) && ((mModule->mAttributeState->mFlags & (BfAttributeState::Flag_StopOnError | BfAttributeState::Flag_HadError)) ==
(BfAttributeState::Flag_StopOnError | BfAttributeState::Flag_HadError)))
{
FinishDeferredEvals(argValues);
return BfTypedValue();
}
if ((moduleMethodInstance.mMethodInstance != NULL) && (!mModule->CheckUseMethodInstance(moduleMethodInstance.mMethodInstance, targetSrc)))
{
FinishDeferredEvals(argValues);
return BfTypedValue();
}
if ((mModule->mCurMethodInstance != NULL) && (mModule->mCurMethodInstance->mIsUnspecialized))
{
if (methodMatcher.mHasVarArguments)
{
BfType* retType = mModule->GetPrimitiveType(BfTypeCode_Var);
if ((!methodMatcher.mHadVarConflictingReturnType) && (methodMatcher.mBestRawMethodInstance != NULL) && (!methodMatcher.mBestRawMethodInstance->mReturnType->IsUnspecializedTypeVariation()) &&
(prevBindResult.mPrevVal == NULL))
{
if ((!methodMatcher.mBestRawMethodInstance->mReturnType->IsGenericParam()) ||
(((BfGenericParamType*)methodMatcher.mBestRawMethodInstance->mReturnType)->mGenericParamKind != BfGenericParamKind_Method))
retType = methodMatcher.mBestRawMethodInstance->mReturnType;
}
return mModule->GetDefaultTypedValue(retType, true, BfDefaultValueKind_Addr);
}
}
if ((bypassVirtual) && (!target.mValue) && (target.mType->IsInterface()))
{
target = mModule->GetThis();
}
if (!moduleMethodInstance)
{
FinishDeferredEvals(argValues);
if (mModule->IsInUnspecializedGeneric())
return mModule->GetDefaultTypedValue(mModule->GetPrimitiveType(BfTypeCode_Var));
return BfTypedValue();
}
bool isSkipCall = moduleMethodInstance.mMethodInstance->IsSkipCall(bypassVirtual);
if ((moduleMethodInstance.mMethodInstance->IsOrInUnspecializedVariation()) && (!mModule->mBfIRBuilder->mIgnoreWrites))
{
// Invalid methods such as types with a HasVar tuple generic arg will be marked as mIsUnspecializedVariation and shouldn't actually be called
FinishDeferredEvals(argValues);
return mModule->GetDefaultTypedValue(moduleMethodInstance.mMethodInstance->mReturnType, true, BfDefaultValueKind_Addr);
}
if (methodDef->IsEmptyPartial())
{
// Ignore call
return mModule->GetDefaultTypedValue(moduleMethodInstance.mMethodInstance->mReturnType, true, BfDefaultValueKind_Addr);
}
if ((moduleMethodInstance.mMethodInstance->mMethodDef->mIsStatic) && (moduleMethodInstance.mMethodInstance->GetOwner()->IsInterface()))
{
bool isConstrained = false;
if (target.mType != NULL)
isConstrained = target.mType->IsGenericParam();
if ((target.mType == NULL) && ((mModule->mCurMethodInstance->mIsForeignMethodDef) || (mModule->mCurTypeInstance->IsInterface())))
isConstrained = true;
// If mIgnoreWrites is off then we skip devirtualization, so allow this
if ((target.mType != NULL) && (!target.mType->IsInterface()) && (mModule->mBfIRBuilder->mIgnoreWrites))
isConstrained = true;
if (!isConstrained)
{
if (mModule->mCurTypeInstance->IsInterface())
{
if (methodDef->mBody == NULL)
mModule->Fail(StrFormat("Interface method '%s' must provide a body to be explicitly invoked", mModule->MethodToString(moduleMethodInstance.mMethodInstance).c_str()), targetSrc);
}
else
mModule->Fail(StrFormat("Static interface method '%s' can only be dispatched from a concrete type, consider using this interface as a generic constraint", mModule->MethodToString(moduleMethodInstance.mMethodInstance).c_str()), targetSrc);
FinishDeferredEvals(argValues);
return mModule->GetDefaultTypedValue(moduleMethodInstance.mMethodInstance->mReturnType, true, BfDefaultValueKind_Addr);
}
}
// 'base' could really mean 'this' if we're in an extension
if ((target.IsBase()) && (targetTypeInst == mModule->mCurTypeInstance))
target.ToThis();
else
MakeBaseConcrete(target);
BfType* callTargetType = curTypeInst;
if (methodDef->mMethodType == BfMethodType_Extension)
{
callTargetType = moduleMethodInstance.mMethodInstance->GetParamType(0);
if ((callTargetType->IsRef()) && (target.IsAddr()) && (!target.IsReadOnly()) && (target.mType->IsValueType()))
{
target = BfTypedValue(target.mValue, mModule->CreateRefType(target.mType));
}
}
BfTypedValue callTarget;
if (isSkipCall)
{
// Just a fake value so we can continue on without generating any code (boxing, conversion, etc)
if (target)
{
if (((target.mType->IsComposite()) || (target.mType->IsTypedPrimitive())))
{
if ((moduleMethodInstance.mMethodInstance->mMethodDef->mIsMutating) &&
((target.IsReadOnly()) || (!target.IsAddr())))
{
String err = StrFormat("call mutating method '%s' on", mModule->MethodToString(moduleMethodInstance.mMethodInstance).c_str());
CheckModifyResult(target, targetSrc, err.c_str());
}
}
callTarget = BfTypedValue(mModule->mBfIRBuilder->GetFakeVal(), targetTypeInst);
}
}
else if (targetTypeInst == callTargetType)
{
if ((target) && (methodDef->HasNoThisSplat()))
{
callTarget = mModule->MakeAddressable(target);
}
else
callTarget = target;
if ((callTarget) && (moduleMethodInstance.mMethodInstance->GetOwner()->IsInterface()))
{
auto wantThis = moduleMethodInstance.mMethodInstance->GetParamType(-1);
if ((callTarget.mType != wantThis) && (wantThis->IsInterface()))
callTarget = mModule->Cast(targetSrc, callTarget, wantThis, BfCastFlags_Explicit);
}
}
else if (target)
{
if (methodMatcher.mFakeConcreteTarget)
{
BF_ASSERT(callTargetType->IsInterface());
callTarget = mModule->GetDefaultTypedValue(mModule->CreateConcreteInterfaceType(callTargetType->ToTypeInstance()));
}
else if (((target.mType->IsGenericParam()) || (target.mType->IsConcreteInterfaceType())) && (callTargetType->IsInterface()))
{
// Leave as generic
callTarget = target;
}
else
{
bool handled = false;
if ((target.mType->IsTypedPrimitive()) && (callTargetType->IsTypedPrimitive()))
{
handled = true;
callTarget = target;
}
else if ((target.mType->IsStructOrStructPtr()) || (target.mType->IsTypedPrimitive()))
{
//BF_ASSERT(target.IsAddr());
if (callTargetType->IsObjectOrInterface())
{
// Box it
callTarget = mModule->Cast(targetSrc, target, callTargetType, BfCastFlags_Explicit);
handled = true;
}
else
{
//BF_ASSERT(target.IsAddr() || target.IsSplat() || target.mType->IsPointer());
}
}
else
target = mModule->LoadValue(target);
if (!handled)
{
// Could we have just unconditionally done this?
callTarget = mModule->Cast(targetSrc, target, callTargetType, BfCastFlags_Explicit);
}
}
}
if (isFailurePass)
{
BfError* error;
if (methodMatcher.mMatchFailKind == BfMethodMatcher::MatchFailKind_CheckedMismatch)
error = mModule->Fail(StrFormat("'%s' cannot be used because its 'checked' specifier does not match the requested specifier", mModule->MethodToString(moduleMethodInstance.mMethodInstance).c_str()), targetSrc);
else
error = mModule->Fail(StrFormat("'%s' is inaccessible due to its protection level", mModule->MethodToString(moduleMethodInstance.mMethodInstance).c_str()), targetSrc);
if (error != NULL)
{
if ((error != NULL) && (moduleMethodInstance.mMethodInstance->mMethodDef->mMethodDeclaration != NULL))
mModule->mCompiler->mPassInstance->MoreInfo(StrFormat("See method declaration"), moduleMethodInstance.mMethodInstance->mMethodDef->GetRefNode());
}
}
if ((mModule->mCompiler->mResolvePassData != NULL) && (methodDef != NULL))
{
auto identifierNode = BfNodeDynCast<BfIdentifierNode>(targetSrc);
while (auto qualifiedNameNode = BfNodeDynCast<BfQualifiedNameNode>(identifierNode))
identifierNode = qualifiedNameNode->mRight;
if ((identifierNode != NULL) && (methodDef->mIdx >= 0) && (!isIndirectMethodCall) &&
((targetTypeInst == NULL) || (!targetTypeInst->IsDelegateOrFunction())))
{
mModule->mCompiler->mResolvePassData->HandleMethodReference(identifierNode, moduleMethodInstance.mMethodInstance->GetOwner()->mTypeDef, methodDef);
auto autoComplete = GetAutoComplete();
if ((autoComplete != NULL) && (autoComplete->IsAutocompleteNode(identifierNode)))
{
autoComplete->SetDefinitionLocation(methodDef->GetRefNode(), true);
int virtualIdx = moduleMethodInstance.mMethodInstance->mVirtualTableIdx;
if ((autoComplete->mResolveType == BfResolveType_GoToDefinition) &&
(virtualIdx != -1) && (targetTypeInst != NULL) && (!targetTypeInst->IsStruct()) && (!targetTypeInst->IsTypedPrimitive()) && (!targetTypeInst->IsInterface()) &&
// VirtualMethodTable can be empty if the non-autocomplete classifier hasn't completed yet. Allow failure, a PopulateType here can't force the method table to fill out
(targetTypeInst->mVirtualMethodTable.size() != 0))
{
auto methodEntry = targetTypeInst->mVirtualMethodTable[virtualIdx];
if (methodEntry.mImplementingMethod.mMethodNum != -1)
{
BfMethodInstance* callingMethodInstance = methodEntry.mImplementingMethod;
if (callingMethodInstance != NULL)
{
auto callingMethodDef = callingMethodInstance->mMethodDef;
auto callingMethodDeclaration = callingMethodDef->GetMethodDeclaration();
if ((callingMethodDeclaration != NULL) && (callingMethodDeclaration->mNameNode != NULL))
autoComplete->SetDefinitionLocation(callingMethodDeclaration->mNameNode, true);
}
}
}
if (autoComplete->mDefType == NULL)
{
autoComplete->mDefMethod = methodDef;
autoComplete->mDefType = moduleMethodInstance.mMethodInstance->GetOwner()->mTypeDef;
}
if (autoComplete->mResolveType == BfResolveType_GetResultString)
{
autoComplete->mResultString = ":";
autoComplete->mResultString += mModule->MethodToString(moduleMethodInstance.mMethodInstance);
auto methodDecl = moduleMethodInstance.mMethodInstance->mMethodDef->GetMethodDeclaration();
if ((methodDecl != NULL) && (methodDecl->mDocumentation != NULL))
{
autoComplete->mResultString += "\x03";
methodDecl->mDocumentation->GetDocString(autoComplete->mResultString);
}
}
}
}
}
// This was causing forward-backward-forward steps when we just used 'targetSrc'. Using closeParen is undesirable because most of the time
// we DO just want it to just go to the targetSrc... do we even need this?
/*if (auto invokeExpr = BfNodeDynCast<BfInvocationExpression>(targetSrc->mParent))
{
// We set the srcPos to the close paren right before the call so we keep a forward progression of src positions in the case
// where some of the params are method calls and such
if (invokeExpr->mCloseParen != NULL)
mModule->UpdateExprSrcPos(invokeExpr->mCloseParen);
else
mModule->UpdateExprSrcPos(targetSrc);
}
else
mModule->UpdateExprSrcPos(targetSrc);*/
if (!mModule->mBfIRBuilder->mIgnoreWrites)
{
//BF_ASSERT(!callTarget.mValue.IsFake());
}
prevBindResult.Restore();
// Check mut
if ((callTarget.mType != NULL) &&
(callTarget.mType->IsGenericParam()) &&
((!callTarget.IsAddr()) || (callTarget.IsReadOnly())) &&
(callTarget.mKind != BfTypedValueKind_MutableValue) &&
(moduleMethodInstance.mMethodInstance->mMethodDef->mIsMutating))
{
auto genericParamInstance = mModule->GetGenericParamInstance((BfGenericParamType*)callTarget.mType);
bool needsMut = true;
if ((genericParamInstance->mGenericParamFlags & (BfGenericParamFlag_StructPtr | BfGenericParamFlag_Class | BfGenericParamFlag_Var)) != 0)
needsMut = false;
if (genericParamInstance->mTypeConstraint != NULL)
{
auto typeConstaintTypeInstance = genericParamInstance->mTypeConstraint->ToTypeInstance();
if ((typeConstaintTypeInstance != NULL) && (!typeConstaintTypeInstance->IsComposite()))
needsMut = false;
}
if ((mFunctionBindResult != NULL) && (mFunctionBindResult->mSkipMutCheck))
needsMut = false;
if (needsMut)
{
String err = StrFormat("call mutating method '%s' on", mModule->MethodToString(moduleMethodInstance.mMethodInstance).c_str());
CheckModifyResult(callTarget, targetSrc, err.c_str(), true);
}
}
// Check mut on interface
if ((callTarget.mType != NULL) &&
(callTarget.mType->IsInterface()) &&
(target.IsThis()) &&
(mModule->mCurTypeInstance) &&
(!mModule->mCurMethodInstance->mMethodDef->mIsMutating) &&
(methodDef->mIsMutating))
{
mModule->Fail(StrFormat("Cannot call mutating method '%s' within default interface method '%s'. Consider adding 'mut' specifier to this method.",
mModule->MethodToString(moduleMethodInstance.mMethodInstance).c_str(), mModule->MethodToString(mModule->mCurMethodInstance).c_str()), targetSrc);
}
BfTypedValue result;
BfTypedValue argCascade;
//
{
SetAndRestoreValue<BfEvalExprFlags> prevEvalExprFlag(mBfEvalExprFlags);
if ((mModule->mAttributeState != NULL) && (mModule->mAttributeState->mCustomAttributes != NULL) && (mModule->mAttributeState->mCustomAttributes->Contains(mModule->mCompiler->mConstEvalAttributeTypeDef)))
{
mModule->mAttributeState->mUsed = true;
mBfEvalExprFlags = (BfEvalExprFlags)(mBfEvalExprFlags | BfEvalExprFlags_Comptime);
}
else if ((moduleMethodInstance.mMethodInstance->mComptimeFlags & BfComptimeFlag_ConstEval) != 0)
{
mBfEvalExprFlags = (BfEvalExprFlags)(mBfEvalExprFlags | BfEvalExprFlags_Comptime);
}
else if (((moduleMethodInstance.mMethodInstance->mComptimeFlags & BfComptimeFlag_Comptime) != 0) && (!mModule->mIsComptimeModule))
{
if ((mModule->mCurMethodInstance == NULL) || (mModule->mCurMethodInstance->mComptimeFlags == BfComptimeFlag_None))
mBfEvalExprFlags = (BfEvalExprFlags)(mBfEvalExprFlags | BfEvalExprFlags_Comptime);
}
if (((moduleMethodInstance.mMethodInstance->mComptimeFlags & BfComptimeFlag_OnlyFromComptime) != 0) &&
((mBfEvalExprFlags & BfEvalExprFlags_Comptime) != 0) &&
((mModule->mCurMethodInstance == NULL) || (mModule->mCurMethodInstance->mComptimeFlags == BfComptimeFlag_None)) &&
(!mModule->mIsComptimeModule))
{
mModule->Fail(StrFormat("Method '%s' can only be invoked at comptime. Consider adding [Comptime] to the current method.", mModule->MethodToString(moduleMethodInstance.mMethodInstance).c_str()), targetSrc);
}
BfCreateCallFlags subCallFlags = BfCreateCallFlags_None;
if (bypassVirtual)
subCallFlags = (BfCreateCallFlags)(subCallFlags | BfCreateCallFlags_BypassVirtual);
if (skipThis)
subCallFlags = (BfCreateCallFlags)(subCallFlags | BfCreateCallFlags_SkipThis);
result = CreateCall(targetSrc, callTarget, origTarget, methodDef, moduleMethodInstance, subCallFlags, argValues.mResolvedArgs, &argCascade);
}
if (overrideReturnType != NULL)
{
BF_ASSERT(moduleMethodInstance.mMethodInstance->mIsUnspecializedVariation);
result = mModule->GetDefaultTypedValue(overrideReturnType, false, BfDefaultValueKind_Addr);
}
if (result)
{
if (result.mType->IsRef())
result = mModule->RemoveRef(result);
}
PerformCallChecks(moduleMethodInstance.mMethodInstance, targetSrc);
if (result)
{
bool discardedReturnValue = mUsedAsStatement;
if (discardedReturnValue)
{
auto _ShowDiscardWaring = [&](const String& text, BfCustomAttributes* customAttributes, BfIRConstHolder* constHolder, BfAstNode* refNode)
{
if (customAttributes != NULL)
{
auto customAttribute = customAttributes->Get(mModule->mCompiler->mNoDiscardAttributeTypeDef);
if (!customAttribute->mCtorArgs.IsEmpty())
{
String* str = mModule->GetStringPoolString(customAttribute->mCtorArgs[0], constHolder);
if ((str != NULL) && (!str->IsEmpty()))
{
mModule->Warn(0, text + ": " + *str, targetSrc);
return;
}
}
}
mModule->Warn(0, text, targetSrc);
};
bool showedWarning = false;
if (moduleMethodInstance.mMethodInstance->mMethodDef->mIsNoDiscard)
{
_ShowDiscardWaring("Discarding return value of method with [NoDiscard] attribute", moduleMethodInstance.mMethodInstance->GetCustomAttributes(),
moduleMethodInstance.mMethodInstance->GetOwner()->mConstHolder, targetSrc);
showedWarning = true;
}
auto typeInst = result.mType->ToTypeInstance();
if (typeInst != NULL)
{
if ((typeInst->mTypeDef->mIsNoDiscard) && (!showedWarning))
{
_ShowDiscardWaring("Discarding return value whose type has [NoDiscard] attribute", typeInst->mCustomAttributes, typeInst->mConstHolder, targetSrc);
}
BfModuleMethodInstance moduleMethodInstance = mModule->GetMethodByName(typeInst, "ReturnValueDiscarded", 0, true);
if (moduleMethodInstance)
{
bool wasCapturingMethodMatchInfo = false;
if (autoComplete != NULL)
{
wasCapturingMethodMatchInfo = autoComplete->mIsCapturingMethodMatchInfo;
autoComplete->mIsCapturingMethodMatchInfo = false;
}
defer
(
if (autoComplete != NULL)
autoComplete->mIsCapturingMethodMatchInfo = wasCapturingMethodMatchInfo;
);
auto wasGetDefinition = (autoComplete != NULL) && (autoComplete->mIsGetDefinition);
if (wasGetDefinition)
autoComplete->mIsGetDefinition = false;
result = mModule->MakeAddressable(result);
BfResolvedArgs resolvedArgs;
MatchMethod(targetSrc, NULL, result, false, false, "ReturnValueDiscarded", resolvedArgs, NULL);
if (wasGetDefinition)
autoComplete->mIsGetDefinition = true;
}
}
}
}
if (argCascade)
{
if (argCascade.mType->IsRef())
argCascade = mModule->RemoveRef(argCascade);
result = argCascade;
}
if (result)
{
if ((result.mType->IsUnspecializedTypeVariation()) && (moduleMethodInstance.mMethodInstance->GetOwner()->IsInterface()))
{
BfType* selfType = NULL;
if (methodMatcher.mSelfType != NULL)
{
BF_ASSERT(mModule->IsInGeneric());
selfType = methodMatcher.mSelfType;
}
else
{
// Will be an error
selfType = methodMatcher.mBestMethodTypeInstance;
}
if ((selfType != NULL) && (!selfType->IsInterface()))
{
SetAndRestoreValue<BfTypeInstance*> prevCurTypeInst(mModule->mCurTypeInstance, selfType->ToTypeInstance());
auto resolvedType = mModule->ResolveGenericType(result.mType, NULL, NULL);
if ((resolvedType != NULL) && (resolvedType != result.mType))
result = mModule->GetDefaultTypedValue(resolvedType);
}
}
}
return result;
}
void BfExprEvaluator::LookupQualifiedName(BfQualifiedNameNode* nameNode, bool ignoreInitialError, bool* hadError)
{
BfIdentifierNode* nameLeft = nameNode->mLeft;
BfIdentifierNode* nameRight = nameNode->mRight;
StringT<64> fieldName;
if (nameNode->mRight != NULL)
nameNode->mRight->ToString(fieldName);
bool wasBaseLookup = false;
if (auto qualifiedLeftName = BfNodeDynCast<BfQualifiedNameNode>(nameNode->mLeft))
{
if (CheckIsBase(qualifiedLeftName->mRight))
{
wasBaseLookup = true;
auto type = mModule->ResolveTypeRef(qualifiedLeftName->mLeft, NULL);
if (type == NULL)
return;
auto fieldName = nameNode->mRight->ToString();
auto target = mModule->GetThis();
target.mType = type;
mResult = LookupField(nameNode->mRight, target, fieldName);
if ((mPropDef != NULL) && (mPropDef->IsVirtual()))
mPropDefBypassVirtual = true;
return;
}
}
if (!wasBaseLookup)
mResult = LookupIdentifier(nameNode->mLeft, ignoreInitialError, hadError);
GetResult();
if (!mResult)
{
if (!ignoreInitialError)
mModule->Fail("Identifier not found", nameNode->mLeft);
return;
}
if (mResult.mType->IsObject())
{
mResult = mModule->LoadValue(mResult, 0, mIsVolatileReference);
}
else if ((mResult.mType->IsPointer()) && mResult.mType->IsStructOrStructPtr())
{
BfPointerType* structPtrType = (BfPointerType*)mResult.mType;
mResult = mModule->LoadValue(mResult, 0, mIsVolatileReference);
mResult.mType = structPtrType->mElementType;
if (mResult.mKind == BfTypedValueKind_ThisValue)
mResult.mKind = BfTypedValueKind_ThisAddr;
else
mResult.mKind = BfTypedValueKind_Addr;
}
mIsVolatileReference = false;
mIsHeapReference = false;
if (!mResult)
return;
auto origResult = mResult;
auto lookupType = BindGenericType(nameNode, mResult.mType);
if (IsVar(mResult.mType))
{
mResult = BfTypedValue(mModule->GetDefaultValue(mResult.mType), mResult.mType, true);
return;
}
if ((!mResult.mType->IsTypeInstance()) && (!mResult.mType->IsGenericParam()))
{
if (hadError != NULL)
*hadError = true;
mModule->Fail(StrFormat("Type '%s' has no fields", mModule->TypeToString(mResult.mType).c_str()), nameNode->mLeft);
mResult = BfTypedValue();
return;
}
BfTypedValue lookupVal = mResult;
mResult = LookupField(nameNode->mRight, lookupVal, fieldName);
if ((!mResult) && (mPropDef == NULL) && (lookupType->IsGenericParam()))
{
auto genericParamInst = mModule->GetGenericParamInstance((BfGenericParamType*)lookupType);
SizedArray<BfTypeInstance*, 8> searchConstraints;
for (auto ifaceConstraint : genericParamInst->mInterfaceConstraints)
{
if (!searchConstraints.Contains(ifaceConstraint))
{
searchConstraints.push_back(ifaceConstraint);
for (auto& innerIFaceEntry : ifaceConstraint->mInterfaces)
{
auto innerIFace = innerIFaceEntry.mInterfaceType;
if (!searchConstraints.Contains(innerIFace))
{
searchConstraints.push_back(innerIFace);
}
}
}
}
BfTypedValue prevTarget;
BfPropertyDef* prevDef = NULL;
for (auto ifaceConstraint : searchConstraints)
{
BfTypedValue lookupVal = BfTypedValue(mModule->mBfIRBuilder->GetFakeVal(), ifaceConstraint);
mResult = LookupField(nameNode->mRight, lookupVal, fieldName);
if (mPropDef != NULL)
{
if (prevDef != NULL)
{
bool isBetter = mModule->TypeIsSubTypeOf(mPropTarget.mType->ToTypeInstance(), prevTarget.mType->ToTypeInstance());
bool isWorse = mModule->TypeIsSubTypeOf(prevTarget.mType->ToTypeInstance(), mPropTarget.mType->ToTypeInstance());
if ((isWorse) && (!isBetter))
continue;
if (isBetter == isWorse)
{
auto error = mModule->Fail("Ambiguous property reference", nameNode->mRight);
if (error != NULL)
{
mModule->mCompiler->mPassInstance->MoreInfo(StrFormat("'%s' has a candidate", mModule->TypeToString(prevTarget.mType).c_str()), prevDef->GetRefNode());
mModule->mCompiler->mPassInstance->MoreInfo(StrFormat("'%s' has a candidate", mModule->TypeToString(mPropTarget.mType).c_str()), mPropDef->GetRefNode());
}
}
}
prevDef = mPropDef;
prevTarget = mPropTarget;
}
}
/*if ((mResult) || (mPropDef != NULL))
break;*/
}
if (mPropDef != NULL)
{
mOrigPropTarget = origResult;
if (((CheckIsBase(nameNode->mLeft)) || (wasBaseLookup)) && (mPropDef->IsVirtual()))
mPropDefBypassVirtual = true;
}
if ((mResult) || (mPropDef != NULL))
return;
if (hadError != NULL)
*hadError = true;
BfTypeInstance* typeInst = lookupType->ToTypeInstance();
auto compiler = mModule->mCompiler;
if ((typeInst != NULL) && (compiler->IsAutocomplete()) && (compiler->mResolvePassData->mAutoComplete->CheckFixit(nameNode->mRight)))
{
FixitAddMember(typeInst, mExpectingType, nameNode->mRight->ToString(), false);
}
mModule->Fail(StrFormat("Unable to find member '%s' in '%s'", fieldName.c_str(), mModule->TypeToString(lookupType).c_str()), nameNode->mRight);
}
void BfExprEvaluator::LookupQualifiedName(BfAstNode* nameNode, BfIdentifierNode* nameLeft, BfIdentifierNode* nameRight, bool ignoreInitialError, bool* hadError)
{
String fieldName;
if (nameRight != NULL)
fieldName = nameRight->ToString();
bool wasBaseLookup = false;
if (auto qualifiedLeftName = BfNodeDynCast<BfQualifiedNameNode>(nameLeft))
{
if (CheckIsBase(qualifiedLeftName->mRight))
{
wasBaseLookup = true;
auto type = mModule->ResolveTypeRef(qualifiedLeftName->mLeft, NULL);
if (type == NULL)
return;
auto fieldName = nameRight->ToString();
auto target = mModule->GetThis();
target.mType = type;
mResult = LookupField(nameRight, target, fieldName);
if ((mPropDef != NULL) && (mPropDef->IsVirtual()))
mPropDefBypassVirtual = true;
return;
}
}
if (!wasBaseLookup)
{
mResult = LookupIdentifier(nameLeft, ignoreInitialError, hadError);
if ((mResult) && (!mResult.mType->IsComposite()))
CheckResultForReading(mResult);
}
GetResult();
if (!mResult)
{
if (!ignoreInitialError)
mModule->Fail("Identifier not found", nameLeft);
return;
}
if (mResult.mType->IsObject())
{
mResult = mModule->LoadValue(mResult, 0, mIsVolatileReference);
}
else if ((mResult.mType->IsPointer()) && mResult.mType->IsStructOrStructPtr())
{
BfPointerType* structPtrType = (BfPointerType*)mResult.mType;
mResult = mModule->LoadValue(mResult, 0, mIsVolatileReference);
mResult.mType = structPtrType->mElementType;
if (mResult.mKind == BfTypedValueKind_ThisValue)
mResult.mKind = BfTypedValueKind_ThisAddr;
else
mResult.mKind = BfTypedValueKind_Addr;
}
mIsVolatileReference = false;
mIsHeapReference = false;
if (!mResult)
return;
if (mResult.mType->IsAllocType())
mResult.mType = mResult.mType->GetUnderlyingType();
auto origResult = mResult;
if (IsVar(mResult.mType))
{
auto varType = mModule->GetPrimitiveType(BfTypeCode_Var);
mResult = BfTypedValue(mModule->GetDefaultValue(varType), varType, true);
return;
}
if ((!mResult.mType->IsTypeInstance()) && (!mResult.mType->IsGenericParam()))
{
if (mResult.mType->IsSizedArray())
{
if (mResult.mType->IsValuelessType())
{
mResult.mType = mModule->GetWrappedStructType(mResult.mType);
mResult.mValue = mModule->mBfIRBuilder->GetFakeVal();
}
else
{
mResult = mModule->MakeAddressable(mResult);
mResult.mType = mModule->GetWrappedStructType(mResult.mType);
mResult.mValue = mModule->mBfIRBuilder->CreateBitCast(mResult.mValue, mModule->mBfIRBuilder->MapTypeInstPtr(mResult.mType->ToTypeInstance()));
}
}
else if (mResult.mType->IsWrappableType())
{
mResult.mType = mModule->GetWrappedStructType(mResult.mType);
}
else
{
if (hadError != NULL)
*hadError = true;
mModule->Fail(StrFormat("Type '%s' has no fields", mModule->TypeToString(mResult.mType).c_str()), nameLeft);
mResult = BfTypedValue();
return;
}
}
BfTypedValue lookupVal = mResult;
auto lookupType = BindGenericType(nameNode, mResult.mType);
if ((lookupType->IsGenericParam()) && (!mResult.mType->IsGenericParam()))
{
// Try to lookup from generic binding
mResult = LookupField(nameRight, BfTypedValue(mModule->mBfIRBuilder->GetFakeVal(), lookupType), fieldName, BfLookupFieldFlag_BindOnly);
if (mPropDef != NULL)
{
mOrigPropTarget = lookupVal;
return;
}
}
if (mPropDef == NULL)
mResult = LookupField(nameRight, lookupVal, fieldName, CheckIsBase(nameLeft) ? BfLookupFieldFlag_BaseLookup : BfLookupFieldFlag_None);
if ((!mResult) && (mPropDef == NULL) && (lookupType->IsGenericParam()))
{
auto genericParamInst = mModule->GetGenericParamInstance((BfGenericParamType*)lookupType);
SizedArray<BfTypeInstance*, 8> searchConstraints;
for (auto ifaceConstraint : genericParamInst->mInterfaceConstraints)
{
if (!searchConstraints.Contains(ifaceConstraint))
{
searchConstraints.push_back(ifaceConstraint);
for (auto& innerIFaceEntry : ifaceConstraint->mInterfaces)
{
auto innerIFace = innerIFaceEntry.mInterfaceType;
if (!searchConstraints.Contains(innerIFace))
{
searchConstraints.push_back(innerIFace);
}
}
}
}
BfTypedValue prevTarget;
BfPropertyDef* prevDef = NULL;
for (auto ifaceConstraint : searchConstraints)
{
BfTypedValue lookupVal = BfTypedValue(mModule->mBfIRBuilder->GetFakeVal(), ifaceConstraint);
mResult = LookupField(nameRight, lookupVal, fieldName);
if (mPropDef != NULL)
{
if (prevDef != NULL)
{
bool isBetter = mModule->TypeIsSubTypeOf(mPropTarget.mType->ToTypeInstance(), prevTarget.mType->ToTypeInstance());
bool isWorse = mModule->TypeIsSubTypeOf(prevTarget.mType->ToTypeInstance(), mPropTarget.mType->ToTypeInstance());
if ((isWorse) && (!isBetter))
continue;
if (isBetter == isWorse)
{
auto error = mModule->Fail("Ambiguous property reference", nameRight);
if (error != NULL)
{
mModule->mCompiler->mPassInstance->MoreInfo(StrFormat("'%s' has a candidate", mModule->TypeToString(prevTarget.mType).c_str()), prevDef->GetRefNode());
mModule->mCompiler->mPassInstance->MoreInfo(StrFormat("'%s' has a candidate", mModule->TypeToString(mPropTarget.mType).c_str()), mPropDef->GetRefNode());
}
}
}
prevDef = mPropDef;
prevTarget = mPropTarget;
}
}
if ((mPropDef == NULL) && (genericParamInst->IsEnum()))
{
if ((fieldName == "Underlying") || (fieldName == "UnderlyingRef"))
{
mResult = mModule->GetDefaultTypedValue(mModule->GetPrimitiveType(BfTypeCode_Var));
return;
}
}
}
if (mPropDef != NULL)
{
mOrigPropTarget = origResult;
if ((CheckIsBase(nameLeft)) || (wasBaseLookup))
{
if (mPropDef->IsVirtual())
mPropDefBypassVirtual = true;
}
}
if ((mResult) || (mPropDef != NULL))
return;
if (hadError != NULL)
*hadError = true;
BfTypeInstance* typeInst = lookupType->ToTypeInstance();
auto compiler = mModule->mCompiler;
if ((typeInst != NULL) && (compiler->IsAutocomplete()) && (compiler->mResolvePassData->mAutoComplete->CheckFixit(nameRight)))
{
FixitAddMember(typeInst, mExpectingType, nameRight->ToString(), false);
}
mModule->Fail(StrFormat("Unable to find member '%s' in '%s'", fieldName.c_str(), mModule->TypeToString(lookupType).c_str()), nameRight);
}
void BfExprEvaluator::LookupQualifiedStaticField(BfQualifiedNameNode* nameNode, bool ignoreIdentifierNotFoundError)
{
// Lookup left side as a type
{
BfType* type = NULL;
{
type = mModule->ResolveTypeRef(nameNode->mLeft, NULL, BfPopulateType_Data, BfResolveTypeRefFlag_AllowRef);
mModule->CheckTypeRefFixit(nameNode->mLeft);
}
if (type != NULL)
{
BfTypedValue lookupType;
if (type->IsWrappableType())
lookupType = BfTypedValue(mModule->GetWrappedStructType(type));
else
lookupType = BfTypedValue(type);
auto findName = nameNode->mRight->ToString();
/*if (findName == "base")
{
mResult = BfTypedValue(lookupType);
return;
}*/
mResult = LookupField(nameNode->mRight, lookupType, findName);
if ((mResult) || (mPropDef != NULL))
return;
if (lookupType.mType != NULL)
{
BfTypeInstance* typeInst = lookupType.mType->ToTypeInstance();
auto compiler = mModule->mCompiler;
if ((typeInst != NULL) && (compiler->IsAutocomplete()) && (compiler->mResolvePassData->mAutoComplete->CheckFixit(nameNode->mRight)))
{
FixitAddMember(typeInst, mExpectingType, nameNode->mRight->ToString(), true);
}
}
if ((mBfEvalExprFlags & BfEvalExprFlags_NoLookupError) == 0)
mModule->Fail("Field not found", nameNode->mRight);
return;
}
}
String fieldName = nameNode->mRight->ToString();
if (auto qualifiedLeftName = BfNodeDynCast<BfQualifiedNameNode>(nameNode->mLeft))
LookupQualifiedStaticField(qualifiedLeftName, true);
else if (auto leftName = BfNodeDynCast<BfIdentifierNode>(nameNode->mLeft))
{
mResult = LookupIdentifier(leftName);
}
GetResult();
if (!mResult)
{
if (!ignoreIdentifierNotFoundError)
mModule->Fail("Identifier not found", nameNode->mLeft);
return;
}
if (mResult.mType->IsObject())
{
mResult = mModule->LoadValue(mResult);
}
else if ((mResult.mType->IsPointer()) && mResult.mType->IsStructOrStructPtr())
{
BfPointerType* structPtrType = (BfPointerType*) mResult.mType;
mResult = mModule->LoadValue(mResult);
mResult.mType = structPtrType->mElementType;
}
if (!mResult)
return;
if (!mResult.mType->IsTypeInstance())
{
mModule->Fail(StrFormat("Type '%s' has no fields", mModule->TypeToString(mResult.mType).c_str()), nameNode->mLeft);
return;
}
auto leftResult = mResult;
mResult = LookupField(nameNode->mRight, leftResult, fieldName);
if ((mResult) || (mPropDef != NULL))
return;
mModule->Fail(StrFormat("Unable to find member '%s' in '%s'", fieldName.c_str(), mModule->TypeToString(leftResult.mType).c_str()), nameNode->mRight);
}
void BfExprEvaluator::LookupQualifiedStaticField(BfAstNode* nameNode, BfIdentifierNode* nameLeft, BfIdentifierNode* nameRight, bool ignoreIdentifierNotFoundError)
{
// Lookup left side as a type
{
BfType* type = mModule->ResolveTypeRef(nameLeft, NULL, BfPopulateType_Declaration, (BfResolveTypeRefFlags)(BfResolveTypeRefFlag_IgnoreLookupError | BfResolveTypeRefFlag_AllowGlobalContainer));
if (type != NULL)
{
BfTypedValue lookupType;
if (type->IsWrappableType())
lookupType = BfTypedValue(mModule->GetWrappedStructType(type));
else
lookupType = BfTypedValue(type);
auto findName = nameRight->ToString();
if ((lookupType.mType != NULL) && (lookupType.mType->IsGenericParam()))
{
auto genericParamInstance = mModule->GetGenericParamInstance((BfGenericParamType*)lookupType.mType);
if (genericParamInstance->mTypeConstraint != NULL)
{
mResult = LookupField(nameRight, BfTypedValue(genericParamInstance->mTypeConstraint), findName);
if ((mResult) || (mPropDef != NULL))
{
mOrigPropTarget = lookupType;
return;
}
}
for (auto constraint : genericParamInstance->mInterfaceConstraints)
{
mResult = LookupField(nameRight, BfTypedValue(constraint), findName);
if ((mResult) || (mPropDef != NULL))
{
mOrigPropTarget = lookupType;
return;
}
}
}
/*if (findName == "base")
{
mResult = BfTypedValue(lookupType);
return;
}*/
mResult = LookupField(nameRight, lookupType, findName);
if ((mResult) || (mPropDef != NULL))
return;
if (lookupType.mType != NULL)
{
BfTypeInstance* typeInst = lookupType.mType->ToTypeInstance();
auto compiler = mModule->mCompiler;
if ((typeInst != NULL) && (compiler->IsAutocomplete()) && (compiler->mResolvePassData->mAutoComplete->CheckFixit(nameRight)))
{
FixitAddMember(typeInst, mExpectingType, nameRight->ToString(), true);
}
}
if ((mBfEvalExprFlags & BfEvalExprFlags_NoLookupError) == 0)
mModule->Fail("Field not found", nameRight);
return;
}
}
String fieldName = nameRight->ToString();
if (auto qualifiedLeftName = BfNodeDynCast<BfQualifiedNameNode>(nameLeft))
LookupQualifiedStaticField(qualifiedLeftName, qualifiedLeftName->mLeft, qualifiedLeftName->mRight, true);
else if (auto leftName = BfNodeDynCast<BfIdentifierNode>(nameLeft))
{
mResult = LookupIdentifier(leftName);
}
GetResult();
if (!mResult)
{
if (!ignoreIdentifierNotFoundError)
mModule->Fail("Identifier not found", nameLeft);
return;
}
if (mResult.mType->IsObject())
{
mResult = mModule->LoadValue(mResult);
}
else if ((mResult.mType->IsPointer()) && mResult.mType->IsStructOrStructPtr())
{
BfPointerType* structPtrType = (BfPointerType*)mResult.mType;
mResult = mModule->LoadValue(mResult);
mResult = BfTypedValue(mResult.mValue, structPtrType->mElementType, true);
}
if (!mResult)
return;
if (!mResult.mType->IsTypeInstance())
{
if (mResult.mType->IsSizedArray())
{
mResult.mType = mModule->GetWrappedStructType(mResult.mType);
mResult.mValue = mModule->mBfIRBuilder->CreateBitCast(mResult.mValue, mModule->mBfIRBuilder->MapTypeInstPtr(mResult.mType->ToTypeInstance()));
}
else if (mResult.mType->IsWrappableType())
{
mResult.mType = mModule->GetWrappedStructType(mResult.mType);
}
else
{
mModule->Fail(StrFormat("Type '%s' has no fields", mModule->TypeToString(mResult.mType).c_str()), nameLeft);
return;
}
}
mResult = LookupField(nameRight, mResult, fieldName);
if ((mResult) || (mPropDef != NULL))
return;
mModule->CheckTypeRefFixit(nameLeft);
mModule->Fail(StrFormat("Unable to find member '%s' in '%s'", fieldName.c_str(), mModule->TypeToString(mResult.mType).c_str()), nameRight);
}
void BfExprEvaluator::Visit(BfQualifiedNameNode* nameNode)
{
auto autoComplete = GetAutoComplete();
if (autoComplete != NULL)
{
autoComplete->CheckMemberReference(nameNode->mLeft, nameNode->mDot, nameNode->mRight);
}
bool hadError = false;
LookupQualifiedName(nameNode, nameNode->mLeft, nameNode->mRight, true, &hadError);
if ((mResult) || (mPropDef != NULL))
return;
if (hadError)
return;
LookupQualifiedStaticField(nameNode, nameNode->mLeft, nameNode->mRight, false);
}
void BfExprEvaluator::Visit(BfThisExpression* thisExpr)
{
mResult = mModule->GetThis();
if (!mResult)
{
mModule->Fail("Static methods don't have 'this'", thisExpr);
return;
}
auto autoComplete = GetAutoComplete();
if ((autoComplete != NULL) && (autoComplete->IsAutocompleteNode(thisExpr)))
autoComplete->SetDefinitionLocation(mModule->mCurTypeInstance->mTypeDef->GetRefNode());
mResultLocalVar = mModule->GetThisVariable();
mResultFieldInstance = NULL;
}
void BfExprEvaluator::Visit(BfBaseExpression* baseExpr)
{
mResult = mModule->GetThis();
if (!mResult)
{
mModule->Fail("Static methods don't have 'base'", baseExpr);
return;
}
if ((mBfEvalExprFlags & BfEvalExprFlags_AllowBase) == 0)
mModule->Fail("Use of keyword 'base' is not valid in this context", baseExpr);
auto baseType = mModule->mCurTypeInstance->mBaseType;
if (baseType == NULL)
baseType = mModule->mContext->mBfObjectType;
auto autoComplete = GetAutoComplete();
if ((autoComplete != NULL) && (autoComplete->IsAutocompleteNode(baseExpr)))
autoComplete->SetDefinitionLocation(baseType->mTypeDef->GetRefNode());
mModule->PopulateType(baseType, BfPopulateType_Data);
mResult = mModule->Cast(baseExpr, mResult, baseType, BfCastFlags_Explicit);
if (mResult.IsSplat())
mResult.mKind = BfTypedValueKind_BaseSplatHead;
else if (mResult.IsAddr())
mResult.mKind = BfTypedValueKind_BaseAddr;
else if (mResult)
mResult.mKind = BfTypedValueKind_BaseValue;
}
void BfExprEvaluator::Visit(BfMixinExpression* mixinExpr)
{
if (mModule->mCurMethodInstance->mMethodDef->mMethodType == BfMethodType_Mixin)
{
auto varType = mModule->GetPrimitiveType(BfTypeCode_Var);
auto newVar = mModule->AllocFromType(varType, mModule->mCurMethodState->mCurScope);
mResult = BfTypedValue(newVar, varType, true);
return;
}
auto curMethodState = mModule->mCurMethodState;
if (curMethodState->mMixinState == NULL)
{
mModule->Fail("Mixin references can only be used within mixins", mixinExpr);
return;
}
int localIdx = GetMixinVariable();
if (localIdx != -1)
{
auto varDecl = curMethodState->mLocals[localIdx];
if (varDecl != NULL)
{
BfTypedValue localResult = LoadLocal(varDecl);
mResult = localResult;
mResultLocalVar = varDecl;
mResultFieldInstance = NULL;
mResultLocalVarRefNode = mixinExpr;
return;
}
}
if (mModule->mCurMethodInstance->mIsUnspecialized)
{
mResult = mModule->GetDefaultTypedValue(mModule->GetPrimitiveType(BfTypeCode_Var));
return;
}
mModule->Fail("Mixin value cannot be inferred", mixinExpr);
}
void BfExprEvaluator::Visit(BfSizedArrayCreateExpression* createExpr)
{
auto type = mModule->ResolveTypeRef(createExpr->mTypeRef);
if (type == NULL)
return;
if (type->IsArray())
{
// If we have a case like 'int[] (1, 2)' then we infer the sized array size from the initializer
auto arrayType = (BfArrayType*)type;
if (arrayType->mDimensions == 1)
{
int arraySize = 0;
if (auto arrayInitExpr = BfNodeDynCast<BfCollectionInitializerExpression>(createExpr->mInitializer))
{
arraySize = (int)arrayInitExpr->mValues.size();
}
type = mModule->CreateSizedArrayType(arrayType->GetUnderlyingType(), arraySize);
}
}
if (!type->IsSizedArray())
{
mModule->Fail("Sized array expected", createExpr->mTypeRef);
return;
}
BfSizedArrayType* arrayType = (BfSizedArrayType*)type;
if (createExpr->mInitializer == NULL)
{
mModule->AssertErrorState();
mResult = mModule->GetDefaultTypedValue(arrayType);
return;
}
InitializedSizedArray(arrayType, createExpr->mInitializer->mOpenBrace, createExpr->mInitializer->mValues, createExpr->mInitializer->mCommas, createExpr->mInitializer->mCloseBrace);
}
void BfExprEvaluator::Visit(BfInitializerExpression* initExpr)
{
uint64 unassignedFieldFlags = 0;
if (auto typeRef = BfNodeDynCast<BfTypeReference>(initExpr->mTarget))
{
BfType* type = NULL;
if (auto typeRef = BfNodeDynCast<BfDotTypeReference>(initExpr->mTarget))
{
type = mExpectingType;
}
if (type == NULL)
type = mModule->ResolveTypeRef(typeRef);
if (type != NULL)
{
if (type->IsValueType())
{
if (mReceivingValue != NULL)
{
mResult = *mReceivingValue;
mReceivingValue = NULL;
}
else
{
mResult = BfTypedValue(mModule->CreateAlloca(type), type, true);
}
auto typeInstance = type->ToTypeInstance();
if (typeInstance != NULL)
unassignedFieldFlags = (1 << typeInstance->mMergedFieldDataCount) - 1;
}
else
{
mModule->Fail("Initializer expressions can only be used on value types or allocated values", initExpr->mTarget);
}
}
}
else
VisitChild(initExpr->mTarget);
if (!mResult)
mResult = mModule->GetDefaultTypedValue(mModule->mContext->mBfObjectType);
BfIRBlock initBlock = BfIRBlock();
if (unassignedFieldFlags != 0)
{
initBlock = mModule->mBfIRBuilder->CreateBlock("initStart", true);
mModule->mBfIRBuilder->CreateBr(initBlock);
mModule->mBfIRBuilder->SetInsertPoint(initBlock);
}
BfTypedValue initValue = GetResult(true);
bool isFirstAdd = true;
BfFunctionBindResult addFunctionBindResult;
addFunctionBindResult.mWantsArgs = true;
for (auto elementExpr : initExpr->mValues)
{
if ((mBfEvalExprFlags & BfEvalExprFlags_Comptime) != 0)
{
mModule->Fail("Comptime cannot evaluate initializer expressions", elementExpr);
break;
}
bool wasValidInitKind = false;
if (auto assignExpr = BfNodeDynCast<BfAssignmentExpression>(elementExpr))
{
BfTypedValue fieldResult;
if (auto identifierNode = BfNodeDynCast<BfIdentifierNode>(assignExpr->mLeft))
{
StringT<128> findName;
identifierNode->ToString(findName);
mResultFieldInstance = NULL;
fieldResult = LookupField(identifierNode, initValue, findName, BfLookupFieldFlag_IsImplicitThis);
if ((fieldResult.mKind == BfTypedValueKind_TempAddr) || (fieldResult.mKind == BfTypedValueKind_RestrictedTempAddr))
fieldResult.mKind = BfTypedValueKind_Addr;
if ((mResultFieldInstance != NULL) && (mResultFieldInstance->mMergedDataIdx != -1))
{
int resultLocalVarField = 0;
int resultLocalVarFieldCount = 0;
mResultFieldInstance->GetDataRange(resultLocalVarField, resultLocalVarFieldCount);
for (int i = 0; i < resultLocalVarFieldCount; i++)
unassignedFieldFlags &= ~((int64)1 << (resultLocalVarField - 1 + i));
}
wasValidInitKind = true;
if ((fieldResult) || (mPropDef != NULL))
{
if (mResultFieldInstance != NULL)
{
auto autoComplete = GetAutoComplete();
if ((autoComplete != NULL) && (autoComplete->IsAutocompleteNode(identifierNode)))
{
auto fieldDef = mResultFieldInstance->GetFieldDef();
if (fieldDef != NULL)
autoComplete->SetDefinitionLocation(fieldDef->GetRefNode());
}
}
mResult = fieldResult;
PerformAssignment(assignExpr, true, BfTypedValue());
mResult = BfTypedValue();
}
else
{
mModule->Fail(StrFormat("'%s' does not contain a definition for '%s'", mModule->TypeToString(initValue.mType).c_str(),
findName.c_str()), identifierNode);
}
}
}
else
{
auto autoComplete = GetAutoComplete();
if ((autoComplete != NULL) && (autoComplete->IsAutocompleteNode(elementExpr)))
{
if (auto identiferNode = BfNodeDynCast<BfIdentifierNode>(elementExpr))
{
auto typeInstance = initValue.mType->ToTypeInstance();
if (typeInstance != NULL)
{
String filter;
identiferNode->ToString(filter);
autoComplete->AddTypeMembers(typeInstance, false, true, filter, typeInstance, false, true, false);
}
}
}
bool wasFirstAdd = isFirstAdd;
if (isFirstAdd)
{
BfExprEvaluator exprEvaluator(mModule);
exprEvaluator.mFunctionBindResult = &addFunctionBindResult;
SizedArray<BfExpression*, 2> argExprs;
argExprs.push_back(elementExpr);
BfSizedArray<BfExpression*> sizedArgExprs(argExprs);
BfResolvedArgs argValues(&sizedArgExprs);
exprEvaluator.ResolveArgValues(argValues, BfResolveArgsFlag_DeferParamEval);
exprEvaluator.MatchMethod(elementExpr, NULL, initValue, false, false, "Add", argValues, NULL);
if (addFunctionBindResult.mMethodInstance != NULL)
CreateCall(initExpr, addFunctionBindResult.mMethodInstance, addFunctionBindResult.mFunc, true, addFunctionBindResult.mIRArgs);
isFirstAdd = false;
}
else if ((addFunctionBindResult.mMethodInstance == NULL) || (addFunctionBindResult.mMethodInstance->GetParamCount() == 0))
{
mModule->CreateValueFromExpression(elementExpr, NULL, (BfEvalExprFlags)(mBfEvalExprFlags& BfEvalExprFlags_InheritFlags));
}
else
{
auto argValue = mModule->CreateValueFromExpression(elementExpr, addFunctionBindResult.mMethodInstance->GetParamType(0), (BfEvalExprFlags)(mBfEvalExprFlags & BfEvalExprFlags_InheritFlags));
if ((argValue) && (!mModule->mBfIRBuilder->mIgnoreWrites))
{
SizedArray<BfIRValue, 2> irArgs;
PushThis(elementExpr, initValue, addFunctionBindResult.mMethodInstance, irArgs);
PushArg(argValue, irArgs);
for (int argIdx = (int)irArgs.size(); argIdx < (int)addFunctionBindResult.mIRArgs.size(); argIdx++)
irArgs.Add(addFunctionBindResult.mIRArgs[argIdx]);
CreateCall(initExpr, addFunctionBindResult.mMethodInstance, addFunctionBindResult.mFunc, true, irArgs);
}
}
wasValidInitKind = true;
}
if (!wasValidInitKind)
{
mModule->Fail("Invalid initializer member declarator", initExpr);
}
}
if (unassignedFieldFlags != 0)
{
auto curBlock = mModule->mBfIRBuilder->GetInsertBlock();
mModule->mBfIRBuilder->SetInsertPointAtStart(initBlock);
mModule->mBfIRBuilder->CreateMemSet(initValue.mValue, mModule->GetConstValue(0, mModule->GetPrimitiveType(BfTypeCode_Int8)),
mModule->GetConstValue(initValue.mType->mSize), initValue.mType->mAlign);
mModule->mBfIRBuilder->SetInsertPoint(curBlock);
}
mResult = initValue;
}
void BfExprEvaluator::Visit(BfCollectionInitializerExpression* arrayInitExpr)
{
mModule->Fail("Collection initializer not usable here", arrayInitExpr);
}
void BfExprEvaluator::Visit(BfTypeOfExpression* typeOfExpr)
{
auto typeType = mModule->ResolveTypeDef(mModule->mCompiler->mTypeTypeDef);
auto autoComplete = GetAutoComplete();
if ((autoComplete != NULL) && (typeOfExpr->mTypeRef != NULL))
{
autoComplete->CheckTypeRef(typeOfExpr->mTypeRef, false, true);
}
BfType* type;
if (auto genericTypeRef = BfNodeDynCast<BfGenericInstanceTypeRef>(typeOfExpr->mTypeRef))
{
type = mModule->ResolveTypeRefAllowUnboundGenerics(typeOfExpr->mTypeRef, BfPopulateType_Identity);
}
else
{
type = ResolveTypeRef(typeOfExpr->mTypeRef, BfPopulateType_Identity, BfResolveTypeRefFlag_AllowGlobalsSelf);
}
if (type == NULL)
{
mResult = mModule->GetDefaultTypedValue(mModule->ResolveTypeDef(mModule->mCompiler->mTypeTypeDef));
return;
}
if ((type->IsGenericParam()) && (!mModule->mIsComptimeModule))
{
mResult = BfTypedValue(mModule->mBfIRBuilder->GetUndefConstValue(mModule->mBfIRBuilder->MapType(typeType)), typeType);
}
else
{
mModule->AddDependency(type, mModule->mCurTypeInstance, BfDependencyMap::DependencyFlag_ExprTypeReference);
mResult = BfTypedValue(mModule->CreateTypeDataRef(type), typeType);
}
}
bool BfExprEvaluator::LookupTypeProp(BfTypeOfExpression* typeOfExpr, BfIdentifierNode* propName)
{
auto typeType = mModule->ResolveTypeDef(mModule->mCompiler->mTypeTypeDef);
BfType* type;
//
{
// We ignore errors because we go through the normal Visit(BfTypeOfExpression) if this fails, which will throw the error again
SetAndRestoreValue<bool> prevIgnoreErrors(mModule->mIgnoreErrors, true);
if (auto genericTypeRef = BfNodeDynCast<BfGenericInstanceTypeRef>(typeOfExpr->mTypeRef))
{
SetAndRestoreValue<bool> prevIgnoreErrors(mModule->mIgnoreErrors, true);
type = mModule->ResolveTypeRefAllowUnboundGenerics(typeOfExpr->mTypeRef, BfPopulateType_Identity);
}
else
{
type = ResolveTypeRef(typeOfExpr->mTypeRef, BfPopulateType_Identity, BfResolveTypeRefFlag_IgnoreLookupError);
}
}
if (type == NULL)
{
mResult = mModule->GetDefaultTypedValue(mModule->ResolveTypeDef(mModule->mCompiler->mTypeTypeDef));
return false;
}
mModule->AddDependency(type, mModule->mCurTypeInstance, BfDependencyMap::DependencyFlag_ExprTypeReference);
mModule->PopulateType(type);
auto typeInstance = type->ToTypeInstance();
auto _BoolResult = [&](bool val)
{
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateConst(BfTypeCode_Boolean, val ? 1 : 0), mModule->GetPrimitiveType(BfTypeCode_Boolean));
};
auto _Int32Result = [&](int32 val)
{
mResult = BfTypedValue(mModule->GetConstValue32(val), mModule->GetPrimitiveType(BfTypeCode_Int32));
};
String memberName;
propName->ToString(memberName);
bool handled = true;
if (memberName == "IsTypedPrimitive")
_BoolResult(type->IsPrimitiveType());
else if (memberName == "IsObject")
_BoolResult(type->IsObject());
else if (memberName == "IsValueType")
_BoolResult(type->IsValueType());
else if (memberName == "IsPrimitive")
_BoolResult(type->IsPrimitiveType());
else if (memberName == "IsInteger")
_BoolResult(type->IsInteger());
else if (memberName == "IsIntegral")
_BoolResult(type->IsIntegral());
else if (memberName == "IsSigned")
_BoolResult(type->IsSigned());
else if (memberName == "IsFloatingPoint")
_BoolResult(type->IsFloat());
else if (memberName == "IsPointer")
_BoolResult(type->IsPointer());
else if (memberName == "IsStruct")
_BoolResult(type->IsStruct());
else if (memberName == "IsSplattable")
_BoolResult(type->IsSplattable());
else if (memberName == "IsUnion")
_BoolResult(type->IsUnion());
else if (memberName == "IsBoxed")
_BoolResult(type->IsBoxed());
else if (memberName == "IsEnum")
_BoolResult(type->IsEnum());
else if (memberName == "IsTuple")
_BoolResult(type->IsTuple());
else if (memberName == "IsNullable")
_BoolResult(type->IsNullable());
else if (memberName == "IsGenericType")
_BoolResult(type->IsGenericTypeInstance());
else if (memberName == "IsGenericParam")
_BoolResult(type->IsGenericParam());
else if (memberName == "IsArray")
_BoolResult(type->IsArray());
else if (memberName == "IsSizedArray")
_BoolResult(type->IsSizedArray());
else if (memberName == "TypeId")
{
_Int32Result(type->mTypeId);
mResult.mType = mModule->ResolveTypeDef(mModule->mCompiler->mReflectTypeIdTypeDef);
}
else if (memberName == "GenericParamCount")
{
auto genericTypeInst = type->ToGenericTypeInstance();
_Int32Result((genericTypeInst != NULL) ? (int)genericTypeInst->mGenericTypeInfo->mTypeGenericArguments.size() : 0);
}
else if (memberName == "Size")
_Int32Result(type->mSize);
else if (memberName == "Align")
_Int32Result(type->mAlign);
else if (memberName == "Stride")
_Int32Result(type->GetStride());
else if (memberName == "InstanceSize")
_Int32Result((typeInstance != NULL) ? typeInstance->mInstSize : type->mSize);
else if (memberName == "InstanceAlign")
_Int32Result((typeInstance != NULL) ? typeInstance->mInstAlign : type->mSize);
else if (memberName == "InstanceStride")
_Int32Result((typeInstance != NULL) ? typeInstance->GetInstStride() : type->GetStride());
else if (memberName == "UnderlyingType")
{
auto typeType = mModule->ResolveTypeDef(mModule->mCompiler->mTypeTypeDef);
if (type->IsGenericParam())
{
auto genericParamInstance = mModule->GetGenericParamInstance((BfGenericParamType*)type);
if (genericParamInstance->IsEnum())
mResult = BfTypedValue(mModule->mBfIRBuilder->GetUndefConstValue(mModule->mBfIRBuilder->MapType(typeType)), typeType);
}
else if (type->IsEnum())
{
auto underlyingType = type->GetUnderlyingType();
if (underlyingType != NULL)
{
mModule->AddDependency(underlyingType, mModule->mCurTypeInstance, BfDependencyMap::DependencyFlag_ExprTypeReference);
mResult = BfTypedValue(mModule->CreateTypeDataRef(underlyingType), typeType);
}
}
}
else if ((memberName == "MinValue") || (memberName == "MaxValue"))
{
bool isMin = memberName == "MinValue";
BfType* checkType = type;
if (checkType->IsTypedPrimitive())
checkType = checkType->GetUnderlyingType();
if (checkType->IsGenericParam())
{
bool foundMatch = false;
auto genericParamInstance = mModule->GetGenericParamInstance((BfGenericParamType*)checkType);
if (((genericParamInstance->mGenericParamFlags & BfGenericParamFlag_Enum) != 0) ||
((genericParamInstance->mTypeConstraint != NULL) && (genericParamInstance->mTypeConstraint->IsInstanceOf(mModule->mCompiler->mEnumTypeDef))))
foundMatch = true;
else
{
for (auto constraint : genericParamInstance->mInterfaceConstraints)
{
if (constraint->IsInstanceOf(mModule->mCompiler->mIIntegerTypeDef))
foundMatch = true;
}
}
if ((mModule->mCurMethodInstance != NULL) && (mModule->mCurMethodInstance->mIsUnspecialized) && (mModule->mCurMethodInstance->mMethodInfoEx != NULL))
{
for (int genericParamIdx = (int)mModule->mCurMethodInstance->mMethodInfoEx->mMethodGenericArguments.size();
genericParamIdx < mModule->mCurMethodInstance->mMethodInfoEx->mGenericParams.size(); genericParamIdx++)
{
genericParamInstance = mModule->mCurMethodInstance->mMethodInfoEx->mGenericParams[genericParamIdx];
if (genericParamInstance->mExternType == type)
{
if (((genericParamInstance->mGenericParamFlags & BfGenericParamFlag_Enum) != 0) ||
((genericParamInstance->mTypeConstraint != NULL) && (genericParamInstance->mTypeConstraint->IsInstanceOf(mModule->mCompiler->mEnumTypeDef))))
foundMatch = true;
}
}
}
if (foundMatch)
{
mResult = mModule->GetDefaultTypedValue(type, false, Beefy::BfDefaultValueKind_Undef);
return true;
}
}
if (checkType->IsPrimitiveType())
{
auto primType = (BfPrimitiveType*)checkType;
if ((typeInstance != NULL) && (typeInstance->IsEnum()))
{
if (typeInstance->mTypeInfoEx != NULL)
{
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateConst(primType->mTypeDef->mTypeCode, isMin ? (uint64)typeInstance->mTypeInfoEx->mMinValue : (uint64)typeInstance->mTypeInfoEx->mMaxValue), typeInstance);
return true;
}
}
else
{
switch (primType->mTypeDef->mTypeCode)
{
case BfTypeCode_Int8:
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateConst(primType->mTypeDef->mTypeCode, isMin ? -0x80 : 0x7F), primType);
return true;
case BfTypeCode_Int16:
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateConst(primType->mTypeDef->mTypeCode, isMin ? -0x8000 : 0x7FFF), primType);
return true;
case BfTypeCode_Int32:
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateConst(primType->mTypeDef->mTypeCode, isMin ? (uint64)-0x80000000LL : 0x7FFFFFFF), primType);
return true;
case BfTypeCode_Int64:
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateConst(primType->mTypeDef->mTypeCode, isMin ? (uint64)-0x8000000000000000LL : (uint64)0x7FFFFFFFFFFFFFFFLL), primType);
return true;
case BfTypeCode_UInt8:
case BfTypeCode_Char8:
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateConst(primType->mTypeDef->mTypeCode, isMin ? 0 : 0xFF), primType);
return true;
case BfTypeCode_UInt16:
case BfTypeCode_Char16:
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateConst(primType->mTypeDef->mTypeCode, isMin ? 0 : 0xFFFF), primType);
return true;
case BfTypeCode_UInt32:
case BfTypeCode_Char32:
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateConst(primType->mTypeDef->mTypeCode, isMin ? 0 : (uint64)0xFFFFFFFFLL), primType);
return true;
case BfTypeCode_UInt64:
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateConst(primType->mTypeDef->mTypeCode, isMin ? 0 : (uint64)0xFFFFFFFFFFFFFFFFLL), primType);
return true;
case BfTypeCode_IntPtr:
if (mModule->mSystem->mPtrSize == 8)
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateConst(primType->mTypeDef->mTypeCode, isMin ? (uint64)-0x8000000000000000LL : (uint64)0x7FFFFFFFFFFFFFFFLL), primType);
else
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateConst(primType->mTypeDef->mTypeCode, isMin ? (uint64)-0x80000000LL : 0x7FFFFFFF), primType);
return true;
case BfTypeCode_UIntPtr:
if (mModule->mSystem->mPtrSize == 8)
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateConst(primType->mTypeDef->mTypeCode, isMin ? 0 : (uint64)0xFFFFFFFFFFFFFFFFLL), primType);
else
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateConst(primType->mTypeDef->mTypeCode, isMin ? 0 : (uint64)0xFFFFFFFFLL), primType);
return true;
default: break;
}
}
}
if (type->IsEnum())
{
mModule->Fail(StrFormat("'MinValue' cannot be used on enum with payload '%s'", mModule->TypeToString(type).c_str()), propName);
}
else
{
mModule->Fail(StrFormat("'%s' cannot be used on type '%s'", memberName.c_str(), mModule->TypeToString(type).c_str()), propName);
}
}
else
return false;
if ((type->IsGenericParam()) && (!mModule->mIsComptimeModule))
{
if (mResult.mType != NULL)
mResult = mModule->GetDefaultTypedValue(mResult.mType, false, Beefy::BfDefaultValueKind_Undef);
}
auto autoComplete = GetAutoComplete();
if ((autoComplete != NULL) && (typeOfExpr->mTypeRef != NULL))
{
autoComplete->CheckTypeRef(typeOfExpr->mTypeRef, false, true);
}
return true;
}
void BfExprEvaluator::DoTypeIntAttr(BfTypeReference* typeRef, BfTokenNode* commaToken, BfIdentifierNode* memberName, BfToken token)
{
auto autoComplete = GetAutoComplete();
auto type = mModule->ResolveTypeRef(typeRef, BfPopulateType_Data, BfResolveTypeRefFlag_AutoComplete);
if (type == NULL)
return;
mModule->AddDependency(type, mModule->mCurTypeInstance, BfDependencyMap::DependencyFlag_LocalUsage); // Local usage ensures it changes when the type data changes
auto typeInst = type->ToTypeInstance();
if ((typeInst != NULL) && (typeInst->mTypeDef->mIsOpaque))
{
mModule->Fail(StrFormat("Unable to determine attributes for opaque type '%s'", mModule->TypeToString(type).c_str()), typeRef);
}
BfType* sizeType = mModule->GetPrimitiveType(BfTypeCode_Int32);
int attrVal = 0;
switch (token)
{
case BfToken_SizeOf: attrVal = type->mSize; break;
case BfToken_AlignOf: attrVal = type->mAlign; break;
case BfToken_StrideOf: attrVal = type->GetStride(); break;
default: break;
}
if (token == BfToken_OffsetOf)
{
bool found = false;
String findName;
if (memberName != NULL)
findName = memberName->ToString();
BfAstNode* refNode = typeRef;
if (memberName != NULL)
refNode = memberName;
auto checkTypeInst = typeInst;
while (checkTypeInst != NULL)
{
checkTypeInst->mTypeDef->PopulateMemberSets();
String filter;
if ((autoComplete != NULL) && (autoComplete->InitAutocomplete(commaToken, memberName, filter)))
{
auto activeTypeDef = mModule->GetActiveTypeDef();
mModule->PopulateType(checkTypeInst);
BfProtectionCheckFlags protectionCheckFlags = BfProtectionCheckFlag_None;
for (auto fieldDef : checkTypeInst->mTypeDef->mFields)
{
if (fieldDef->mIsStatic)
continue;
if (!mModule->CheckProtection(protectionCheckFlags, typeInst, fieldDef->mDeclaringType->mProject, fieldDef->mProtection, typeInst))
continue;
if ((!typeInst->IsTypeMemberIncluded(fieldDef->mDeclaringType, activeTypeDef, mModule)) ||
(!typeInst->IsTypeMemberAccessible(fieldDef->mDeclaringType, activeTypeDef)))
continue;
auto& fieldInst = checkTypeInst->mFieldInstances[fieldDef->mIdx];
autoComplete->AddField(checkTypeInst, fieldDef, &fieldInst, filter);
}
}
BfMemberSetEntry* memberSetEntry = NULL;
if (checkTypeInst->mTypeDef->mFieldSet.TryGetWith(findName, &memberSetEntry))
{
auto fieldDef = (BfFieldDef*)memberSetEntry->mMemberDef;
if (fieldDef != NULL)
{
if (fieldDef->mIsStatic)
mModule->Fail(StrFormat("Cannot generate an offset from static field '%s.%s'", mModule->TypeToString(type).c_str(), fieldDef->mName.c_str()), refNode);
mModule->PopulateType(checkTypeInst);
auto& fieldInst = checkTypeInst->mFieldInstances[fieldDef->mIdx];
attrVal = fieldInst.mDataOffset;
found = true;
break;
}
}
checkTypeInst = checkTypeInst->mBaseType;
}
if (!found)
{
mModule->Fail(StrFormat("Unable to locate field '%s.%s'", mModule->TypeToString(type).c_str(), findName.c_str()), refNode);
}
}
bool isUndefVal = false;
if (type->IsGenericParam())
isUndefVal = true;
if (type->IsSizedArray())
{
auto sizedArray = (BfSizedArrayType*)type;
if (sizedArray->mElementCount == -1)
isUndefVal = true;
}
if (isUndefVal)
{
// We do this so we know it's a constant but we can't assume anything about its value
// We make the value an Int32 which doesn't match the IntPtr type, but it allows us to
// assume it can be implicitly cased to int32
mResult = BfTypedValue(mModule->mBfIRBuilder->GetUndefConstValue(mModule->mBfIRBuilder->MapType(sizeType)), sizeType);
}
else
mResult = BfTypedValue(mModule->GetConstValue(attrVal, sizeType), sizeType);
}
void BfExprEvaluator::Visit(BfSizeOfExpression* sizeOfExpr)
{
DoTypeIntAttr(sizeOfExpr->mTypeRef, NULL, NULL, BfToken_SizeOf);
}
void BfExprEvaluator::Visit(BfAlignOfExpression* alignOfExpr)
{
DoTypeIntAttr(alignOfExpr->mTypeRef, NULL, NULL, BfToken_AlignOf);
}
void BfExprEvaluator::Visit(BfStrideOfExpression* strideOfExpr)
{
DoTypeIntAttr(strideOfExpr->mTypeRef, NULL, NULL, BfToken_StrideOf);
}
void BfExprEvaluator::Visit(BfOffsetOfExpression* offsetOfExpr)
{
DoTypeIntAttr(offsetOfExpr->mTypeRef, offsetOfExpr->mCommaToken, offsetOfExpr->mMemberName, BfToken_OffsetOf);
}
void BfExprEvaluator::Visit(BfDefaultExpression* defaultExpr)
{
auto autoComplete = GetAutoComplete();
if (autoComplete != NULL)
autoComplete->CheckTypeRef(defaultExpr->mTypeRef, false, true);
BfType* type = NULL;
if (defaultExpr->mOpenParen == NULL)
{
if (mExpectingType)
{
type = mExpectingType;
}
else
{
mModule->Fail("Type cannot be inferred, consider adding explicit type name", defaultExpr);
return;
}
}
else
type = mModule->ResolveTypeRef(defaultExpr->mTypeRef);
if (type == NULL)
return;
BfDefaultValueKind defaultKind = BfDefaultValueKind_Const;
if (type->IsRef())
{
mModule->Fail(StrFormat("There is no default value for type '%s'", mModule->TypeToString(type).c_str()), defaultExpr);
defaultKind = BfDefaultValueKind_Addr;
}
mModule->ValidateAllocation(type, defaultExpr->mTypeRef);
mModule->AddDependency(type, mModule->mCurTypeInstance, BfDependencyMap::DependencyFlag_ExprTypeReference);
mResult = mModule->GetDefaultTypedValue(type, true, defaultKind);
}
void BfExprEvaluator::Visit(BfUninitializedExpression* uninitialziedExpr)
{
mModule->Fail("Invalid use of the '?' uninitialized specifier", uninitialziedExpr);
}
void BfExprEvaluator::Visit(BfCheckTypeExpression* checkTypeExpr)
{
auto targetValue = mModule->CreateValueFromExpression(checkTypeExpr->mTarget, NULL, (BfEvalExprFlags)(mBfEvalExprFlags & BfEvalExprFlags_InheritFlags));
if (!targetValue)
return;
if (checkTypeExpr->mTypeRef == NULL)
{
mModule->AssertErrorState();
return;
}
auto autoComplete = GetAutoComplete();
if (autoComplete != NULL)
autoComplete->CheckTypeRef(checkTypeExpr->mTypeRef, false, true);
auto targetType = mModule->ResolveTypeRef(checkTypeExpr->mTypeRef);
if (!targetType)
{
mModule->AssertErrorState();
return;
}
mModule->AddDependency(targetType, mModule->mCurTypeInstance, BfDependencyMap::DependencyFlag_ExprTypeReference);
auto boolType = mModule->GetPrimitiveType(BfTypeCode_Boolean);
if (targetValue.mType->IsValueTypeOrValueTypePtr())
{
auto typeInstance = targetValue.mType->ToTypeInstance();
if (targetValue.mType->IsWrappableType())
typeInstance = mModule->GetWrappedStructType(targetValue.mType);
bool matches = (targetValue.mType == targetType) || (mModule->mContext->mBfObjectType == targetType);
if (!matches)
matches = mModule->TypeIsSubTypeOf(typeInstance, targetType->ToTypeInstance());
mResult = BfTypedValue(mModule->GetConstValue(matches ? 1 : 0, boolType), boolType);
return;
}
if (targetType->IsValueType())
{
if ((targetValue.mType != mModule->mContext->mBfObjectType) && (!targetValue.mType->IsInterface()))
{
mResult = BfTypedValue(mModule->GetConstValue(0, boolType), boolType);
return;
}
}
int wantTypeId = 0;
if (!targetType->IsGenericParam())
wantTypeId = targetType->mTypeId;
auto objectType = mModule->mContext->mBfObjectType;
mModule->PopulateType(objectType, BfPopulateType_Full);
targetValue = mModule->LoadValue(targetValue);
BfTypeInstance* srcTypeInstance = targetValue.mType->ToTypeInstance();
BfTypeInstance* targetTypeInstance = targetType->ToTypeInstance();
bool wasGenericParamType = false;
if ((srcTypeInstance != NULL) && (targetTypeInstance != NULL))
{
if (mModule->TypeIsSubTypeOf(srcTypeInstance, targetTypeInstance))
{
// We don't give this warning when we have wasGenericParmType set because that indicates we had a generic type constraint,
// and a type constraint infers that the ACTUAL type used will be equal to or derived from that type and therefore
// it may be a "necessary cast" indeed
if ((!wasGenericParamType) && (mModule->mCurMethodState->mMixinState == NULL))
{
if (srcTypeInstance == targetType)
mModule->Warn(BfWarning_BF4203_UnnecessaryDynamicCast, StrFormat("Unnecessary cast, the value is already type '%s'",
mModule->TypeToString(srcTypeInstance).c_str()), checkTypeExpr->mIsToken);
else
mModule->Warn(BfWarning_BF4203_UnnecessaryDynamicCast, StrFormat("Unnecessary cast, '%s' is a subtype of '%s'",
mModule->TypeToString(srcTypeInstance).c_str(), mModule->TypeToString(targetType).c_str()), checkTypeExpr->mIsToken);
}
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateConst(BfTypeCode_Boolean, 1), boolType);
return;
}
else if ((!targetType->IsInterface()) && (srcTypeInstance != mModule->mContext->mBfObjectType) && (!mModule->TypeIsSubTypeOf(targetTypeInstance, srcTypeInstance)))
{
mModule->Fail(StrFormat("Cannot convert type '%s' to '%s' via any conversion",
mModule->TypeToString(targetValue.mType).c_str(), mModule->TypeToString(targetTypeInstance).c_str()), checkTypeExpr->mIsToken);
}
}
if (mModule->mCompiler->IsAutocomplete())
{
mResult = mModule->GetDefaultTypedValue(boolType, false, BfDefaultValueKind_Addr);
return;
}
auto irb = mModule->mBfIRBuilder;
auto prevBB = mModule->mBfIRBuilder->GetInsertBlock();
auto matchBB = mModule->mBfIRBuilder->CreateBlock("is.match");
auto endBB = mModule->mBfIRBuilder->CreateBlock("is.done");
BfIRValue boolResult = mModule->CreateAlloca(boolType);
irb->CreateStore(irb->CreateConst(BfTypeCode_Boolean, 0), boolResult);
mModule->EmitDynamicCastCheck(targetValue, targetType, matchBB, endBB);
mModule->AddBasicBlock(matchBB);
irb->CreateStore(irb->CreateConst(BfTypeCode_Boolean, 1), boolResult);
irb->CreateBr(endBB);
mModule->AddBasicBlock(endBB);
mResult = BfTypedValue(irb->CreateLoad(boolResult), boolType);
}
void BfExprEvaluator::Visit(BfDynamicCastExpression* dynCastExpr)
{
auto targetValue = mModule->CreateValueFromExpression(dynCastExpr->mTarget);
auto targetType = mModule->ResolveTypeRefAllowUnboundGenerics(dynCastExpr->mTypeRef, BfPopulateType_Data, false);
auto autoComplete = GetAutoComplete();
if (autoComplete != NULL)
{
autoComplete->CheckTypeRef(dynCastExpr->mTypeRef, false, true);
}
auto origTargetType = targetType;
if (!targetValue)
return;
if (!targetType)
{
mModule->AssertErrorState();
return;
}
bool wasGenericParamType = false;
if (targetType->IsGenericParam())
{
//targetType = mModule->ResolveGenericType(targetType);
//wasGenericParamType = true;
}
if ((targetValue.mType->IsMethodRef()) || (targetType->IsMethodRef()))
{
// We can never cast a MethodRef to any class type
mResult = mModule->GetDefaultTypedValue(targetType);
return;
}
if (mModule->mContext->mResolvingVarField)
{
mResult = mModule->GetDefaultTypedValue(targetType);
return;
}
mModule->AddDependency(targetType, mModule->mCurTypeInstance, BfDependencyMap::DependencyFlag_ExprTypeReference);
if (targetType->IsGenericParam())
{
wasGenericParamType = true;
//wasGenericParamType = false; // "was", not "is"
auto genericParamType = (BfGenericParamType*) targetType;
auto genericParam = mModule->GetGenericParamInstance(genericParamType);
auto typeConstraint = genericParam->mTypeConstraint;
if ((typeConstraint == NULL) && (genericParam->mGenericParamFlags & (BfGenericParamFlag_Class | BfGenericParamFlag_Interface)))
typeConstraint = mModule->mContext->mBfObjectType;
if ((typeConstraint == NULL) || (!typeConstraint->IsObject()))
{
mModule->Fail(StrFormat("The type parameter '%s' cannot be used with the 'as' operator because it does not have a class type constraint nor a 'class' or 'interface' constraint",
genericParam->GetGenericParamDef()->mName.c_str()), dynCastExpr->mTypeRef);
return;
}
targetType = typeConstraint;
}
if ((!targetType->IsObjectOrInterface()) && (!targetType->IsNullable()))
{
mModule->Fail(StrFormat("The as operator must be used with a reference type or nullable type ('%s' is a non-nullable value type)",
mModule->TypeToString(origTargetType).c_str()), dynCastExpr->mTypeRef);
return;
}
if (targetValue.mType->IsGenericParam())
{
auto genericParamType = (BfGenericParamType*)targetValue.mType;
auto genericParam = mModule->GetGenericParamInstance(genericParamType);
auto typeConstraint = genericParam->mTypeConstraint;
if (typeConstraint == NULL)
typeConstraint = mModule->mContext->mBfObjectType;
if ((typeConstraint->IsDelegate()) && (typeConstraint == targetType))
{
// Delegate constraints may be matched by valueless method references, so this won't always match (don't warn)
mResult = mModule->GetDefaultTypedValue(targetType);
return;
}
targetValue = mModule->GetDefaultTypedValue(typeConstraint);
}
auto boolType = mModule->GetPrimitiveType(BfTypeCode_Boolean);
auto _CheckResult = [&]()
{
if ((mResult) && (origTargetType->IsGenericParam()))
mResult = mModule->GetDefaultTypedValue(origTargetType);
};
if ((targetValue.mType->IsNullable()) && (targetType->IsInterface()))
{
mResult = mModule->Cast(dynCastExpr, targetValue, targetType, BfCastFlags_SilentFail);
if (!mResult)
{
mModule->Warn(0, StrFormat("Conversion from '%s' to '%s' will always be null",
mModule->TypeToString(targetValue.mType).c_str(), mModule->TypeToString(origTargetType).c_str()), dynCastExpr->mAsToken);
mResult = BfTypedValue(mModule->GetDefaultValue(origTargetType), origTargetType);
}
_CheckResult();
return;
}
if (targetValue.mType->IsValueTypeOrValueTypePtr())
{
mModule->Warn(0, StrFormat("Type '%s' is not applicable for dynamic casting",
mModule->TypeToString(targetValue.mType).c_str()), dynCastExpr->mAsToken);
auto typeInstance = targetValue.mType->ToTypeInstance();
if (targetValue.mType->IsWrappableType())
typeInstance = mModule->GetWrappedStructType(targetValue.mType);
bool matches = (targetValue.mType == targetType) || (mModule->mContext->mBfObjectType == targetType);
if (targetType->IsNullable())
{
auto elementType = targetType->GetUnderlyingType();
if (elementType == targetValue.mType)
{
// We match nullable element
auto allocaInst = mModule->CreateAlloca(targetType);
auto hasValueAddr = mModule->mBfIRBuilder->CreateInBoundsGEP(allocaInst, 0, 1); // has_value
mModule->mBfIRBuilder->CreateStore(mModule->GetConstValue(1, boolType), hasValueAddr);
hasValueAddr = mModule->mBfIRBuilder->CreateInBoundsGEP(allocaInst, 0, 0); // value
mModule->mBfIRBuilder->CreateStore(targetValue.mValue, hasValueAddr);
mResult = BfTypedValue(allocaInst, targetType, true);
_CheckResult();
return;
}
}
if (!matches)
matches = mModule->TypeIsSubTypeOf(typeInstance, targetType->ToTypeInstance());
if (matches)
mResult = mModule->Cast(dynCastExpr, targetValue, targetType, BfCastFlags_Explicit);
else if (targetType->IsNullable())
{
auto allocaInst = mModule->CreateAlloca(targetType);
auto allocaBits = mModule->mBfIRBuilder->CreateBitCast(allocaInst, mModule->mBfIRBuilder->GetPrimitiveType(BfTypeCode_NullPtr));
mModule->mBfIRBuilder->CreateMemSet(allocaBits, mModule->GetConstValue(0, mModule->GetPrimitiveType(BfTypeCode_Int8)),
mModule->GetConstValue(targetType->mSize), targetType->mAlign);
mResult = BfTypedValue(allocaInst, targetType, true);
}
else
mResult = BfTypedValue(mModule->GetDefaultValue(targetType), targetType);
_CheckResult();
return;
}
if (targetType->IsNullable())
{
if (autoComplete != NULL)
{
mResult = mModule->GetDefaultTypedValue(targetType);
return;
}
auto elementType = targetType->GetUnderlyingType();
auto allocaInst = mModule->CreateAlloca(targetType);
auto hasValueAddr = mModule->mBfIRBuilder->CreateInBoundsGEP(allocaInst, 0, elementType->IsValuelessType() ? 1 : 2); // has_value
mModule->mBfIRBuilder->CreateStore(mModule->GetConstValue(0, boolType), hasValueAddr);
auto objectType = mModule->mContext->mBfObjectType;
auto prevBB = mModule->mBfIRBuilder->GetInsertBlock();
auto matchBB = mModule->mBfIRBuilder->CreateBlock("as.match");
auto endBB = mModule->mBfIRBuilder->CreateBlock("as.end");
mModule->EmitDynamicCastCheck(targetValue, elementType, matchBB, endBB);
BfBoxedType* boxedType = mModule->CreateBoxedType(elementType);
mModule->AddBasicBlock(matchBB);
if (elementType->IsValuelessType())
{
auto hasValueAddr = mModule->mBfIRBuilder->CreateInBoundsGEP(allocaInst, 0, 1); // has_value
mModule->mBfIRBuilder->CreateStore(mModule->GetConstValue(1, boolType), hasValueAddr);
}
else
{
auto hasValueAddr = mModule->mBfIRBuilder->CreateInBoundsGEP(allocaInst, 0, 2); // has_value
mModule->mBfIRBuilder->CreateStore(mModule->GetConstValue(1, boolType), hasValueAddr);
auto nullableValueAddr = mModule->mBfIRBuilder->CreateInBoundsGEP(allocaInst, 0, 1); // value
auto srcBoxedType = mModule->mBfIRBuilder->CreateBitCast(targetValue.mValue, mModule->mBfIRBuilder->MapType(boxedType, BfIRPopulateType_Full));
auto boxedValueAddr = mModule->mBfIRBuilder->CreateInBoundsGEP(srcBoxedType, 0, 1); // mValue
auto boxedValue = mModule->mBfIRBuilder->CreateLoad(boxedValueAddr);
mModule->mBfIRBuilder->CreateStore(boxedValue, nullableValueAddr);
}
mModule->mBfIRBuilder->CreateBr(endBB);
mModule->AddBasicBlock(endBB);
mResult = BfTypedValue(allocaInst, targetType, true);
_CheckResult();
return;
}
targetValue = mModule->LoadValue(targetValue);
if (targetType->IsValueType())
{
mModule->Fail("Invalid dynamic cast type", dynCastExpr->mTypeRef);
return;
}
BfTypeInstance* srcTypeInstance = targetValue.mType->ToTypeInstance();
BfTypeInstance* targetTypeInstance = targetType->ToTypeInstance();
if (mModule->TypeIsSubTypeOf(srcTypeInstance, targetTypeInstance))
{
// We don't give this warning when we have wasGenericParmType set because that indicates we had a generic type constraint,
// and a type constraint infers that the ACTUAL type used will be equal to or derived from that type and therefore
// it may be a "necessary cast" indeed
if ((!wasGenericParamType) && (mModule->mCurMethodState->mMixinState == NULL))
{
if (srcTypeInstance == targetType)
mModule->Warn(BfWarning_BF4203_UnnecessaryDynamicCast, StrFormat("Unnecessary cast, the value is already type '%s'",
mModule->TypeToString(srcTypeInstance).c_str()), dynCastExpr->mAsToken);
else
mModule->Warn(BfWarning_BF4203_UnnecessaryDynamicCast, StrFormat("Unnecessary cast, '%s' is a subtype of '%s'",
mModule->TypeToString(srcTypeInstance).c_str(), mModule->TypeToString(targetType).c_str()), dynCastExpr->mAsToken);
}
auto castedValue = mModule->mBfIRBuilder->CreateBitCast(targetValue.mValue, mModule->mBfIRBuilder->MapType(targetTypeInstance));
mResult = BfTypedValue(castedValue, targetTypeInstance);
_CheckResult();
return;
}
else if ((!targetType->IsInterface()) && (!mModule->TypeIsSubTypeOf(targetTypeInstance, srcTypeInstance)))
{
if (!mModule->IsInSpecializedSection())
{
mModule->Fail(StrFormat("Cannot convert type '%s' to '%s' via any conversion",
mModule->TypeToString(targetValue.mType).c_str(), mModule->TypeToString(targetTypeInstance).c_str()), dynCastExpr->mAsToken);
}
mResult = mModule->GetDefaultTypedValue(targetType);
return;
}
if (autoComplete != NULL)
{
mResult = mModule->GetDefaultTypedValue(targetType, false, BfDefaultValueKind_Addr);
_CheckResult();
return;
}
auto irb = mModule->mBfIRBuilder;
auto objectType = mModule->mContext->mBfObjectType;
mModule->PopulateType(objectType, BfPopulateType_Full);
auto prevBB = mModule->mBfIRBuilder->GetInsertBlock();
auto endBB = mModule->mBfIRBuilder->CreateBlock("as.end");
auto matchBlock = irb->CreateBlock("as.match");
BfIRValue targetVal = mModule->CreateAlloca(targetType);
irb->CreateStore(irb->CreateConstNull(irb->MapType(targetType)), targetVal);
mModule->EmitDynamicCastCheck(targetValue, targetType, matchBlock, endBB);
mModule->AddBasicBlock(matchBlock);
BfIRValue castedCallResult = mModule->mBfIRBuilder->CreateBitCast(targetValue.mValue, mModule->mBfIRBuilder->MapType(targetType));
irb->CreateStore(castedCallResult, targetVal);
irb->CreateBr(endBB);
mModule->AddBasicBlock(endBB);
mResult = BfTypedValue(irb->CreateLoad(targetVal), targetType);
_CheckResult();
}
void BfExprEvaluator::Visit(BfCastExpression* castExpr)
{
auto autoComplete = GetAutoComplete();
if ((autoComplete != NULL) && (castExpr->mTypeRef != NULL))
{
// 'mayBeIdentifier' because this may be a misidentified cast - it could be a parenthesized expression
autoComplete->CheckTypeRef(castExpr->mTypeRef, true, true);
}
BfType* resolvedType = NULL;
if ((BfNodeDynCastExact<BfDotTypeReference>(castExpr->mTypeRef) != NULL) && (mExpectingType != NULL))
{
//mModule->SetElementType(castExpr->mTypeRef, BfSourceElementType_TypeRef);
resolvedType = mExpectingType;
}
else
resolvedType = ResolveTypeRef(castExpr->mTypeRef);
if (resolvedType != NULL)
mModule->AddDependency(resolvedType, mModule->mCurTypeInstance, BfDependencyMap::DependencyFlag_LocalUsage);
// If resolvedType is NULL then that's okay- we just leave the following expression uncasted
if (castExpr->mExpression == NULL)
{
mModule->AssertErrorState();
return;
}
auto exprFlags = (BfEvalExprFlags)((mBfEvalExprFlags & BfEvalExprFlags_NoAutoComplete) | BfEvalExprFlags_ExplicitCast);
mResult = mModule->CreateValueFromExpression(castExpr->mExpression, resolvedType, exprFlags);
}
bool BfExprEvaluator::IsExactMethodMatch(BfMethodInstance* methodA, BfMethodInstance* methodB, bool ignoreImplicitParams)
{
if (methodA->mReturnType != methodB->mReturnType)
return false;
int implicitParamCountA = methodA->GetImplicitParamCount();
if (methodA->HasExplicitThis())
implicitParamCountA++;
int implicitParamCountB = methodB->GetImplicitParamCount();
if (methodB->HasExplicitThis())
implicitParamCountB++;
if (methodA->GetParamCount() - implicitParamCountA != methodB->GetParamCount() - implicitParamCountB)
return false;
for (int i = 0; i < (int)methodA->GetParamCount() - implicitParamCountA; i++)
{
auto paramA = methodA->GetParamType(i + implicitParamCountA);
auto paramB = methodB->GetParamType(i + implicitParamCountB);
if (paramA != paramB)
return false;
}
return true;
}
void BfExprEvaluator::ConstResolve(BfExpression* expr)
{
BfConstResolver constResolver(mModule);
constResolver.Resolve(expr);
mResult = constResolver.mResult;
}
BfTypeInstance* BfExprEvaluator::VerifyBaseDelegateType(BfTypeInstance* baseDelegateType)
{
mModule->PopulateType(baseDelegateType, BfPopulateType_DataAndMethods);
if (baseDelegateType->mFieldInstances.size() != 2)
{
mModule->AssertErrorState();
return NULL;
}
return baseDelegateType;
}
bool BfExprEvaluator::CanBindDelegate(BfDelegateBindExpression* delegateBindExpr, BfMethodInstance** boundMethod, BfType* origMethodExpectingType, BfTypeVector* methodGenericArgumentsSubstitute)
{
if ((mExpectingType == NULL) && (origMethodExpectingType == NULL))
{
return false;
}
bool isGenericMatch = mExpectingType == NULL;
auto expectingType = mExpectingType;
if (expectingType == NULL)
expectingType = origMethodExpectingType;
auto typeInstance = expectingType->ToTypeInstance();
if ((typeInstance == NULL) ||
((!typeInstance->mTypeDef->mIsDelegate) && (!typeInstance->mTypeDef->mIsFunction)))
return false;
mModule->PopulateType(typeInstance, BfPopulateType_DataAndMethods);
auto methodInstance = mModule->GetRawMethodInstanceAtIdx(typeInstance, 0, "Invoke");
if (methodInstance == NULL)
{
BF_DBG_FATAL("Invoke not found");
return false;
}
if (delegateBindExpr->mTarget == NULL)
return false;
BfAutoParentNodeEntry autoParentNodeEntry(mModule, delegateBindExpr);
SizedArray<BfTypedValueExpression, 4> typedValueExprs;
typedValueExprs.resize(methodInstance->GetParamCount());
SizedArray<BfExpression*, 4> args;
args.resize(methodInstance->GetParamCount());
auto _FixType = [&](BfType* type)
{
if (!isGenericMatch)
return type;
auto fixedType = mModule->ResolveGenericType(type, NULL, methodGenericArgumentsSubstitute);
if (fixedType != NULL)
return fixedType;
return (BfType*)mModule->GetPrimitiveType(BfTypeCode_Var);
};
auto _TypeMatches = [&](BfType* lhs, BfType* rhs)
{
if (lhs == rhs)
return true;
return lhs->IsVar();
};
for (int i = 0; i < (int) methodInstance->GetParamCount(); i++)
{
auto typedValueExpr = &typedValueExprs[i];
typedValueExpr->mTypedValue.mValue = BfIRValue(BfIRValueFlags_Value, -1);
typedValueExpr->mTypedValue.mType = _FixType(methodInstance->GetParamType(i));
typedValueExpr->mRefNode = NULL;
args[i] = typedValueExpr;
}
BfSizedArray<ASTREF(BfTypeReference*)>* methodGenericArguments = NULL;
if (delegateBindExpr->mGenericArgs != NULL)
methodGenericArguments = &delegateBindExpr->mGenericArgs->mGenericArgs;
BfFunctionBindResult bindResult;
bindResult.mSkipMutCheck = true; // Allow operating on copies
bindResult.mBindType = expectingType;
mFunctionBindResult = &bindResult;
SetAndRestoreValue<bool> ignoreError(mModule->mIgnoreErrors, true);
DoInvocation(delegateBindExpr->mTarget, delegateBindExpr, args, methodGenericArguments);
mFunctionBindResult = NULL;
if (bindResult.mMethodInstance == NULL)
return false;
if (boundMethod != NULL)
*boundMethod = bindResult.mMethodInstance;
auto matchedMethod = bindResult.mMethodInstance;
if (!_TypeMatches(_FixType(methodInstance->mReturnType), matchedMethod->mReturnType))
return false;
int implicitParamCountA = methodInstance->GetImplicitParamCount();
int implicitParamCountB = matchedMethod->GetImplicitParamCount();
if (methodInstance->GetParamCount() - implicitParamCountA != matchedMethod->GetParamCount() - implicitParamCountB)
return false;
for (int i = 0; i < (int)methodInstance->GetParamCount() - implicitParamCountA; i++)
{
auto paramA = _FixType(methodInstance->GetParamType(i + implicitParamCountA));
auto paramB = _FixType(matchedMethod->GetParamType(i + implicitParamCountB));
if (!_TypeMatches(paramA, paramB))
return false;
}
return true;
}
BfTypedValue BfExprEvaluator::DoImplicitArgCapture(BfAstNode* refNode, BfIdentifierNode* identifierNode, int shadowIdx)
{
String findName = identifierNode->ToString();
if (mModule->mCurMethodState != NULL)
{
auto rootMethodState = mModule->mCurMethodState->GetRootMethodState();
auto checkMethodState = mModule->mCurMethodState;
bool isMixinOuterVariablePass = false;
int shadowSkip = shadowIdx;
while (checkMethodState != NULL)
{
BP_ZONE("LookupIdentifier:DoImplicitArgCapture");
BfTypeInstance* closureTypeInst = NULL;
BfClosureInstanceInfo* closureInstanceInfo = NULL;
if ((checkMethodState->mClosureState != NULL) && (checkMethodState->mClosureState->mClosureType != NULL) && (!checkMethodState->mClosureState->mCapturing))
{
closureTypeInst = mModule->mCurMethodState->mClosureState->mClosureType;
}
BfLocalVarEntry* entry;
if (checkMethodState->mLocalVarSet.TryGetWith<StringImpl&>(findName, &entry))
{
auto varDecl = entry->mLocalVar;
while (varDecl != NULL)
{
if (varDecl->mNameNode == identifierNode)
{
if (shadowSkip > 0)
{
shadowSkip--;
}
else
{
BfTypedValue localResult = LoadLocal(varDecl);
if (!isMixinOuterVariablePass)
{
mResultLocalVar = varDecl;
mResultFieldInstance = NULL;
mResultLocalVarRefNode = identifierNode;
}
return localResult;
}
}
varDecl = varDecl->mShadowedLocal;
}
}
// Check for the captured locals. It's important we do it here so we get local-first precedence still
if (closureTypeInst != NULL)
{
closureTypeInst->mTypeDef->PopulateMemberSets();
BfMemberSetEntry* memberSetEntry = NULL;
if (closureTypeInst->mTypeDef->mFieldSet.TryGetWith(findName, &memberSetEntry))
{
auto fieldDef = (BfFieldDef*)memberSetEntry->mMemberDef;
while (fieldDef != NULL)
{
BfIdentifierNode* fieldNameNode = NULL;
if (fieldDef->mIdx < (int)checkMethodState->mClosureState->mClosureInstanceInfo->mCaptureEntries.size())
fieldNameNode = checkMethodState->mClosureState->mClosureInstanceInfo->mCaptureEntries[fieldDef->mIdx].mNameNode;
if (fieldNameNode == identifierNode)
{
auto& field = closureTypeInst->mFieldInstances[fieldDef->mIdx];
if (!field.mResolvedType->IsValuelessType())
{
if (mModule->mCurMethodState->mClosureState->mCapturing)
{
mModule->mCurMethodState->mClosureState->mReferencedOuterClosureMembers.Add(&field);
return mModule->GetDefaultTypedValue(field.mResolvedType);
}
auto localVar = mModule->mCurMethodState->mLocals[0];
auto thisValue = localVar->mValue;
mModule->mBfIRBuilder->PopulateType(localVar->mResolvedType);
BfTypedValue result = BfTypedValue(mModule->mBfIRBuilder->CreateInBoundsGEP(thisValue, 0, field.mDataIdx), field.mResolvedType, true);
if (field.mResolvedType->IsRef())
{
auto refType = (BfRefType*)field.mResolvedType;
auto underlyingType = refType->GetUnderlyingType();
result = BfTypedValue(mModule->mBfIRBuilder->CreateLoad(result.mValue), underlyingType, true);
}
else if (fieldDef->mIsReadOnly)
result = mModule->LoadValue(result);
mResultLocalVar = localVar;
mResultFieldInstance = &field;
mResultLocalVarField = -(field.mMergedDataIdx + 1);
return result;
}
}
fieldDef = fieldDef->mNextWithSameName;
}
}
}
if ((checkMethodState->mClosureState != NULL) && (checkMethodState->mClosureState->mCapturing) /*&& (checkMethodState->mClosureState->mIsLocalMethod)*/)
{
checkMethodState = checkMethodState->mPrevMethodState;
continue;
}
// Allow local mixin to see outside variables during its processing -- since we don't actually "capture" those into params
bool isLocalMixinProcessing = false;
if ((checkMethodState->mClosureState != NULL) && (!checkMethodState->mClosureState->mCapturing) && (closureTypeInst == NULL) &&
(mModule->mCurMethodInstance->mMethodDef->mMethodType == BfMethodType_Mixin))
isLocalMixinProcessing = true;
if (!isLocalMixinProcessing)
break;
isMixinOuterVariablePass = true;
checkMethodState = checkMethodState->mPrevMethodState;
}
}
return BfTypedValue();
}
BfTypedValue BfExprEvaluator::DoImplicitArgCapture(BfAstNode* refNode, BfMethodInstance* methodInstance, int paramIdx, bool& failed, BfImplicitParamKind paramKind, const BfTypedValue& methodRefTarget)
{
if ((methodRefTarget) && (methodRefTarget.mValue.mId != BfIRValue::ID_IMPLICIT))
{
if (methodRefTarget.mType->IsMethodRef())
{
BfMethodRefType* methodRefType = (BfMethodRefType*)methodRefTarget.mType;
BfMethodInstance* methodRefMethodInst = methodRefType->mMethodRef;
BF_ASSERT(methodRefMethodInst == methodInstance);
auto paramType = methodInstance->GetParamType(paramIdx);
int dataIdx = methodRefType->GetDataIdxFromParamIdx(paramIdx);
if (dataIdx == -1)
{
BF_ASSERT(paramType->IsValuelessType());
return BfTypedValue(mModule->mBfIRBuilder->GetFakeVal(), paramType);
}
if (methodRefTarget.IsSplat())
{
if (methodRefType->WantsDataPassedAsSplat(dataIdx))
{
BF_ASSERT(paramIdx == -1);
return BfTypedValue(methodRefTarget.mValue, paramType, BfTypedValueKind_SplatHead);
}
else
{
int splatIdx = dataIdx;
if (dataIdx > 0)
{
if (methodRefType->WantsDataPassedAsSplat(0))
splatIdx += methodRefType->GetCaptureType(0)->GetSplatCount() - 1;
}
bool isAddr = false;
BfIRValue value = mModule->ExtractSplatValue(methodRefTarget, splatIdx, paramType, &isAddr);
// We moved the composite load from ExtractSplatValue to here. Hopefully this is correct.
// in LLVM backend we get a direct 'arg' back, in Beef we get backing for a pointer to the struct (and thus need to load)
// if ((paramType->IsComposite()) && (mModule->IsTargetingBeefBackend()))
// value = mModule->mBfIRBuilder->CreateLoad(value);
auto lookupVal = BfTypedValue(value, paramType, isAddr);
if ((isAddr) && (!lookupVal.mType->IsComposite()))
lookupVal = mModule->LoadValue(lookupVal);
return lookupVal;
}
}
if ((paramType->IsComposite()) && (methodRefTarget.IsAddr()))
return BfTypedValue(mModule->mBfIRBuilder->CreateInBoundsGEP(methodRefTarget.mValue, 0, dataIdx), paramType, true);
return BfTypedValue(mModule->ExtractValue(methodRefTarget, dataIdx), paramType);
}
}
// 'Default' implicit arg lookup, by identifier. May match field (for lambda), or local variable
if (paramKind == BfImplicitParamKind_General)
{
if (paramIdx == -1)
{
if (auto delegateBindExpr = BfNodeDynCast<BfDelegateBindExpression>(refNode))
{
BfAstNode* thisNode = NULL;
BfTypedValue thisValue;
if (auto memberReferenceExpr = BfNodeDynCast<BfMemberReferenceExpression>(delegateBindExpr->mTarget))
thisNode = memberReferenceExpr->mTarget;
else if (auto qualifiedNameNode = BfNodeDynCast<BfQualifiedNameNode>(delegateBindExpr->mTarget))
thisNode = qualifiedNameNode->mLeft;
else if (auto identifierNode = BfNodeDynCast<BfIdentifierNode>(delegateBindExpr->mTarget))
{
// Implicit
thisValue = mModule->GetThis();
}
if (auto thisExpr = BfNodeDynCast<BfExpression>(thisNode))
{
thisValue = mModule->CreateValueFromExpression(thisExpr);
if (!thisValue)
return BfTypedValue();
}
if (thisValue)
{
//TODO: handle 'mut', throw error if trying to capture from a non-mut, etc...
return thisValue;
}
}
}
String captureName = methodInstance->GetParamName(paramIdx);
BfIdentifierNode* identifierNode = methodInstance->GetParamNameNode(paramIdx);
BfTypedValue lookupVal;
if (identifierNode != NULL)
{
lookupVal = DoImplicitArgCapture(refNode, identifierNode, 0);
}
else
{
lookupVal = LookupIdentifier(NULL, captureName);
}
if (lookupVal)
{
auto paramType = methodInstance->GetParamType(paramIdx);
if (paramType->IsRef())
{
auto refType = (BfRefType*)paramType;
if (mResultLocalVar != NULL)
{
// When we are capturing, we need to note that we require capturing by reference here
auto localVar = mResultLocalVar;
localVar->mWrittenToId = mModule->mCurMethodState->GetRootMethodState()->mCurAccessId++;
}
bool isValid = false;
if ((refType->mRefKind == BfRefType::RefKind_Mut) && (lookupVal.mKind == BfTypedValueKind_MutableValue))
isValid = true;
if ((lookupVal.mType->IsRef()) || (lookupVal.IsAddr()))
isValid = true;
if (!isValid)
{
// Is there another way this can fail than to be in a lambda?
auto error = mModule->Fail(StrFormat("Method '%s' requires that '%s' be captured by reference. Consider adding by-reference capture specifier [&] to lambda.",
mModule->MethodToString(methodInstance).c_str(), captureName.c_str()), refNode, true);
if ((error != NULL) && (methodInstance->mMethodDef->mMethodDeclaration != NULL))
mModule->mCompiler->mPassInstance->MoreInfo(StrFormat("See method declaration"), methodInstance->mMethodDef->GetRefNode());
failed = true;
}
}
else
{
if (lookupVal.mType->IsRef())
lookupVal = mModule->RemoveRef(lookupVal);
if (!lookupVal.mType->IsComposite())
lookupVal = mModule->LoadValue(lookupVal);
}
return lookupVal;
}
else
{
mModule->Fail(StrFormat("Failed to lookup implicit capture '%s'", captureName.c_str()), refNode, true);
failed = true;
return BfTypedValue();
}
}
return BfTypedValue();
}
void BfExprEvaluator::Visit(BfDelegateBindExpression* delegateBindExpr)
{
BfAutoParentNodeEntry autoParentNodeEntry(mModule, delegateBindExpr);
if (mExpectingType == NULL)
{
mModule->Fail("Cannot infer delegate type", delegateBindExpr);
return;
}
BfTokenNode* newToken = NULL;
BfAllocTarget allocTarget = ResolveAllocTarget(delegateBindExpr->mNewToken, newToken);
SizedArray<BfTypedValueExpression, 4> typedValueExprs;
SizedArray<BfExpression*, 4> args;
BfTypeInstance* delegateTypeInstance = NULL;
BfMethodInstance* methodInstance = NULL;
const char* bindTypeName = NULL;
bool isMethodRefMatch = false;
if (mExpectingType->IsMethodRef())
{
auto methodRefType = (BfMethodRefType*)mExpectingType;
BF_ASSERT(delegateBindExpr->mNewToken == NULL);
methodInstance = methodRefType->mMethodRef;
isMethodRefMatch = true;
}
else
{
if (mExpectingType->IsGenericParam())
{
auto genericParamInstance = mModule->GetGenericParamInstance((BfGenericParamType*)mExpectingType);
if ((genericParamInstance->mTypeConstraint != NULL) && (genericParamInstance->mTypeConstraint->IsDelegate()))
{
delegateTypeInstance = genericParamInstance->mTypeConstraint->ToTypeInstance();
}
}
else
delegateTypeInstance = mExpectingType->ToTypeInstance();
if ((delegateTypeInstance == NULL) ||
((!delegateTypeInstance->IsDelegate()) && (!delegateTypeInstance->IsFunction())))
{
mModule->Fail(StrFormat("Type '%s' cannot be used for method binding. Only delegate or function types are allowed.", mModule->TypeToString(mExpectingType).c_str()), delegateBindExpr);
return;
}
bindTypeName = (delegateTypeInstance->IsDelegate()) ? "delegate" : "function";
mModule->PopulateType(delegateTypeInstance, BfPopulateType_DataAndMethods);
methodInstance = mModule->GetRawMethodInstanceAtIdx(delegateTypeInstance, 0, "Invoke");
if (methodInstance == NULL)
{
BF_DBG_FATAL("Invoke not found");
return;
}
if (auto tokenNode = BfNodeDynCast<BfTokenNode>(delegateBindExpr->mNewToken))
{
if (delegateTypeInstance->IsFunction())
mModule->Fail("Function bindings are direct assignments, allocation specifier is not applicable", delegateBindExpr->mNewToken);
else if (tokenNode->GetToken() == BfToken_Append)
{
mModule->Fail("Append allocation on delegate bind not supported", delegateBindExpr->mNewToken);
}
}
}
int paramOffset = methodInstance->HasExplicitThis() ? 1 : 0;
typedValueExprs.resize(methodInstance->GetParamCount() - paramOffset);
args.resize(methodInstance->GetParamCount() - paramOffset);
for (int i = 0; i < (int)methodInstance->GetParamCount() - paramOffset; i++)
{
auto typedValueExpr = &typedValueExprs[i];
typedValueExpr->mTypedValue.mValue = BfIRValue(BfIRValueFlags_Value, -1);
typedValueExpr->mTypedValue.mType = methodInstance->GetParamType(i + paramOffset);
typedValueExpr->mRefNode = NULL;
args[i] = typedValueExpr;
}
BfSizedArray<ASTREF(BfTypeReference*)>* methodGenericArguments = NULL;
if (delegateBindExpr->mGenericArgs != NULL)
methodGenericArguments = &delegateBindExpr->mGenericArgs->mGenericArgs;
if (delegateBindExpr->mTarget == NULL)
{
mModule->AssertErrorState();
return;
}
auto autoComplete = GetAutoComplete();
if (autoComplete != NULL)
{
SetAndRestoreValue<bool> prevForceAllowNonStatic(autoComplete->mForceAllowNonStatic, methodInstance->mMethodDef->mHasExplicitThis);
GetAutoComplete()->CheckNode(delegateBindExpr->mTarget);
}
if ((!delegateBindExpr->mTarget->IsA<BfIdentifierNode>()) &&
(!delegateBindExpr->mTarget->IsA<BfMemberReferenceExpression>()))
{
mModule->Fail(StrFormat("Invalid %s binding target, %s can only bind to method references. Consider wrapping expression in a lambda.", bindTypeName, bindTypeName), delegateBindExpr->mTarget);
mModule->CreateValueFromExpression(delegateBindExpr->mTarget);
return;
}
BfFunctionBindResult bindResult;
bindResult.mSkipMutCheck = true; // Allow operating on copies
bindResult.mBindType = delegateTypeInstance;
//
{
SetAndRestoreValue<BfType*> prevExpectingType(mExpectingType, methodInstance->mReturnType);
mFunctionBindResult = &bindResult;
DoInvocation(delegateBindExpr->mTarget, delegateBindExpr, args, methodGenericArguments);
mFunctionBindResult = NULL;
}
SetMethodElementType(delegateBindExpr->mTarget);
if (bindResult.mMethodInstance == NULL)
{
if ((mResult) && (IsVar(mResult.mType)))
return;
mResult = BfTypedValue();
return;
}
auto bindMethodInstance = bindResult.mMethodInstance;
if (isMethodRefMatch)
{
// WTF- this was always false, what was it supposed to catch?
// if (bindMethodInstance != bindResult.mMethodInstance)
// {
// mResult = BfTypedValue();
// return;
// }
}
else
{
bool isExactMethodMatch = IsExactMethodMatch(methodInstance, bindMethodInstance, true);
if ((mExpectingType != NULL) && (mExpectingType->IsFunction()) && (methodInstance->mMethodDef->mIsMutating != bindMethodInstance->mMethodDef->mIsMutating))
isExactMethodMatch = false;
if (!isExactMethodMatch)
{
if (bindResult.mCheckedMultipleMethods)
{
mModule->Fail(StrFormat("No overload for '%s' matches %s '%s'", bindMethodInstance->mMethodDef->mName.c_str(), bindTypeName,
mModule->TypeToString(delegateTypeInstance).c_str()), delegateBindExpr->mTarget);
}
else
{
mModule->Fail(StrFormat("Method '%s' does not match %s '%s'", mModule->MethodToString(bindMethodInstance, (BfMethodNameFlags)(BfMethodNameFlag_ResolveGenericParamNames | BfMethodNameFlag_IncludeReturnType | BfMethodNameFlag_IncludeMut)).c_str(), bindTypeName,
mModule->TypeToString(delegateTypeInstance).c_str()), delegateBindExpr->mTarget);
}
mResult = BfTypedValue();
return;
}
}
bool isDirectFunction = false;
if ((bindResult.mMethodInstance->GetOwner()->IsFunction()) && (bindResult.mFunc))
isDirectFunction = true;
if (bindMethodInstance->mIsIntrinsic)
{
mModule->Fail(StrFormat("Method '%s' is an intrinsic and therefore cannot be used as a method binding target. Intrinsics have no addresses.", mModule->MethodToString(bindMethodInstance).c_str()), delegateBindExpr->mTarget);
mResult = BfTypedValue();
return;
}
bool hasIncompatibleCallingConventions = !mModule->mSystem->IsCompatibleCallingConvention(methodInstance->mCallingConvention, bindMethodInstance->mCallingConvention);
auto _GetInvokeMethodName = [&]()
{
String methodName = "Invoke$";
methodName += mModule->mCurMethodInstance->mMethodDef->mName;
int prevSepPos = (int)methodName.LastIndexOf('$');
if (prevSepPos > 6)
{
methodName.RemoveToEnd(prevSepPos);
}
auto rootMethodState = mModule->mCurMethodState->GetRootMethodState();
HashContext hashCtx;
if (mModule->mCurMethodInstance->mMethodDef->mDeclaringType->mPartialIdx != -1)
hashCtx.Mixin(mModule->mCurMethodInstance->mMethodDef->mDeclaringType->mPartialIdx);
if (delegateBindExpr->mFatArrowToken != NULL)
{
hashCtx.Mixin(delegateBindExpr->mFatArrowToken->GetStartCharId());
}
if (rootMethodState->mMethodInstance->mMethodInfoEx != NULL)
{
for (auto methodGenericArg : rootMethodState->mMethodInstance->mMethodInfoEx->mMethodGenericArguments)
{
StringT<128> genericTypeName;
BfMangler::Mangle(genericTypeName, mModule->mCompiler->GetMangleKind(), methodGenericArg);
hashCtx.MixinStr(genericTypeName);
}
}
Val128 hashVal = hashCtx.Finish128();
methodName += '$';
methodName += BfTypeUtils::HashEncode64(hashVal.mLow);
String mangledName;
BfMangler::MangleMethodName(mangledName, mModule->mCompiler->GetMangleKind(), mModule->mCurTypeInstance, methodName);
return mangledName;
};
if ((delegateBindExpr->mNewToken == NULL) || (delegateTypeInstance->IsFunction()))
{
if ((mModule->mCurMethodState != NULL) && (mModule->mCurMethodState->mHotDataReferenceBuilder != NULL))
{
BF_ASSERT(bindResult.mMethodInstance->mHotMethod != NULL);
mModule->mCurMethodState->mHotDataReferenceBuilder->mFunctionPtrs.Add(bindResult.mMethodInstance->mHotMethod);
}
if (isDirectFunction)
{
//if ((delegateTypeInstance != NULL) && (delegateTypeInstance->IsFunction()))
if (mExpectingType->IsFunction())
{
auto intPtrVal = mModule->mBfIRBuilder->CreatePtrToInt(bindResult.mFunc, BfTypeCode_IntPtr);
mResult = BfTypedValue(intPtrVal, mExpectingType);
return;
}
}
if (mExpectingType->IsFunction())
{
BfIRValue result;
if ((hasIncompatibleCallingConventions) && (mModule->HasExecutedOutput()))
{
//
{
SetAndRestoreValue<bool> prevIgnore(mModule->mBfIRBuilder->mIgnoreWrites, true);
result = mModule->CastToFunction(delegateBindExpr->mTarget, bindResult.mOrigTarget, bindResult.mMethodInstance, mExpectingType);
}
if (result)
{
String methodName = _GetInvokeMethodName();
SizedArray<BfIRType, 8> irParamTypes;
BfIRType irReturnType;
methodInstance->GetIRFunctionInfo(mModule, irReturnType, irParamTypes);
int thisFuncParamIdx = methodInstance->GetThisIdx();
int thisBindParamIdx = methodInstance->GetThisIdx();
auto prevActiveFunction = mModule->mBfIRBuilder->GetActiveFunction();
auto prevInsertBlock = mModule->mBfIRBuilder->GetInsertBlock();
mModule->mBfIRBuilder->SaveDebugLocation();
auto funcType = mModule->mBfIRBuilder->CreateFunctionType(irReturnType, irParamTypes);
auto funcValue = mModule->mBfIRBuilder->CreateFunction(funcType, BfIRLinkageType_External, methodName);
auto srcCallingConv = mModule->GetIRCallingConvention(methodInstance);
mModule->mBfIRBuilder->SetFuncCallingConv(funcValue, srcCallingConv);
mModule->mBfIRBuilder->SetActiveFunction(funcValue);
auto entryBlock = mModule->mBfIRBuilder->CreateBlock("entry", true);
mModule->mBfIRBuilder->SetInsertPoint(entryBlock);
SizedArray<BfIRValue, 8> irArgs;
for (int paramIdx = 0; paramIdx < irParamTypes.size(); paramIdx++)
{
irArgs.push_back(mModule->mBfIRBuilder->GetArgument(paramIdx));
}
auto bindFuncVal = bindResult.mFunc;
if (mModule->mCompiler->mOptions.mAllowHotSwapping)
bindFuncVal = mModule->mBfIRBuilder->RemapBindFunction(bindFuncVal);
auto callResult = mModule->mBfIRBuilder->CreateCall(bindFuncVal, irArgs);
auto destCallingConv = mModule->GetIRCallingConvention(bindMethodInstance);
if (destCallingConv != BfIRCallingConv_CDecl)
mModule->mBfIRBuilder->SetCallCallingConv(callResult, destCallingConv);
if (methodInstance->mReturnType->IsValuelessType())
mModule->mBfIRBuilder->CreateRetVoid();
else
mModule->mBfIRBuilder->CreateRet(callResult);
mModule->mBfIRBuilder->SetActiveFunction(prevActiveFunction);
mModule->mBfIRBuilder->SetInsertPoint(prevInsertBlock);
mModule->mBfIRBuilder->RestoreDebugLocation();
result = mModule->mBfIRBuilder->CreatePtrToInt(funcValue, BfTypeCode_IntPtr);
}
}
else
{
if ((bindResult.mOrigTarget) && (bindResult.mOrigTarget.mType->IsGenericParam()) && (bindResult.mMethodInstance->GetOwner()->IsInterface()))
{
bool matching = true;
if (methodInstance->HasExplicitThis())
{
auto thisType = methodInstance->GetParamType(0);
if (thisType->IsPointer())
thisType = thisType->GetUnderlyingType();
if (thisType->IsRef())
thisType = thisType->GetUnderlyingType();
matching = thisType == bindResult.mOrigTarget.mType;
}
if (matching)
{
mResult = BfTypedValue(mModule->mBfIRBuilder->GetFakeVal(), mExpectingType);
return;
}
}
result = mModule->CastToFunction(delegateBindExpr->mTarget, bindResult.mOrigTarget, bindResult.mMethodInstance, mExpectingType, BfCastFlags_None, bindResult.mFunc);
}
if (result)
mResult = BfTypedValue(result, mExpectingType);
return;
}
if (bindResult.mMethodInstance->mDisallowCalling)
{
BF_ASSERT(mModule->mBfIRBuilder->mIgnoreWrites);
mResult = mModule->GetDefaultTypedValue(mExpectingType, false, BfDefaultValueKind_Addr);
return;
}
auto methodRefType = mModule->CreateMethodRefType(bindResult.mMethodInstance);
mModule->AddDependency(methodRefType, mModule->mCurTypeInstance, BfDependencyMap::DependencyFlag_Calls);
mModule->AddCallDependency(bindResult.mMethodInstance);
if ((bindResult.mOrigTarget) && (bindResult.mOrigTarget.mType->IsMethodRef()))
{
mResult = bindResult.mOrigTarget;
}
else
{
if ((bindResult.mMethodInstance->mMethodDef->mIsLocalMethod) || (!bindResult.mTarget))
mResult = BfTypedValue(BfIRValue(BfIRValueFlags_Value, BfIRValue::ID_IMPLICIT), methodRefType);
else
{
auto methodRefPtr = mModule->CreateAlloca(methodRefType, "bindResult");
auto elemPtr = mModule->mBfIRBuilder->CreateInBoundsGEP(methodRefPtr, 0, 0);
BfTypedValue target;
if (bindResult.mTarget.IsSplat())
target = mModule->AggregateSplat(bindResult.mTarget, &bindResult.mIRArgs[0]);
else
target = bindResult.mTarget;
mModule->mBfIRBuilder->CreateStore(target.mValue, elemPtr);
mResult = BfTypedValue(methodRefPtr, methodRefType, true);
}
}
return;
}
int implicitParamCount = bindMethodInstance->GetImplicitParamCount();
BfTypeInstance* useTypeInstance = delegateTypeInstance;
BfClosureType* closureTypeInst = NULL;
auto origTarget = bindResult.mOrigTarget;
auto target = bindResult.mTarget;
BfTypedValue methodRefTarget;
if ((bindResult.mOrigTarget) && (bindResult.mOrigTarget.mType->IsMethodRef()))
methodRefTarget = bindResult.mOrigTarget;
bool isStructTarget = (target) && (target.mType->IsStruct());
bool bindCapturesThis = bindMethodInstance->HasThis() && !isStructTarget;
bool needsSplat = (isStructTarget) && (!bindMethodInstance->mMethodDef->mIsMutating) && (bindMethodInstance->AllowsSplatting(-1));
bool captureThisByValue = isStructTarget;
if (bindMethodInstance->mMethodDef->mIsLocalMethod)
{
// Local method captures always capture 'this' by reference
captureThisByValue = false;
}
if ((origTarget.mType != NULL) &&
((origTarget.mType->IsRef()) || (origTarget.mType->IsPointer())))
{
captureThisByValue = false;
}
if (methodRefTarget)
BF_ASSERT(methodRefTarget.mType->IsMethodRef());
if (target.IsSplat())
target = mModule->AggregateSplat(target, &bindResult.mIRArgs[0]);
bool hasCaptures = false;
// Do we need a special delegate type for this?
if (((captureThisByValue) || (needsSplat) || (implicitParamCount > 0) /*|| (hasIncompatibleCallingConventions)*/) &&
(mModule->HasExecutedOutput()))
{
hasCaptures = true;
auto curProject = mModule->mCurTypeInstance->mTypeDef->mProject;
if (captureThisByValue)
target = mModule->LoadValue(target);
String delegateTypeName = mModule->TypeToString(delegateTypeInstance);
HashContext hashCtx;
hashCtx.MixinStr(delegateTypeName);
// We mix in the project for reasons described in the lambda binding handler
hashCtx.MixinStr(curProject->mName);
String structTargetTypeName;
String structTargetName;
// Implicit param separator
for (int implicitParamIdx = bindMethodInstance->HasThis() ? - 1 : 0; implicitParamIdx < implicitParamCount; implicitParamIdx++)
{
auto paramType = bindResult.mMethodInstance->GetParamType(implicitParamIdx);
if ((implicitParamIdx == -1) && (captureThisByValue))
{
if (paramType->IsPointer())
paramType = paramType->GetUnderlyingType();
}
structTargetTypeName = mModule->TypeToString(paramType);
structTargetName = bindResult.mMethodInstance->GetParamName(implicitParamIdx);
hashCtx.MixinStr(structTargetTypeName);
hashCtx.MixinStr(structTargetName);
}
Val128 hash128 = hashCtx.Finish128();
BfClosureType* checkClosureType = new BfClosureType(delegateTypeInstance, hash128);
checkClosureType->mContext = mModule->mContext;
checkClosureType->mBaseType = delegateTypeInstance;
BfType* resolvedClosureType = mModule->ResolveType(checkClosureType, BfPopulateType_TypeDef);
closureTypeInst = (BfClosureType*)resolvedClosureType;
if (checkClosureType == resolvedClosureType)
{
// This is a new closure type
closureTypeInst->Init(curProject);
for (int implicitParamIdx = bindMethodInstance->HasThis() ? -1 : 0; implicitParamIdx < implicitParamCount; implicitParamIdx++)
{
String fieldName = bindResult.mMethodInstance->GetParamName(implicitParamIdx);
BfType* paramType = bindResult.mMethodInstance->GetParamType(implicitParamIdx);
if ((implicitParamIdx == -1) && (captureThisByValue))
{
if (paramType->IsPointer())
paramType = paramType->GetUnderlyingType();
}
if (fieldName == "this")
fieldName = "__this";
closureTypeInst->AddField(paramType, fieldName);
}
closureTypeInst->Finish();
mModule->PopulateType(resolvedClosureType, BfPopulateType_Declaration);
}
else
{
// Already had this entry
delete checkClosureType;
}
useTypeInstance = closureTypeInst;
}
mModule->PopulateType(useTypeInstance);
if (delegateBindExpr->mTarget == NULL)
{
mModule->AssertErrorState();
return;
}
mResult = BfTypedValue(mModule->AllocFromType(useTypeInstance, allocTarget, BfIRValue(), BfIRValue(), 0, BfAllocFlags_None), useTypeInstance);
// Do we need specialized calling code for this?
BfIRValue funcValue;
if (((needsSplat) || (implicitParamCount > 0) || (hasIncompatibleCallingConventions)) &&
(mModule->HasExecutedOutput()))
{
int fieldIdx = 0;
for (int implicitParamIdx = bindMethodInstance->HasThis() ? -1 : 0; implicitParamIdx < implicitParamCount; implicitParamIdx++)
{
auto fieldInst = &useTypeInstance->mFieldInstances[fieldIdx];
int gepIdx = fieldInst->mDataIdx;
auto fieldPtr = mModule->mBfIRBuilder->CreateInBoundsGEP(mResult.mValue, 0, gepIdx);
auto fieldType = bindMethodInstance->GetParamType(implicitParamIdx);
if ((implicitParamIdx == -1) && (captureThisByValue))
{
if (fieldType->IsPointer())
fieldType = fieldType->GetUnderlyingType();
}
bool failed = false;
BfTypedValue lookupVal;
if (implicitParamIdx == -1)
lookupVal = target;
else
lookupVal = DoImplicitArgCapture(delegateBindExpr->mTarget, bindResult.mMethodInstance, implicitParamIdx, failed, BfImplicitParamKind_General, methodRefTarget);
if (!lookupVal)
continue;
if ((fieldType->IsPointer()) && (lookupVal.mType != fieldType))
{
BF_ASSERT(fieldType->GetUnderlyingType() == lookupVal.mType);
BF_ASSERT(lookupVal.IsAddr());
}
else if (!fieldType->IsRef())
lookupVal = mModule->LoadOrAggregateValue(lookupVal);
if (lookupVal)
mModule->mBfIRBuilder->CreateStore(lookupVal.mValue, fieldPtr);
fieldIdx++;
}
String methodName = _GetInvokeMethodName();
SizedArray<BfIRType, 8> irParamTypes;
BfIRType irReturnType;
bool hasThis = false;
if (hasCaptures)
{
hasThis = true;
methodInstance->GetIRFunctionInfo(mModule, irReturnType, irParamTypes);
int thisIdx = 0;
if (GetStructRetIdx(methodInstance) == 0)
thisIdx = 1;
irParamTypes[thisIdx] = mModule->mBfIRBuilder->MapType(useTypeInstance);
}
else
{
BF_ASSERT(hasIncompatibleCallingConventions);
bindMethodInstance->GetIRFunctionInfo(mModule, irReturnType, irParamTypes);
hasThis = bindMethodInstance->HasThis();
}
auto prevActiveFunction = mModule->mBfIRBuilder->GetActiveFunction();
auto prevInsertBlock = mModule->mBfIRBuilder->GetInsertBlock();
mModule->mBfIRBuilder->SaveDebugLocation();
auto funcType = mModule->mBfIRBuilder->CreateFunctionType(irReturnType, irParamTypes);
funcValue = mModule->mBfIRBuilder->CreateFunction(funcType, BfIRLinkageType_External, methodName);
if (GetStructRetIdx(methodInstance) != -1)
{
mModule->mBfIRBuilder->Func_AddAttribute(funcValue, GetStructRetIdx(methodInstance) + 1, BfIRAttribute_NoAlias);
mModule->mBfIRBuilder->Func_AddAttribute(funcValue, GetStructRetIdx(methodInstance) + 1, BfIRAttribute_StructRet);
}
auto srcCallingConv = mModule->GetIRCallingConvention(methodInstance);
if ((!hasThis) && (methodInstance->mCallingConvention == BfCallingConvention_Stdcall))
srcCallingConv = BfIRCallingConv_StdCall;
else if (methodInstance->mCallingConvention == BfCallingConvention_Fastcall)
srcCallingConv = BfIRCallingConv_FastCall;
mModule->mBfIRBuilder->SetFuncCallingConv(funcValue, srcCallingConv);
mModule->mBfIRBuilder->SetActiveFunction(funcValue);
auto entryBlock = mModule->mBfIRBuilder->CreateBlock("entry", true);
mModule->mBfIRBuilder->SetInsertPoint(entryBlock);
fieldIdx = 0;
SizedArray<BfIRValue, 8> irArgs;
int argIdx = 0;
if (GetStructRetIdx(bindMethodInstance) == 0)
{
irArgs.push_back(mModule->mBfIRBuilder->GetArgument(GetStructRetIdx(methodInstance)));
argIdx++;
}
for (int implicitParamIdx = bindMethodInstance->HasThis() ? -1 : 0; implicitParamIdx < implicitParamCount; implicitParamIdx++)
{
auto fieldInst = &useTypeInstance->mFieldInstances[fieldIdx];
int gepIdx = fieldInst->mDataIdx;
auto fieldType = bindMethodInstance->GetParamType(implicitParamIdx);
bool disableSplat = false;
if ((implicitParamIdx == -1) && (captureThisByValue))
{
if (fieldType->IsPointer())
{
fieldType = fieldType->GetUnderlyingType();
disableSplat = true;
}
}
int thisIdx = 0;
if (GetStructRetIdx(methodInstance) == 0)
thisIdx = 1;
auto fieldPtr = mModule->mBfIRBuilder->CreateInBoundsGEP(mModule->mBfIRBuilder->GetArgument(thisIdx), 0, gepIdx);
BfTypedValue typedVal(fieldPtr, fieldType, true);
PushArg(typedVal, irArgs, disableSplat);
fieldIdx++;
}
if (hasThis)
argIdx++;
if (GetStructRetIdx(bindMethodInstance) == 1)
{
irArgs.push_back(mModule->mBfIRBuilder->GetArgument(GetStructRetIdx(methodInstance)));
argIdx++;
}
for (int paramIdx = 0; paramIdx < methodInstance->GetParamCount(); paramIdx++)
{
auto paramType = methodInstance->GetParamType(paramIdx);
if ((paramType->IsSplattable()) && (!IsComptime()))
{
BfTypeUtils::SplatIterate([&](BfType* checkType) { irArgs.push_back(mModule->mBfIRBuilder->GetArgument(argIdx++)); }, paramType);
}
else if (!paramType->IsValuelessType())
{
irArgs.push_back(mModule->mBfIRBuilder->GetArgument(argIdx++));
}
}
auto bindFuncVal = bindResult.mFunc;
if (mModule->mCompiler->mOptions.mAllowHotSwapping)
bindFuncVal = mModule->mBfIRBuilder->RemapBindFunction(bindFuncVal);
auto callInst = mModule->mBfIRBuilder->CreateCall(bindFuncVal, irArgs);
if (GetStructRetIdx(bindMethodInstance) != -1)
mModule->mBfIRBuilder->Call_AddAttribute(callInst, GetStructRetIdx(bindMethodInstance) + 1, BfIRAttribute_StructRet);
auto destCallingConv = mModule->GetIRCallingConvention(bindMethodInstance);
if (destCallingConv != BfIRCallingConv_CDecl)
mModule->mBfIRBuilder->SetCallCallingConv(callInst, destCallingConv);
if ((methodInstance->mReturnType->IsValuelessType()) || (GetStructRetIdx(methodInstance) != -1))
{
mModule->mBfIRBuilder->CreateRetVoid();
}
else
{
mModule->mBfIRBuilder->CreateRet(callInst);
}
mModule->mBfIRBuilder->SetActiveFunction(prevActiveFunction);
mModule->mBfIRBuilder->SetInsertPoint(prevInsertBlock);
mModule->mBfIRBuilder->RestoreDebugLocation();
}
else if ((closureTypeInst != NULL) && (captureThisByValue))
{
// When we need to aggregrate a splat for a target, we just point out delegate's mTarget to inside ourselves where we aggregated the value
auto fieldPtr = mModule->mBfIRBuilder->CreateInBoundsGEP(mResult.mValue, 0, 1);
target = mModule->LoadValue(target);
mModule->mBfIRBuilder->CreateStore(target.mValue, fieldPtr);
target = BfTypedValue(fieldPtr, target.mType, true);
}
BfResolvedArgs resolvedArgs;
MatchConstructor(delegateBindExpr, delegateBindExpr, mResult, useTypeInstance, resolvedArgs, false, false);
auto baseDelegateType = VerifyBaseDelegateType(delegateTypeInstance->mBaseType);
auto baseDelegate = mModule->mBfIRBuilder->CreateBitCast(mResult.mValue, mModule->mBfIRBuilder->MapType(baseDelegateType, BfIRPopulateType_Full));
// >> delegate.mTarget = bindResult.mTarget
BfIRValue valPtr;
if (mModule->HasExecutedOutput())
{
if ((implicitParamCount > 0) || (needsSplat)) // Point back to self, it contains capture data
valPtr = mModule->mBfIRBuilder->CreateBitCast(mResult.mValue, mModule->mBfIRBuilder->GetPrimitiveType(BfTypeCode_NullPtr));
else if (bindResult.mTarget)
valPtr = mModule->mBfIRBuilder->CreateBitCast(target.mValue, mModule->mBfIRBuilder->GetPrimitiveType(BfTypeCode_NullPtr));
else
valPtr = mModule->GetDefaultValue(mModule->GetPrimitiveType(BfTypeCode_NullPtr));
auto fieldPtr = mModule->mBfIRBuilder->CreateInBoundsGEP(baseDelegate, 0, 2);
mModule->mBfIRBuilder->CreateStore(valPtr, fieldPtr);
}
if (!funcValue)
{
funcValue = bindResult.mFunc;
if (!funcValue)
{
if ((mModule->HasExecutedOutput()) && (!mModule->mBfIRBuilder->mIgnoreWrites))
mModule->AssertErrorState();
return;
}
if ((mModule->mCompiler->mOptions.mAllowHotSwapping) && (!bindResult.mMethodInstance->mMethodDef->mIsVirtual))
{
funcValue = mModule->mBfIRBuilder->RemapBindFunction(funcValue);
}
}
// >> delegate.mFuncPtr = bindResult.mFunc
auto nullPtrType = mModule->GetPrimitiveType(BfTypeCode_NullPtr);
valPtr = mModule->mBfIRBuilder->CreateBitCast(funcValue, mModule->mBfIRBuilder->MapType(nullPtrType));
auto fieldPtr = mModule->mBfIRBuilder->CreateInBoundsGEP(baseDelegate, 0, 1);
mModule->mBfIRBuilder->CreateStore(valPtr, fieldPtr);
}
void BfExprEvaluator::VisitLambdaBodies(BfAstNode* body, BfFieldDtorDeclaration* fieldDtor)
{
if (auto blockBody = BfNodeDynCast<BfBlock>(body))
mModule->VisitChild(blockBody);
else if (auto bodyExpr = BfNodeDynCast<BfExpression>(body))
{
auto result = mModule->CreateValueFromExpression(bodyExpr);
if ((result) && (mModule->mCurMethodState->mClosureState != NULL) &&
(mModule->mCurMethodState->mClosureState->mReturnTypeInferState == BfReturnTypeInferState_Inferring))
mModule->mCurMethodState->mClosureState->mReturnType = result.mType;
}
while (fieldDtor != NULL)
{
mModule->mCurMethodState->mLeftBlockUncond = false;
mModule->VisitChild(fieldDtor->mBody);
fieldDtor = fieldDtor->mNextFieldDtor;
}
}
BfLambdaInstance* BfExprEvaluator::GetLambdaInstance(BfLambdaBindExpression* lambdaBindExpr, BfAllocTarget& allocTarget)
{
if (mModule->mCurMethodState == NULL)
return NULL;
auto rootMethodState = mModule->mCurMethodState->GetRootMethodState();
BfAstNodeList cacheNodeList;
cacheNodeList.mList.Add(lambdaBindExpr);
///
{
auto checkMethodState = mModule->mCurMethodState;
while (checkMethodState != NULL)
{
if (checkMethodState->mMixinState != NULL)
cacheNodeList.mList.Add(checkMethodState->mMixinState->mSource);
checkMethodState = checkMethodState->mPrevMethodState;
}
}
bool isInferReturnType = (mBfEvalExprFlags & BfEvalExprFlags_InferReturnType) != 0;
BfLambdaInstance* lambdaInstance = NULL;
if ((!isInferReturnType) && (rootMethodState->mLambdaCache.TryGetValue(cacheNodeList, &lambdaInstance)))
return lambdaInstance;
static int sBindCount = 0;
sBindCount++;
bool isFunctionBind = false;
BfTypeInstance* delegateTypeInstance = NULL;
BfMethodInstance* invokeMethodInstance = NULL;
if (mExpectingType == NULL)
{
mModule->Fail("Cannot infer delegate type", lambdaBindExpr);
delegateTypeInstance = mModule->ResolveTypeDef(mModule->mCompiler->mActionTypeDef)->ToTypeInstance();
}
else
{
delegateTypeInstance = mExpectingType->ToTypeInstance();
if ((delegateTypeInstance == NULL) ||
((!delegateTypeInstance->mTypeDef->mIsDelegate) && (!delegateTypeInstance->mTypeDef->mIsFunction)))
{
if (lambdaBindExpr->mFatArrowToken != NULL)
mModule->Fail("Can only bind lambdas to delegate types", lambdaBindExpr->mFatArrowToken);
delegateTypeInstance = mModule->ResolveTypeDef(mModule->mCompiler->mActionTypeDef)->ToTypeInstance();
}
else
{
invokeMethodInstance = mModule->GetRawMethodInstanceAtIdx(delegateTypeInstance, 0, "Invoke");
}
isFunctionBind = delegateTypeInstance->mTypeDef->mIsFunction;
}
if (auto tokenNode = BfNodeDynCast<BfTokenNode>(lambdaBindExpr->mNewToken))
{
if (isFunctionBind)
{
mModule->Fail("Function lambda binding does not require allocation", lambdaBindExpr->mNewToken);
}
else if (tokenNode->GetToken() == BfToken_Append)
{
mModule->Fail("Append allocation on delegate bind not supported", lambdaBindExpr->mNewToken);
}
}
if (invokeMethodInstance != NULL)
{
if ((int)lambdaBindExpr->mParams.size() < invokeMethodInstance->GetParamCount())
{
BfAstNode* refNode = lambdaBindExpr->mCloseParen;
if (refNode == NULL)
refNode = lambdaBindExpr;
mModule->Fail(StrFormat("Not enough parameters for delegate type '%s'. Expected %d more.",
mModule->TypeToString(delegateTypeInstance).c_str(), invokeMethodInstance->GetParamCount() - lambdaBindExpr->mParams.size()), refNode);
}
else if ((int)lambdaBindExpr->mParams.size() > invokeMethodInstance->GetParamCount())
{
BfAstNode* refNode = lambdaBindExpr->mParams[invokeMethodInstance->GetParamCount()];
mModule->Fail(StrFormat("Too many parameters for delegate type '%s'. Expected %d fewer.",
mModule->TypeToString(delegateTypeInstance).c_str(), lambdaBindExpr->mParams.size() - invokeMethodInstance->GetParamCount()), refNode);
}
}
auto autoComplete = GetAutoComplete();
bool wasCapturingMethodInfo = false;
if ((autoComplete != NULL) && (invokeMethodInstance != NULL))
{
wasCapturingMethodInfo = autoComplete->mIsCapturingMethodMatchInfo;
autoComplete->CheckInvocation(lambdaBindExpr, lambdaBindExpr->mOpenParen, lambdaBindExpr->mCloseParen, lambdaBindExpr->mCommas);
if (autoComplete->mIsCapturingMethodMatchInfo)
{
autoComplete->mMethodMatchInfo->mInstanceList.Clear();
auto methodMatchInfo = autoComplete->mMethodMatchInfo;
BfAutoComplete::MethodMatchEntry methodMatchEntry;
methodMatchEntry.mTypeInstance = invokeMethodInstance->GetOwner();
methodMatchEntry.mCurMethodInstance = mModule->mCurMethodInstance;
methodMatchEntry.mMethodDef = invokeMethodInstance->mMethodDef;
autoComplete->mMethodMatchInfo->mInstanceList.push_back(methodMatchEntry);
methodMatchInfo->mBestIdx = 0;
methodMatchInfo->mMostParamsMatched = 0;
int cursorIdx = lambdaBindExpr->GetParser()->mCursorIdx;
if ((lambdaBindExpr->mCloseParen == NULL) || (cursorIdx <= lambdaBindExpr->mCloseParen->GetSrcStart()))
{
int paramIdx = 0;
for (int commaIdx = 0; commaIdx < (int)lambdaBindExpr->mCommas.size(); commaIdx++)
{
auto commaNode = lambdaBindExpr->mCommas[commaIdx];
if ((commaNode != NULL) && (cursorIdx >= commaNode->GetSrcStart()))
paramIdx = commaIdx + 1;
}
bool isEmpty = true;
if (paramIdx < (int)lambdaBindExpr->mParams.size())
{
auto paramNode = lambdaBindExpr->mParams[paramIdx];
if (paramNode != NULL)
isEmpty = false;
}
if (isEmpty)
{
if (paramIdx < (int)invokeMethodInstance->GetParamCount())
{
String paramName = invokeMethodInstance->GetParamName(paramIdx);
autoComplete->mEntriesSet.Clear();
if (paramName.IsEmpty())
paramName += StrFormat("val%d", paramIdx + 1);
autoComplete->AddEntry(AutoCompleteEntry("paramName", paramName));
autoComplete->mInsertStartIdx = cursorIdx;
autoComplete->mInsertEndIdx = cursorIdx;
if ((paramIdx == 0) && (lambdaBindExpr->mParams.IsEmpty()))
{
String totalNames;
for (int checkIdx = 0; checkIdx < (int)invokeMethodInstance->GetParamCount(); checkIdx++)
{
if (!totalNames.IsEmpty())
totalNames += ", ";
String paramName = invokeMethodInstance->GetParamName(checkIdx);
if (paramName.IsEmpty())
paramName += StrFormat("val%d", checkIdx + 1);
totalNames += paramName;
}
autoComplete->AddEntry(AutoCompleteEntry("paramNames", totalNames));
}
}
}
}
}
}
defer
(
{
if (autoComplete != NULL)
autoComplete->mIsCapturingMethodMatchInfo = (wasCapturingMethodInfo) && (!autoComplete->mIsCapturingMethodMatchInfo) && (autoComplete->mMethodMatchInfo != NULL);
}
);
if (lambdaBindExpr->mBody == NULL)
{
mModule->AssertErrorState();
return NULL;
}
if ((lambdaBindExpr->mNewToken == NULL) && (isInferReturnType))
{
// Method ref, but let this follow infer route
}
else if ((lambdaBindExpr->mNewToken == NULL) || (isFunctionBind))
{
if ((mModule->mCurMethodState != NULL) && (mModule->mCurMethodState->mClosureState != NULL) && (mModule->mCurMethodState->mClosureState->mCapturing))
{
SetAndRestoreValue<bool> prevIgnoreErrors(mModule->mIgnoreErrors, true);
VisitLambdaBodies(lambdaBindExpr->mBody, lambdaBindExpr->mDtor);
}
if ((lambdaBindExpr->mNewToken != NULL) && (isFunctionBind))
mModule->Fail("Binds to functions should do not require allocations.", lambdaBindExpr->mNewToken);
if (lambdaBindExpr->mDtor != NULL)
{
mModule->Fail("Valueless method reference cannot contain destructor. Consider either removing destructor or using an allocated lambda.", lambdaBindExpr->mDtor->mTildeToken);
// Eat it
auto fieldDtor = lambdaBindExpr->mDtor;
while (fieldDtor != NULL)
{
mModule->VisitEmbeddedStatement(fieldDtor->mBody);
fieldDtor = fieldDtor->mNextFieldDtor;
}
}
if (invokeMethodInstance != NULL)
{
BfLocalMethod* localMethod = new BfLocalMethod();
localMethod->mMethodName = "anon";
localMethod->mSystem = mModule->mSystem;
localMethod->mModule = mModule;
localMethod->mExpectedFullName = mModule->GetLocalMethodName(localMethod->mMethodName, lambdaBindExpr->mFatArrowToken, mModule->mCurMethodState, mModule->mCurMethodState->mMixinState);
localMethod->mLambdaInvokeMethodInstance = invokeMethodInstance;
localMethod->mLambdaBindExpr = lambdaBindExpr;
localMethod->mDeclMethodState = mModule->mCurMethodState;
mModule->mContext->mLocalMethodGraveyard.push_back(localMethod);
auto moduleMethodInstance = mModule->GetLocalMethodInstance(localMethod, BfTypeVector());
if (moduleMethodInstance.mMethodInstance->mDisallowCalling)
{
mResult = mModule->GetDefaultTypedValue(mExpectingType, false, BfDefaultValueKind_Addr);
return NULL;
}
auto methodRefType = mModule->CreateMethodRefType(moduleMethodInstance.mMethodInstance);
mModule->AddDependency(methodRefType, mModule->mCurTypeInstance, BfDependencyMap::DependencyFlag_Calls);
mModule->AddCallDependency(moduleMethodInstance.mMethodInstance);
mResult = BfTypedValue(BfIRValue(BfIRValueFlags_Value, BfIRValue::ID_IMPLICIT), methodRefType);
return NULL;
}
}
//SetAndRestoreValue<bool> prevIgnoreIRWrites(mModule->mBfIRBuilder->mIgnoreWrites, mModule->mWantsIRIgnoreWrites);
SetAndRestoreValue<bool> prevIgnoreIRWrites(mModule->mBfIRBuilder->mIgnoreWrites, mModule->mWantsIRIgnoreWrites || mModule->mCurMethodInstance->mIsUnspecialized);
BfTypeInstance* outerClosure = NULL;
if ((mModule->mCurMethodState->mClosureState != NULL) && (!mModule->mCurMethodState->mClosureState->mCapturing))
outerClosure = mModule->mCurMethodState->mClosureState->mClosureType;
Val128 val128(delegateTypeInstance->mTypeId);
bool isConstEval = ((mBfEvalExprFlags & BfEvalExprFlags_Comptime) != 0);
BfMethodState methodState;
methodState.mPrevMethodState = mModule->mCurMethodState;
BfIRFunctionType funcType;
auto voidType = mModule->GetPrimitiveType(BfTypeCode_None);
SizedArray<BfIRType, 0> paramTypes;
funcType = mModule->mBfIRBuilder->CreateFunctionType(mModule->mBfIRBuilder->MapType(voidType), paramTypes, false);
auto prevInsertBlock = mModule->mBfIRBuilder->GetInsertBlock();
BF_ASSERT(prevInsertBlock || isConstEval);
auto prevActiveFunction = mModule->mBfIRBuilder->GetActiveFunction();
mModule->mBfIRBuilder->SaveDebugLocation();
SetAndRestoreValue<bool> prevIgnoreWrites(mModule->mBfIRBuilder->mIgnoreWrites, true);
BfDeferredLocalAssignData deferredLocalAssignData;
if (mModule->mCurMethodState->mDeferredLocalAssignData != NULL)
deferredLocalAssignData.ExtendFrom(mModule->mCurMethodState->mDeferredLocalAssignData);
SetAndRestoreValue<BfMethodState*> prevMethodState(mModule->mCurMethodState, &methodState);
methodState.mIRHeadBlock = mModule->mBfIRBuilder->CreateBlock("head", true);
methodState.mIRInitBlock = mModule->mBfIRBuilder->CreateBlock("init", true);
methodState.mIREntryBlock = mModule->mBfIRBuilder->CreateBlock("entry", true);
methodState.mCurScope->mDIScope = prevMethodState.mPrevVal->mCurScope->mDIScope;//invokeMethodInstance->mDIFunction;
methodState.mCurLocalVarId = -1;
methodState.mIRFunction = prevMethodState.mPrevVal->mIRFunction;
methodState.mDeferredLocalAssignData = &deferredLocalAssignData;
mModule->mBfIRBuilder->SetInsertPoint(methodState.mIREntryBlock);
BfClosureState closureState;
if (delegateTypeInstance->IsDelegate())
closureState.mReturnType = mModule->GetDelegateReturnType(delegateTypeInstance);
else
closureState.mReturnType = mModule->mContext->mBfObjectType;
closureState.mCapturing = true;
closureState.mDeclaringMethodIsMutating = mModule->mCurMethodInstance->mMethodDef->mIsMutating;
methodState.mClosureState = &closureState;
closureState.mClosureType = outerClosure;
BF_ASSERT(methodState.mCurLocalVarId == -1);
int outerLocalsCount = (int)methodState.mLocals.size();
// static int sItrCount = 0;
// ++sItrCount;
// int itrCount = sItrCount;
// if ((itrCount == 8) || (itrCount == 10))
// {
// NOP;
// }
String delegateTypeName = mModule->TypeToString(delegateTypeInstance);
HashContext hashCtx;
hashCtx.MixinStr(delegateTypeName);
BfSource* bfSource = delegateTypeInstance->mTypeDef->mSource;
BfMethodDef* methodDef = new BfMethodDef();
methodDef->mDeclaringType = mModule->mCurMethodInstance->mMethodDef->mDeclaringType;
Val128 closureMethodHash;
OwnedVector<BfParameterDeclaration> tempParamDecls;
if ((autoComplete != NULL) && (autoComplete->mMethodMatchInfo != NULL) && (autoComplete->IsAutocompleteNode(lambdaBindExpr->mBody)))
{
// Don't show outer method match info when our cursor is inside a lambda expression (being passed as a parameter)
autoComplete->RemoveMethodMatchInfo();
}
if (invokeMethodInstance != NULL)
{
for (int paramIdx = 0; paramIdx < (int)invokeMethodInstance->mMethodDef->mParams.size(); paramIdx++)
{
auto invokeParamDef = invokeMethodInstance->mMethodDef->mParams[paramIdx];
BfParameterDef* paramDef = new BfParameterDef();
paramDef->mParamDeclaration = tempParamDecls.Alloc();
BfAstNode::Zero(paramDef->mParamDeclaration);
BfLocalVariable* localVar = new BfLocalVariable();
if (paramIdx < (int)lambdaBindExpr->mParams.size())
{
localVar->mName = lambdaBindExpr->mParams[paramIdx]->ToString();
localVar->mNameNode = lambdaBindExpr->mParams[paramIdx];
paramDef->mParamDeclaration->mNameNode = lambdaBindExpr->mParams[paramIdx];
}
else
{
mModule->AssertErrorState();
localVar->mName = invokeParamDef->mName;
paramDef->mParamDeclaration->mNameNode = NULL;
}
paramDef->mName = localVar->mName;
methodDef->mParams.push_back(paramDef);
localVar->mResolvedType = invokeMethodInstance->GetParamType(paramIdx);
mModule->PopulateType(localVar->mResolvedType);
localVar->mAssignedKind = BfLocalVarAssignKind_Unconditional;
localVar->mReadFromId = 0;
auto rootMethodState = methodState.GetRootMethodState();
localVar->mLocalVarId = rootMethodState->mCurLocalVarId++;
mModule->DoAddLocalVariable(localVar);
if (autoComplete != NULL)
autoComplete->CheckLocalDef(BfNodeDynCast<BfIdentifierNode>(paramDef->mParamDeclaration->mNameNode), methodState.mLocals.back());
auto resolvePassData = mModule->mCompiler->mResolvePassData;
if (resolvePassData != NULL)
resolvePassData->HandleLocalReference(BfNodeDynCast<BfIdentifierNode>(paramDef->mParamDeclaration->mNameNode), mModule->mCurTypeInstance->mTypeDef,
mModule->mCurMethodInstance->mMethodDef, localVar->mLocalVarId);
}
}
bool isAutocomplete = mModule->mCompiler->IsAutocomplete();
methodDef->mIdx = mModule->mCurMethodInstance->mMethodDef->mIdx;
methodDef->mBody = lambdaBindExpr->mBody;
///
auto varMethodState = methodState.mPrevMethodState;
bool hasExplicitCaptureNames = false;
for (auto& captureEntry : allocTarget.mCaptureInfo.mCaptures)
{
if (captureEntry.mNameNode == NULL)
{
hasExplicitCaptureNames = false;
break;
}
hasExplicitCaptureNames = true;
}
auto _SetNotCapturedFlag = [&](bool notCaptured)
{
auto varMethodState = methodState.mPrevMethodState;
while (varMethodState != NULL)
{
for (int localIdx = 0; localIdx < varMethodState->mLocals.size(); localIdx++)
{
auto localVar = varMethodState->mLocals[localIdx];
localVar->mNotCaptured = notCaptured;
}
varMethodState = varMethodState->mPrevMethodState;
if (varMethodState == NULL)
break;
if (varMethodState->mMixinState != NULL)
break;
if (varMethodState->mClosureState != NULL)
{
if (!varMethodState->mClosureState->mCapturing)
break;
}
}
};
if (hasExplicitCaptureNames)
{
_SetNotCapturedFlag(true);
auto varMethodState = methodState.mPrevMethodState;
while (varMethodState != NULL)
{
for (auto& captureEntry : allocTarget.mCaptureInfo.mCaptures)
{
if (captureEntry.mNameNode != NULL)
{
StringT<64> captureName;
captureEntry.mNameNode->ToString(captureName);
BfLocalVarEntry* entry;
if (varMethodState->mLocalVarSet.TryGetWith<StringImpl&>(captureName, &entry))
{
auto localVar = entry->mLocalVar;
while (localVar != NULL)
{
if (autoComplete != NULL)
autoComplete->CheckLocalRef(captureEntry.mNameNode, localVar);
if (((mModule->mCurMethodState->mClosureState == NULL) || (mModule->mCurMethodState->mClosureState->mCapturing)) &&
(mModule->mCompiler->mResolvePassData != NULL) && (mModule->mCurMethodInstance != NULL))
mModule->mCompiler->mResolvePassData->HandleLocalReference(captureEntry.mNameNode, localVar->mNameNode, mModule->mCurTypeInstance->mTypeDef, rootMethodState->mMethodInstance->mMethodDef, localVar->mLocalVarId);
localVar->mNotCaptured = false;
localVar = localVar->mShadowedLocal;
}
}
}
}
varMethodState = varMethodState->mPrevMethodState;
if (varMethodState == NULL)
break;
if (varMethodState->mMixinState != NULL)
break;
if (varMethodState->mClosureState != NULL)
{
if (!varMethodState->mClosureState->mCapturing)
break;
}
}
}
BfClosureInstanceInfo* closureInstanceInfo = new BfClosureInstanceInfo();
auto checkInsertBlock = mModule->mBfIRBuilder->GetInsertBlock();
closureState.mCaptureStartAccessId = methodState.mPrevMethodState->GetRootMethodState()->mCurAccessId;
closureState.mCaptureVisitingBody = true;
closureState.mClosureInstanceInfo = closureInstanceInfo;
if ((mBfEvalExprFlags & BfEvalExprFlags_InferReturnType) != 0)
{
closureState.mReturnType = NULL;
closureState.mReturnTypeInferState = BfReturnTypeInferState_Inferring;
}
VisitLambdaBodies(lambdaBindExpr->mBody, lambdaBindExpr->mDtor);
if (hasExplicitCaptureNames)
_SetNotCapturedFlag(false);
// If we ended up being called by a method with a lower captureStartAccessId, propagate that to whoever is calling us, too...
if ((methodState.mPrevMethodState->mClosureState != NULL) && (methodState.mPrevMethodState->mClosureState->mCapturing))
{
auto prevClosureState = methodState.mPrevMethodState->mClosureState;
if (closureState.mCaptureStartAccessId < prevClosureState->mCaptureStartAccessId)
prevClosureState->mCaptureStartAccessId = closureState.mCaptureStartAccessId;
}
bool earlyExit = false;
if (isInferReturnType)
{
if ((closureState.mReturnTypeInferState == BfReturnTypeInferState_Fail) ||
(closureState.mReturnType == NULL))
{
mResult = BfTypedValue();
}
else
{
mResult = BfTypedValue(closureState.mReturnType);
}
earlyExit = true;
}
else if (mModule->mCurMethodInstance->mIsUnspecialized)
{
earlyExit = true;
mResult = mModule->GetDefaultTypedValue(delegateTypeInstance);
}
if (earlyExit)
{
prevIgnoreWrites.Restore();
mModule->mBfIRBuilder->RestoreDebugLocation();
mModule->mBfIRBuilder->SetActiveFunction(prevActiveFunction);
if (!prevInsertBlock.IsFake())
mModule->mBfIRBuilder->SetInsertPoint(prevInsertBlock);
delete methodDef;
delete closureInstanceInfo;
return NULL;
}
closureState.mCaptureVisitingBody = false;
prevIgnoreWrites.Restore();
mModule->mBfIRBuilder->RestoreDebugLocation();
auto _GetCaptureType = [&](const StringImpl& str)
{
if (allocTarget.mCaptureInfo.mCaptures.IsEmpty())
return BfCaptureType_Copy;
for (auto& captureEntry : allocTarget.mCaptureInfo.mCaptures)
{
if ((captureEntry.mNameNode == NULL) || (captureEntry.mNameNode->Equals(str)))
{
captureEntry.mUsed = true;
return captureEntry.mCaptureType;
}
}
return BfCaptureType_None;
};
Array<BfClosureCapturedEntry> capturedEntries;
bool copyOuterCaptures = false;
//
{
auto varMethodState = methodState.mPrevMethodState;
while (varMethodState != NULL)
{
for (int localIdx = 0; localIdx < varMethodState->mLocals.size(); localIdx++)
{
auto localVar = varMethodState->mLocals[localIdx];
if ((localVar->mReadFromId >= closureState.mCaptureStartAccessId) || (localVar->mWrittenToId >= closureState.mCaptureStartAccessId))
{
if ((localVar->mIsThis) && (outerClosure != NULL))
{
continue;
}
auto outerLocal = localVar;
if ((localVar->mConstValue) || (localVar->mResolvedType->IsValuelessType()))
{
closureState.mConstLocals.push_back(*outerLocal);
continue;
}
BfClosureCapturedEntry capturedEntry;
auto capturedType = outerLocal->mResolvedType;
bool captureByRef = false;
auto captureType = _GetCaptureType(localVar->mName);
if (captureType == BfCaptureType_None)
{
continue;
}
if (!capturedType->IsRef())
{
if (captureType == BfCaptureType_Reference)
{
if (outerLocal->mIsThis)
{
if ((outerLocal->mResolvedType->IsValueType()) && (mModule->mCurMethodInstance->mMethodDef->HasNoThisSplat()))
captureByRef = true;
}
else if ((!localVar->mIsReadOnly) && (localVar->mWrittenToId >= closureState.mCaptureStartAccessId))
captureByRef = true;
}
}
else
{
if ((captureType != BfCaptureType_Reference) || (localVar->mWrittenToId < closureState.mCaptureStartAccessId))
{
capturedType = ((BfRefType*)capturedType)->mElementType;
}
}
if (captureByRef)
{
capturedType = mModule->CreateRefType(capturedType);
}
if (captureType == BfCaptureType_Reference)
capturedEntry.mExplicitlyByReference = true;
capturedEntry.mType = capturedType;
capturedEntry.mNameNode = outerLocal->mNameNode;
if (outerLocal->mName == "this")
capturedEntry.mName = "__this";
else
{
capturedEntry.mName = outerLocal->mName;
BfLocalVarEntry* entry = NULL;
if (varMethodState->mLocalVarSet.TryGetWith<StringImpl&>(capturedEntry.mName, &entry))
{
auto startCheckVar = entry->mLocalVar;
int shadowIdx = 0;
auto checkVar = startCheckVar;
while (checkVar != NULL)
{
if (checkVar == outerLocal)
{
// We only use mShadowIdx when we have duplicate name nodes (ie: in the case of for looks with iterator vs value)
auto shadowCheckVar = startCheckVar;
while (shadowCheckVar != checkVar)
{
if (shadowCheckVar->mNameNode == checkVar->mNameNode)
capturedEntry.mShadowIdx++;
shadowCheckVar = shadowCheckVar->mShadowedLocal;
}
for (int i = 0; i < shadowIdx; i++)
capturedEntry.mName.Insert(0, '@');
break;
}
shadowIdx++;
checkVar = checkVar->mShadowedLocal;
}
}
}
capturedEntries.Add(capturedEntry);
}
}
varMethodState = varMethodState->mPrevMethodState;
if (varMethodState == NULL)
break;
if (varMethodState->mMixinState != NULL)
break;
if (varMethodState->mClosureState != NULL)
{
if (!varMethodState->mClosureState->mCapturing)
break;
}
}
}
for (auto& captureEntry : allocTarget.mCaptureInfo.mCaptures)
{
if ((!captureEntry.mUsed) && (captureEntry.mNameNode != NULL))
mModule->Warn(0, "Capture specifier not used", captureEntry.mNameNode);
}
for (auto copyField : closureState.mReferencedOuterClosureMembers)
{
auto fieldDef = copyField->GetFieldDef();
auto captureType = _GetCaptureType(fieldDef->mName);
BfClosureCapturedEntry capturedEntry;
capturedEntry.mName = fieldDef->mName;
capturedEntry.mType = copyField->mResolvedType;
if ((captureType == BfCaptureType_Reference) && (capturedEntry.mType->IsRef()))
{
capturedEntry.mExplicitlyByReference = true;
}
else if ((captureType != BfCaptureType_Reference) && (capturedEntry.mType->IsRef()))
{
auto refType = (BfRefType*)capturedEntry.mType;
capturedEntry.mType = refType->mElementType;
}
else if ((captureType == BfCaptureType_Reference) && (!capturedEntry.mType->IsRef()) && (!fieldDef->mIsReadOnly))
{
capturedEntry.mType = mModule->CreateRefType(capturedEntry.mType);
}
}
std::sort(capturedEntries.begin(), capturedEntries.end());
bool hasCapture = false;
BfMethodInstanceGroup methodInstanceGroup;
methodInstanceGroup.mOwner = mModule->mCurTypeInstance;
methodInstanceGroup.mOnDemandKind = BfMethodOnDemandKind_AlwaysInclude;
BfMethodInstance* methodInstance = new BfMethodInstance();
methodInstance->mMethodInstanceGroup = &methodInstanceGroup;
methodInstance->GetMethodInfoEx()->mClosureInstanceInfo = closureInstanceInfo;
if (invokeMethodInstance != NULL)
methodInstance->mParams = invokeMethodInstance->mParams;
methodInstance->mIsClosure = true;
// We want the closure ID to match between hot reloads -- otherwise we wouldn't be able to modify them,
// so we use the charId from the 'fat arrow' token
int closureId = 0;
if (lambdaBindExpr->mFatArrowToken != NULL)
closureId = lambdaBindExpr->mFatArrowToken->GetStartCharId();
auto curProject = mModule->mCurTypeInstance->mTypeDef->mProject;
BF_ASSERT(curProject != NULL);
// We need to make these per-project even though you'd think we might not because we
// insert generic type specializations in the generic definition's project,
// BECAUSE: we would need to scan the captured fields the same way we scan the
// generic arguments to determine if each project can see it or not in the vdata
BfTypeInstance* useTypeInstance = delegateTypeInstance;
BfClosureType* closureTypeInst = NULL;
if ((capturedEntries.size() != 0) || (lambdaBindExpr->mDtor != NULL) || (copyOuterCaptures))
{
hashCtx.MixinStr(curProject->mName);
if (copyOuterCaptures)
{
// String typeName = mModule->DoTypeToString(outerClosure, BfTypeNameFlag_DisambiguateDups);
// hashCtx.MixinStr(typeName);
hashCtx.Mixin(outerClosure->mTypeId);
}
for (auto& capturedEntry : capturedEntries)
{
// String typeName = mModule->DoTypeToString(capturedEntry.mType, BfTypeNameFlag_DisambiguateDups);
// hashCtx.MixinStr(typeName);
hashCtx.Mixin(capturedEntry.mType->mTypeId);
hashCtx.MixinStr(capturedEntry.mName);
hashCtx.Mixin(capturedEntry.mExplicitlyByReference);
}
if (lambdaBindExpr->mDtor != NULL)
{
// Has DTOR thunk
bool hasDtorThunk = true;
hashCtx.Mixin(hasDtorThunk);
}
Val128 hash128 = hashCtx.Finish128();
BfClosureType* checkClosureType = new BfClosureType(delegateTypeInstance, hash128);
checkClosureType->mContext = mModule->mContext;
checkClosureType->mBaseType = delegateTypeInstance;
BfType* resolvedClosureType = mModule->ResolveType(checkClosureType, BfPopulateType_TypeDef);
closureTypeInst = (BfClosureType*)resolvedClosureType;
if (checkClosureType == resolvedClosureType)
{
// This is a new closure type
closureTypeInst->Init(curProject);
closureTypeInst->mTypeDef->mProject = curProject;
if (copyOuterCaptures)
{
for (auto& fieldInstance : outerClosure->mFieldInstances)
{
BfFieldDef* origFieldDef = fieldInstance.GetFieldDef();
BfFieldDef* fieldDef = closureTypeInst->AddField(fieldInstance.mResolvedType, origFieldDef->mName);
fieldDef->mIsReadOnly = origFieldDef->mIsReadOnly;
}
}
for (auto& capturedEntry : capturedEntries)
{
BfFieldDef* fieldDef = closureTypeInst->AddField(capturedEntry.mType, capturedEntry.mName);
if (!capturedEntry.mExplicitlyByReference)
fieldDef->mIsReadOnly = true;
}
if (lambdaBindExpr->mDtor != NULL)
{
auto dtorDef = closureTypeInst->AddDtor();
auto voidType = mModule->GetPrimitiveType(BfTypeCode_None);
auto voidPtrType = mModule->CreatePointerType(voidType);
closureTypeInst->AddField(voidPtrType, "__dtorThunk");
}
closureTypeInst->Finish();
}
else
{
// Already had this entry
delete checkClosureType;
}
useTypeInstance = closureTypeInst;
}
mModule->mBfIRBuilder->PopulateType(useTypeInstance);
mModule->PopulateType(useTypeInstance);
// If we are allowing hot swapping, we need to always mangle the name to non-static because if we add a capture
// later then we need to have the mangled names match
methodDef->mIsStatic = (closureTypeInst == NULL) && (!mModule->mCompiler->mOptions.mAllowHotSwapping);
SizedArray<BfIRType, 8> origParamTypes;
BfIRType origReturnType;
bool forceStatic = false;
if (invokeMethodInstance != NULL)
{
forceStatic = methodDef->mIsStatic;
auto invokeFunctionType = mModule->mBfIRBuilder->MapMethod(invokeMethodInstance);
invokeMethodInstance->GetIRFunctionInfo(mModule, origReturnType, origParamTypes, forceStatic);
}
else
{
origReturnType = mModule->mBfIRBuilder->MapType(mModule->GetPrimitiveType(BfTypeCode_None));
}
SizedArray<BfIRType, 3> newTypes;
if ((invokeMethodInstance != NULL) && (GetStructRetIdx(invokeMethodInstance, forceStatic) == 0))
newTypes.push_back(origParamTypes[0]);
if (!methodDef->mIsStatic)
newTypes.push_back(mModule->mBfIRBuilder->MapType(useTypeInstance));
if ((invokeMethodInstance != NULL) && (GetStructRetIdx(invokeMethodInstance, forceStatic) == 1))
newTypes.push_back(origParamTypes[1]);
int paramStartIdx = 0;
if ((invokeMethodInstance != NULL) && (GetStructRetIdx(invokeMethodInstance, forceStatic) != -1))
paramStartIdx++;
if (!methodDef->mIsStatic)
paramStartIdx++;
for (int i = paramStartIdx; i < (int)origParamTypes.size(); i++)
newTypes.push_back(origParamTypes[i]);
auto closureFuncType = mModule->mBfIRBuilder->CreateFunctionType(origReturnType, newTypes, false);
prevMethodState.Restore();
mModule->mBfIRBuilder->SetActiveFunction(prevActiveFunction);
if ((prevInsertBlock) && (!prevInsertBlock.IsFake()))
mModule->mBfIRBuilder->SetInsertPoint(prevInsertBlock);
// Just a check
mModule->mBfIRBuilder->GetInsertBlock();
//auto rootMethodState = mModule->mCurMethodState;
HashContext closureHashCtx;
closureHashCtx.Mixin(closureId);
// When we're a nested lambda, strip off the outer hash and closureTypeInst markers
methodDef->mName = mModule->mCurMethodInstance->mMethodDef->mName;
int prevSepPos = (int)methodDef->mName.LastIndexOf('$');
if (prevSepPos != -1)
{
closureHashCtx.Mixin(methodDef->mName.c_str() + prevSepPos, (int)methodDef->mName.length() - prevSepPos);
methodDef->mName.RemoveToEnd(prevSepPos);
}
// Mix in this because this can be emitted multiple times when there's multiple ctors and field initializers with lambdas
if (mModule->mCurMethodInstance->mMethodDef->mMethodType == BfMethodType_Ctor)
{
if (auto ctorDecl = BfNodeDynCast<BfConstructorDeclaration>(mModule->mCurMethodInstance->mMethodDef->mMethodDeclaration))
{
if (ctorDecl->mThisToken != NULL)
closureHashCtx.Mixin(ctorDecl->mThisToken->GetStartCharId());
}
}
auto checkMethodState = mModule->mCurMethodState;
while (checkMethodState != NULL)
{
if (checkMethodState->mMethodInstance != NULL)
{
if (checkMethodState->mMethodInstance->mMethodInfoEx != NULL)
{
for (auto methodGenericArg : checkMethodState->mMethodInstance->mMethodInfoEx->mMethodGenericArguments)
{
StringT<128> genericTypeName;
BfMangler::Mangle(genericTypeName, mModule->mCompiler->GetMangleKind(), methodGenericArg);
closureHashCtx.MixinStr(genericTypeName);
}
}
}
checkMethodState = checkMethodState->mPrevMethodState;
}
uint64 closureHash = closureHashCtx.Finish64();
methodDef->mName += "$";
methodDef->mName += BfTypeUtils::HashEncode64(closureHash);
methodInstance->mMethodDef = methodDef;
if (invokeMethodInstance != NULL)
{
methodInstance->mParams = invokeMethodInstance->mParams;
methodInstance->mReturnType = invokeMethodInstance->mReturnType;
}
else
methodInstance->mReturnType = mModule->GetPrimitiveType(BfTypeCode_None);
StringT<128> closureFuncName;
BfMangler::Mangle(closureFuncName, mModule->mCompiler->GetMangleKind(), methodInstance);
auto closureFunc = mModule->mBfIRBuilder->CreateFunction(closureFuncType, BfIRLinkageType_External, closureFuncName);
methodInstance->mIRFunction = closureFunc;
if (methodInstance->mIsReified)
mModule->CheckHotMethod(methodInstance, closureFuncName);
if ((methodInstance->mHotMethod != NULL) && (mModule->mCurMethodState->mHotDataReferenceBuilder))
mModule->mCurMethodState->mHotDataReferenceBuilder->mInnerMethods.Add(methodInstance->mHotMethod);
methodState.Reset();
lambdaInstance = new BfLambdaInstance();
rootMethodState->mLambdaCache[cacheNodeList] = lambdaInstance;
lambdaInstance->mDelegateTypeInstance = delegateTypeInstance;
lambdaInstance->mUseTypeInstance = useTypeInstance;
lambdaInstance->mClosureTypeInstance = closureTypeInst;
lambdaInstance->mOuterClosure = outerClosure;
lambdaInstance->mCopyOuterCaptures = copyOuterCaptures;
lambdaInstance->mDeclaringMethodIsMutating = mModule->mCurMethodInstance->mMethodDef->mIsMutating;
lambdaInstance->mIsStatic = methodDef->mIsStatic;
lambdaInstance->mClosureFunc = closureFunc;
lambdaInstance->mMethodInstance = methodInstance;
lambdaInstance->mConstLocals = closureState.mConstLocals;
lambdaInstance->mParamDecls = tempParamDecls;
lambdaInstance->mDeclMixinState = mModule->mCurMethodState->mMixinState;
if (lambdaInstance->mDeclMixinState != NULL)
lambdaInstance->mDeclMixinState->mHasDeferredUsage = true;
tempParamDecls.ClearWithoutDeleting();
closureState.mCapturing = false;
closureState.mClosureType = useTypeInstance;
closureInstanceInfo->mThisOverride = useTypeInstance;
mModule->mIncompleteMethodCount++;
SetAndRestoreValue<BfClosureState*> prevClosureState(mModule->mCurMethodState->mClosureState, &closureState);
if (mModule->HasExecutedOutput())
mModule->SetupIRMethod(methodInstance, methodInstance->mIRFunction, methodInstance->mAlwaysInline);
// This keeps us from giving errors twice. ProcessMethod can give errors when we capture by value but needed to
// capture by reference, so we still need to do it for resolve-only
bool processMethods = (mModule->mCompiler->GetAutoComplete() == NULL) && !mModule->mHadBuildError;
mModule->mBfIRBuilder->SaveDebugLocation();
//
{
BfGetSymbolReferenceKind prevSymbolRefKind = BfGetSymbolReferenceKind_None;
if (mModule->mCompiler->mResolvePassData != NULL)
{
prevSymbolRefKind = mModule->mCompiler->mResolvePassData->mGetSymbolReferenceKind;
mModule->mCompiler->mResolvePassData->mGetSymbolReferenceKind = BfGetSymbolReferenceKind_None;
}
if (processMethods)
{
// If we are in an always-ignored block, we will have mIgnoreWrites set
// SetAndRestoreValue<bool> prevWantsIgnoreWrite(mModule->mWantsIRIgnoreWrites, mModule->mBfIRBuilder->mIgnoreWrites);
// mModule->ProcessMethod(methodInstance);
}
if (mModule->mCompiler->mResolvePassData != NULL)
mModule->mCompiler->mResolvePassData->mGetSymbolReferenceKind = prevSymbolRefKind;
}
mModule->mBfIRBuilder->RestoreDebugLocation();
if (mModule->IsSkippingExtraResolveChecks())
closureFunc = BfIRFunction();
BfIRFunction dtorFunc;
if (lambdaBindExpr->mDtor != NULL)
{
SizedArray<BfIRType, 1> newTypes;
newTypes.push_back(mModule->mBfIRBuilder->MapType(useTypeInstance));
auto voidType = mModule->GetPrimitiveType(BfTypeCode_None);
auto dtorFuncType = mModule->mBfIRBuilder->CreateFunctionType(mModule->mBfIRBuilder->MapType(voidType), newTypes, false);
BfMethodDef* dtorMethodDef = new BfMethodDef();
dtorMethodDef->mDeclaringType = mModule->mCurMethodInstance->mMethodDef->mDeclaringType;
dtorMethodDef->mName = "~this$";
dtorMethodDef->mName += methodDef->mName;
dtorMethodDef->mMethodType = BfMethodType_Normal;
dtorMethodDef->mBody = lambdaBindExpr->mDtor;
dtorMethodDef->mIdx = mModule->mCurMethodInstance->mMethodDef->mIdx;
BfMethodInstance* dtorMethodInstance = new BfMethodInstance();
dtorMethodInstance->mMethodDef = dtorMethodDef;
dtorMethodInstance->mReturnType = mModule->GetPrimitiveType(BfTypeCode_None);
dtorMethodInstance->mMethodInstanceGroup = &methodInstanceGroup;
StringT<128> dtorMangledName;
BfMangler::Mangle(dtorMangledName, mModule->mCompiler->GetMangleKind(), dtorMethodInstance);
dtorFunc = mModule->mBfIRBuilder->CreateFunction(dtorFuncType, BfIRLinkageType_External, dtorMangledName);
mModule->SetupIRMethod(NULL, dtorFunc, false);
dtorMethodInstance->mIRFunction = dtorFunc;
mModule->mIncompleteMethodCount++;
mModule->mBfIRBuilder->SaveDebugLocation();
//
if (processMethods)
{
// If we are in an always-ignored block, we will have mIgnoreWrites set
// SetAndRestoreValue<bool> prevWantsIgnoreWrite(mModule->mWantsIRIgnoreWrites, mModule->mBfIRBuilder->mIgnoreWrites);
// mModule->ProcessMethod(dtorMethodInstance);
}
mModule->mBfIRBuilder->RestoreDebugLocation();
if (mModule->IsSkippingExtraResolveChecks())
dtorFunc = BfIRFunction();
if (dtorMethodInstance->mIsReified)
mModule->CheckHotMethod(dtorMethodInstance, dtorMangledName);
if ((dtorMethodInstance->mHotMethod != NULL) && (mModule->mCurMethodState->mHotDataReferenceBuilder))
mModule->mCurMethodState->mHotDataReferenceBuilder->mInnerMethods.Add(dtorMethodInstance->mHotMethod);
lambdaInstance->mDtorMethodInstance = dtorMethodInstance;
lambdaInstance->mDtorFunc = dtorFunc;
dtorMethodInstance->mMethodInstanceGroup = NULL;
}
prevClosureState.Restore();
if ((prevInsertBlock) && (!prevInsertBlock.IsFake()))
mModule->mBfIRBuilder->SetInsertPoint(prevInsertBlock);
for (auto& capturedEntry : capturedEntries)
{
BfLambdaCaptureInfo lambdaCapture;
if (capturedEntry.mName == "__this")
lambdaCapture.mName = "this";
else
lambdaCapture.mName = capturedEntry.mName;
lambdaInstance->mCaptures.Add(lambdaCapture);
closureInstanceInfo->mCaptureEntries.Add(capturedEntry);
}
if (processMethods)
rootMethodState->mDeferredLambdaInstances.Add(lambdaInstance);
methodInstance->mMethodInstanceGroup = NULL;
return lambdaInstance;
}
void BfExprEvaluator::Visit(BfLambdaBindExpression* lambdaBindExpr)
{
BfTokenNode* newToken = NULL;
BfAllocTarget allocTarget = ResolveAllocTarget(lambdaBindExpr->mNewToken, newToken);
if (mModule->mCurMethodInstance == NULL)
mModule->Fail("Invalid use of lambda bind expression", lambdaBindExpr);
if (((mModule->mCurMethodState != NULL) && (mModule->mCurMethodState->mClosureState != NULL) && (mModule->mCurMethodState->mClosureState->mBlindCapturing)) ||
(mModule->mCurMethodInstance == NULL))
{
// We're just capturing. We just need to visit the bodies here. This helps infinite recursion with local methods containing lambdas calling each other
if (lambdaBindExpr->mBody != NULL)
mModule->VisitChild(lambdaBindExpr->mBody);
if ((lambdaBindExpr->mDtor != NULL) && (lambdaBindExpr->mDtor->mBody != NULL))
mModule->VisitChild(lambdaBindExpr->mDtor->mBody);
return;
}
BfLambdaInstance* lambdaInstance = GetLambdaInstance(lambdaBindExpr, allocTarget);
if (lambdaInstance == NULL)
return;
BfTypeInstance* delegateTypeInstance = lambdaInstance->mDelegateTypeInstance;
BfTypeInstance* useTypeInstance = lambdaInstance->mUseTypeInstance;
BfTypeInstance* closureTypeInst = lambdaInstance->mClosureTypeInstance;
mResult = BfTypedValue(mModule->AllocFromType(useTypeInstance, allocTarget, BfIRValue(), BfIRValue(), 0, BfAllocFlags_None), useTypeInstance);
if (!delegateTypeInstance->IsDelegate())
{
mModule->AssertErrorState();
return;
}
auto baseDelegateType = VerifyBaseDelegateType(delegateTypeInstance->mBaseType);
if (baseDelegateType == NULL)
{
mModule->Fail("Invalid delegate type", lambdaBindExpr);
return;
}
mModule->PopulateType(baseDelegateType);
auto& funcPtrField = baseDelegateType->mFieldInstances[0];
auto& targetField = baseDelegateType->mFieldInstances[1];
auto baseDelegate = mModule->mBfIRBuilder->CreateBitCast(mResult.mValue, mModule->mBfIRBuilder->MapType(baseDelegateType));
// >> delegate.mTarget = bindResult.mTarget
auto nullPtrType = mModule->GetPrimitiveType(BfTypeCode_NullPtr);
BfIRValue valPtr;
if (!lambdaInstance->mIsStatic)
valPtr = mModule->mBfIRBuilder->CreateBitCast(mResult.mValue, mModule->mBfIRBuilder->MapType(nullPtrType));
else
valPtr = mModule->GetDefaultValue(nullPtrType);
auto fieldPtr = mModule->mBfIRBuilder->CreateInBoundsGEP(baseDelegate, 0, targetField.mDataIdx);
mModule->mBfIRBuilder->CreateStore(valPtr, fieldPtr);
// >> delegate.mFuncPtr = bindResult.mFunc
if (lambdaInstance->mClosureFunc)
{
auto nullPtrType = mModule->GetPrimitiveType(BfTypeCode_NullPtr);
auto valPtr = mModule->mBfIRBuilder->CreateBitCast(lambdaInstance->mClosureFunc, mModule->mBfIRBuilder->MapType(nullPtrType));
auto fieldPtr = mModule->mBfIRBuilder->CreateInBoundsGEP(baseDelegate, 0, funcPtrField.mDataIdx);
mModule->mBfIRBuilder->CreateStore(valPtr, fieldPtr);
}
mModule->AddDependency(useTypeInstance, mModule->mCurTypeInstance, BfDependencyMap::DependencyFlag_Calls);
// Copy captures into the delegate
if (lambdaInstance->mClosureTypeInstance != NULL)
{
int fieldIdx = 0;
if (lambdaInstance->mCopyOuterCaptures)
{
for (auto& fieldInstance : lambdaInstance->mOuterClosure->mFieldInstances)
{
if (!fieldInstance.mResolvedType->IsValuelessType())
{
BF_ASSERT(fieldInstance.mDataIdx == fieldIdx + 1);
auto localVar = mModule->mCurMethodState->mLocals[0];
auto capturedValue = mModule->mBfIRBuilder->CreateInBoundsGEP(localVar->mValue, 0, fieldInstance.mDataIdx);
capturedValue = mModule->mBfIRBuilder->CreateLoad(capturedValue);
auto fieldPtr = mModule->mBfIRBuilder->CreateInBoundsGEP(mResult.mValue, 0, fieldInstance.mDataIdx);
mModule->mBfIRBuilder->CreateStore(capturedValue, fieldPtr);
fieldIdx++;
}
}
}
int captureIdx = 0;
for (int captureIdx = 0; captureIdx < (int)lambdaInstance->mCaptures.size(); captureIdx++)
{
auto& capturedEntry = lambdaInstance->mCaptures[captureIdx];
auto& closureCaptureEntry = lambdaInstance->mMethodInstance->mMethodInfoEx->mClosureInstanceInfo->mCaptureEntries[captureIdx];
BfIdentifierNode* identifierNode = closureCaptureEntry.mNameNode;
BfIRValue capturedValue;
auto fieldInstance = &closureTypeInst->mFieldInstances[fieldIdx];
BfTypedValue capturedTypedVal;
if (identifierNode != NULL)
capturedTypedVal = DoImplicitArgCapture(NULL, identifierNode, closureCaptureEntry.mShadowIdx);
else
capturedTypedVal = LookupIdentifier(NULL, capturedEntry.mName);
if (!fieldInstance->mResolvedType->IsRef())
capturedTypedVal = mModule->LoadOrAggregateValue(capturedTypedVal);
else if (!capturedTypedVal.IsAddr())
{
mModule->Fail(StrFormat("Unable to capture '%s' by reference", capturedEntry.mName.c_str()), lambdaBindExpr);
break;
}
capturedValue = capturedTypedVal.mValue;
if (capturedValue)
{
if (!IsVar(capturedTypedVal.mType))
{
auto fieldPtr = mModule->mBfIRBuilder->CreateInBoundsGEP(mResult.mValue, 0, fieldInstance->mDataIdx);
mModule->mBfIRBuilder->CreateStore(capturedValue, fieldPtr);
}
}
else
{
mModule->Fail(StrFormat("Unable to capture '%s'", capturedEntry.mName.c_str()), lambdaBindExpr);
mModule->AssertErrorState();
}
fieldIdx++;
}
if (lambdaInstance->mDtorFunc)
{
auto fieldPtr = mModule->mBfIRBuilder->CreateInBoundsGEP(mResult.mValue, 0, closureTypeInst->mFieldInstances[fieldIdx].mDataIdx);
auto voidType = mModule->GetPrimitiveType(BfTypeCode_None);
auto voidPtrType = mModule->CreatePointerType(voidType);
auto dtorThunk = mModule->mBfIRBuilder->CreateBitCast(lambdaInstance->mDtorFunc, mModule->mBfIRBuilder->MapType(voidPtrType));
mModule->mBfIRBuilder->CreateStore(dtorThunk, fieldPtr);
fieldIdx++;
}
}
}
void BfExprEvaluator::ProcessArrayInitializer(BfTokenNode* openToken, const BfSizedArray<BfExpression*>& valueExprs, const BfSizedArray<BfTokenNode*>& commas, BfTokenNode* closeToken, int dimensions, SizedArrayImpl<int64>& dimLengths, int dim, bool& hasFailed)
{
bool setSize = false;
if (dim == dimLengths.size())
{
dimLengths.push_back((int)valueExprs.size());
setSize = true;
}
else if (dimLengths[dim] == -1)
{
dimLengths[dim] = (int)valueExprs.size();
setSize = true;
}
int64 initCountDiff = (int)valueExprs.size() - dimLengths[dim];
if ((dimLengths[dim] != -1) && (initCountDiff != 0) && (!hasFailed))
{
if (initCountDiff > 0)
{
mModule->Fail(StrFormat("Too many initializers, expected %d fewer", initCountDiff), valueExprs[(int)dimLengths[dim]]);
hasFailed = true;
}
else
{
// If it ends with ", ?) or ",)" then allow unsized
if (((valueExprs.size() == 0) || (BfNodeDynCast<BfUninitializedExpression>(valueExprs.back()) == NULL)) &&
(commas.size() < valueExprs.size()))
{
BfAstNode* refNode = closeToken;
if ((refNode == NULL) && (mModule->mParentNodeEntry != NULL))
refNode = mModule->mParentNodeEntry->mNode;
mModule->Fail(StrFormat("Too few initializer, expected %d more", -initCountDiff), refNode);
hasFailed = true;
}
}
}
for (int i = 0; i < (int)valueExprs.size(); i++)
{
BfExpression* expr = valueExprs[i];
if (auto uninitExpr = BfNodeDynCast<BfUninitializedExpression>(expr))
{
continue;
}
auto innerInitExpr = BfNodeDynCast<BfCollectionInitializerExpression>(expr);
if (dim < dimensions - 1)
{
if (innerInitExpr == NULL)
{
if (auto innerTupleExpr = BfNodeDynCast<BfTupleExpression>(expr))
{
ProcessArrayInitializer(innerTupleExpr->mOpenParen, innerTupleExpr->mValues, innerTupleExpr->mCommas, innerTupleExpr->mCloseParen, dimensions, dimLengths, dim + 1, hasFailed);
}
else if (auto parenExpr = BfNodeDynCast<BfParenthesizedExpression>(expr))
{
SizedArray<BfExpression*, 1> values;
values.Add(parenExpr->mExpression);
SizedArray<BfTokenNode*, 1> commas;
ProcessArrayInitializer(parenExpr->mOpenParen, values, commas, parenExpr->mCloseParen, dimensions, dimLengths, dim + 1, hasFailed);
}
else
{
hasFailed = true;
mModule->Fail("A nested array initializer is expected", expr);
continue;
}
}
else
ProcessArrayInitializer(innerInitExpr->mOpenBrace, innerInitExpr->mValues, innerInitExpr->mCommas, innerInitExpr->mCloseBrace, dimensions, dimLengths, dim + 1, hasFailed);
}
else if (innerInitExpr != NULL)
{
hasFailed = true;
mModule->Fail("Unexpected nested initializer", expr);
ProcessArrayInitializer(innerInitExpr->mOpenBrace, innerInitExpr->mValues, innerInitExpr->mCommas, innerInitExpr->mCloseBrace, dimensions, dimLengths, dim + 1, hasFailed);
}
else
{
//mModule->Fail("Expected initializer", )
}
}
}
void BfExprEvaluator::CheckObjectCreateTypeRef(BfType* expectingType, BfAstNode* afterNode)
{
auto autoComplete = GetAutoComplete();
if ((autoComplete != NULL) && (afterNode != NULL) && (autoComplete->mIsAutoComplete) &&
(afterNode->IsFromParser(mModule->mCompiler->mResolvePassData->mParser)) &&
(afterNode->GetParser()->mCursorIdx == afterNode->GetSrcEnd() + 1))
{
BfType* expectingType = mExpectingType;
BfTypeInstance* expectingTypeInst = NULL;
if (mExpectingType != NULL)
{
expectingTypeInst = mExpectingType->ToTypeInstance();
}
if ((mExpectingType != NULL) && (((expectingTypeInst == NULL) || (!expectingTypeInst->mTypeDef->mIsDelegate))))
{
// Why were we doing this? It floods the autocomplete with every possible type
//autoComplete->AddTopLevelTypes(NULL);
autoComplete->mInsertStartIdx = afterNode->GetSourceData()->ToParser()->mCursorIdx;
BF_ASSERT(autoComplete->mInsertStartIdx != -1);
auto expectingType = mExpectingType;
while (expectingType->IsArray())
{
auto arrayType = (BfArrayType*)expectingType;
expectingType = arrayType->mGenericTypeInfo->mTypeGenericArguments[0];
}
auto expectingTypeInst = expectingType->ToTypeInstance();
if (expectingTypeInst != NULL)
{
autoComplete->AddTypeInstanceEntry(expectingTypeInst);
}
else
autoComplete->mDefaultSelection = mModule->TypeToString(expectingType);
}
}
}
void BfExprEvaluator::Visit(BfObjectCreateExpression* objCreateExpr)
{
CreateObject(objCreateExpr, objCreateExpr->mNewNode, NULL);
}
void BfExprEvaluator::CreateObject(BfObjectCreateExpression* objCreateExpr, BfAstNode* allocNode, BfType* wantAllocType)
{
auto autoComplete = GetAutoComplete();
if ((autoComplete != NULL) && (objCreateExpr != NULL) && (objCreateExpr->mTypeRef != NULL))
{
autoComplete->CheckTypeRef(objCreateExpr->mTypeRef, false, true);
}
if ((autoComplete != NULL) && (objCreateExpr != NULL) && (objCreateExpr->mOpenToken != NULL) && (objCreateExpr->mCloseToken != NULL) &&
(objCreateExpr->mOpenToken->mToken == BfToken_LBrace) && (autoComplete->CheckFixit(objCreateExpr->mOpenToken)))
{
auto refNode = objCreateExpr->mOpenToken;
BfParserData* parser = refNode->GetSourceData()->ToParserData();
if (parser != NULL)
{
autoComplete->AddEntry(AutoCompleteEntry("fixit", StrFormat("Change initializer braces to parentheses\treformat|%s|%d-1|(\x01|%s|%d-1|)",
parser->mFileName.c_str(), refNode->mSrcStart,
parser->mFileName.c_str(), objCreateExpr->mCloseToken->mSrcStart).c_str()));
}
}
CheckObjectCreateTypeRef(mExpectingType, allocNode);
BfAttributeState attributeState;
attributeState.mTarget = BfAttributeTargets_Alloc;
SetAndRestoreValue<BfAttributeState*> prevAttributeState(mModule->mAttributeState, &attributeState);
BfTokenNode* newToken = NULL;
BfAllocTarget allocTarget = ResolveAllocTarget(allocNode, newToken, &attributeState.mCustomAttributes);
bool isScopeAlloc = newToken->GetToken() == BfToken_Scope;
bool isAppendAlloc = newToken->GetToken() == BfToken_Append;
bool isStackAlloc = (newToken->GetToken() == BfToken_Stack) || (isScopeAlloc);
bool isArrayAlloc = false;// (objCreateExpr->mArraySizeSpecifier != NULL);
bool isRawArrayAlloc = (objCreateExpr != NULL) && (objCreateExpr->mStarToken != NULL);
if (isScopeAlloc)
{
if ((mBfEvalExprFlags & BfEvalExprFlags_FieldInitializer) != 0)
{
mModule->Warn(0, "This allocation will only be in scope during the constructor. Consider using a longer-term allocation such as 'new'", allocNode);
}
if (allocNode == newToken) // Scope, no target specified
{
if (mModule->mParentNodeEntry != NULL)
{
if (auto assignExpr = BfNodeDynCastExact<BfAssignmentExpression>(mModule->mParentNodeEntry->mNode))
{
if (mModule->mCurMethodState->mCurScope->mCloseNode == NULL)
{
// If we are assigning this to a property then it's possible the property setter can actually deal with a temporary allocation so no warning in that case
if ((mBfEvalExprFlags & BfEvalExprFlags_PendingPropSet) == 0)
mModule->Warn(0, "This allocation will immediately go out of scope. Consider specifying a wider scope target such as 'scope::'", allocNode);
}
}
}
}
}
BfAutoParentNodeEntry autoParentNodeEntry(mModule, objCreateExpr);
SizedArray<BfAstNode*, 2> dimLengthRefs;
SizedArray<BfIRValue, 2> dimLengthVals;
BfArrayType* arrayType = NULL;
BfType* unresolvedTypeRef = NULL;
BfType* resolvedTypeRef = NULL;
if (wantAllocType != NULL)
{
unresolvedTypeRef = wantAllocType;
resolvedTypeRef = wantAllocType;
}
else if (objCreateExpr->mTypeRef == NULL)
{
if ((!mExpectingType) || (!mExpectingType->IsArray()))
{
mModule->Fail("Cannot imply array type. Explicitly state array type or use array in an assignment to an array type.", objCreateExpr);
resolvedTypeRef = mModule->mContext->mBfObjectType;
unresolvedTypeRef = resolvedTypeRef;
}
else
{
auto arrayType = (BfArrayType*)mExpectingType;
unresolvedTypeRef = arrayType->GetUnderlyingType();
resolvedTypeRef = unresolvedTypeRef;
}
}
else
{
if ((objCreateExpr->mTypeRef->IsExact<BfDotTypeReference>()) && (mExpectingType != NULL))
{
//mModule->SetElementType(objCreateExpr->mTypeRef, BfSourceElementType_TypeRef);
if ((mExpectingType->IsObject()) || (mExpectingType->IsGenericParam()))
{
unresolvedTypeRef = mExpectingType;
if (unresolvedTypeRef->IsArray())
{
arrayType = (BfArrayType*)unresolvedTypeRef;
unresolvedTypeRef = unresolvedTypeRef->GetUnderlyingType();
isArrayAlloc = true;
}
}
else if (mExpectingType->IsPointer())
{
unresolvedTypeRef = mExpectingType->GetUnderlyingType();
}
}
if (unresolvedTypeRef == NULL)
{
if (auto arrayTypeRef = BfNodeDynCast<BfArrayTypeRef>(objCreateExpr->mTypeRef))
{
isArrayAlloc = true;
if (auto dotTypeRef = BfNodeDynCast<BfDotTypeReference>(arrayTypeRef->mElementType))
{
if ((mExpectingType != NULL) &&
((mExpectingType->IsArray()) || (mExpectingType->IsPointer()) || (mExpectingType->IsSizedArray())))
unresolvedTypeRef = mExpectingType->GetUnderlyingType();
}
if (unresolvedTypeRef == NULL)
unresolvedTypeRef = mModule->ResolveTypeRef(arrayTypeRef->mElementType);
if (unresolvedTypeRef == NULL)
unresolvedTypeRef = mModule->mContext->mBfObjectType;
int dimensions = 1;
bool commaExpected = false;
if (arrayTypeRef->mParams.size() != 0)
{
auto intType = mModule->ResolveTypeDef(mModule->mSystem->mTypeIntPtr);
for (auto arg : arrayTypeRef->mParams)
{
if (auto tokenNode = BfNodeDynCastExact<BfTokenNode>(arg))
{
if (tokenNode->GetToken() == BfToken_Comma)
{
if (isRawArrayAlloc)
{
mModule->Fail("Sized arrays cannot be multidimensional.", tokenNode);
continue;
}
dimensions++;
if (dimensions == 5)
{
mModule->Fail("Too many array dimensions, consider using a jagged array.", tokenNode);
}
commaExpected = false;
continue;
}
}
auto expr = BfNodeDynCast<BfExpression>(arg);
if ((isRawArrayAlloc) && (!dimLengthVals.IsEmpty()))
{
mModule->CreateValueFromExpression(expr, intType);
continue;
}
dimLengthRefs.Add(expr);
BfTypedValue dimLength;
if (expr == NULL)
{
// Not specified
dimLengthVals.push_back(BfIRValue());
continue;
}
if (arg != NULL)
{
dimLength = mModule->CreateValueFromExpression(expr, intType, BfEvalExprFlags_NoCast);
BfCastFlags castFlags = BfCastFlags_None;
if ((dimLength) && (dimLength.mType->IsInteger()))
{
// Allow uint for size - just force to int
if (!((BfPrimitiveType*)dimLength.mType)->IsSigned())
castFlags = BfCastFlags_Explicit;
}
if (dimLength)
dimLength = mModule->Cast(expr, dimLength, intType, castFlags);
}
if (commaExpected)
{
mModule->AssertErrorState();
continue;
}
if (!dimLength)
{
dimLength = mModule->GetDefaultTypedValue(intType);
}
dimLengthVals.push_back(dimLength.mValue);
commaExpected = true;
}
}
if ((arrayTypeRef->mParams.size() == 0) && (objCreateExpr->mOpenToken == NULL))
mModule->Fail("Array size or array initializer expected", arrayTypeRef->mOpenBracket);
if (dimensions > 4)
dimensions = 4;
if (!isRawArrayAlloc)
arrayType = mModule->CreateArrayType(unresolvedTypeRef, dimensions);
}
if (unresolvedTypeRef == NULL)
{
unresolvedTypeRef = ResolveTypeRef(objCreateExpr->mTypeRef, BfPopulateType_Declaration, BfResolveTypeRefFlag_NoResolveGenericParam);
}
}
resolvedTypeRef = unresolvedTypeRef;
if ((resolvedTypeRef != NULL) && (IsVar(resolvedTypeRef)))
resolvedTypeRef = unresolvedTypeRef;
}
if (resolvedTypeRef == NULL)
{
unresolvedTypeRef = mModule->GetPrimitiveType(BfTypeCode_Var);
resolvedTypeRef = unresolvedTypeRef;
}
auto resultType = resolvedTypeRef;
if ((resolvedTypeRef->IsInterface()) && (!isArrayAlloc))
{
mModule->Fail("Cannot create an instance of an interface", objCreateExpr->mTypeRef);
resolvedTypeRef = mModule->mContext->mBfObjectType;
}
BfTypeInstance* typeInstance = resolvedTypeRef->ToTypeInstance();
int elementSize = resolvedTypeRef->mSize;
int elementAlign = resolvedTypeRef->mAlign;
BfIRType allocType = mModule->mBfIRBuilder->MapType(resolvedTypeRef);
if (typeInstance != NULL)
{
if (!mModule->mCurTypeInstance->mResolvingVarField)
mModule->PopulateType(typeInstance);
if ((typeInstance->mTypeDef->mIsDelegate) && (!isArrayAlloc))
mModule->Fail("Delegates must be constructed through delegate binding", objCreateExpr->mTypeRef);
elementSize = BF_MAX(0, typeInstance->mInstSize);
elementAlign = typeInstance->mInstAlign;
allocType = mModule->mBfIRBuilder->MapTypeInst(typeInstance);
}
if (isAppendAlloc)
{
if (!mModule->mCurTypeInstance->IsObject())
{
mModule->Fail("Append allocations are only allowed in classes", allocNode);
isAppendAlloc = false;
}
else if ((mBfEvalExprFlags & BfEvalExprFlags_VariableDeclaration) == 0)
{
mModule->Fail("Append allocations are only allowed as local variable initializers in constructor body", allocNode);
isAppendAlloc = false;
}
else
{
auto methodDef = mModule->mCurMethodInstance->mMethodDef;
if (methodDef->mMethodType == BfMethodType_CtorCalcAppend)
{
mModule->Fail("Append allocations are only allowed as local variable declarations in the main method body", allocNode);
isAppendAlloc = false;
}
else if (!methodDef->mHasAppend)
{
mModule->Fail("Append allocations can only be used on constructors with [AllowAppend] specified", allocNode);
isAppendAlloc = false;
}
else if (methodDef->mMethodType != BfMethodType_Ctor)
{
mModule->Fail("Append allocations are only allowed in constructors", allocNode);
isAppendAlloc = false;
}
else if (methodDef->mIsStatic)
{
mModule->Fail("Append allocations are only allowed in non-static constructors", allocNode);
isAppendAlloc = false;
}
}
}
if (isArrayAlloc)
{
const int MAX_DIMENSIONS = 2;
int dimensions = 1;
if (arrayType != NULL)
{
dimensions = arrayType->mDimensions;
mModule->AddDependency(arrayType, mModule->mCurTypeInstance, BfDependencyMap::DependencyFlag_Calls);
}
bool zeroMemory = true;
if (objCreateExpr->mOpenToken != NULL)
{
if ((objCreateExpr->mArguments.size() == 1) &&
(BfNodeDynCastExact<BfUninitializedExpression>(objCreateExpr->mArguments[0]) != NULL))
{
// Special case for a single "{ ? }"
zeroMemory = false;
}
else
{
SizedArray<int64, 2> dimLengths;
if (dimLengthVals.size() != 0)
{
for (int dim = 0; dim < dimensions; dim++)
{
BfIRValue dimLengthVal;
if (dim < (int)dimLengthVals.size())
dimLengthVal = dimLengthVals[dim];
if (!dimLengthVal)
{
dimLengths.push_back(-1);
continue;
}
auto constant = mModule->mBfIRBuilder->GetConstant(dimLengthVal);
if ((constant != NULL) && (mModule->mBfIRBuilder->IsInt(constant->mTypeCode)))
{
int64 dimLength = constant->mInt64;
if (dimLength < 0)
{
mModule->Fail(StrFormat("Invalid array dimension '%lld'", dimLength), dimLengthRefs[dim]);
dimLength = -1;
}
dimLengths.push_back(dimLength);
}
else if ((constant != NULL) && (constant->mConstType == BfConstType_Undef))
{
dimLengths.push_back(-1);
}
else
{
mModule->Fail("A constant length is required when using an initializer", dimLengthRefs[dim]);
dimLengths.push_back(-1);
}
}
}
// Ending in an ", )" means we need to zero-fill ending
zeroMemory = objCreateExpr->mCommas.size() >= objCreateExpr->mArguments.size();
bool hasFailed = false;
ProcessArrayInitializer(objCreateExpr->mOpenToken, objCreateExpr->mArguments, objCreateExpr->mCommas, objCreateExpr->mCloseToken, dimensions, dimLengths, 0, hasFailed);
dimLengthVals.resize(dimLengths.size());
for (int i = 0; i < (int)dimLengthVals.size(); i++)
{
if (!dimLengthVals[i])
{
auto intType = mModule->GetPrimitiveType(BfTypeCode_IntPtr);
dimLengthVals[i] = mModule->GetConstValue(dimLengths[i], intType);
}
}
}
}
while ((int)dimLengthVals.size() < dimensions)
dimLengthVals.push_back(mModule->GetConstValue(0));
BfTypedValue arrayValue;
BfIRValue arraySize;
for (BfIRValue dimSize : dimLengthVals)
{
if (!arraySize)
arraySize = dimSize;
else
arraySize = mModule->mBfIRBuilder->CreateMul(arraySize, dimSize);
}
BfAllocFlags allocFlags = BfAllocFlags_None;
if (isRawArrayAlloc)
allocFlags = (BfAllocFlags)(allocFlags | BfAllocFlags_RawArray);
int writeIdx = 0;
struct BfInitContext
{
public:
BfModule* mModule;
BfType* resultType;
int dimensions;
SizedArray<BfIRValue, 2>& dimLengthVals;
BfIRValue arraySize;
int& writeIdx;
BfInitContext(BfModule* module, BfType* resultType, int dimensions, SizedArray<BfIRValue, 2>& dimLengthVals, BfIRValue arraySize, int& writeIdx) :
mModule(module), resultType(resultType), dimensions(dimensions), dimLengthVals(dimLengthVals), arraySize(arraySize), writeIdx(writeIdx)
{
}
void Handle(BfIRValue addr, int curDim, const BfSizedArray<BfExpression*>& valueExprs)
{
int exprIdx = 0;
int dimWriteIdx = 0;
bool isUninit = false;
int dimLength = -1;
if (dimLengthVals[curDim].IsConst())
{
auto constant = mModule->mBfIRBuilder->GetConstant(dimLengthVals[curDim]);
dimLength = constant->mInt32;
}
while (exprIdx < (int)valueExprs.size())
{
auto initExpr = valueExprs[exprIdx];
exprIdx++;
if (!initExpr)
break;
if (auto unintExpr = BfNodeDynCastExact<BfUninitializedExpression>(initExpr))
{
isUninit = true;
break;
}
if (exprIdx > dimLength)
break;
if (curDim < dimensions - 1)
{
if (auto innerTupleExpr = BfNodeDynCast<BfTupleExpression>(initExpr))
{
Handle(addr, curDim + 1, innerTupleExpr->mValues);
}
else if (auto parenExpr = BfNodeDynCast<BfParenthesizedExpression>(initExpr))
{
SizedArray<BfExpression*, 1> values;
values.Add(parenExpr->mExpression);
Handle(addr, curDim + 1, values);
}
else if (auto innerInitExpr = BfNodeDynCast<BfCollectionInitializerExpression>(initExpr))
{
Handle(addr, curDim + 1, innerInitExpr->mValues);
}
dimWriteIdx++;
continue;
}
BfIRValue elemAddr;
if (!resultType->IsValuelessType())
elemAddr = mModule->CreateIndexedValue(resultType, addr, writeIdx);
else
elemAddr = mModule->mBfIRBuilder->GetFakeVal();
writeIdx++;
dimWriteIdx++;
BfTypedValue elemPtrTypedVal = BfTypedValue(elemAddr, resultType, BfTypedValueKind_Addr);
BfExprEvaluator exprEvaluator(mModule);
exprEvaluator.mExpectingType = resultType;
exprEvaluator.mReceivingValue = &elemPtrTypedVal;
exprEvaluator.Evaluate(initExpr);
exprEvaluator.GetResult();
if (exprEvaluator.mReceivingValue == NULL)
{
// We wrote directly to the array in-place, we're done with this element
continue;
}
auto storeValue = exprEvaluator.mResult;
if (!storeValue)
continue;
storeValue = mModule->Cast(initExpr, storeValue, resultType);
if (!storeValue)
continue;
if (!resultType->IsValuelessType())
{
storeValue = mModule->LoadOrAggregateValue(storeValue);
mModule->mBfIRBuilder->CreateStore(storeValue.mValue, elemAddr);
}
}
int clearFromIdx = writeIdx;
int sectionElemCount = 1;
BfIRValue numElemsLeft = arraySize;
if (dimLength != -1)
{
int clearCount = dimLength - dimWriteIdx;
if (clearCount > 0)
{
for (int checkDim = curDim + 1; checkDim < (int)dimLengthVals.size(); checkDim++)
{
if (dimLengthVals[checkDim].IsConst())
{
auto constant = mModule->mBfIRBuilder->GetConstant(dimLengthVals[checkDim]);
clearCount *= constant->mInt32;
sectionElemCount *= constant->mInt32;
}
}
}
writeIdx += clearCount;
numElemsLeft = mModule->GetConstValue(clearCount);
}
// Actually leave it alone?
if ((isUninit) &&
((mModule->IsOptimized()) || (mModule->mIsComptimeModule) || (mModule->mBfIRBuilder->mIgnoreWrites)))
return;
bool doClear = true;
if (numElemsLeft.IsConst())
{
auto constant = mModule->mBfIRBuilder->GetConstant(numElemsLeft);
doClear = constant->mInt64 > 0;
}
if (doClear)
{
// We multiply by GetStride. This relies on the fact that we over-allocate on the array allocation -- the last
// element doesn't need to be padded out to the element alignment, but we do anyway. Otherwise this would be
// a more complicated computation
auto clearBytes = mModule->mBfIRBuilder->CreateMul(numElemsLeft, mModule->GetConstValue(resultType->GetStride()));
if (isUninit)
{
// Limit to a reasonable number of bytes to stomp with 0xCC
int maxStompBytes = BF_MIN(128, resultType->GetStride() * sectionElemCount);
if (clearBytes.IsConst())
{
auto constant = mModule->mBfIRBuilder->GetConstant(clearBytes);
if (constant->mInt64 > maxStompBytes)
clearBytes = mModule->GetConstValue(maxStompBytes);
}
else
{
auto insertBlock = mModule->mBfIRBuilder->GetInsertBlock();
auto gtBlock = mModule->mBfIRBuilder->CreateBlock("unint.gt");
auto contBlock = mModule->mBfIRBuilder->CreateBlock("unint.cont");
auto cmp = mModule->mBfIRBuilder->CreateCmpLTE(clearBytes, mModule->GetConstValue(maxStompBytes), true);
mModule->mBfIRBuilder->CreateCondBr(cmp, contBlock, gtBlock);
mModule->mBfIRBuilder->AddBlock(gtBlock);
mModule->mBfIRBuilder->SetInsertPoint(gtBlock);
mModule->mBfIRBuilder->CreateBr(contBlock);
mModule->mBfIRBuilder->AddBlock(contBlock);
mModule->mBfIRBuilder->SetInsertPoint(contBlock);
auto phi = mModule->mBfIRBuilder->CreatePhi(mModule->mBfIRBuilder->MapType(mModule->GetPrimitiveType(BfTypeCode_IntPtr)), 2);
mModule->mBfIRBuilder->AddPhiIncoming(phi, clearBytes, insertBlock);
mModule->mBfIRBuilder->AddPhiIncoming(phi, mModule->GetConstValue(maxStompBytes), gtBlock);
clearBytes = phi;
}
}
mModule->mBfIRBuilder->PopulateType(resultType);
if (!resultType->IsValuelessType())
{
mModule->mBfIRBuilder->CreateMemSet(mModule->CreateIndexedValue(resultType, addr, clearFromIdx),
mModule->mBfIRBuilder->CreateConst(BfTypeCode_Int8, isUninit ? 0xCC : 0), clearBytes, resultType->mAlign);
}
}
}
};
BfInitContext initContext(mModule, resultType, dimensions, dimLengthVals, arraySize, writeIdx);
if (IsVar(resultType))
{
SetAndRestoreValue<bool> prevIgnoreWrites(mModule->mBfIRBuilder->mIgnoreWrites, true);
mResult = BfTypedValue(BfTypedValue(mModule->mBfIRBuilder->GetFakeVal(), mModule->GetPrimitiveType(BfTypeCode_Var)));
initContext.Handle(mResult.mValue, 0, objCreateExpr->mArguments);
return;
}
if (isRawArrayAlloc)
{
// If we have a constant-sized alloc then make the type a pointer to the sized array, otherwise just a pointer to the raw type
BfType* ptrType = mModule->CreatePointerType(resultType);
if (isAppendAlloc)
arrayValue = BfTypedValue(mModule->AppendAllocFromType(resultType, BfIRValue(), 0, arraySize, (int)dimLengthVals.size(), isRawArrayAlloc, false), ptrType);
else
{
arrayValue = BfTypedValue(mModule->AllocFromType(resultType, allocTarget, BfIRValue(), arraySize, (int)dimLengthVals.size(), allocFlags, allocTarget.mAlignOverride), ptrType);
}
initContext.Handle(arrayValue.mValue, 0, objCreateExpr->mArguments);
mResult = arrayValue;
return;
}
if (dimLengthVals.size() > 4)
{
dimLengthVals.RemoveRange(4, dimLengthVals.size() - 4);
mModule->Fail("Too many array dimensions, consider using a jagged array.", objCreateExpr);
}
if (arrayType == NULL)
return;
if (isAppendAlloc)
arrayValue = BfTypedValue(mModule->AppendAllocFromType(resultType, BfIRValue(), 0, arraySize, (int)dimLengthVals.size(), isRawArrayAlloc, zeroMemory), arrayType);
else
{
arrayValue = BfTypedValue(mModule->AllocFromType(resultType, allocTarget, BfIRValue(), arraySize, (int)dimLengthVals.size(), allocFlags, allocTarget.mAlignOverride), arrayType);
if (isScopeAlloc)
{
// See notes below on "general" SkipObjectAccessCheck usage on why we can do this
mModule->SkipObjectAccessCheck(arrayValue);
}
}
//mModule->InitTypeInst(arrayValue, scopeData);
BfAstNode* refNode = objCreateExpr->mTypeRef;
while (true)
{
if (auto arrayRef = BfNodeDynCast<BfElementedTypeRef>(refNode))
{
refNode = arrayRef->mElementType;
continue;
}
break;
}
BfResolvedArgs resolvedArgs;
auto rawAutoComplete = mModule->mCompiler->GetAutoComplete();
if (rawAutoComplete != NULL)
{
SetAndRestoreValue<bool> prevCapturing(rawAutoComplete->mIsCapturingMethodMatchInfo, false);
MatchConstructor(refNode, objCreateExpr, arrayValue, arrayType, resolvedArgs, false, false);
}
else
{
MatchConstructor(refNode, objCreateExpr, arrayValue, arrayType, resolvedArgs, false, false);
}
//TODO: Assert 'length' var is at slot 1
mModule->PopulateType(arrayType->mBaseType, BfPopulateType_DataAndMethods);
mModule->mBfIRBuilder->PopulateType(arrayType);
auto arrayBits = mModule->mBfIRBuilder->CreateBitCast(arrayValue.mValue, mModule->mBfIRBuilder->MapTypeInstPtr(arrayType->mBaseType));
int arrayLengthBitCount = arrayType->GetLengthBitCount();
if (arrayLengthBitCount == 0)
{
mModule->Fail("INTERNAL ERROR: Unable to find array 'length' field", objCreateExpr);
return;
}
mResult = arrayValue;
auto lengthFieldInstance = mModule->GetFieldByName(arrayType->mBaseType->ToTypeInstance(), "mLength");
if (lengthFieldInstance == NULL)
return;
auto firstElementFieldInstance = mModule->GetFieldByName(arrayType->ToTypeInstance(), "mFirstElement");
if (firstElementFieldInstance == NULL)
return;
auto addr = mModule->mBfIRBuilder->CreateInBoundsGEP(arrayBits, 0, lengthFieldInstance->mDataIdx);
if (arrayLengthBitCount == 64)
mModule->mBfIRBuilder->CreateAlignedStore(arraySize, addr, 8);
else
{
auto arraySize32 = mModule->mBfIRBuilder->CreateNumericCast(arraySize, true, BfTypeCode_Int32);
mModule->mBfIRBuilder->CreateAlignedStore(arraySize32, addr, 4);
}
for (int lowerDim = 1; lowerDim < (int)dimLengthVals.size(); lowerDim++)
{
auto length1FieldInstance = mModule->GetFieldByName(arrayType->ToTypeInstance(), "mLength1");
if (length1FieldInstance == NULL)
return;
addr = mModule->mBfIRBuilder->CreateInBoundsGEP(arrayValue.mValue, 0, length1FieldInstance->mDataIdx + lowerDim - 1);
auto lowerDimVal = mModule->mBfIRBuilder->CreateNumericCast(dimLengthVals[lowerDim], true, (arrayLengthBitCount == 64) ? BfTypeCode_Int64 : BfTypeCode_Int32);
mModule->mBfIRBuilder->CreateStore(lowerDimVal, addr);
}
if (resultType->IsValuelessType())
addr = mModule->mBfIRBuilder->GetFakeVal();
else
addr = mModule->mBfIRBuilder->CreateInBoundsGEP(arrayValue.mValue, 0, firstElementFieldInstance->mDataIdx);
initContext.Handle(addr, 0, objCreateExpr->mArguments);
return;
}
else
{
if (resolvedTypeRef->IsVar())
{
// Leave as a var
}
else if ((!resolvedTypeRef->IsObjectOrInterface()) && (!resolvedTypeRef->IsGenericParam()))
{
resultType = mModule->CreatePointerType(resolvedTypeRef);
}
}
if ((isStackAlloc) && (mModule->mCurMethodState == NULL))
{
mModule->Fail("Cannot use 'stack' here", allocNode);
isStackAlloc = false;
isScopeAlloc = false;
}
bool isGenericParam = unresolvedTypeRef->IsGenericParam();
if (resolvedTypeRef->IsGenericParam())
{
BfGenericParamFlags genericParamFlags = BfGenericParamFlag_None;
BfType* typeConstraint = NULL;
auto genericParam = mModule->GetMergedGenericParamData((BfGenericParamType*)resolvedTypeRef, genericParamFlags, typeConstraint);
if (typeConstraint == NULL)
{
if ((genericParamFlags & BfGenericParamFlag_Var) != 0)
{
// Allow it
}
else
{
if ((genericParamFlags & BfGenericParamFlag_New) == 0)
{
mModule->Fail(StrFormat("Must add 'where %s : new' constraint to generic parameter to instantiate type", genericParam->GetName().c_str()), objCreateExpr->mTypeRef);
}
if (objCreateExpr->mArguments.size() != 0)
{
mModule->Fail(StrFormat("Only default parameterless constructors can be called on generic argument '%s'", genericParam->GetName().c_str()), objCreateExpr->mTypeRef);
}
}
}
if (((typeConstraint != NULL) && (typeConstraint->IsValueType())) ||
((genericParamFlags & (BfGenericParamFlag_Struct | BfGenericParamFlag_StructPtr)) != 0))
{
resultType = mModule->CreatePointerType(resolvedTypeRef);
}
else if (((typeConstraint != NULL) && (!typeConstraint->IsValueType())) ||
((genericParamFlags & (BfGenericParamFlag_Class)) != 0))
{
// Leave as 'T'
resultType = resolvedTypeRef;
}
else
resultType = mModule->CreateModifiedTypeType(resolvedTypeRef, BfToken_AllocType);
mResult.mType = resultType;
if (typeInstance == NULL)
{
mResult = mModule->GetDefaultTypedValue(resultType);
return;
}
}
else if (resolvedTypeRef->IsSizedArray())
{
// Handle the case of "int[3]* val = new .(1, 2, 3)"
if (auto dotTypeRef = BfNodeDynCastExact<BfDotTypeReference>(objCreateExpr->mTypeRef))
{
BfIRValue allocValue;
if (isAppendAlloc)
allocValue = mModule->AppendAllocFromType(resolvedTypeRef, BfIRValue(), 0, BfIRValue(), 0, false, false);
else
allocValue = mModule->AllocFromType(resolvedTypeRef, allocTarget, BfIRValue(), BfIRValue(), 0, BfAllocFlags_None);
auto result = BfTypedValue(allocValue, resolvedTypeRef, BfTypedValueKind_Addr);
InitializedSizedArray((BfSizedArrayType*)resolvedTypeRef, objCreateExpr->mOpenToken, objCreateExpr->mArguments, objCreateExpr->mCommas, objCreateExpr->mCloseToken, &result);
// Turn from an addr of a sized array to pointer of sized array
mResult = BfTypedValue(mResult.mValue, resultType);
return;
}
}
SetAndRestoreValue<bool> prevNoBind(mNoBind, mNoBind || isGenericParam);
if ((typeInstance != NULL) && (typeInstance->mTypeDef->mIsAbstract))
{
mModule->Fail("Cannot create an instance of an abstract class", objCreateExpr->mTypeRef);
return;
}
BfFunctionBindResult bindResult;
bindResult.mSkipThis = true;
bindResult.mWantsArgs = true;
SetAndRestoreValue<BfFunctionBindResult*> prevBindResult(mFunctionBindResult, &bindResult);
BfIRValue appendSizeValue;
BfTypedValue emtpyThis(mModule->mBfIRBuilder->GetFakeVal(), resolvedTypeRef, resolvedTypeRef->IsStruct());
BfResolvedArgs argValues;
if (objCreateExpr != NULL)
{
argValues.Init(objCreateExpr->mOpenToken, &objCreateExpr->mArguments, &objCreateExpr->mCommas, objCreateExpr->mCloseToken);
ResolveArgValues(argValues, BfResolveArgsFlag_DeferParamEval); ////
}
if (typeInstance == NULL)
{
// No CTOR needed
if (objCreateExpr->mArguments.size() != 0)
{
mModule->Fail(StrFormat("Only default parameterless constructors can be called on primitive type '%s'", mModule->TypeToString(resolvedTypeRef).c_str()), objCreateExpr->mTypeRef);
}
}
else if ((autoComplete != NULL) && (objCreateExpr != NULL) && (objCreateExpr->mOpenToken != NULL))
{
auto wasCapturingMethodInfo = autoComplete->mIsCapturingMethodMatchInfo;
autoComplete->CheckInvocation(objCreateExpr, objCreateExpr->mOpenToken, objCreateExpr->mCloseToken, objCreateExpr->mCommas);
MatchConstructor(objCreateExpr->mTypeRef, objCreateExpr, emtpyThis, typeInstance, argValues, false, true);
if ((wasCapturingMethodInfo) && (!autoComplete->mIsCapturingMethodMatchInfo))
{
if (autoComplete->mMethodMatchInfo != NULL)
autoComplete->mIsCapturingMethodMatchInfo = true;
}
else
autoComplete->mIsCapturingMethodMatchInfo = false;
}
else if (!resolvedTypeRef->IsFunction())
{
auto refNode = allocNode;
if (objCreateExpr != NULL)
refNode = objCreateExpr->mTypeRef;
MatchConstructor(refNode, objCreateExpr, emtpyThis, typeInstance, argValues, false, true);
}
if (objCreateExpr != NULL)
mModule->ValidateAllocation(typeInstance, objCreateExpr->mTypeRef);
prevBindResult.Restore();
int allocAlign = resolvedTypeRef->mAlign;
if (typeInstance != NULL)
allocAlign = typeInstance->mInstAlign;
int appendAllocAlign = 0;
if ((bindResult.mMethodInstance != NULL) && (bindResult.mMethodInstance->mMethodDef->mHasAppend))
{
if (!bindResult.mFunc)
{
BF_ASSERT((!mModule->HasExecutedOutput()) || (mModule->mBfIRBuilder->mIgnoreWrites));
appendSizeValue = mModule->GetConstValue(0);
}
else
{
auto calcAppendMethodModule = mModule->GetMethodInstanceAtIdx(bindResult.mMethodInstance->GetOwner(), bindResult.mMethodInstance->mMethodDef->mIdx + 1, BF_METHODNAME_CALCAPPEND);
SizedArray<BfIRValue, 2> irArgs;
if (bindResult.mIRArgs.size() > 1)
irArgs.Insert(0, &bindResult.mIRArgs[1], bindResult.mIRArgs.size() - 1);
BfTypedValue appendSizeTypedValue = mModule->TryConstCalcAppend(calcAppendMethodModule.mMethodInstance, irArgs);
if (!appendSizeTypedValue)
{
BF_ASSERT(calcAppendMethodModule.mFunc);
appendSizeTypedValue = CreateCall(objCreateExpr, calcAppendMethodModule.mMethodInstance, calcAppendMethodModule.mFunc, false, irArgs);
BF_ASSERT(appendSizeTypedValue.mType == mModule->GetPrimitiveType(BfTypeCode_IntPtr));
}
appendSizeValue = appendSizeTypedValue.mValue;
allocAlign = BF_MAX(allocAlign, calcAppendMethodModule.mMethodInstance->mAppendAllocAlign);
appendAllocAlign = calcAppendMethodModule.mMethodInstance->mAppendAllocAlign;
}
if (appendAllocAlign != 0)
{
int endingAlign = typeInstance->GetEndingInstanceAlignment();
if (endingAlign % appendAllocAlign != 0)
{
int extraSize = appendAllocAlign - (endingAlign % appendAllocAlign);
appendSizeValue = mModule->mBfIRBuilder->CreateAdd(appendSizeValue, mModule->GetConstValue(extraSize));
}
}
}
// WTF? I'm not even sure this is correct - add more tests
appendAllocAlign = BF_MAX(appendAllocAlign, allocAlign);
BfIRValue allocValue;
if (IsVar(resolvedTypeRef))
{
mResult = mModule->GetDefaultTypedValue(resultType);
return;
}
else
{
if (isAppendAlloc)
{
allocValue = mModule->AppendAllocFromType(resolvedTypeRef, appendSizeValue, appendAllocAlign);
}
else
{
allocValue = mModule->AllocFromType(resolvedTypeRef, allocTarget, appendSizeValue, BfIRValue(), 0, BfAllocFlags_None, allocAlign);
}
if (((mBfEvalExprFlags & BfEvalExprFlags_Comptime) != 0) && (mModule->mCompiler->mCEMachine != NULL))
{
mModule->mCompiler->mCEMachine->SetAppendAllocInfo(mModule, allocValue, appendSizeValue);
}
mResult = BfTypedValue(allocValue, resultType);
}
if (isScopeAlloc)
{
// This allows readonly (ie: 'let') local usage to not require an access check. No matter what scope the alloc is tied to, the
// lifetime of the local variable will be no longer than that of the allocated value
mModule->SkipObjectAccessCheck(mResult);
}
/*if (typeInstance != NULL)
{
mModule->InitTypeInst(mResult, scopeData, true);
}
if (isStackAlloc)
{
mModule->AddStackAlloc(mResult, objCreateExpr, scopeData);
}*/
if (mResult)
{
if (bindResult.mMethodInstance == NULL)
{
// Why did we have this? It was already zeroed right?
// Zero
//mModule->mBfIRBuilder->CreateMemSet(mResult.mValue, mModule->GetConstValue8(0), mModule->GetConstValue(resolvedTypeRef->mSize), resolvedTypeRef->mAlign);
}
else if (bindResult.mFunc)
{
if (typeInstance->IsObject())
{
bool hasRealtimeLeakCheck = (mModule->mCompiler->mOptions.mEnableRealtimeLeakCheck) && (!IsComptime());
bool wantsCtorClear = true;
if (hasRealtimeLeakCheck)
{
// Dbg_ObjectAlloc clears internally so we don't need to call CtorClear for those
if ((!isStackAlloc) && (!isAppendAlloc) && (!allocTarget.mCustomAllocator) && (allocTarget.mScopedInvocationTarget == NULL))
wantsCtorClear = false;
}
if (wantsCtorClear)
{
auto ctorClear = mModule->GetMethodByName(typeInstance, "__BfCtorClear");
if (!ctorClear)
{
mModule->AssertErrorState();
}
else if ((mBfEvalExprFlags & BfEvalExprFlags_Comptime) == 0)
{
SizedArray<BfIRValue, 1> irArgs;
irArgs.push_back(mResult.mValue);
CreateCall(objCreateExpr, ctorClear.mMethodInstance, ctorClear.mFunc, false, irArgs);
}
}
if ((!mModule->mIsComptimeModule) && (isStackAlloc) && (hasRealtimeLeakCheck))
{
BfMethodInstance* markMethod = mModule->GetRawMethodByName(mModule->mContext->mBfObjectType, "GCMarkMembers");
BF_ASSERT(markMethod != NULL);
if (markMethod != NULL)
{
auto& vtableEntry = typeInstance->mVirtualMethodTable[markMethod->mVirtualTableIdx];
if (vtableEntry.mImplementingMethod.mTypeInstance != mModule->mContext->mBfObjectType)
{
auto impMethodInstance = (BfMethodInstance*)vtableEntry.mImplementingMethod;
bool needsCall = false;
if (impMethodInstance != NULL)
{
needsCall = impMethodInstance->mMethodDef->mBody != NULL;
}
else
{
needsCall = true;
BF_ASSERT(vtableEntry.mImplementingMethod.mKind == BfMethodRefKind_AmbiguousRef);
}
if (needsCall)
{
SizedArray<BfIRValue, 1> irArgs;
irArgs.push_back(mModule->mBfIRBuilder->CreateBitCast(mResult.mValue, mModule->mBfIRBuilder->MapType(mModule->mContext->mBfObjectType)));
auto gcType = mModule->ResolveTypeDef(mModule->mCompiler->mGCTypeDef);
BF_ASSERT(gcType != NULL);
if (gcType != NULL)
{
auto addStackObjMethod = mModule->GetMethodByName(gcType->ToTypeInstance(), "AddStackMarkableObject", 1);
BF_ASSERT(addStackObjMethod);
if (addStackObjMethod)
{
mModule->mBfIRBuilder->CreateCall(addStackObjMethod.mFunc, irArgs);
}
auto removeStackObjMethod = mModule->GetMethodByName(gcType->ToTypeInstance(), "RemoveStackMarkableObject", 1);
BF_ASSERT(removeStackObjMethod);
if (removeStackObjMethod)
{
mModule->AddDeferredCall(removeStackObjMethod, irArgs, allocTarget.mScopeData, allocNode);
}
}
}
}
}
}
}
if ((bindResult.mMethodInstance->mMethodDef->mHasAppend) && (mResult.mType->IsObject()))
{
BF_ASSERT(bindResult.mIRArgs[0].IsFake());
auto typeInst = mResult.mType->ToTypeInstance();
auto intPtrType = mModule->GetPrimitiveType(BfTypeCode_IntPtr);
auto thisVal = mResult;
BfIRValue intPtrVal = mModule->CreateAlloca(intPtrType);
auto intPtrThisVal = mModule->mBfIRBuilder->CreatePtrToInt(thisVal.mValue, (intPtrType->mSize == 4) ? BfTypeCode_Int32 : BfTypeCode_Int64);
auto curValPtr = mModule->mBfIRBuilder->CreateAdd(intPtrThisVal, mModule->GetConstValue(typeInst->mInstSize, intPtrType));
mModule->mBfIRBuilder->CreateStore(curValPtr, intPtrVal);
bindResult.mIRArgs[0] = intPtrVal;
}
if (!typeInstance->IsValuelessType())
bindResult.mIRArgs.Insert(0, mResult.mValue);
auto result = CreateCall(objCreateExpr, bindResult.mMethodInstance, bindResult.mFunc, false, bindResult.mIRArgs);
if ((result) && (!result.mType->IsVoid()))
mResult = result;
}
}
if (((mBfEvalExprFlags & BfEvalExprFlags_Comptime) != 0) && (mModule->mCompiler->mCEMachine != NULL))
{
mModule->mCompiler->mCEMachine->ClearAppendAllocInfo();
}
}
void BfExprEvaluator::Visit(BfBoxExpression* boxExpr)
{
/*if ((boxExpr->mAllocNode == NULL) || (boxExpr->mExpression == NULL))
{
mModule->AssertErrorState();
return;
}*/
BfTokenNode* newToken = NULL;
BfAllocTarget allocTarget = ResolveAllocTarget(boxExpr->mAllocNode, newToken);
if ((boxExpr->mAllocNode != NULL) && (boxExpr->mAllocNode->mToken == BfToken_Scope))
{
if ((mBfEvalExprFlags & BfEvalExprFlags_FieldInitializer) != 0)
{
mModule->Warn(0, "This allocation will only be in scope during the constructor. Consider using a longer-term allocation such as 'new'", boxExpr->mAllocNode);
}
}
if (boxExpr->mExpression == NULL)
{
mModule->AssertErrorState();
return;
}
auto exprValue = mModule->CreateValueFromExpression(boxExpr->mExpression);
if (exprValue)
{
bool doFail = false;
bool doWarn = false;
if (exprValue.mType->IsGenericParam())
{
BF_ASSERT(mModule->mCurMethodInstance->mIsUnspecialized);
auto genericParamTarget = (BfGenericParamType*)exprValue.mType;
auto genericParamInstance = mModule->GetGenericParamInstance(genericParamTarget);
if ((genericParamInstance->mGenericParamFlags & (BfGenericParamFlag_Struct | BfGenericParamFlag_StructPtr | BfGenericParamFlag_Class)) == BfGenericParamFlag_Class)
doWarn = true;
if ((genericParamInstance->mTypeConstraint != NULL) && (genericParamInstance->mTypeConstraint->IsObjectOrInterface()))
doWarn = true;
}
else
{
doFail = !exprValue.mType->IsValueTypeOrValueTypePtr();
doWarn = exprValue.mType->IsObjectOrInterface();
}
if (doWarn)
{
mModule->Warn(0, StrFormat("Boxing is unnecessary since type '%s' is already a reference type.", mModule->TypeToString(exprValue.mType).c_str()), boxExpr->mExpression);
mResult = exprValue;
return;
}
if (doFail)
{
mModule->Fail(StrFormat("Box target '%s' must be a value type or pointer to a value type", mModule->TypeToString(exprValue.mType).c_str()), boxExpr->mExpression);
return;
}
BfType* boxedType = mModule->CreateBoxedType(exprValue.mType);
if (boxedType == NULL)
boxedType = mModule->mContext->mBfObjectType;
mResult = mModule->BoxValue(boxExpr->mExpression, exprValue, boxedType, allocTarget);
if (!mResult)
{
mModule->Fail(StrFormat("Type '%s' is not boxable", mModule->TypeToString(exprValue.mType).c_str()), boxExpr->mExpression);
return;
}
}
}
BfAllocTarget BfExprEvaluator::ResolveAllocTarget(BfAstNode* allocNode, BfTokenNode*& newToken, BfCustomAttributes** outCustomAttributes)
{
auto autoComplete = GetAutoComplete();
BfAttributeDirective* attributeDirective = NULL;
BfAllocTarget allocTarget;
allocTarget.mRefNode = allocNode;
newToken = BfNodeDynCast<BfTokenNode>(allocNode);
if (newToken == NULL)
{
if (auto scopeNode = BfNodeDynCast<BfScopeNode>(allocNode))
{
newToken = scopeNode->mScopeToken;
allocTarget.mScopeData = mModule->FindScope(scopeNode->mTargetNode, true);
if (autoComplete != NULL)
{
auto targetIdentifier = BfNodeDynCast<BfIdentifierNode>(scopeNode->mTargetNode);
if ((scopeNode->mTargetNode == NULL) || (targetIdentifier != NULL))
autoComplete->CheckLabel(targetIdentifier, scopeNode->mColonToken, allocTarget.mScopeData);
}
attributeDirective = scopeNode->mAttributes;
}
if (auto newNode = BfNodeDynCast<BfNewNode>(allocNode))
{
newToken = newNode->mNewToken;
if (auto allocExpr = BfNodeDynCast<BfExpression>(newNode->mAllocNode))
{
allocTarget.mCustomAllocator = mModule->CreateValueFromExpression(allocExpr);
allocTarget.mRefNode = allocExpr;
}
else if (auto scopedInvocationTarget = BfNodeDynCast<BfScopedInvocationTarget>(newNode->mAllocNode))
{
allocTarget.mScopedInvocationTarget = scopedInvocationTarget;
}
attributeDirective = newNode->mAttributes;
}
}
else if (newToken->GetToken() == BfToken_Scope)
{
if (mModule->mCurMethodState != NULL)
allocTarget.mScopeData = mModule->mCurMethodState->mCurScope->GetTargetable();
}
else if (newToken->GetToken() == BfToken_Stack)
{
if (mModule->mCurMethodState != NULL)
allocTarget.mScopeData = &mModule->mCurMethodState->mHeadScope;
}
if (attributeDirective != NULL)
{
auto customAttrs = mModule->GetCustomAttributes(attributeDirective, BfAttributeTargets_Alloc, BfGetCustomAttributesFlags_AllowNonConstArgs, &allocTarget.mCaptureInfo);
if (customAttrs != NULL)
{
for (auto& attrib : customAttrs->mAttributes)
{
if (attrib.mType->IsInstanceOf(mModule->mCompiler->mAlignAttributeTypeDef))
{
allocTarget.mAlignOverride = 16; // System conservative default
if (!attrib.mCtorArgs.IsEmpty())
{
BfIRConstHolder* constHolder = mModule->mCurTypeInstance->mConstHolder;
auto constant = constHolder->GetConstant(attrib.mCtorArgs[0]);
if (constant != NULL)
{
int alignOverride = (int)BF_MAX(1, constant->mInt64);
if ((alignOverride & (alignOverride - 1)) == 0)
allocTarget.mAlignOverride = alignOverride;
else
mModule->Fail("Alignment must be a power of 2", attrib.GetRefNode());
}
}
}
else if (attrib.mType->IsInstanceOf(mModule->mCompiler->mFriendAttributeTypeDef))
allocTarget.mIsFriend = true;
}
if (outCustomAttributes != NULL)
*outCustomAttributes = customAttrs;
else
delete customAttrs;
}
}
return allocTarget;
}
BfTypedValue BfExprEvaluator::MakeCallableTarget(BfAstNode* targetSrc, BfTypedValue target)
{
if ((target.mType->IsRef()) || (target.mType->IsPointer()))
{
auto underlying = target.mType->GetUnderlyingType();
bool underlyingIsStruct = underlying->IsStruct();
// if (underlying->IsGenericParam())
// {
// auto genericParam = mModule->GetGenericParamInstance((BfGenericParamType*)underlying);
// if (((genericParam->mTypeConstraint != NULL) && (genericParam->mTypeConstraint->IsValueType())) ||
// ((genericParam->mGenericParamFlags & (BfGenericParamFlag_Struct)) != 0))
// underlyingIsStruct = true;
// }
if (underlyingIsStruct)
{
auto pointerType = (BfPointerType*)target.mType;
target = mModule->LoadValue(target);
target.mType = pointerType->mElementType;
target.mKind = BfTypedValueKind_Addr;
}
}
if ((target.mType->IsStruct()) && (!target.IsAddr()))
{
if (IsComptimeEntry())
return target;
target = mModule->MakeAddressable(target);
}
if (IsVar(target.mType))
{
target.mType = mModule->mContext->mBfObjectType;
return target;
}
if (target.mType->IsWrappableType())
{
auto primStructType = mModule->GetWrappedStructType(target.mType);
if (primStructType != NULL)
{
mModule->PopulateType(primStructType);
if (primStructType->IsTypedPrimitive())
{
// Type is already the same
target.mType = primStructType;
}
else if (target.IsAddr())
{
auto ptrType = mModule->CreatePointerType(primStructType);
target = BfTypedValue(mModule->mBfIRBuilder->CreateBitCast(target.mValue, mModule->mBfIRBuilder->MapType(ptrType)), primStructType, true);
}
else if ((primStructType->IsSplattable()) && (target.IsSplat()) && (!IsComptime()))
{
target.mType = primStructType;
target.mKind = BfTypedValueKind_SplatHead;
}
else
{
auto allocPtr = mModule->CreateAlloca(primStructType);
auto srcPtrType = mModule->mBfIRBuilder->CreateBitCast(allocPtr, mModule->mBfIRBuilder->GetPointerTo(mModule->mBfIRBuilder->MapType(target.mType)));
mModule->mBfIRBuilder->CreateStore(target.mValue, srcPtrType);
target = BfTypedValue(allocPtr, primStructType, true);
}
}
return target;
}
if (target.mType->IsGenericParam())
{
target.mType = mModule->mContext->mBfObjectType;
return target;
}
if ((!target.mType->IsTypeInstance()) && (!target.mType->IsConcreteInterfaceType()))
{
mModule->Fail(StrFormat("Methods cannot be called on type '%s'", mModule->TypeToString(target.mType).c_str()), targetSrc);
return BfTypedValue();
}
return target;
}
int BfExprEvaluator::GetMixinVariable()
{
auto curMethodState = mModule->mCurMethodState;
for (int localIdx = (int)curMethodState->mLocals.size() - 1; localIdx >= 0; localIdx--)
{
auto varDecl = curMethodState->mLocals[localIdx];
if (varDecl->mName == "mixin")
return localIdx;
}
return -1;
}
BfModuleMethodInstance BfExprEvaluator::GetSelectedMethod(BfAstNode* targetSrc, BfTypeInstance* curTypeInst, BfMethodDef* methodDef, BfMethodMatcher& methodMatcher, BfType** overrideReturnType)
{
bool failed = false;
BfTypeVector resolvedGenericArguments;
BfMethodState* rootMethodState = NULL;
if (mModule->mCurMethodState != NULL)
rootMethodState = mModule->mCurMethodState->GetRootMethodState();
int localInferrableGenericArgCount = -1;
if ((methodMatcher.mBestMethodGenericArguments.size() == 0) && (!methodMatcher.mExplicitMethodGenericArguments.IsEmpty()))
{
int uniqueGenericStartIdx = mModule->GetLocalInferrableGenericArgCount(methodDef);
int64 genericArgCountDiff = (int)methodMatcher.mExplicitMethodGenericArguments.size() + uniqueGenericStartIdx - (int)methodDef->mGenericParams.size();
BfInvocationExpression* invocationExpr = NULL;
if (mModule->mParentNodeEntry != NULL)
{
invocationExpr = BfNodeDynCast<BfInvocationExpression>(mModule->mParentNodeEntry->mNode);
}
if (genericArgCountDiff > 0)
{
BfAstNode* errorNode = targetSrc;
if ((invocationExpr != NULL) && (invocationExpr->mGenericArgs != NULL))
{
errorNode = invocationExpr->mGenericArgs->mGenericArgs[(int)methodDef->mGenericParams.size()];
if (errorNode == NULL)
invocationExpr->mGenericArgs->mCommas.GetSafe((int)methodDef->mGenericParams.size() - 1, errorNode);
if (errorNode == NULL)
errorNode = targetSrc;
}
mModule->Fail(StrFormat("Too many generic arguments, expected %d fewer", genericArgCountDiff), errorNode);
}
else if (genericArgCountDiff < 0)
{
BfAstNode* errorNode = targetSrc;
if ((invocationExpr != NULL) && (invocationExpr->mGenericArgs != NULL) && (invocationExpr->mGenericArgs->mCloseChevron != NULL))
errorNode = invocationExpr->mGenericArgs->mCloseChevron;
mModule->Fail(StrFormat("Too few generic arguments, expected %d more", -genericArgCountDiff), errorNode);
}
methodMatcher.mBestMethodGenericArguments.resize(methodDef->mGenericParams.size());
for (int i = 0; i < std::min(methodDef->mGenericParams.size() - uniqueGenericStartIdx, methodMatcher.mExplicitMethodGenericArguments.size()); i++)
{
methodMatcher.mBestMethodGenericArguments[i + uniqueGenericStartIdx] = methodMatcher.mExplicitMethodGenericArguments[i];
}
}
BfMethodInstance* unspecializedMethod = NULL;
bool hasVarGenerics = false;
for (int checkGenericIdx = 0; checkGenericIdx < (int)methodMatcher.mBestMethodGenericArguments.size(); checkGenericIdx++)
{
BfMethodInstance* outerMethodInstance = NULL;
auto& genericArg = methodMatcher.mBestMethodGenericArguments[checkGenericIdx];
if (genericArg == NULL)
{
if ((methodDef->mIsLocalMethod) && (checkGenericIdx < mModule->mCurMethodInstance->GetNumGenericArguments()))
{
// If the root method is generic and we need that param then use that...
auto rootMethodInstance = rootMethodState->mMethodInstance;
if ((rootMethodInstance->mMethodInfoEx != NULL) && (checkGenericIdx < rootMethodInstance->mMethodInfoEx->mMethodGenericArguments.size()))
{
genericArg = rootMethodInstance->mMethodInfoEx->mMethodGenericArguments[checkGenericIdx];
}
else
{
if (localInferrableGenericArgCount == -1)
localInferrableGenericArgCount = mModule->GetLocalInferrableGenericArgCount(methodDef);
// Otherwise we can only infer generics at the level that the called method was contained
if (checkGenericIdx < localInferrableGenericArgCount)
genericArg = mModule->mCurMethodInstance->mMethodInfoEx->mMethodGenericArguments[checkGenericIdx];
}
}
}
if (genericArg == NULL)
{
if (unspecializedMethod == NULL)
unspecializedMethod = mModule->GetRawMethodInstance(curTypeInst, methodDef);
auto genericParam = unspecializedMethod->mMethodInfoEx->mGenericParams[checkGenericIdx];
if ((genericParam->mTypeConstraint != NULL) && (genericParam->mTypeConstraint->IsDelegate()))
{
// The only other option was to bind to a MethodRef
genericArg = mModule->ResolveGenericType(genericParam->mTypeConstraint, NULL, &methodMatcher.mBestMethodGenericArguments);
}
else
{
if (((genericParam->mGenericParamFlags & BfGenericParamFlag_Const) != 0) && (genericParam->mTypeConstraint != NULL))
{
for (int paramIdx = 0; paramIdx < (int)unspecializedMethod->mDefaultValues.size(); paramIdx++)
{
auto defaultVal = unspecializedMethod->mDefaultValues[paramIdx];
if (!defaultVal)
continue;
auto& param = unspecializedMethod->mParams[paramIdx];
if (param.mResolvedType->IsGenericParam())
{
auto genericParamType = (BfGenericParamType*)param.mResolvedType;
if ((genericParamType->mGenericParamKind == BfGenericParamKind_Method) && (genericParamType->mGenericParamIdx == checkGenericIdx))
{
BfTypedValue constExprVal;
constExprVal.mType = genericParam->mTypeConstraint;
auto constant = curTypeInst->mConstHolder->GetConstant(defaultVal.mValue);
constExprVal.mValue = mModule->ConstantToCurrent(constant, curTypeInst->mConstHolder, genericParam->mTypeConstraint);
genericArg = mModule->CreateConstExprValueType(constExprVal);
}
}
}
}
}
if (genericArg == NULL)
{
BfGenericInferContext genericInferContext;
genericInferContext.mModule = mModule;
genericInferContext.mCheckMethodGenericArguments = &methodMatcher.mBestMethodGenericArguments;
genericInferContext.InferGenericArguments(unspecializedMethod);
}
if (genericArg == NULL)
{
failed = true;
BfError* error = mModule->Fail(StrFormat("Unable to determine generic argument '%s'", methodDef->mGenericParams[checkGenericIdx]->mName.c_str()).c_str(), targetSrc);
if ((genericParam->mTypeConstraint != NULL) && (!genericParam->mTypeConstraint->IsUnspecializedType()))
genericArg = genericParam->mTypeConstraint;
else
genericArg = mModule->mContext->mBfObjectType;
if (error != NULL)
mModule->mCompiler->mPassInstance->MoreInfo(StrFormat("See method declaration"), unspecializedMethod->mMethodDef->GetRefNode());
}
}
if (genericArg->IsVar())
{
BF_ASSERT(methodMatcher.mHasVarArguments);
hasVarGenerics = true;
}
if (genericArg->IsIntUnknown())
genericArg = mModule->FixIntUnknown(genericArg);
auto resolvedGenericArg = genericArg;
resolvedGenericArguments.push_back(genericArg);
}
BfTypeInstance* foreignType = NULL;
BfGetMethodInstanceFlags flags = BfGetMethodInstanceFlag_None;
if ((mModule->mAttributeState != NULL) && (mModule->mAttributeState->mCustomAttributes != NULL) && (mModule->mAttributeState->mCustomAttributes->Contains(mModule->mCompiler->mInlineAttributeTypeDef)))
{
flags = (BfGetMethodInstanceFlags)(flags | BfGetMethodInstanceFlag_ForceInline);
mModule->mAttributeState->mUsed = true;
}
if ((!mModule->mCurTypeInstance->IsInterface()) && (methodDef->mBody != NULL))
{
if ((methodMatcher.mBypassVirtual) && (methodMatcher.mBestMethodTypeInstance->IsInterface()))
{
// This is an explicit 'base' call to a default interface method. We pull the methodDef into our own concrete type.
foreignType = curTypeInst;
curTypeInst = mModule->mCurTypeInstance;
flags = (BfGetMethodInstanceFlags)(flags | BfGetMethodInstanceFlag_ForeignMethodDef);
}
else if ((methodDef->mIsStatic) && (curTypeInst->IsInterface()))
{
if (mModule->TypeIsSubTypeOf(mModule->mCurTypeInstance, curTypeInst))
{
// This is an explicit call to a default static interface method. We pull the methodDef into our own concrete type.
foreignType = curTypeInst;
curTypeInst = mModule->mCurTypeInstance;
flags = (BfGetMethodInstanceFlags)(flags | BfGetMethodInstanceFlag_ForeignMethodDef);
}
}
}
if (hasVarGenerics)
return BfModuleMethodInstance();
BfModuleMethodInstance moduleMethodInstance;
if (methodMatcher.mBestMethodInstance)
{
moduleMethodInstance = methodMatcher.mBestMethodInstance;
}
else
{
moduleMethodInstance = mModule->GetMethodInstance(curTypeInst, methodDef, resolvedGenericArguments, flags, foreignType);
}
if (mModule->IsSkippingExtraResolveChecks())
{
//BF_ASSERT(methodInstance.mFunc == NULL);
}
if (moduleMethodInstance.mMethodInstance == NULL)
return NULL;
if (methodDef->IsEmptyPartial())
return moduleMethodInstance;
if (moduleMethodInstance.mMethodInstance->mMethodInfoEx != NULL)
{
for (int checkGenericIdx = 0; checkGenericIdx < (int)moduleMethodInstance.mMethodInstance->mMethodInfoEx->mGenericParams.size(); checkGenericIdx++)
{
auto genericParams = moduleMethodInstance.mMethodInstance->mMethodInfoEx->mGenericParams[checkGenericIdx];
BfTypeVector* checkMethodGenericArgs = NULL;
BfType* genericArg = NULL;
if (checkGenericIdx < (int)methodMatcher.mBestMethodGenericArguments.size())
{
genericArg = methodMatcher.mBestMethodGenericArguments[checkGenericIdx];
}
else
{
checkMethodGenericArgs = &methodMatcher.mBestMethodGenericArguments;
genericArg = genericParams->mExternType;
auto owner = moduleMethodInstance.mMethodInstance->GetOwner();
BfTypeVector* typeGenericArguments = NULL;
if (owner->mGenericTypeInfo != NULL)
typeGenericArguments = &owner->mGenericTypeInfo->mTypeGenericArguments;
//genericArg = mModule->ResolveGenericType(genericArg, typeGenericArguments, checkMethodGenericArgs);
}
if (genericArg->IsVar())
continue;
BfAstNode* paramSrc;
if (checkGenericIdx >= methodMatcher.mBestMethodGenericArgumentSrcs.size())
{
paramSrc = targetSrc;
}
else
paramSrc = methodMatcher.mArguments[methodMatcher.mBestMethodGenericArgumentSrcs[checkGenericIdx]].mExpression;
// Note: don't pass methodMatcher.mBestMethodGenericArguments into here, this method is already specialized
BfError* error = NULL;
if (!mModule->CheckGenericConstraints(BfGenericParamSource(moduleMethodInstance.mMethodInstance), genericArg, paramSrc, genericParams, NULL,
failed ? NULL : &error))
{
if (moduleMethodInstance.mMethodInstance->IsSpecializedGenericMethod())
{
// We mark this as failed to make sure we don't try to process a method that doesn't even follow the constraints
moduleMethodInstance.mMethodInstance->mFailedConstraints = true;
}
if (moduleMethodInstance.mMethodInstance->mMethodDef->mMethodDeclaration != NULL)
{
if (error != NULL)
mModule->mCompiler->mPassInstance->MoreInfo(StrFormat("See method declaration"), moduleMethodInstance.mMethodInstance->mMethodDef->GetRefNode());
}
}
}
}
else
BF_ASSERT(methodMatcher.mBestMethodGenericArguments.IsEmpty());
if ((overrideReturnType != NULL) && (moduleMethodInstance.mMethodInstance->mIsUnspecializedVariation) &&
((moduleMethodInstance.mMethodInstance->mReturnType->IsUnspecializedTypeVariation()) || (moduleMethodInstance.mMethodInstance->mReturnType->IsVar())))
{
if (unspecializedMethod == NULL)
unspecializedMethod = mModule->GetRawMethodInstance(curTypeInst, methodDef);
BfTypeVector* typeGenericArgs = NULL;
auto typeUnspecMethodInstance = unspecializedMethod;
if (curTypeInst->IsUnspecializedTypeVariation())
{
typeUnspecMethodInstance = mModule->GetUnspecializedMethodInstance(typeUnspecMethodInstance, true);
typeGenericArgs = &curTypeInst->mGenericTypeInfo->mTypeGenericArguments;
}
BfType* specializedReturnType = mModule->ResolveGenericType(typeUnspecMethodInstance->mReturnType, typeGenericArgs, &methodMatcher.mBestMethodGenericArguments);
if (specializedReturnType != NULL)
*overrideReturnType = specializedReturnType;
}
return moduleMethodInstance;
}
BfModuleMethodInstance BfExprEvaluator::GetSelectedMethod(BfMethodMatcher& methodMatcher)
{
if (!methodMatcher.mBestMethodInstance)
methodMatcher.mBestMethodInstance = GetSelectedMethod(methodMatcher.mTargetSrc, methodMatcher.mBestMethodTypeInstance, methodMatcher.mBestMethodDef, methodMatcher);
return methodMatcher.mBestMethodInstance;
}
void BfExprEvaluator::CheckLocalMethods(BfAstNode* targetSrc, BfTypeInstance* typeInstance, const StringImpl& methodName, BfMethodMatcher& methodMatcher, BfMethodType methodType)
{
auto _GetNodeId = [&]()
{
auto parser = targetSrc->GetSourceData()->ToParserData();
return ((int64)parser->mDataId << 32) + targetSrc->GetSrcStart();
};
BfMethodState* ctxMethodState = NULL;
BfClosureInstanceInfo* ctxClosureInstanceInfo = NULL;
if ((mModule->mCurMethodState != NULL) && (mModule->mCurMethodState->mClosureState != NULL))
{
ctxClosureInstanceInfo = mModule->mCurMethodState->mClosureState->mClosureInstanceInfo;
ctxMethodState = mModule->mCurMethodState;
}
bool atCtxMethodState = false;
auto checkMethodState = mModule->mCurMethodState;
auto rootMethodState = checkMethodState;
while (checkMethodState != NULL)
{
rootMethodState = checkMethodState;
if (checkMethodState == ctxMethodState)
atCtxMethodState = true;
if ((ctxClosureInstanceInfo != NULL) && (!ctxMethodState->mClosureState->mCapturing))
{
BfMethodDef* localMethodDef = NULL;
if (ctxClosureInstanceInfo->mLocalMethodBindings.TryGetValue(_GetNodeId(), &localMethodDef))
{
methodMatcher.CheckMethod(mModule->mCurTypeInstance, mModule->mCurTypeInstance, localMethodDef, true);
BF_ASSERT(methodMatcher.mBestMethodDef != NULL);
return;
}
}
else
{
BfLocalMethod* matchedLocalMethod = NULL;
BfLocalMethod* localMethod = NULL;
if (checkMethodState->mLocalMethodMap.TryGetValue(methodName, &localMethod))
{
auto typeInst = mModule->mCurTypeInstance;
if (checkMethodState->mMixinState != NULL)
typeInst = checkMethodState->mMixinState->mMixinMethodInstance->GetOwner();
while (localMethod != NULL)
{
auto methodDef = mModule->GetLocalMethodDef(localMethod);
if (methodDef->mMethodType == methodType)
{
methodMatcher.CheckMethod(mModule->mCurTypeInstance, typeInst, methodDef, true);
if (methodMatcher.mBestMethodDef == methodDef)
matchedLocalMethod = localMethod;
}
localMethod = localMethod->mNextWithSameName;
}
}
if (matchedLocalMethod != NULL)
{
if ((mModule->mCurMethodState != NULL) && (mModule->mCurMethodState->mClosureState != NULL) && (mModule->mCurMethodState->mClosureState->mCapturing))
{
BfModuleMethodInstance moduleMethodInstance = GetSelectedMethod(targetSrc, typeInstance, matchedLocalMethod->mMethodDef, methodMatcher);
if (moduleMethodInstance)
{
auto methodInstance = moduleMethodInstance.mMethodInstance;
if ((methodInstance->mMethodInfoEx != NULL) && (methodInstance->mMethodInfoEx->mClosureInstanceInfo->mCaptureClosureState != NULL))
{
// The called method is calling us from its mLocalMethodRefs set. Stretch our mCaptureStartAccessId back to incorporate its
// captures as well
if (methodInstance->mMethodInfoEx->mClosureInstanceInfo->mCaptureClosureState->mCaptureStartAccessId < mModule->mCurMethodState->mClosureState->mCaptureStartAccessId)
mModule->mCurMethodState->mClosureState->mCaptureStartAccessId = methodInstance->mMethodInfoEx->mClosureInstanceInfo->mCaptureClosureState->mCaptureStartAccessId;
}
else
{
if (methodInstance->mDisallowCalling) // We need to process the captures from this guy
{
if (mModule->mCurMethodState->mClosureState->mLocalMethodRefSet.Add(methodInstance))
mModule->mCurMethodState->mClosureState->mLocalMethodRefs.Add(methodInstance);
}
}
}
}
if (ctxClosureInstanceInfo != NULL)
{
BF_ASSERT(mModule->mCurMethodState->mClosureState->mCapturing);
ctxClosureInstanceInfo->mLocalMethodBindings[_GetNodeId()] = methodMatcher.mBestMethodDef;
}
break;
}
}
checkMethodState = checkMethodState->mPrevMethodState;
}
}
void BfExprEvaluator::InjectMixin(BfAstNode* targetSrc, BfTypedValue target, bool allowImplicitThis, const StringImpl& name, const BfSizedArray<BfExpression*>& arguments, BfSizedArray<ASTREF(BfTypeReference*)>* methodGenericArgs)
{
if (mModule->mCurMethodState == NULL)
return;
if (mDeferCallRef != NULL)
{
mModule->Fail("Mixins cannot be directly deferred. Consider wrapping in a block.", targetSrc);
}
BfAstNode* origTargetSrc = targetSrc;
BfScopedInvocationTarget* scopedInvocationTarget = NULL;
if (mModule->mParentNodeEntry != NULL)
{
if (auto invocationExpr = BfNodeDynCast<BfInvocationExpression>(mModule->mParentNodeEntry->mNode))
{
scopedInvocationTarget = BfNodeDynCast<BfScopedInvocationTarget>(invocationExpr->mTarget);
}
}
auto targetNameNode = targetSrc;
if (scopedInvocationTarget != NULL)
targetNameNode = scopedInvocationTarget->mTarget;
BfTypeInstance* mixinClass = NULL;
if (target.mType != NULL)
mixinClass = target.mType->ToTypeInstance();
int inLine = mModule->mCurFilePosition.mCurLine;
SizedArray<BfResolvedArg, 4> args;
SizedArray<BfExprEvaluator*, 8> argExprEvaluators;
defer
(
{
for (auto exprEvaluator : argExprEvaluators)
delete exprEvaluator;
}
);
auto _AddArg = [&](BfExpression* argExpr)
{
BfResolvedArg resolvedArg;
argExprEvaluators.push_back(new BfExprEvaluator(mModule));
BfExprEvaluator* exprEvaluator = argExprEvaluators.back();
exprEvaluator->mResolveGenericParam = false;
exprEvaluator->mBfEvalExprFlags = (BfEvalExprFlags)(exprEvaluator->mBfEvalExprFlags | BfEvalExprFlags_NoCast | BfEvalExprFlags_AllowRefExpr | BfEvalExprFlags_AllowOutExpr);
bool deferExpr = false;
if (auto variableDecl = BfNodeDynCast<BfVariableDeclaration>(argExpr))
{
deferExpr = true;
resolvedArg.mArgFlags = (BfArgFlags)(resolvedArg.mArgFlags | BfArgFlag_VariableDeclaration);
}
if (deferExpr)
{
//
}
else if (argExpr != NULL)
exprEvaluator->Evaluate(argExpr, false, false, true);
else
mModule->Fail("Missing argument", targetSrc);
auto argValue = exprEvaluator->mResult;
mModule->FixIntUnknown(argValue);
if (argValue)
{
if (argValue.mType->IsRef())
{
exprEvaluator->FinishExpressionResult();
}
}
resolvedArg.mTypedValue = argValue;
resolvedArg.mExpression = argExpr;
args.push_back(resolvedArg);
};
for (BfExpression* argExpr : arguments)
{
_AddArg(argExpr);
}
auto autoComplete = GetAutoComplete();
if ((autoComplete != NULL) && (autoComplete->mIsCapturingMethodMatchInfo) && (autoComplete->mMethodMatchInfo != NULL) && (autoComplete->mMethodMatchInfo->mInstanceList.size() != 0))
autoComplete->mIsCapturingMethodMatchInfo = false;
BfMethodMatcher methodMatcher(targetSrc, mModule, name, args, methodGenericArgs);
methodMatcher.mMethodType = BfMethodType_Mixin;
methodMatcher.mSkipImplicitParams = true;
auto curTypeInst = mModule->mCurTypeInstance;
if (mixinClass != NULL)
curTypeInst = mixinClass;
if (target.mType == NULL)
{
CheckLocalMethods(targetSrc, curTypeInst, name, methodMatcher, BfMethodType_Mixin);
}
if (methodMatcher.mBestMethodDef == NULL)
methodMatcher.mBestMethodDef = methodMatcher.mBackupMethodDef;
if (methodMatcher.mBestMethodDef == NULL)
{
if (mixinClass != NULL)
methodMatcher.CheckType(mixinClass, BfTypedValue(), false);
else
methodMatcher.CheckType(mModule->mCurTypeInstance, BfTypedValue(), false);
}
if ((methodMatcher.mBestMethodDef == NULL) && (target.mType == NULL) && (mModule->mContext->mCurTypeState != NULL))
{
BF_ASSERT(mModule->mCurTypeInstance == mModule->mContext->mCurTypeState->mType);
BfGlobalLookup globalLookup;
globalLookup.mKind = BfGlobalLookup::Kind_Method;
globalLookup.mName = name;
mModule->PopulateGlobalContainersList(globalLookup);
for (auto& globalContainer : mModule->mContext->mCurTypeState->mGlobalContainers)
{
if (globalContainer.mTypeInst == NULL)
continue;
methodMatcher.CheckType(globalContainer.mTypeInst, BfTypedValue(), false);
if (methodMatcher.mBestMethodDef != NULL)
break;
}
}
if (methodMatcher.mBestMethodDef == NULL)
{
mModule->Fail("Cannot find mixin", targetSrc);
return;
}
auto resolvePassData = mModule->mCompiler->mResolvePassData;
if ((autoComplete != NULL) && (autoComplete->IsAutocompleteNode(targetNameNode)) && (autoComplete->mDefType == NULL))
{
autoComplete->mInsertStartIdx = targetNameNode->GetSrcStart();
autoComplete->mInsertEndIdx = targetNameNode->GetSrcEnd();
autoComplete->mDefType = methodMatcher.mBestMethodTypeInstance->mTypeDef;
autoComplete->mDefMethod = methodMatcher.mBestMethodDef;
autoComplete->SetDefinitionLocation(methodMatcher.mBestMethodDef->GetMethodDeclaration()->mNameNode);
}
if ((mModule->mCompiler->mResolvePassData != NULL) && (mModule->mCompiler->mResolvePassData->mGetSymbolReferenceKind == BfGetSymbolReferenceKind_Method))
{
targetNameNode->SetSrcEnd(targetNameNode->GetSrcEnd() - 1);
mModule->mCompiler->mResolvePassData->HandleMethodReference(targetNameNode, methodMatcher.mBestMethodTypeInstance->mTypeDef, methodMatcher.mBestMethodDef);
targetNameNode->SetSrcEnd(targetNameNode->GetSrcEnd() + 1);
}
auto curMethodState = mModule->mCurMethodState;
//
// Why was this required? It doesn't check for matching generic args (we only want to throw an error if we call back into a mixin with the same generic args as before)
// {
// bool hasCircularRef = false;
//
// auto checkMethodState = curMethodState;
// while (checkMethodState != NULL)
// {
// auto curMixinState = checkMethodState->mMixinState;
// while (curMixinState != NULL)
// {
// if (curMixinState->mSource == targetSrc)
// hasCircularRef = true;
// curMixinState = curMixinState->mPrevMixinState;
// }
//
// if ((checkMethodState->mClosureState != NULL) && (checkMethodState->mClosureState->mActiveDeferredLocalMethod != NULL))
// {
// for (auto& mixinRecord : checkMethodState->mClosureState->mActiveDeferredLocalMethod->mMixinStateRecords)
// {
// if (mixinRecord.mSource == targetSrc)
// hasCircularRef = true;
// }
// }
//
// checkMethodState = checkMethodState->mPrevMethodState;
// }
//
// if (hasCircularRef)
// {
// mModule->Fail("Circular reference detected between mixins", targetSrc);
// return;
// }
// }
auto moduleMethodInstance = GetSelectedMethod(targetSrc, methodMatcher.mBestMethodTypeInstance, methodMatcher.mBestMethodDef, methodMatcher);
if (!moduleMethodInstance)
{
if (methodMatcher.mHasVarArguments)
{
mResult = mModule->GetDefaultTypedValue(mModule->GetPrimitiveType(BfTypeCode_Var));
return;
}
mModule->Fail("Failed to get selected mixin", targetSrc);
return;
}
if (!mModule->CheckUseMethodInstance(moduleMethodInstance.mMethodInstance, targetSrc))
return;
auto methodInstance = moduleMethodInstance.mMethodInstance;
PerformCallChecks(methodInstance, targetSrc);
for (int checkGenericIdx = 0; checkGenericIdx < (int)methodMatcher.mBestMethodGenericArguments.size(); checkGenericIdx++)
{
auto& genericParams = methodInstance->mMethodInfoEx->mGenericParams;
auto genericArg = methodMatcher.mBestMethodGenericArguments[checkGenericIdx];
if (genericArg->IsVar())
continue;
BfAstNode* paramSrc;
if (methodMatcher.mBestMethodGenericArgumentSrcs.size() == 0)
paramSrc = targetSrc;
else
paramSrc = methodMatcher.mArguments[methodMatcher.mBestMethodGenericArgumentSrcs[checkGenericIdx]].mExpression;
// Note: don't pass methodMatcher.mBestMethodGenericArguments into here, this method is already specialized
BfError* error = NULL;
if (!mModule->CheckGenericConstraints(BfGenericParamSource(methodInstance), genericArg, paramSrc, genericParams[checkGenericIdx], NULL, &error))
{
if (methodInstance->mMethodDef->mMethodDeclaration != NULL)
{
if (error != NULL)
mModule->mCompiler->mPassInstance->MoreInfo(StrFormat("See method declaration"), methodInstance->mMethodDef->GetRefNode());
}
}
}
// Check circular ref based on methodInstance
{
bool hasCircularRef = false;
auto checkMethodState = curMethodState;
while (checkMethodState != NULL)
{
if (checkMethodState->mMethodInstance == methodInstance)
hasCircularRef = true;
auto curMixinState = checkMethodState->mMixinState;
while (curMixinState != NULL)
{
if (curMixinState->mMixinMethodInstance == methodInstance)
hasCircularRef = true;
curMixinState = curMixinState->mPrevMixinState;
}
checkMethodState = checkMethodState->mPrevMethodState;
}
if (hasCircularRef)
{
mModule->Fail("Circular reference detected between mixins", targetSrc);
return;
}
}
AddCallDependencies(methodInstance);
if (!methodMatcher.mBestMethodDef->mIsStatic)
{
if ((!target) && (allowImplicitThis))
target = mModule->GetThis();
if (!target)
{
BfError* error = mModule->Fail(StrFormat("An instance reference is required to invoke the non-static mixin '%s'",
mModule->MethodToString(methodInstance).c_str()), targetSrc);
if ((error != NULL) && (methodInstance->mMethodDef->GetRefNode() != NULL))
mModule->mCompiler->mPassInstance->MoreInfo(StrFormat("See method declaration"), methodInstance->mMethodDef->GetRefNode());
}
}
else
{
if (target)
{
BfError* error = mModule->Fail(StrFormat("Mixin '%s' cannot be accessed with an instance reference; qualify it with a type name instead",
mModule->MethodToString(methodInstance).c_str()), targetSrc);
if ((error != NULL) && (methodInstance->mMethodDef->GetRefNode() != NULL))
mModule->mCompiler->mPassInstance->MoreInfo(StrFormat("See method declaration"), methodInstance->mMethodDef->GetRefNode());
}
}
int methodParamCount = (int)methodInstance->GetParamCount();
// Implicit params are ignored for calling- they should be resolved at the injection site
int implicitParamCount = methodInstance->GetImplicitParamCount();
int explicitParamCount = methodParamCount - implicitParamCount;
while ((int)args.size() < explicitParamCount)
{
int argIdx = (int)args.size();
BfExpression* expr = methodInstance->GetParamInitializer(argIdx);
if (expr == NULL)
break;
_AddArg(expr);
}
if ((int)args.size() < explicitParamCount)
{
BfError* error = mModule->Fail(StrFormat("Not enough arguments specified, expected %d more.", explicitParamCount - (int)arguments.size()), targetSrc);
if ((error != NULL) && (methodInstance->mMethodDef->GetRefNode() != NULL))
mModule->mCompiler->mPassInstance->MoreInfo(StrFormat("See method declaration"), methodInstance->mMethodDef->GetRefNode());
return;
}
else if ((int)args.size() > explicitParamCount)
{
BfError* error = mModule->Fail(StrFormat("Too many arguments specified, expected %d fewer.", (int)arguments.size() - explicitParamCount), targetSrc);
if ((error != NULL) && (methodInstance->mMethodDef->GetRefNode() != NULL))
mModule->mCompiler->mPassInstance->MoreInfo(StrFormat("See method declaration"), methodInstance->mMethodDef->GetRefNode());
return;
}
int paramIdx = implicitParamCount;
auto argExprEvaluatorItr = argExprEvaluators.begin();
for (int argIdx = 0; argIdx < (int)args.size(); argIdx++)
{
auto exprEvaluator = *argExprEvaluatorItr;
//auto paramType = methodInstance->GetParamKind(paramIdx);
BfType* wantType = methodInstance->mParams[paramIdx].mResolvedType;
auto& arg = args[argIdx];
if ((arg.mArgFlags & BfArgFlag_VariableDeclaration) != 0)
{
arg.mTypedValue = ResolveArgValue(arg, wantType);
}
if (wantType->IsGenericParam())
{
//
}
else if (!wantType->IsVar())
{
if (arg.mTypedValue.mType == NULL)
{
mModule->AssertErrorState();
return;
}
if (arg.mTypedValue.mType != wantType)
{
exprEvaluator->FinishExpressionResult();
arg.mTypedValue = mModule->LoadValue(arg.mTypedValue);
arg.mTypedValue = mModule->Cast(arg.mExpression, arg.mTypedValue, wantType);
/*// Do this to generate default implicit cast error
mModule->Fail(StrFormat("Mixin argument type '%s' must match parameter type '%s'.",
mModule->TypeToString(arg.mTypedValue.mType).c_str(),
mModule->TypeToString(wantType).c_str()), arg.mExpression);
return;*/
}
}
paramIdx++;
argExprEvaluatorItr++;
}
mModule->AddDependency(methodInstance->GetOwner(), mModule->mCurTypeInstance, BfDependencyMap::DependencyFlag_InlinedCall);
auto startBlock = mModule->mBfIRBuilder->CreateBlock("mixinStart");
mModule->mBfIRBuilder->CreateBr(startBlock);
mModule->mBfIRBuilder->AddBlock(startBlock);
mModule->mBfIRBuilder->SetInsertPoint(startBlock);
//auto prevDebugLoc = mModule->mBfIRBuilder->getCurrentDebugLocation();
// This is so when we debug we can hit a steppoint on the inlined "call line"
mModule->EmitEnsureInstructionAt();
auto rootMethodState = mModule->mCurMethodState->GetRootMethodState();
BfMixinState* mixinState = rootMethodState->mMixinStates.Alloc();
mixinState->mInjectFilePosition = mModule->mCurFilePosition;
mixinState->mPrevMixinState = curMethodState->mMixinState;
mixinState->mLocalsStartIdx = (int)mModule->mCurMethodState->mLocals.size();
mixinState->mMixinMethodInstance = methodInstance;
mixinState->mSource = origTargetSrc;
mixinState->mCallerScope = mModule->mCurMethodState->mCurScope;
mixinState->mTargetScope = mixinState->mCallerScope;
mixinState->mResultExpr = NULL;
mixinState->mHasDeferredUsage = false;
mixinState->mUsedInvocationScope = false;
mixinState->mTarget = target;
auto checkNode = origTargetSrc;
if (scopedInvocationTarget != NULL)
{
auto targetScope = mModule->FindScope(scopedInvocationTarget->mScopeName, curMethodState->mMixinState);
if (targetScope != NULL)
{
mixinState->mTargetScope = targetScope;
if (autoComplete != NULL)
{
if (auto identifer = BfNodeDynCast<BfIdentifierNode>(scopedInvocationTarget->mScopeName))
autoComplete->CheckLabel(identifer, NULL, targetScope);
}
}
}
mModule->mBfIRBuilder->SaveDebugLocation();
SetAndRestoreValue<BfMixinState*> prevMixinState(curMethodState->mMixinState, mixinState);
BfGetSymbolReferenceKind prevSymbolRefKind = BfGetSymbolReferenceKind_None;
if (mModule->mCompiler->mResolvePassData != NULL)
{
prevSymbolRefKind = mModule->mCompiler->mResolvePassData->mGetSymbolReferenceKind;
mModule->mCompiler->mResolvePassData->mGetSymbolReferenceKind = BfGetSymbolReferenceKind_None;
}
defer
(
{
if (mModule->mCompiler->mResolvePassData != NULL)
mModule->mCompiler->mResolvePassData->mGetSymbolReferenceKind = prevSymbolRefKind;
}
);
auto methodDef = methodInstance->mMethodDef;
auto methodDeclaration = methodDef->GetMethodDeclaration();
BfScopeData scopeData;
scopeData.mCloseNode = methodDeclaration->mBody;
if (auto block = BfNodeDynCast<BfBlock>(methodDeclaration->mBody))
{
if (block->mCloseBrace != NULL)
scopeData.mCloseNode = block->mCloseBrace;
}
curMethodState->AddScope(&scopeData);
curMethodState->mCurScope->mMixinDepth++;
// We can't flush scope state because we extend params in as arbitrary values
mModule->NewScopeState(true, false);
bool wantsDIData = (mModule->mBfIRBuilder->DbgHasInfo()) && (mModule->mHasFullDebugInfo);
DISubprogram* diFunction = NULL;
int startLocalIdx = (int)mModule->mCurMethodState->mLocals.size();
int endLocalIdx = startLocalIdx;
if (wantsDIData)
{
BfIRMDNode diFuncType = mModule->mBfIRBuilder->DbgCreateSubroutineType(methodInstance);
//int defLine = mModule->mCurFilePosition.mCurLine;
int flags = 0;
curMethodState->mCurScope->mDIInlinedAt = mModule->mBfIRBuilder->DbgGetCurrentLocation();
// We used to have the "def" line be the inlining position, but the linker we de-duplicate instances of these functions without regard to their unique line
// definitions, so we need to be consistent and use the actual line
mModule->UpdateSrcPos(methodDeclaration->mNameNode, BfSrcPosFlag_NoSetDebugLoc);
int defLine = mModule->mCurFilePosition.mCurLine;
auto diParentType = mModule->mBfIRBuilder->DbgGetTypeInst(methodInstance->GetOwner());
if (!mModule->mBfIRBuilder->mIgnoreWrites)
{
String methodName = methodDef->mName;
methodName += "!";
BfMangler::Mangle(methodName, mModule->mCompiler->GetMangleKind(), methodInstance);
curMethodState->mCurScope->mDIScope = mModule->mBfIRBuilder->DbgCreateFunction(diParentType, methodName, "", mModule->mCurFilePosition.mFileInstance->mDIFile,
defLine + 1, diFuncType, false, true, mModule->mCurFilePosition.mCurLine + 1, flags, false, BfIRValue());
scopeData.mAltDIFile = mModule->mCurFilePosition.mFileInstance->mDIFile;
}
}
if (methodDef->mBody != NULL)
mModule->UpdateSrcPos(methodDef->mBody);
mModule->SetIllegalSrcPos();
auto _AddLocalVariable = [&](BfLocalVariable* newLocalVar, BfExprEvaluator* exprEvaluator)
{
mModule->SetIllegalSrcPos();
bool hasConstValue = newLocalVar->mConstValue;
if (hasConstValue)
{
auto constant = mModule->mBfIRBuilder->GetConstant(newLocalVar->mConstValue);
hasConstValue = constant->mConstType < BfConstType_GlobalVar;
}
if ((exprEvaluator != NULL) && (exprEvaluator->mResultLocalVar != NULL) && (exprEvaluator->mResultLocalVarField == 0))
{
mModule->UpdateSrcPos(methodDeclaration->mNameNode);
mModule->AddLocalVariableDef(newLocalVar, hasConstValue);
auto inLocalVar = exprEvaluator->mResultLocalVar;
newLocalVar->mAssignedKind = inLocalVar->mAssignedKind;
newLocalVar->mUnassignedFieldFlags = inLocalVar->mUnassignedFieldFlags;
newLocalVar->mReadFromId = inLocalVar->mReadFromId;
newLocalVar->mIsReadOnly = inLocalVar->mIsReadOnly;
if ((newLocalVar->mAssignedKind == BfLocalVarAssignKind_None) && (mModule->mCurMethodState->mDeferredLocalAssignData != NULL))
{
for (auto deferredAssign : mModule->mCurMethodState->mDeferredLocalAssignData->mAssignedLocals)
{
if (deferredAssign.mLocalVar == inLocalVar)
newLocalVar->mAssignedKind = BfLocalVarAssignKind_Unconditional;
}
}
}
else
{
mModule->AddLocalVariableDef(newLocalVar, hasConstValue);
}
if ((wantsDIData) && (!mModule->mBfIRBuilder->mIgnoreWrites))
{
mModule->UpdateSrcPos(methodDeclaration->mNameNode);
if (hasConstValue)
{
// Already handled
}
else if (newLocalVar->mIsSplat)
{
bool found = false;
auto checkMethodState = mModule->mCurMethodState;
while ((checkMethodState != NULL) && (!found))
{
for (auto localVar : checkMethodState->mLocals)
{
if (localVar == newLocalVar)
continue;
if (!localVar->mIsSplat)
continue;
if (newLocalVar->mValue != localVar->mAddr)
continue;
String name = "$";
name += newLocalVar->mName;
name += "$alias$";
name += localVar->mName;
// auto fakeValue = mModule->mBfIRBuilder->CreateConst(BfTypeCode_Int32, 0);
// auto diType = mModule->mBfIRBuilder->DbgGetType(mModule->GetPrimitiveType(BfTypeCode_Int32));
// auto diVariable = mModule->mBfIRBuilder->DbgCreateAutoVariable(mModule->mCurMethodState->mCurScope->mDIScope,
// name, mModule->mCurFilePosition.mFileInstance->mDIFile, mModule->mCurFilePosition.mCurLine, diType);
// mModule->mBfIRBuilder->DbgInsertValueIntrinsic(fakeValue, diVariable);
auto diType = mModule->mBfIRBuilder->DbgGetType(mModule->GetPrimitiveType(BfTypeCode_NullPtr));
auto diVariable = mModule->mBfIRBuilder->DbgCreateAutoVariable(mModule->mCurMethodState->mCurScope->mDIScope,
name, mModule->mCurFilePosition.mFileInstance->mDIFile, mModule->mCurFilePosition.mCurLine, diType);
mModule->mBfIRBuilder->DbgInsertValueIntrinsic(mModule->mBfIRBuilder->CreateConstNull(), diVariable);
found = true;
break;
}
checkMethodState = checkMethodState->mPrevMethodState;
}
}
else if (mModule->IsTargetingBeefBackend())
{
mModule->UpdateSrcPos(methodDeclaration->mNameNode);
mModule->SetIllegalSrcPos();
// With the Beef backend we can assign two variables to the same value, but LLVM does not allow this
// so we have to create a ref to that variable
auto diType = mModule->mBfIRBuilder->DbgGetType(newLocalVar->mResolvedType);
auto diVariable = mModule->mBfIRBuilder->DbgCreateAutoVariable(mModule->mCurMethodState->mCurScope->mDIScope,
newLocalVar->mName, mModule->mCurFilePosition.mFileInstance->mDIFile, mModule->mCurFilePosition.mCurLine, diType);
if (newLocalVar->mIsSplat)
{
//TODO: Implement
}
else if (newLocalVar->mResolvedType->IsValuelessType())
{
// Do nothing
}
else
{
BfIRValue value = newLocalVar->mValue;
if (newLocalVar->mAddr)
value = newLocalVar->mAddr;
else if (newLocalVar->mConstValue)
value = newLocalVar->mConstValue;
auto aliasValue = mModule->mBfIRBuilder->CreateAliasValue(value);
if (mModule->WantsLifetimes())
scopeData.mDeferredLifetimeEnds.Add(aliasValue);
if (newLocalVar->mAddr)
mModule->mBfIRBuilder->DbgInsertDeclare(aliasValue, diVariable);
else
{
mModule->mBfIRBuilder->DbgInsertValueIntrinsic(aliasValue, diVariable);
//mModule->mBfIRBuilder->DbgInsertValueIntrinsic(newLocalVar->mValue, diVariable);
}
}
}
else if (newLocalVar->mAddr)
{
mModule->UpdateSrcPos(methodDeclaration->mNameNode);
mModule->SetIllegalSrcPos();
auto refType = mModule->CreateRefType(newLocalVar->mResolvedType);
auto allocaVal = mModule->CreateAlloca(refType);
mModule->mBfIRBuilder->CreateStore(newLocalVar->mAddr, allocaVal);
if (!mModule->mBfIRBuilder->mIgnoreWrites)
{
auto diType = mModule->mBfIRBuilder->DbgGetType(refType);
auto diVariable = mModule->mBfIRBuilder->DbgCreateAutoVariable(mModule->mCurMethodState->mCurScope->mDIScope,
newLocalVar->mName, mModule->mCurFilePosition.mFileInstance->mDIFile, mModule->mCurFilePosition.mCurLine, diType);
mModule->mBfIRBuilder->DbgInsertDeclare(allocaVal, diVariable);
}
}
else if (newLocalVar->mValue)
{
mModule->UpdateSrcPos(methodDeclaration->mNameNode);
mModule->SetIllegalSrcPos();
auto localVal = LoadLocal(newLocalVar);
localVal = mModule->LoadValue(localVal);
localVal = mModule->AggregateSplat(localVal);
BfType* allocType = localVal.mType;
auto allocaVal = mModule->CreateAlloca(allocType);
mModule->mBfIRBuilder->CreateStore(localVal.mValue, allocaVal);
if (!mModule->mBfIRBuilder->mIgnoreWrites)
{
if (newLocalVar->mIsSplat)
{
//TODO: Implement
}
else
{
auto diType = mModule->mBfIRBuilder->DbgGetType(allocType);
auto diVariable = mModule->mBfIRBuilder->DbgCreateAutoVariable(mModule->mCurMethodState->mCurScope->mDIScope,
newLocalVar->mName, mModule->mCurFilePosition.mFileInstance->mDIFile, mModule->mCurFilePosition.mCurLine, diType);
mModule->mBfIRBuilder->DbgInsertDeclare(allocaVal, diVariable);
}
}
}
}
newLocalVar->mParamIdx = -3;
};
argExprEvaluatorItr = argExprEvaluators.begin();
for (int argIdx = methodDef->mIsStatic ? 0 : -1; argIdx < (int)explicitParamCount; argIdx++)
{
int paramIdx = argIdx;
auto exprEvaluator = *argExprEvaluatorItr;
BfTypedValue argValue;
BfLocalVariable* localVar = new BfLocalVariable();
if (argIdx == -1)
{
argValue = target;
localVar->mName = "this";
localVar->mIsThis = true;
localVar->mAssignedKind = BfLocalVarAssignKind_Unconditional;
}
else
{
auto arg = &args[argIdx];
auto paramDef = methodDef->mParams[paramIdx];
localVar->mName = paramDef->mName;
if (!arg->mTypedValue)
{
auto wantType = methodInstance->GetParamType(paramIdx);
if (wantType->IsVar())
wantType = mModule->mContext->mBfObjectType;
arg->mTypedValue = mModule->GetDefaultTypedValue(wantType);
}
argValue = arg->mTypedValue;
}
if (!argValue)
continue;
localVar->mResolvedType = argValue.mType;
if (argValue.mType->IsRef())
{
auto refType = (BfRefType*)localVar->mResolvedType;
localVar->mAddr = mModule->LoadValue(argValue).mValue;
localVar->mResolvedType = argValue.mType->GetUnderlyingType();
localVar->mAssignedKind = (refType->mRefKind != BfRefType::RefKind_Out) ? BfLocalVarAssignKind_Unconditional : BfLocalVarAssignKind_None;
}
else if (argValue.IsAddr())
localVar->mAddr = argValue.mValue;
else
{
if (!argValue.mValue)
{
// Untyped value
}
else if (argValue.mValue.IsConst())
{
localVar->mConstValue = argValue.mValue;
}
else if (argValue.IsSplat())
{
localVar->mValue = argValue.mValue;
localVar->mIsSplat = true;
}
else
{
if (argValue.IsAddr())
localVar->mAddr = argValue.mValue;
else
localVar->mValue = argValue.mValue;
}
localVar->mIsReadOnly = argValue.IsReadOnly();
}
if (argValue.IsReadOnly())
localVar->mIsReadOnly = true;
if (argIdx == -1)
{
_AddLocalVariable(localVar, NULL);
}
else
{
_AddLocalVariable(localVar, exprEvaluator);
endLocalIdx++;
++argExprEvaluatorItr;
}
}
if (auto blockBody = BfNodeDynCast<BfBlock>(methodDef->mBody))
{
mModule->VisitCodeBlock(blockBody);
if (mixinState->mResultExpr != NULL)
{
if (auto exprNode = BfNodeDynCast<BfExpression>(mixinState->mResultExpr))
{
if (!exprNode->IsA<BfBlock>())
{
// Mixin expression result
mModule->UpdateSrcPos(exprNode);
VisitChild(exprNode);
FinishExpressionResult();
ResolveGenericType();
}
}
}
GetResult();
}
else if (auto expr = BfNodeDynCast<BfExpression>(methodDef->mBody))
{
mModule->UpdateSrcPos(expr);
mResult = mModule->CreateValueFromExpression(expr);
}
if (!mResult)
{
// If we didn't have an expression body then just make the result "void"
mResult = BfTypedValue(BfIRValue(), mModule->GetPrimitiveType(BfTypeCode_None));
}
int localIdx = startLocalIdx;
argExprEvaluatorItr = argExprEvaluators.begin();
for (; localIdx < endLocalIdx; localIdx++)
{
auto exprEvaluator = *argExprEvaluatorItr;
BfLocalVariable* localVar = curMethodState->mLocals[localIdx];
//TODO: Merge unassigned flags together
if ((exprEvaluator != NULL) && (exprEvaluator->mResultLocalVar != NULL))
{
auto inLocalVar = exprEvaluator->mResultLocalVar;
if (localVar->mAssignedKind != BfLocalVarAssignKind_None)
inLocalVar->mAssignedKind = BfLocalVarAssignKind_Unconditional;
if (localVar->mReadFromId != -1)
inLocalVar->mReadFromId = mModule->mCurMethodState->GetRootMethodState()->mCurAccessId++;
}
++argExprEvaluatorItr;
}
if (auto blockBody = BfNodeDynCast<BfBlock>(methodDef->mBody))
{
if (blockBody->mCloseBrace != NULL)
mModule->UpdateSrcPos(blockBody->mCloseBrace);
}
else if (auto methodDeclaration = BfNodeDynCast<BfMethodDeclaration>(methodDef->mMethodDeclaration))
{
if (methodDeclaration->mFatArrowToken != NULL)
mModule->UpdateSrcPos(methodDeclaration->mFatArrowToken);
}
mModule->RestoreScopeState();
prevMixinState.Restore();
if ((scopedInvocationTarget != NULL) && (scopedInvocationTarget->mScopeName != NULL) && (!mixinState->mUsedInvocationScope))
{
mModule->Warn(0, "Scope specifier was not referenced in mixin", scopedInvocationTarget->mScopeName);
}
if (mixinState->mHasDeferredUsage)
{
// if (target)
// {
// if (target.mType->IsValuelessType())
// mixinState->mTarget = target;
// else
// {
// target = mModule->LoadValue(target);
// auto savedTarget = BfTypedValue(mModule->CreateAlloca(target.mType, false), target.mType, true);
// mModule->mBfIRBuilder->CreateStore(target.mValue, savedTarget.mValue);
// mixinState->mTarget = savedTarget;
// }
// }
mixinState->mTarget = BfTypedValue();
}
else
{
BF_ASSERT(rootMethodState->mMixinStates.back() == mixinState);
rootMethodState->mMixinStates.pop_back();
delete mixinState;
}
mModule->mBfIRBuilder->RestoreDebugLocation();
mModule->mBfIRBuilder->DupDebugLocation();
}
void BfExprEvaluator::SetMethodElementType(BfAstNode* target)
{
if (auto delegateBindExpr = BfNodeDynCast<BfDelegateBindExpression>(target))
{
SetMethodElementType(delegateBindExpr->mTarget);
return;
}
if (auto lambdaBindExpr = BfNodeDynCast<BfLambdaBindExpression>(target))
{
return;
}
if (auto attributedIdentifierNode = BfNodeDynCast<BfAttributedIdentifierNode>(target))
{
if (attributedIdentifierNode->mIdentifier != NULL)
mModule->SetElementType(attributedIdentifierNode->mIdentifier, BfSourceElementType_Method);
}
else if (auto memberReferenceExpr = BfNodeDynCast<BfMemberReferenceExpression>(target))
{
if (memberReferenceExpr->mMemberName != NULL)
SetMethodElementType(memberReferenceExpr->mMemberName);
}
else if (auto qualifiedNameNode = BfNodeDynCast<BfQualifiedNameNode>(target))
SetMethodElementType(qualifiedNameNode->mRight);
else
mModule->SetElementType(target, BfSourceElementType_Method);
}
void BfExprEvaluator::DoInvocation(BfAstNode* target, BfMethodBoundExpression* methodBoundExpr, const BfSizedArray<BfExpression*>& args, BfSizedArray<ASTREF(BfTypeReference*)>* methodGenericArguments, BfTypedValue* outCascadeValue)
{
// Just a check
mModule->mBfIRBuilder->GetInsertBlock();
bool wasCapturingMethodInfo = false;
auto autoComplete = GetAutoComplete();
if ((autoComplete != NULL) && (methodGenericArguments != NULL))
{
for (BfTypeReference* methodGenericArg : *methodGenericArguments)
autoComplete->CheckTypeRef(methodGenericArg, false, true);
}
if ((autoComplete != NULL) && (autoComplete->mIsCapturingMethodMatchInfo))
{
// We don't want to capture a call within the target node
wasCapturingMethodInfo = true;
autoComplete->mIsCapturingMethodMatchInfo = false;
}
bool allowImplicitThis = false;
BfAstNode* methodNodeSrc = target;
BfAttributeState attributeState;
attributeState.mTarget = (BfAttributeTargets)(BfAttributeTargets_Invocation | BfAttributeTargets_MemberAccess);
if (auto scopedTarget = BfNodeDynCast<BfScopedInvocationTarget>(target))
{
target = scopedTarget->mTarget;
if (autoComplete != NULL)
{
if (auto identifier = BfNodeDynCast<BfIdentifierNode>(scopedTarget->mScopeName))
autoComplete->CheckLabel(identifier, scopedTarget->mColonToken, NULL);
}
//mModule->FindScope(scopedTarget->mScopeName);
}
bool isCascade = false;
BfAstNode* cascadeOperatorToken = NULL;
bool bypassVirtual = false;
bool gaveUnqualifiedDotError = false;
String targetFunctionName;
BfTypedValue thisValue;
//TODO: This may just be a fully qualified static method name, so let's check that also
if (auto memberRefExpression = BfNodeDynCast<BfMemberReferenceExpression>(target))
{
if (autoComplete != NULL)
{
if (memberRefExpression->mTarget != NULL)
autoComplete->CheckMemberReference(memberRefExpression->mTarget, memberRefExpression->mDotToken, memberRefExpression->mMemberName, false, mExpectingType);
else if (mExpectingType != NULL)
{
String filter;
if ((autoComplete != NULL) && (autoComplete->InitAutocomplete(memberRefExpression->mDotToken, memberRefExpression->mMemberName, filter)))
{
auto typeInst = mExpectingType->ToTypeInstance();
if (typeInst != NULL)
{
String filter;
if ((memberRefExpression->mMemberName != NULL) && (autoComplete->IsAutocompleteNode(memberRefExpression->mMemberName)))
filter = autoComplete->GetFilter(memberRefExpression->mMemberName);
bool allowPrivate = typeInst == mModule->mCurTypeInstance;
autoComplete->AddEnumTypeMembers(typeInst, filter, false, allowPrivate);
autoComplete->AddSelfResultTypeMembers(typeInst, typeInst, filter, allowPrivate);
}
}
}
}
if ((memberRefExpression->mTarget == NULL) && (memberRefExpression->mMemberName == NULL))
{
auto expectingType = mExpectingType;
if ((expectingType != NULL) && (expectingType->IsNullable()))
{
auto underlyingType = expectingType->GetUnderlyingType();
expectingType = underlyingType;
}
if (expectingType != NULL)
{
if (expectingType->IsSizedArray())
{
if (mModule->mParentNodeEntry != NULL)
{
if (auto invocationExpr = BfNodeDynCast<BfInvocationExpression>(mModule->mParentNodeEntry->mNode))
{
InitializedSizedArray((BfSizedArrayType*)expectingType, invocationExpr->mOpenParen, invocationExpr->mArguments, invocationExpr->mCommas, invocationExpr->mCloseParen);
return;
}
}
}
else if (expectingType->IsStruct())
{
if ((wasCapturingMethodInfo) && (autoComplete->mMethodMatchInfo != NULL))
{
autoComplete->mIsCapturingMethodMatchInfo = true;
BF_ASSERT(autoComplete->mMethodMatchInfo != NULL);
}
if (mModule->mParentNodeEntry != NULL)
{
if (auto invocationExpr = BfNodeDynCast<BfInvocationExpression>(mModule->mParentNodeEntry->mNode))
{
BfResolvedArgs argValues(invocationExpr->mOpenParen, &invocationExpr->mArguments, &invocationExpr->mCommas, invocationExpr->mCloseParen);
BfResolveArgsFlags resolveArgsFlags = BfResolveArgsFlag_DeferParamEval;
ResolveArgValues(argValues, resolveArgsFlags);
if ((mReceivingValue != NULL) && (mReceivingValue->mType == expectingType) && (mReceivingValue->IsAddr()))
{
mResult = *mReceivingValue;
mReceivingValue = NULL;
}
else
mResult = BfTypedValue(mModule->CreateAlloca(expectingType), expectingType, BfTypedValueKind_TempAddr);
auto ctorResult = MatchConstructor(target, methodBoundExpr, mResult, expectingType->ToTypeInstance(), argValues, false, false);
if ((ctorResult) && (!ctorResult.mType->IsVoid()))
mResult = ctorResult;
mModule->ValidateAllocation(expectingType, invocationExpr->mTarget);
return;
}
}
}
else if (expectingType->IsGenericParam())
{
if (mModule->mParentNodeEntry != NULL)
{
if (auto invocationExpr = BfNodeDynCast<BfInvocationExpression>(mModule->mParentNodeEntry->mNode))
{
BfResolvedArgs argValues(invocationExpr->mOpenParen, &invocationExpr->mArguments, &invocationExpr->mCommas, invocationExpr->mCloseParen);
BfResolveArgsFlags resolveArgsFlags = BfResolveArgsFlag_None;
ResolveArgValues(argValues, resolveArgsFlags);
CheckGenericCtor((BfGenericParamType*)expectingType, argValues, invocationExpr->mTarget);
mResult = mModule->GetDefaultTypedValue(expectingType);
return;
}
}
}
else if (expectingType->IsVar())
{
// Silently allow
gaveUnqualifiedDotError = true;
}
else if (expectingType->IsPrimitiveType())
{
// Allow
}
else
{
gaveUnqualifiedDotError = true;
if (mModule->PreFail())
mModule->Fail(StrFormat("Cannot use inferred constructor on type '%s'", mModule->TypeToString(expectingType).c_str()), memberRefExpression->mDotToken);
}
}
}
if (memberRefExpression->IsA<BfBaseExpression>())
bypassVirtual = true;
if (memberRefExpression->mMemberName != NULL)
methodNodeSrc = memberRefExpression->mMemberName;
if (auto attrIdentifier = BfNodeDynCast<BfAttributedIdentifierNode>(memberRefExpression->mMemberName))
{
if (attrIdentifier->mIdentifier != NULL)
methodNodeSrc = attrIdentifier->mIdentifier;
attributeState.mSrc = attrIdentifier->mAttributes;
attributeState.mCustomAttributes = mModule->GetCustomAttributes(attrIdentifier->mAttributes, attributeState.mTarget);
if (attrIdentifier->mIdentifier != NULL)
targetFunctionName = attrIdentifier->mIdentifier->ToString();
}
else if (memberRefExpression->mMemberName != NULL)
targetFunctionName = memberRefExpression->mMemberName->ToString();
if (memberRefExpression->mTarget == NULL)
{
if (mExpectingType)
{
if (mExpectingType->IsVar())
{
}
mResult = BfTypedValue(mExpectingType);
}
else if (!gaveUnqualifiedDotError)
mModule->Fail("Unqualified dot syntax can only be used when the result type can be inferred", memberRefExpression->mDotToken);
}
else if (auto typeRef = BfNodeDynCast<BfTypeReference>(memberRefExpression->mTarget))
{
// Static method
mResult = BfTypedValue(ResolveTypeRef(typeRef));
}
if (auto leftIdentifier = BfNodeDynCast<BfIdentifierNode>(memberRefExpression->mTarget))
{
bool hadError = false;
thisValue = LookupIdentifier(leftIdentifier, true, &hadError);
CheckResultForReading(thisValue);
if (mPropDef != NULL)
thisValue = GetResult(true);
if (hadError)
{
mModule->AssertErrorState();
thisValue = mModule->GetDefaultTypedValue(mModule->mContext->mBfObjectType);
}
if ((!thisValue) && (mPropDef == NULL))
{
// Identifier not found. Static method? Just check speculatively don't throw error
BfType* type;
{
SetAndRestoreValue<bool> prevIgnoreErrors(mModule->mIgnoreErrors, true);
type = mModule->ResolveTypeRef(leftIdentifier, NULL, BfPopulateType_DataAndMethods, BfResolveTypeRefFlag_NoResolveGenericParam);
}
if (type != NULL)
thisValue = BfTypedValue(type);
else if (auto qualifiedLeft = BfNodeDynCast<BfQualifiedNameNode>(leftIdentifier))
{
LookupQualifiedStaticField(qualifiedLeft, true);
thisValue = mResult;
mResult = BfTypedValue();
}
}
if (mPropDef != NULL)
thisValue = GetResult(true);
if (!thisValue.mType)
{
mModule->Fail("Identifier not found", leftIdentifier);
mModule->CheckTypeRefFixit(leftIdentifier);
thisValue = mModule->GetDefaultTypedValue(mModule->mContext->mBfObjectType);
}
if (mResult)
CheckResultForReading(mResult);
mResult = thisValue;
}
else if (auto expr = BfNodeDynCast<BfExpression>(memberRefExpression->mTarget))
{
BfType* expectingTargetType = NULL;
if (memberRefExpression->mDotToken->mToken == BfToken_DotDot)
expectingTargetType = mExpectingType;
bool handled = false;
if (auto subMemberRefExpr = BfNodeDynCast<BfMemberReferenceExpression>(expr))
{
String findName;
if (subMemberRefExpr->mMemberName != NULL)
findName = subMemberRefExpr->mMemberName->ToString();
if (findName == "base") // Generic IFace<T>.base
{
thisValue = mModule->GetThis();
if (thisValue)
{
VisitChild(subMemberRefExpr->mTarget);
if (mResult.HasType())
{
if (mResult.mValue)
{
mModule->Fail("Type name expected", subMemberRefExpr->mTarget);
}
else
{
auto type = mResult.mType;
if (type != NULL)
{
if ((thisValue.mType == type) || (!mModule->TypeIsSubTypeOf(thisValue.mType->ToTypeInstance(), type->ToTypeInstance())))
{
mModule->Fail(StrFormat("Type '%s' is not a base type of '%s'",
mModule->TypeToString(type).c_str(),
mModule->TypeToString(thisValue.mType).c_str()), subMemberRefExpr->mTarget);
}
else
{
if (type->IsInterface())
{
thisValue.mType = type;
}
else
{
auto castedThis = mModule->Cast(subMemberRefExpr->mMemberName, thisValue, type, BfCastFlags_Explicit);
if (castedThis)
thisValue = castedThis;
//mModule->Fail("Explicit base types can only be used for specifying default interface members", qualifiedLeft->mLeft);
}
}
handled = true;
}
bypassVirtual = true;
}
}
}
}
}
if (!handled)
{
SetAndRestoreValue<BfAttributeState*> prevAttributeState(mModule->mAttributeState, &attributeState);
auto flags = (BfEvalExprFlags)(BfEvalExprFlags_PropogateNullConditional | BfEvalExprFlags_NoCast);
if (mFunctionBindResult != NULL)
{
if (auto paranExpr = BfNodeDynCast<BfParenthesizedExpression>(expr))
{
// Allow 'ref' on binding, to indicate we want to capture 'this' by reference
flags = (BfEvalExprFlags)(flags | BfEvalExprFlags_AllowRefExpr);
expr = paranExpr->mExpression;
}
}
if (expr != NULL)
mResult = mModule->CreateValueFromExpression(expr, expectingTargetType, flags);
}
}
isCascade = (memberRefExpression->mDotToken != NULL) && (memberRefExpression->mDotToken->GetToken() == BfToken_DotDot);
if (isCascade)
cascadeOperatorToken = memberRefExpression->mDotToken;
bool isNullCondLookup = (memberRefExpression->mDotToken != NULL) && (memberRefExpression->mDotToken->GetToken() == BfToken_QuestionDot);
if (isNullCondLookup)
mResult = SetupNullConditional(mResult, memberRefExpression->mDotToken);
if ((mResult.mType == NULL) && (memberRefExpression->mTarget != NULL))
{
mModule->AssertErrorState();
mResult = mModule->GetDefaultTypedValue(mModule->mContext->mBfObjectType);
}
thisValue = mResult;
mResult = BfTypedValue();
}
else if (auto qualifiedName = BfNodeDynCast<BfQualifiedNameNode>(target))
{
if (GetAutoComplete() != NULL)
GetAutoComplete()->CheckMemberReference(qualifiedName->mLeft, qualifiedName->mDot, qualifiedName->mRight);
if (qualifiedName->mLeft->GetSrcLength() == 4)
{
if (CheckIsBase(qualifiedName->mLeft))
bypassVirtual = true;
}
if (qualifiedName->mRight != NULL)
methodNodeSrc = qualifiedName->mRight;
if (auto attrIdentifier = BfNodeDynCast<BfAttributedIdentifierNode>(qualifiedName->mRight))
{
if (attrIdentifier->mIdentifier != NULL)
methodNodeSrc = attrIdentifier->mIdentifier;
attributeState.mSrc = attrIdentifier->mAttributes;
attributeState.mCustomAttributes = mModule->GetCustomAttributes(attrIdentifier->mAttributes, attributeState.mTarget);
targetFunctionName = attrIdentifier->mIdentifier->ToString();
}
else
targetFunctionName = qualifiedName->mRight->ToString();
bool hadError = false;
thisValue = LookupIdentifier(qualifiedName->mLeft, true, &hadError);
CheckResultForReading(thisValue);
if (mPropDef != NULL)
thisValue = GetResult(true);
if (hadError)
{
mModule->AssertErrorState();
thisValue = mModule->GetDefaultTypedValue(mModule->mContext->mBfObjectType);
}
if ((!thisValue) && (mPropDef == NULL))
{
// Identifier not found. Static method? Just check speculatively don't throw error
BfType* type;
{
//SetAndRestoreValue<bool> prevIgnoreErrors(mModule->mIgnoreErrors, true);
type = mModule->ResolveTypeRef(qualifiedName->mLeft, NULL, BfPopulateType_DataAndMethods, (BfResolveTypeRefFlags)(BfResolveTypeRefFlag_NoResolveGenericParam | BfResolveTypeRefFlag_AllowGlobalContainer | BfResolveTypeRefFlag_IgnoreLookupError));
}
if (type == NULL)
{
//SetAndRestoreValue<bool> prevIgnoreErrors(mModule->mIgnoreErrors, true);
type = mModule->ResolveTypeRef(qualifiedName, methodGenericArguments, BfPopulateType_DataAndMethods, (BfResolveTypeRefFlags)(BfResolveTypeRefFlag_NoResolveGenericParam | BfResolveTypeRefFlag_AllowGlobalContainer | BfResolveTypeRefFlag_IgnoreLookupError));
if (type != NULL)
{
// This is a CTOR call, treat it as such
targetFunctionName.clear();
}
}
if (type != NULL)
thisValue = BfTypedValue(type);
else if (auto qualifiedLeft = BfNodeDynCast<BfQualifiedNameNode>(qualifiedName->mLeft))
{
String findName = qualifiedLeft->mRight->ToString();
bool handled = false;
if (findName == "base")
{
auto type = mModule->ResolveTypeRef(qualifiedLeft->mLeft, NULL, BfPopulateType_Data, BfResolveTypeRefFlag_AllowRef);
mModule->CheckTypeRefFixit(qualifiedLeft->mLeft);
thisValue = mModule->GetThis();
if (type != NULL)
{
if ((thisValue.mType == type) || (!mModule->TypeIsSubTypeOf(thisValue.mType->ToTypeInstance(), type->ToTypeInstance())))
{
mModule->Fail(StrFormat("Type '%s' is not a base type of '%s'",
mModule->TypeToString(type).c_str(),
mModule->TypeToString(thisValue.mType).c_str()), qualifiedLeft->mLeft);
}
else
{
if (type->IsInterface())
{
thisValue.mType = type;
}
else
{
auto castedThis = mModule->Cast(qualifiedLeft->mRight, thisValue, type, BfCastFlags_Explicit);
if (castedThis)
thisValue = castedThis;
//mModule->Fail("Explicit base types can only be used for specifying default interface members", qualifiedLeft->mLeft);
}
}
handled = true;
}
bypassVirtual = true;
}
if (!handled)
{
LookupQualifiedStaticField(qualifiedLeft, true);
thisValue = mResult;
mResult = BfTypedValue();
}
}
}
if (mPropDef != NULL)
thisValue = GetResult(true);
if (!thisValue.mType)
{
mModule->Fail("Identifier not found", qualifiedName->mLeft);
mModule->CheckTypeRefFixit(qualifiedName->mLeft);
mModule->CheckIdentifierFixit(qualifiedName->mLeft);
thisValue = mModule->GetDefaultTypedValue(mModule->GetPrimitiveType(BfTypeCode_Var));
}
if (mResult)
CheckResultForReading(mResult);
mResult = BfTypedValue();
}
else if (auto identiferExpr = BfNodeDynCast<BfIdentifierNode>(target))
{
if (auto attrIdentifier = BfNodeDynCast<BfAttributedIdentifierNode>(target))
{
if (attrIdentifier->mIdentifier != NULL)
methodNodeSrc = attrIdentifier->mIdentifier;
attributeState.mSrc = attrIdentifier->mAttributes;
attributeState.mCustomAttributes = mModule->GetCustomAttributes(attrIdentifier->mAttributes, attributeState.mTarget);
}
allowImplicitThis = true;
if (autoComplete != NULL)
autoComplete->CheckIdentifier(identiferExpr);
targetFunctionName = target->ToString();
if (targetFunctionName == "PrintF") // Just directly call that one
{
BfType* charType = mModule->GetPrimitiveType(BfTypeCode_Char8);
BfType* charPtrType = mModule->CreatePointerType(charType);
auto func = mModule->GetBuiltInFunc(BfBuiltInFuncType_PrintF);
SizedArray<BfIRValue, 4> irArgs;
for (BfExpression* arg : args)
{
BfTypedValue value;
if (arg != NULL)
value = mModule->CreateValueFromExpression(arg);
if (!value)
return;
auto typeInst = value.mType->ToTypeInstance();
if ((typeInst != NULL) && (typeInst->IsInstanceOf(mModule->mCompiler->mStringTypeDef)))
value = mModule->Cast(arg, value, charPtrType);
if ((value.mType->IsFloat()) && (value.mType->mSize != 8)) // Always cast float to double
value = mModule->Cast(arg, value, mModule->GetPrimitiveType(BfTypeCode_Double));
irArgs.push_back(value.mValue);
}
if ((targetFunctionName != "PrintF") || (irArgs.size() > 0))
{
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateCall(func, irArgs/*, targetFunctionName*/),
mModule->ResolveTypeDef(mModule->mSystem->mTypeInt32));
}
return;
}
}
else if (auto expr = BfNodeDynCast<BfExpression>(target))
{
auto innerInvocationResult = mModule->CreateValueFromExpression(expr);
if (!innerInvocationResult)
{
mModule->AssertErrorState();
innerInvocationResult = mModule->GetDefaultTypedValue(mModule->mContext->mBfObjectType);
}
if (innerInvocationResult.mType->IsVar())
{
mResult = innerInvocationResult;
return;
}
targetFunctionName = "Invoke";
if (innerInvocationResult.mType->IsTypeInstance())
{
auto invocationTypeInst = innerInvocationResult.mType->ToTypeInstance();
if ((invocationTypeInst->mTypeDef->mIsDelegate) || (invocationTypeInst->mTypeDef->mIsFunction))
{
thisValue = innerInvocationResult;
}
}
if (!thisValue)
{
mModule->Fail(StrFormat("Cannot perform invocation on type '%s'", mModule->TypeToString(innerInvocationResult.mType).c_str()), expr);
thisValue = mModule->GetDefaultTypedValue(mModule->mContext->mBfObjectType);
}
}
else
{
mModule->Fail("Invalid invocation target", target);
thisValue = mModule->GetDefaultTypedValue(mModule->mContext->mBfObjectType);
}
if ((wasCapturingMethodInfo) && (autoComplete->mMethodMatchInfo != NULL))
{
autoComplete->mIsCapturingMethodMatchInfo = true;
BF_ASSERT(autoComplete->mMethodMatchInfo != NULL);
}
SetAndRestoreValue<BfAttributeState*> prevAttributeState;
if (attributeState.mCustomAttributes != NULL)
prevAttributeState.Init(mModule->mAttributeState, &attributeState);
if ((targetFunctionName != "") && (targetFunctionName[targetFunctionName.length() - 1] == '!'))
{
targetFunctionName = targetFunctionName.Substring(0, targetFunctionName.length() - 1);
InjectMixin(methodNodeSrc, thisValue, allowImplicitThis, targetFunctionName, args, methodGenericArguments);
return;
}
//TODO: We removed this... Messed up with PrimStruct 'this' non-mut errors
// We moved this until later in MatchMethod, we want the raw target for the GetType optimization, plus we shouldn't do this until we know we won't do a SkipCall
/*if (thisValue)
{
if ((!thisValue.mType->IsGenericParam()) && (!thisValue.IsSplat()) && (!thisValue.mType->IsVar()))
thisValue = MakeCallableTarget(target, thisValue);
}*/
int methodCount = 0;
bool mayBeSkipCall = false;
bool mayBeComptimeCall = false;
if (thisValue.mType != NULL)
{
if (thisValue.mType->IsAllocType())
thisValue.mType = thisValue.mType->GetUnderlyingType();
auto checkTypeInst = thisValue.mType->ToTypeInstance();
while (checkTypeInst != NULL)
{
checkTypeInst->mTypeDef->PopulateMemberSets();
BfMemberSetEntry* memberSetEntry;
if (checkTypeInst->mTypeDef->mMethodSet.TryGetWith(targetFunctionName, &memberSetEntry))
{
BfMethodDef* methodDef = (BfMethodDef*)memberSetEntry->mMemberDef;
while (methodDef != NULL)
{
if (methodDef->mIsSkipCall)
mayBeSkipCall = true;
if (methodDef->mHasComptime)
mayBeComptimeCall = true;
methodDef = methodDef->mNextWithSameName;
}
}
checkTypeInst = checkTypeInst->mBaseType;
}
}
SizedArray<BfExpression*, 8> copiedArgs;
for (BfExpression* arg : args)
copiedArgs.push_back(arg);
BfSizedArray<BfExpression*> sizedCopiedArgs(copiedArgs);
BfResolvedArgs argValues(&sizedCopiedArgs);
if (mModule->mParentNodeEntry != NULL)
{
if (auto invocationExpr = BfNodeDynCast<BfInvocationExpression>(mModule->mParentNodeEntry->mNode))
{
argValues.mOpenToken = invocationExpr->mOpenParen;
argValues.mCommas = &invocationExpr->mCommas;
argValues.mCloseToken = invocationExpr->mCloseParen;
}
}
BfResolveArgsFlags resolveArgsFlags = (BfResolveArgsFlags)(BfResolveArgsFlag_DeferFixits | BfResolveArgsFlag_AllowUnresolvedTypes);
resolveArgsFlags = (BfResolveArgsFlags)(resolveArgsFlags | BfResolveArgsFlag_DeferParamEval);
if ((mayBeSkipCall) || (mayBeComptimeCall))
resolveArgsFlags = (BfResolveArgsFlags)(resolveArgsFlags | BfResolveArgsFlag_DeferParamValues);
static int sCallIdx = 0;
sCallIdx++;
int callIdx = sCallIdx;
if (callIdx == 1557)
{
NOP;
}
BfCheckedKind checkedKind = BfCheckedKind_NotSet;
if ((mModule->mAttributeState != NULL) && (mModule->mAttributeState->mCustomAttributes != NULL))
{
if (mModule->mAttributeState->mCustomAttributes->Contains(mModule->mCompiler->mCheckedAttributeTypeDef))
{
checkedKind = BfCheckedKind_Checked;
mModule->mAttributeState->mUsed = true;
}
if (mModule->mAttributeState->mCustomAttributes->Contains(mModule->mCompiler->mUncheckedAttributeTypeDef))
{
checkedKind = BfCheckedKind_Unchecked;
mModule->mAttributeState->mUsed = true;
}
}
if ((isCascade) && (cascadeOperatorToken != NULL) && ((mBfEvalExprFlags & BfEvalExprFlags_Comptime) != 0))
mModule->Fail("Cascade operator cannot be used in const evaluation", cascadeOperatorToken);
SetAndRestoreValue<bool> prevUsedAsStatement(mUsedAsStatement, mUsedAsStatement || isCascade);
SetAndRestoreValue<BfEvalExprFlags> prevEvalExprFlags(mBfEvalExprFlags);
if (isCascade)
mBfEvalExprFlags = (BfEvalExprFlags)(mBfEvalExprFlags | BfEvalExprFlags_InCascade);
ResolveArgValues(argValues, resolveArgsFlags);
mResult = MatchMethod(methodNodeSrc, methodBoundExpr, thisValue, allowImplicitThis, bypassVirtual, targetFunctionName, argValues, methodGenericArguments, checkedKind);
argValues.HandleFixits(mModule);
if (mModule->mAttributeState == &attributeState)
mModule->FinishAttributeState(&attributeState);
if (isCascade)
{
if ((outCascadeValue != NULL) && (thisValue.mValue))
{
*outCascadeValue = thisValue;
}
else
{
mModule->Fail("Invalid use of cascade operator", cascadeOperatorToken);
}
}
}
void BfExprEvaluator::Visit(BfInvocationExpression* invocationExpr)
{
BfAutoParentNodeEntry autoParentNodeEntry(mModule, invocationExpr);
// We need to check for sized array constructor like "uint8[2](1, 2)"
if (BfNodeDynCastExact<BfIndexerExpression>(invocationExpr->mTarget) != NULL)
{
auto checkTarget = invocationExpr->mTarget;
while (auto indexerExpr = BfNodeDynCastExact<BfIndexerExpression>(checkTarget))
{
checkTarget = indexerExpr->mTarget;
}
SetAndRestoreValue<bool> prevIgnoreError(mModule->mIgnoreErrors, true);
auto resolvedType = mModule->ResolveTypeRef(checkTarget, NULL, BfPopulateType_Identity);
prevIgnoreError.Restore();
if (resolvedType != NULL)
{
BfType* curType = resolvedType;
auto checkTarget = invocationExpr->mTarget;
while (auto indexerExpr = BfNodeDynCastExact<BfIndexerExpression>(checkTarget))
{
checkTarget = indexerExpr->mTarget;
if (indexerExpr->mCommas.size() != 0)
mModule->Fail("Only one value expected. Consider adding an allocation specifier such as 'new' if construction of a dynamic multidimensional was intended.", indexerExpr->mCommas[0]);
int arrSize = 0;
BfTypeState typeState;
typeState.mArrayInitializerSize = (int)invocationExpr->mArguments.size();
SetAndRestoreValue<BfTypeState*> prevTypeState(mModule->mContext->mCurTypeState, &typeState);
if (indexerExpr->mArguments.size() != 0)
{
BfConstResolver constResolver(mModule);
auto arg = indexerExpr->mArguments[0];
constResolver.mExpectingType = mModule->GetPrimitiveType(BfTypeCode_IntPtr);
if (arg != NULL)
constResolver.Resolve(arg, NULL, BfConstResolveFlag_ArrayInitSize);
if (constResolver.mResult.mValue.IsConst())
{
auto constant = mModule->mBfIRBuilder->GetConstant(constResolver.mResult.mValue);
if ((mModule->mBfIRBuilder->IsInt(constant->mTypeCode)) && (constant->mInt64 >= 0))
{
arrSize = constant->mInt32;
}
else
mModule->Fail("Non-negative integer expected", indexerExpr->mArguments[0]);
}
}
else
arrSize = invocationExpr->mArguments.size();
curType = mModule->CreateSizedArrayType(curType, arrSize);
}
InitializedSizedArray((BfSizedArrayType*)curType, invocationExpr->mOpenParen, invocationExpr->mArguments, invocationExpr->mCommas, invocationExpr->mCloseParen, NULL);
return;
}
}
auto autoComplete = GetAutoComplete();
auto wasCapturingMethodInfo = (autoComplete != NULL) && (autoComplete->mIsCapturingMethodMatchInfo);
if (autoComplete != NULL)
autoComplete->CheckInvocation(invocationExpr, invocationExpr->mOpenParen, invocationExpr->mCloseParen, invocationExpr->mCommas);
mModule->UpdateExprSrcPos(invocationExpr);
BfSizedArray<ASTREF(BfTypeReference*)>* methodGenericArguments = NULL;
if (invocationExpr->mGenericArgs != NULL)
methodGenericArguments = &invocationExpr->mGenericArgs->mGenericArgs;
SizedArray<BfExpression*, 8> copiedArgs;
for (BfExpression* arg : invocationExpr->mArguments)
copiedArgs.push_back(arg);
BfTypedValue cascadeValue;
DoInvocation(invocationExpr->mTarget, invocationExpr, copiedArgs, methodGenericArguments, &cascadeValue);
if (autoComplete != NULL)
{
if ((wasCapturingMethodInfo) && (!autoComplete->mIsCapturingMethodMatchInfo))
{
if (autoComplete->mMethodMatchInfo != NULL)
autoComplete->mIsCapturingMethodMatchInfo = true;
else
autoComplete->mIsCapturingMethodMatchInfo = false;
//BF_ASSERT(autoComplete->mMethodMatchInfo != NULL);
}
else
autoComplete->mIsCapturingMethodMatchInfo = false;
}
/// Previous check for discard
if (cascadeValue)
mResult = cascadeValue;
}
BfMethodDef* BfExprEvaluator::GetPropertyMethodDef(BfPropertyDef* propDef, BfMethodType methodType, BfCheckedKind checkedKind, BfTypedValue propTarget)
{
bool allowMut = true;
if ((propTarget) && (propTarget.mType->IsValueType()))
{
if (propTarget.IsReadOnly())
{
allowMut = false;
}
else if (!propTarget.IsAddr())
{
mModule->PopulateType(propTarget.mType);
if (!propTarget.IsValuelessType())
allowMut = false;
}
}
int bestPri = -1000;
BfMethodDef* matchedMethod = NULL;
for (auto methodDef : propDef->mMethods)
{
if (methodDef->mMethodType != methodType)
continue;
int curPri = 0;
if (methodDef->mCheckedKind == checkedKind)
{
curPri = 5;
}
else if ((checkedKind == BfCheckedKind_NotSet) && (methodDef->mCheckedKind == mModule->GetDefaultCheckedKind()))
curPri = 3;
else
curPri = 1;
if (methodDef->mIsMutating)
{
if (allowMut)
curPri++;
else
curPri -= 10;
}
if (curPri > bestPri)
{
bestPri = curPri;
matchedMethod = methodDef;
}
}
return matchedMethod;
/*BfMethodDef* matchedMethod = NULL;
BfMethodDef* backupMethod = NULL;
for (auto methodDef : propDef->mMethods)
{
if (methodDef->mMethodType != methodType)
continue;
if (methodDef->mCheckedKind == checkedKind)
{
matchedMethod = methodDef;
break;
}
if ((checkedKind == BfCheckedKind_NotSet) && (methodDef->mCheckedKind == mModule->GetDefaultCheckedKind()))
matchedMethod = methodDef;
else
backupMethod = methodDef;
}
if (matchedMethod == NULL)
matchedMethod = backupMethod;
return matchedMethod;*/
}
BfModuleMethodInstance BfExprEvaluator::GetPropertyMethodInstance(BfMethodDef* methodDef)
{
if (mPropDefBypassVirtual)
{
if (mPropTarget.mType->IsInterface())
{
auto curTypeInst = mPropTarget.mType->ToTypeInstance();
if (mModule->TypeIsSubTypeOf(mModule->mCurTypeInstance, curTypeInst))
{
if (methodDef->mBody != NULL)
{
// This is an explicit call to a default static interface method. We pull the methodDef into our own concrete type.
mPropTarget = mModule->GetThis();
return mModule->GetMethodInstance(mModule->mCurTypeInstance, methodDef, BfTypeVector(), BfGetMethodInstanceFlag_ForeignMethodDef, curTypeInst);
}
}
else
{
mModule->Fail("Property is not implemented by this type", mPropSrc);
return BfModuleMethodInstance();
}
}
else
{
auto propTypeInst = mPropTarget.mType->ToTypeInstance();
mModule->PopulateType(propTypeInst, BfPopulateType_DataAndMethods);
auto rawMethodInstance = mModule->GetRawMethodInstance(propTypeInst, methodDef);
if (rawMethodInstance->mVirtualTableIdx == -1)
{
if (!mModule->mCompiler->mIsResolveOnly)
{
// ResolveOnly does not force methods to slot
BF_ASSERT(rawMethodInstance->mVirtualTableIdx != -1);
mModule->Fail(StrFormat("Failed to devirtualize %s", mModule->MethodToString(rawMethodInstance).c_str()));
}
}
else
{
auto useTypeInst = mOrigPropTarget.mType->ToTypeInstance();
auto virtualMethod = (BfMethodInstance*)useTypeInst->mVirtualMethodTable[rawMethodInstance->mVirtualTableIdx].mImplementingMethod;
return mModule->ReferenceExternalMethodInstance(virtualMethod);
}
}
}
if ((mOrigPropTarget) && (mOrigPropTarget.mType != mPropTarget.mType) &&
((!mOrigPropTarget.mType->IsGenericParam()) && (mPropTarget.mType->IsInterface())))
{
auto checkType = mOrigPropTarget.mType;
if (checkType->IsPointer())
checkType = ((BfPointerType*)checkType)->mElementType;
if (checkType->IsWrappableType())
checkType = mModule->GetWrappedStructType(checkType);
if ((checkType != NULL) && (checkType->IsTypeInstance()))
{
auto activeTypeDef = mModule->GetActiveTypeDef();
BfTypeInterfaceEntry* bestIFaceEntry = NULL;
bool checkedUnderlying = false;
auto checkTypeInst = checkType->ToTypeInstance();
while (checkTypeInst != NULL)
{
mModule->PopulateType(checkTypeInst, BfPopulateType_DataAndMethods);
BF_ASSERT((checkTypeInst->mDefineState >= BfTypeDefineState_DefinedAndMethodsSlotted) || (mModule->mCompiler->IsAutocomplete()));
if (checkTypeInst->mDefineState != BfTypeDefineState_DefinedAndMethodsSlotted)
break;
for (auto& iface : checkTypeInst->mInterfaces)
{
if (!mModule->IsInSpecializedSection())
{
if (!checkTypeInst->IsTypeMemberAccessible(iface.mDeclaringType, activeTypeDef))
continue;
}
if (iface.mInterfaceType == mPropTarget.mType)
{
if (bestIFaceEntry == NULL)
{
bestIFaceEntry = &iface;
continue;
}
bool isBetter;
bool isWorse;
mModule->CompareDeclTypes(iface.mDeclaringType, bestIFaceEntry->mDeclaringType, isBetter, isWorse);
if (isBetter == isWorse)
{
// Failed
}
else
{
if (isBetter)
bestIFaceEntry = &iface;
}
}
}
if (bestIFaceEntry != NULL)
break;
checkTypeInst = checkTypeInst->mBaseType;
if (checkTypeInst == NULL)
{
if (!checkedUnderlying)
{
checkedUnderlying = true;
if (checkType->HasWrappedRepresentation())
{
auto underlyingType = checkType->GetUnderlyingType();
if (underlyingType != NULL)
checkTypeInst = mModule->GetWrappedStructType(underlyingType);
}
}
}
}
if (bestIFaceEntry != NULL)
{
auto ifaceMethodEntry = checkTypeInst->mInterfaceMethodTable[bestIFaceEntry->mStartInterfaceTableIdx + methodDef->mIdx];
BfMethodInstance* bestMethodInstance = ifaceMethodEntry.mMethodRef;
if (bestMethodInstance != NULL)
{
mPropTarget = mOrigPropTarget;
//mPropTarget.mType = checkTypeInst;
//mPropTarget = mModule->Cast( mOrigPropTarget, checkTypeInst);
return mModule->GetMethodInstanceAtIdx(ifaceMethodEntry.mMethodRef.mTypeInstance, ifaceMethodEntry.mMethodRef.mMethodNum);
}
}
}
mModule->AssertErrorState();
return BfModuleMethodInstance();
}
auto propTypeInst = mPropTarget.mType->ToTypeInstance();
if (propTypeInst == NULL)
{
propTypeInst = mModule->GetWrappedStructType(mPropTarget.mType);
}
if (propTypeInst == NULL)
{
mModule->Fail("INTERNAL ERROR: Invalid property target", mPropSrc);
return BfModuleMethodInstance();
}
return mModule->GetMethodInstance(propTypeInst, methodDef, BfTypeVector(), mPropGetMethodFlags);
}
void BfExprEvaluator::CheckPropFail(BfMethodDef* propMethodDef, BfMethodInstance* methodInstance, bool checkProt)
{
auto propTypeInst = mPropTarget.mType->ToTypeInstance();
// If mExplicitInterface is null then we are implicitly calling through an interface
if ((checkProt) && (propTypeInst != NULL) && (methodInstance->GetExplicitInterface() == NULL) &&
(!mModule->CheckAccessMemberProtection(propMethodDef->mProtection, propTypeInst)))
mModule->Fail(StrFormat("'%s' is inaccessible due to its protection level", mModule->MethodToString(methodInstance).c_str()), mPropSrc);
else if (mPropCheckedKind != methodInstance->mMethodDef->mCheckedKind)
{
bool passes = true;
if (mPropCheckedKind != BfCheckedKind_NotSet)
{
passes = false;
}
else
{
auto defaultCheckedKind = mModule->GetDefaultCheckedKind();
if (defaultCheckedKind != methodInstance->mMethodDef->mCheckedKind)
passes = false;
}
if (!passes)
{
auto error = mModule->Fail(StrFormat("'%s' cannot be used because its 'checked' specifier does not match the requested specifier", mModule->MethodToString(methodInstance).c_str()), mPropSrc);
if (error != NULL)
{
if ((error != NULL) && (methodInstance->mMethodDef->mMethodDeclaration != NULL))
mModule->mCompiler->mPassInstance->MoreInfo(StrFormat("See method declaration"), methodInstance->mMethodDef->GetRefNode());
}
}
}
}
bool BfExprEvaluator::HasResult()
{
return (mResult) || (mPropDef != NULL);
}
BfTypedValue BfExprEvaluator::GetResult(bool clearResult, bool resolveGenericType)
{
if ((!mResult) && (mPropDef != NULL))
{
bool handled = false;
if (mPropTarget.mType->IsGenericTypeInstance())
{
auto genericTypeInst = (BfTypeInstance*)mPropTarget.mType;
if (genericTypeInst->IsInstanceOf(mModule->mCompiler->mSizedArrayTypeDef))
{
if (mPropDef->mName == "Count")
{
auto sizedType = genericTypeInst->mGenericTypeInfo->mTypeGenericArguments[1];
if (sizedType->IsConstExprValue())
{
auto constExprType = (BfConstExprValueType*)sizedType;
mResult = BfTypedValue(mModule->GetConstValue(constExprType->mValue.mInt64), mModule->GetPrimitiveType(BfTypeCode_IntPtr));
handled = true;
}
else
{
BF_ASSERT(mModule->mCurMethodInstance->mIsUnspecialized);
mResult = BfTypedValue(mModule->mBfIRBuilder->GetUndefConstValue(mModule->mBfIRBuilder->GetPrimitiveType(BfTypeCode_IntPtr)), mModule->GetPrimitiveType(BfTypeCode_IntPtr));
handled = true;
}
}
}
}
if (!handled)
{
SetAndRestoreValue<BfFunctionBindResult*> prevFunctionBindResult(mFunctionBindResult, NULL);
SetAndRestoreValue<BfAstNode*> prevDeferCallRef(mDeferCallRef, NULL);
BfMethodDef* matchedMethod = GetPropertyMethodDef(mPropDef, BfMethodType_PropertyGetter, mPropCheckedKind, mPropTarget);
if (matchedMethod == NULL)
{
mModule->Fail("Property has no getter", mPropSrc);
return mResult;
}
auto methodInstance = GetPropertyMethodInstance(matchedMethod);
if (methodInstance.mMethodInstance == NULL)
return mResult;
BF_ASSERT(methodInstance.mMethodInstance->mMethodDef->mName == matchedMethod->mName);
if (!mModule->mBfIRBuilder->mIgnoreWrites)
{
BF_ASSERT(!methodInstance.mFunc.IsFake());
}
if (mPropSrc != NULL)
mModule->UpdateExprSrcPos(mPropSrc);
auto autoComplete = GetAutoComplete();
if ((autoComplete != NULL) && (autoComplete->IsAutocompleteNode(mPropSrc)) && (autoComplete->mResolveType == BfResolveType_GetResultString))
{
autoComplete->mResultString = ":";
autoComplete->mResultString += mModule->TypeToString(methodInstance.mMethodInstance->mReturnType);
autoComplete->mResultString += " ";
autoComplete->mResultString += mModule->TypeToString(methodInstance.mMethodInstance->GetOwner());
autoComplete->mResultString += ".";
autoComplete->mResultString += mPropDef->mName;
}
CheckPropFail(matchedMethod, methodInstance.mMethodInstance, (mPropGetMethodFlags & BfGetMethodInstanceFlag_Friend) == 0);
PerformCallChecks(methodInstance.mMethodInstance, mPropSrc);
if (methodInstance.mMethodInstance->IsSkipCall())
{
mResult = mModule->GetDefaultTypedValue(methodInstance.mMethodInstance->mReturnType);
}
else
{
SizedArray<BfIRValue, 4> args;
if (!matchedMethod->mIsStatic)
{
auto owner = methodInstance.mMethodInstance->GetOwner();
bool isTypeMatch = mPropTarget.mType == owner;
if (owner->IsTypedPrimitive())
isTypeMatch |= mPropTarget.mType == owner->GetUnderlyingType();
if ((!isTypeMatch) ||
((mPropTarget.mValue.IsFake()) && (!mOrigPropTarget.mValue.IsFake())))
{
auto prevPropTarget = mPropTarget;
mPropTarget = mModule->Cast(mPropSrc, mOrigPropTarget, owner);
if (!mPropTarget)
{
mModule->Fail("Internal property error", mPropSrc);
return BfTypedValue();
}
}
if ((mPropGetMethodFlags & BfGetMethodInstanceFlag_DisableObjectAccessChecks) == 0)
mModule->EmitObjectAccessCheck(mPropTarget);
}
auto callFlags = mPropDefBypassVirtual ? BfCreateCallFlags_BypassVirtual : BfCreateCallFlags_None;
mResult = CreateCall(mPropSrc, mPropTarget, mOrigPropTarget, matchedMethod, methodInstance, callFlags, mIndexerValues, NULL);
}
}
mPropDef = NULL;
mPropDefBypassVirtual = false;
mIndexerValues.clear();
mResultLocalVar = NULL;
mResultFieldInstance = NULL;
}
if (resolveGenericType)
ResolveGenericType();
BfTypedValue result = mResult;
if (clearResult)
mResult = BfTypedValue();
return result;
}
void BfExprEvaluator::CheckResultForReading(BfTypedValue& typedValue)
{
if (mModule->mCurMethodState == NULL)
return;
if ((mModule->mCurMethodState->mTempKind != BfMethodState::TempKind_None) || (mModule->mCurMethodState->mAllowUinitReads))
return;
if ((mModule->mCurTypeInstance->mResolvingVarField) || (mModule->mCurTypeInstance->mResolvingConstField))
return;
if ((typedValue) && (typedValue.IsAddr()))
{
if ((mResultLocalVar != NULL) && (mResultLocalVarRefNode != NULL))
{
SetAndRestoreValue<bool> prevIgnoreError(mModule->mIgnoreErrors);
if ((mModule->mCurMethodState->mClosureState != NULL) && (mModule->mCurMethodState->mClosureState->mCapturing))
{
// These errors can only be detected during capture time, so we don't ignore them on this pass
mModule->mIgnoreErrors = false;
}
int fieldIdx = mResultLocalVarField - 1;
auto localVar = mResultLocalVar;
if (localVar->mCompositeCount > 0)
{
mModule->Fail(StrFormat("Cannot read from composite '%s', it can only be used in an argument list", localVar->mName.c_str()), mResultLocalVarRefNode);
typedValue = BfTypedValue();
return;
}
if (localVar->mAssignedKind == BfLocalVarAssignKind_None)
{
mModule->TryLocalVariableInit(localVar);
}
if (localVar->mAssignedKind == BfLocalVarAssignKind_None)
{
auto methodStateForLocal = mModule->mCurMethodState->GetMethodStateForLocal(localVar);
bool isAssigned = false;
int64 undefinedFieldFlags = localVar->mUnassignedFieldFlags;
auto deferredLocalAssignData = methodStateForLocal->mDeferredLocalAssignData;
while ((deferredLocalAssignData != NULL) && (deferredLocalAssignData->mIsChained))
deferredLocalAssignData = deferredLocalAssignData->mChainedAssignData;
if (deferredLocalAssignData != NULL)
{
for (auto& assignedVar : deferredLocalAssignData->mAssignedLocals)
{
auto assignedLocal = assignedVar.mLocalVar;
if (assignedLocal == localVar)
{
int assignedFieldIdx = assignedVar.mLocalVarField;
if (assignedFieldIdx >= 0)
undefinedFieldFlags &= ~((int64)1 << assignedFieldIdx);
else
undefinedFieldFlags = 0;
}
}
}
if (fieldIdx == -1)
{
if (undefinedFieldFlags == 0)
isAssigned = true;
}
else
{
isAssigned = true;
for (int i = 0; i < mResultLocalVarFieldCount; i++)
if ((undefinedFieldFlags & (1LL << (fieldIdx + i))) != 0)
isAssigned = false;
}
if (!isAssigned)
{
if ((localVar->mIsThis) && (fieldIdx != -1))
{
// When we have initializers for fields, they won't all be processed in the autocomplte case
if (!mModule->mCompiler->IsAutocomplete())
{
auto bfError = mModule->Fail(StrFormat("Use of possibly unassigned field '%s'", mResultLocalVarRefNode->ToString().c_str()), mResultLocalVarRefNode, true);
}
}
else
{
mModule->Fail(StrFormat("Use of unassigned local variable '%s'", localVar->mName.c_str()), mResultLocalVarRefNode);
}
}
}
localVar->mReadFromId = mModule->mCurMethodState->GetRootMethodState()->mCurAccessId++;
}
}
}
void BfExprEvaluator::FinishExpressionResult()
{
CheckResultForReading(mResult);
mResultLocalVar = NULL;
mResultFieldInstance = NULL;
}
bool BfExprEvaluator::CheckAllowValue(const BfTypedValue& typedValue, BfAstNode* refNode)
{
return true;
}
void BfExprEvaluator::MarkResultUsed()
{
if (mResultLocalVar != NULL)
{
mResultLocalVar->mReadFromId = mModule->mCurMethodState->GetRootMethodState()->mCurAccessId++;
}
}
void BfExprEvaluator::MarkResultAssigned()
{
if (mResultLocalVar != NULL)
{
//int localIdx = mResultLocalVarIdx;
//if (localIdx == 0x7FFF)
//return;
auto localVar = mResultLocalVar;
int fieldIdx = mResultLocalVarField - 1;
int count = mResultLocalVarFieldCount;
if (fieldIdx == -1)
count = 1;
for (int i = 0; i < count; i++)
mModule->mCurMethodState->GetMethodStateForLocal(localVar)->LocalDefined(localVar, fieldIdx + i);
//if (localIdx != 0x7FFF)
{
if (localVar->mCompositeCount > 0)
{
mModule->Fail(StrFormat("Cannot write to composite '%s', it can only be used in an argument list", localVar->mName.c_str()), mResultLocalVarRefNode);
}
}
}
}
void BfExprEvaluator::MakeResultAsValue()
{
// Expressions like parens will turn a variable reference into a simple value
mResultLocalVar = NULL;
mResultFieldInstance = NULL;
}
bool BfExprEvaluator::CheckIsBase(BfAstNode* checkNode)
{
if (checkNode == NULL)
return false;
if (!checkNode->Equals("base"))
return false;
auto autoComplete = GetAutoComplete();
if ((autoComplete != NULL) && (autoComplete->IsAutocompleteNode(checkNode)))
{
if ((mModule->mCurTypeInstance != NULL) && (mModule->mCurTypeInstance->mBaseType != NULL))
autoComplete->SetDefinitionLocation(mModule->mCurTypeInstance->mBaseType->mTypeDef->GetRefNode());
}
return true;
}
bool BfExprEvaluator::CheckModifyResult(BfTypedValue typedVal, BfAstNode* refNode, const char* modifyType, bool onlyNeedsMut, bool emitWarning, bool skipCopyOnMutate)
{
if ((!skipCopyOnMutate) && (typedVal.IsCopyOnMutate()))
typedVal = mModule->CopyValue(typedVal);
BfLocalVariable* localVar = NULL;
bool isCapturedLocal = false;
if (mResultLocalVar != NULL)
{
localVar = mResultLocalVar;
localVar->mWrittenToId = mModule->mCurMethodState->GetRootMethodState()->mCurAccessId++;
}
else if (typedVal.IsThis())
{
localVar = mModule->GetThisVariable();
}
else if (typedVal.IsSplat())
{
for (auto checkLocal : mModule->mCurMethodState->mLocals)
{
if (checkLocal->mAddr == typedVal.mValue)
{
localVar = checkLocal;
break;
}
}
}
else if (typedVal.mValue.IsArg())
{
auto methodState = mModule->mCurMethodState->GetNonCaptureState();
localVar = methodState->mLocals[typedVal.mValue.mId];
}
if ((typedVal.mKind == BfTypedValueKind_MutableValue) && (onlyNeedsMut))
{
return true;
}
bool canModify = typedVal.CanModify();
auto _Fail = [&](const StringImpl& error, BfAstNode* refNode)
{
if (emitWarning)
return mModule->Warn(BfWarning_BF4204_AddressOfReadOnly, error, refNode);
else
return mModule->Fail(error, refNode);
};
if (localVar != NULL)
{
if (!canModify)
{
BfError* error = NULL;
if (localVar->mIsThis)
{
bool isClosure = false;
BfTypeInstance* checkTypeInst = localVar->mResolvedType->ToTypeInstance();
int fieldIdx = mResultLocalVarField - 1;
if ((!isCapturedLocal) && (mModule->mCurMethodState != NULL) && (mModule->mCurMethodState->mClosureState != NULL) && (mModule->mCurMethodState->mClosureState->mClosureType != NULL))
{
isClosure = true;
auto closureThis = mModule->mCurMethodState->mClosureState->mClosureType;
closureThis = checkTypeInst->mFieldInstances[0].mResolvedType->ToTypeInstance();
if (fieldIdx >= -1)
{
checkTypeInst = closureThis;
}
else
{
fieldIdx = -fieldIdx - 2;
isCapturedLocal = true;
}
}
if (fieldIdx < 0)
{
if (isClosure)
{
if (!mModule->mCurMethodState->mClosureState->mDeclaringMethodIsMutating)
error = _Fail(StrFormat("Cannot %s 'this' within struct lambda. Consider adding 'mut' specifier to this method.", modifyType), refNode);
else
error = _Fail(StrFormat("Cannot %s 'this' within struct lambda. Consider adding by-reference capture specifier [&] to lambda.", modifyType), refNode);
}
else if (localVar->mResolvedType->IsValueType())
{
error = _Fail(StrFormat("Cannot %s 'this' within struct method '%s'. Consider adding 'mut' specifier to this method.", modifyType,
mModule->MethodToString(mModule->mCurMethodInstance).c_str()), refNode);
}
else
{
error = _Fail(StrFormat("Cannot %s 'this' because '%s' is a reference type.", modifyType,
mModule->TypeToString(localVar->mResolvedType).c_str()), refNode);
}
return false;
}
else if (mResultFieldInstance != NULL)
{
if (isCapturedLocal)
{
error = _Fail(StrFormat("Cannot %s read-only captured local variable '%s'. Consider adding by-reference capture specifier [&] to lambda and ensuring that captured value is not read-only.", modifyType,
mResultFieldInstance->GetFieldDef()->mName.c_str()), refNode);
}
else if (isClosure)
{
if (!mModule->mCurMethodState->mClosureState->mDeclaringMethodIsMutating)
error = _Fail(StrFormat("Cannot %s field '%s.%s' within struct lambda. Consider adding 'mut' specifier to this method.", modifyType,
mModule->TypeToString(mResultFieldInstance->mOwner).c_str(), mResultFieldInstance->GetFieldDef()->mName.c_str()), refNode);
else
error = _Fail(StrFormat("Cannot %s field '%s.%s' within struct lambda. Consider adding by-reference capture specifier [&] to lambda.", modifyType,
mModule->TypeToString(mResultFieldInstance->mOwner).c_str(), mResultFieldInstance->GetFieldDef()->mName.c_str()), refNode);
}
else if (mResultFieldInstance->GetFieldDef()->mIsReadOnly)
{
error = _Fail(StrFormat("Cannot %s readonly field '%s.%s' within method '%s'", modifyType,
mModule->TypeToString(mResultFieldInstance->mOwner).c_str(), mResultFieldInstance->GetFieldDef()->mName.c_str(),
mModule->MethodToString(mModule->mCurMethodInstance).c_str()), refNode);
}
else if (auto propertyDeclaration = BfNodeDynCast<BfPropertyDeclaration>(mResultFieldInstance->GetFieldDef()->mFieldDeclaration))
{
String propNam;
if (propertyDeclaration->mNameNode != NULL)
propertyDeclaration->mNameNode->ToString(propNam);
error = _Fail(StrFormat("Cannot %s auto-implemented property '%s.%s' without set accessor", modifyType,
mModule->TypeToString(mResultFieldInstance->mOwner).c_str(), propNam.c_str()), refNode);
}
else
{
error = _Fail(StrFormat("Cannot %s field '%s.%s' within struct method '%s'. Consider adding 'mut' specifier to this method.", modifyType,
mModule->TypeToString(mResultFieldInstance->mOwner).c_str(), mResultFieldInstance->GetFieldDef()->mName.c_str(),
mModule->MethodToString(mModule->mCurMethodInstance).c_str()), refNode);
}
return false;
}
}
else if (localVar->IsParam())
{
if (!mModule->mCurMethodInstance->IsMixin())
{
if (mModule->mCurMethodState->mMixinState != NULL)
error = _Fail(StrFormat("Cannot %s mixin parameter '%s'", modifyType,
localVar->mName.c_str()), refNode);
else if ((localVar->mResolvedType->IsGenericParam()) && (onlyNeedsMut))
error = _Fail(StrFormat("Cannot %s parameter '%s'. Consider adding 'mut' or 'ref' specifier to parameter or declaring 'var %s;' to create a mutable copy.", modifyType,
localVar->mName.c_str(), localVar->mName.c_str()), refNode);
else
error = _Fail(StrFormat("Cannot %s parameter '%s'. Consider adding 'ref' specifier to parameter or declaring 'var %s;' to create a mutable copy.", modifyType,
localVar->mName.c_str(), localVar->mName.c_str()), refNode);
return false;
}
}
else
{
if ((mResultLocalVarField != 0) && (!localVar->mIsReadOnly))
{
auto typeInst = localVar->mResolvedType->ToTypeInstance();
int dataIdx = mResultLocalVarField - 1;
if (typeInst != NULL)
{
for (auto& field : typeInst->mFieldInstances)
{
if (field.mDataIdx == dataIdx)
{
error = _Fail(StrFormat("Cannot %s readonly field '%s.%s'.", modifyType,
mModule->TypeToString(typeInst).c_str(),
field.GetFieldDef()->mName.c_str()), refNode);
break;
}
}
}
}
if (error == NULL)
{
error = _Fail(StrFormat("Cannot %s read-only local variable '%s'.", modifyType,
localVar->mName.c_str()), refNode);
}
return false;
}
}
else
{
// When we are capturing, we need to note that we require capturing by reference here
localVar->mWrittenToId = mModule->mCurMethodState->GetRootMethodState()->mCurAccessId++;
}
}
if ((mResultFieldInstance != NULL) && (mResultFieldInstance->GetFieldDef()->mIsReadOnly) && (!canModify))
{
auto error = _Fail(StrFormat("Cannot %s static readonly field '%s.%s' within method '%s'", modifyType,
mModule->TypeToString(mResultFieldInstance->mOwner).c_str(), mResultFieldInstance->GetFieldDef()->mName.c_str(),
mModule->MethodToString(mModule->mCurMethodInstance).c_str()), refNode);
return false;
}
return mModule->CheckModifyValue(typedVal, refNode, modifyType);
}
void BfExprEvaluator::Visit(BfConditionalExpression* condExpr)
{
static int sCallCount = 0;
sCallCount++;
auto condResult = mModule->CreateValueFromExpression(condExpr->mConditionExpression, mModule->GetPrimitiveType(BfTypeCode_Boolean), (BfEvalExprFlags)(mBfEvalExprFlags & BfEvalExprFlags_InheritFlags));
if (!condResult)
return;
if (condExpr->mTrueExpression == NULL)
{
mModule->AssertErrorState();
return;
}
if (condExpr->mFalseExpression == NULL)
{
mModule->CreateValueFromExpression(condExpr->mTrueExpression, mExpectingType, BfEvalExprFlags_NoCast);
mModule->AssertErrorState();
return;
}
bool isConstBranch = false;
bool constResult = false;
bool constResultUndef = false;
if (condResult.mValue.IsConst())
{
auto constValue = mModule->mBfIRBuilder->GetConstant(condResult.mValue);
if (constValue->mTypeCode == BfTypeCode_Boolean)
{
isConstBranch = true;
constResult = constValue->mBool;
}
else if (constValue->mConstType == BfConstType_Undef)
{
isConstBranch = true;
constResultUndef = true;
}
}
if (isConstBranch)
{
BfExpression* actualExpr = (constResult) ? condExpr->mTrueExpression : condExpr->mFalseExpression;
BfExpression* ignoredExpr = (constResult) ? condExpr->mFalseExpression : condExpr->mTrueExpression;
BfTypedValue actualValue = mModule->CreateValueFromExpression(actualExpr, mExpectingType, (BfEvalExprFlags)((mBfEvalExprFlags & BfEvalExprFlags_InheritFlags) | BfEvalExprFlags_NoCast));
BfTypedValue ignoredValue;
//
{
auto curBlock = mModule->mBfIRBuilder->GetInsertBlock();
SetAndRestoreValue<bool> ignoreWrites(mModule->mBfIRBuilder->mIgnoreWrites, true);
ignoredValue = mModule->CreateValueFromExpression(ignoredExpr, mExpectingType, (BfEvalExprFlags)((mBfEvalExprFlags & BfEvalExprFlags_InheritFlags) | BfEvalExprFlags_NoCast));
mModule->mBfIRBuilder->SetInsertPoint(curBlock);
}
if (!actualValue)
return;
if ((ignoredValue) && (ignoredValue.mType != actualValue.mType))
{
// Cast to more specific 'ignored' type if applicable
if (mModule->CanCast(actualValue, ignoredValue.mType))
{
actualValue = mModule->Cast(actualExpr, actualValue, ignoredValue.mType);
}
else if (!mModule->CanCast(ignoredValue, actualValue.mType))
{
mModule->Fail(StrFormat("Type of conditional expression cannot be determined because there is no implicit conversion between '%s' and '%s'",
mModule->TypeToString(actualValue.mType).c_str(), mModule->TypeToString(ignoredValue.mType).c_str()), condExpr);
}
}
mResult = actualValue;
if (constResultUndef)
mResult = mModule->GetDefaultTypedValue(mResult.mType, false, BfDefaultValueKind_Undef);
return;
}
auto trueBB = mModule->mBfIRBuilder->CreateBlock("cond.then");
auto falseBB = mModule->mBfIRBuilder->CreateBlock("cond.else");
auto endBB = mModule->mBfIRBuilder->CreateBlock("cond.end");
auto contBB = mModule->mBfIRBuilder->CreateBlock("cond.cont");
mModule->mBfIRBuilder->CreateCondBr(condResult.mValue, trueBB, falseBB);
SetAndRestoreValue<bool> prevInCondBlock(mModule->mCurMethodState->mCurScope->mInnerIsConditional, true);
bool wantExpectingCast = (mExpectingType != NULL) && ((mBfEvalExprFlags & BfEvalExprFlags_NoCast) == 0);
mModule->AddBasicBlock(trueBB);
auto trueValue = mModule->CreateValueFromExpression(condExpr->mTrueExpression, mExpectingType, (BfEvalExprFlags)((mBfEvalExprFlags & BfEvalExprFlags_InheritFlags) | BfEvalExprFlags_NoCast | BfEvalExprFlags_CreateConditionalScope));
if ((wantExpectingCast) && (trueValue) && (trueValue.mType != mExpectingType))
{
// In some cases like typed primitives - we CAN individually cast each value which it's a constant still, but not after the merging
// IE: Color c = isOver ? 0xFF000000 : 0xFFFFFFFF;
// Otherwise the resulting value would just be 'int' which cannot implicitly convert to Color, but each of those ints can be
// a uint32 if converted separately
auto checkTrueValue = mModule->Cast(condExpr->mTrueExpression, trueValue, mExpectingType, BfCastFlags_SilentFail);
if (checkTrueValue)
trueValue = checkTrueValue;
mModule->FixIntUnknown(trueValue);
}
auto trueBlockPos = mModule->mBfIRBuilder->GetInsertBlock();
mModule->AddBasicBlock(falseBB);
auto falseValue = mModule->CreateValueFromExpression(condExpr->mFalseExpression, mExpectingType, (BfEvalExprFlags)((mBfEvalExprFlags & BfEvalExprFlags_InheritFlags) | BfEvalExprFlags_NoCast | BfEvalExprFlags_CreateConditionalScope));
auto falseBlockPos = mModule->mBfIRBuilder->GetInsertBlock();
if ((wantExpectingCast) && (falseValue) && (falseValue.mType != mExpectingType))
{
auto checkFalseValue = mModule->Cast(condExpr->mFalseExpression, falseValue, mExpectingType, BfCastFlags_SilentFail);
if (checkFalseValue)
falseValue = checkFalseValue;
mModule->FixIntUnknown(falseValue);
}
prevInCondBlock.Restore();
bool isValid = trueValue && falseValue;
if (isValid)
{
BfTypedValue falseToTrue;
{
SetAndRestoreValue<bool> prevIgnoreError(mModule->mIgnoreErrors, true);
mModule->mBfIRBuilder->SetInsertPoint(falseBlockPos);
falseToTrue = mModule->Cast(condExpr->mFalseExpression, falseValue, trueValue.mType);
}
if (falseToTrue)
{
falseValue = falseToTrue;
}
else
{
BfTypedValue trueToFalse;
{
SetAndRestoreValue<bool> prevIgnoreError(mModule->mIgnoreErrors, true);
mModule->mBfIRBuilder->SetInsertPoint(trueBlockPos);
trueToFalse = mModule->Cast(condExpr->mTrueExpression, trueValue, falseValue.mType);
}
if (!trueToFalse)
{
mModule->Fail(StrFormat("Type of conditional expression cannot be determined because there is no implicit conversion between '%s' and '%s'",
mModule->TypeToString(trueValue.mType).c_str(), mModule->TypeToString(falseValue.mType).c_str()), condExpr);
//return;
isValid = false;
}
else
trueValue = trueToFalse;
}
}
mModule->mBfIRBuilder->SetInsertPoint(trueBlockPos);
if (isValid)
trueValue = mModule->LoadValue(trueValue);
mModule->mBfIRBuilder->CreateBr(endBB);
mModule->mBfIRBuilder->SetInsertPoint(falseBlockPos);
if (isValid)
falseValue = mModule->LoadValue(falseValue);
mModule->mBfIRBuilder->CreateBr(endBB);
mModule->AddBasicBlock(endBB, false);
if (!isValid)
return;
mModule->mBfIRBuilder->SetInsertPoint(endBB);
BfIRValue phi;
if (!trueValue.mType->IsValuelessType())
{
if (trueValue.mType->IsVar())
{
phi = mModule->mBfIRBuilder->GetFakeVal();
}
else
{
phi = mModule->mBfIRBuilder->CreatePhi(mModule->mBfIRBuilder->MapType(trueValue.mType), 2);
mModule->mBfIRBuilder->AddPhiIncoming(phi, trueValue.mValue, trueBlockPos);
mModule->mBfIRBuilder->AddPhiIncoming(phi, falseValue.mValue, falseBlockPos);
}
}
mModule->mBfIRBuilder->CreateBr(contBB);
mModule->AddBasicBlock(contBB);
mResult = BfTypedValue(phi, trueValue.mType);
}
void BfExprEvaluator::PopulateDeferrredTupleAssignData(BfTupleExpression* tupleExpr, DeferredTupleAssignData& deferredTupleAssignData)
{
BfTypeVector fieldTypes;
Array<String> fieldNames;
// We need to evaluate each LHS tuple component in a separate BfExprEvaluator because each one
// could be a property and the 'mPropDef' target info is tied to a single evaluator
for (int valueIdx = 0; valueIdx < (int)tupleExpr->mValues.size(); valueIdx++)
{
DeferredTupleAssignData::Entry entry;
entry.mExprEvaluator = NULL;
entry.mInnerTuple = NULL;
BfExpression* valueExpr = tupleExpr->mValues[valueIdx];
entry.mExpr = valueExpr;
BfType* fieldType = NULL;
BfType* resultType = NULL;
if (auto innerTupleExpr = BfNodeDynCast<BfTupleExpression>(valueExpr))
{
entry.mInnerTuple = new DeferredTupleAssignData();
PopulateDeferrredTupleAssignData(innerTupleExpr, *entry.mInnerTuple);
resultType = entry.mInnerTuple->mTupleType;
}
else
{
BfExprEvaluator* exprEvaluator = new BfExprEvaluator(mModule);
entry.mExprEvaluator = exprEvaluator;
if (valueExpr->IsA<BfUninitializedExpression>())
{
resultType = mModule->GetPrimitiveType(BfTypeCode_None);
}
if (auto varDecl = BfNodeDynCast<BfVariableDeclaration>(valueExpr))
{
if ((varDecl->mTypeRef->IsA<BfLetTypeReference>()) || (varDecl->mTypeRef->IsA<BfVarTypeReference>()))
{
resultType = mModule->GetPrimitiveType(BfTypeCode_Var);
}
else
{
resultType = ResolveTypeRef(varDecl->mTypeRef);
if (resultType == NULL)
resultType = mModule->GetPrimitiveType(BfTypeCode_Var);
}
}
if (resultType == NULL)
{
exprEvaluator->VisitChild(valueExpr);
if ((!exprEvaluator->mResult) && (exprEvaluator->mPropDef == NULL))
exprEvaluator->mResult = mModule->GetDefaultTypedValue(mModule->GetPrimitiveType(BfTypeCode_None));
resultType = exprEvaluator->mResult.mType;
}
if ((resultType == NULL) && (exprEvaluator->mPropDef != NULL) && (exprEvaluator->mPropTarget.mType != NULL))
{
auto propTypeInst = exprEvaluator->mPropTarget.mType->ToTypeInstance();
if ((propTypeInst == NULL) && (exprEvaluator->mPropTarget.mType->IsPointer()))
{
BfPointerType* pointerType = (BfPointerType*)exprEvaluator->mPropTarget.mType;
propTypeInst = pointerType->mElementType->ToTypeInstance();
}
auto setMethod = GetPropertyMethodDef(exprEvaluator->mPropDef, BfMethodType_PropertySetter, mPropCheckedKind, mPropTarget);
if (setMethod != NULL)
{
auto methodInstance = mModule->GetMethodInstance(propTypeInst, setMethod, BfTypeVector());
resultType = methodInstance.mMethodInstance->GetParamType(0);
}
else
{
auto getMethod = GetPropertyMethodDef(exprEvaluator->mPropDef, BfMethodType_PropertyGetter, mPropCheckedKind, mPropTarget);
if (getMethod != NULL)
{
auto methodInstance = mModule->GetMethodInstance(propTypeInst, getMethod, BfTypeVector());
auto retType = methodInstance.mMethodInstance->mReturnType;
if (retType->IsRef())
resultType = retType->GetUnderlyingType();
}
}
}
}
if (resultType == NULL)
resultType = mModule->GetPrimitiveType(BfTypeCode_None);
deferredTupleAssignData.mChildren.push_back(entry);
fieldTypes.push_back(resultType);
}
for (BfTupleNameNode* requestedName : tupleExpr->mNames)
{
if (requestedName == NULL)
fieldNames.push_back("");
else
fieldNames.push_back(requestedName->mNameNode->ToString());
}
BfTypeInstance* tupleType = mModule->CreateTupleType(fieldTypes, fieldNames, true);
deferredTupleAssignData.mTupleType = tupleType;
}
void BfExprEvaluator::AssignDeferrredTupleAssignData(BfAssignmentExpression* assignExpr, DeferredTupleAssignData& deferredTupleAssignData, BfTypedValue rightValue)
{
BF_ASSERT(rightValue.mType->IsTuple());
auto tupleType = (BfTypeInstance*)rightValue.mType;
for (int valueIdx = 0; valueIdx < (int)deferredTupleAssignData.mChildren.size(); valueIdx++)
{
auto& child = deferredTupleAssignData.mChildren[valueIdx];
BfFieldInstance* fieldInstance = &tupleType->mFieldInstances[valueIdx];
BfTypedValue elementValue;
if (fieldInstance->mDataIdx >= 0)
{
rightValue = mModule->LoadOrAggregateValue(rightValue);
mModule->mBfIRBuilder->PopulateType(rightValue.mType);
auto extractedValue = mModule->mBfIRBuilder->CreateExtractValue(rightValue.mValue, fieldInstance->mDataIdx);
elementValue = BfTypedValue(extractedValue, fieldInstance->GetResolvedType());
if (child.mInnerTuple != NULL)
{
AssignDeferrredTupleAssignData(assignExpr, *child.mInnerTuple, elementValue);
delete child.mInnerTuple;
child.mInnerTuple = NULL;
}
else
{
if (child.mExprEvaluator->HasResult())
{
child.mExprEvaluator->mBfEvalExprFlags = (BfEvalExprFlags)(child.mExprEvaluator->mBfEvalExprFlags | BfEvalExprFlags_NoAutoComplete);
child.mExprEvaluator->PerformAssignment(assignExpr, true, elementValue);
}
}
}
if (auto varDecl = BfNodeDynCast<BfVariableDeclaration>(child.mExpr))
{
if (!elementValue)
elementValue = mModule->GetDefaultTypedValue(fieldInstance->GetResolvedType());
mModule->HandleVariableDeclaration(varDecl, elementValue);
}
}
}
void BfExprEvaluator::DoTupleAssignment(BfAssignmentExpression* assignExpr)
{
auto tupleExpr = BfNodeDynCast<BfTupleExpression>(assignExpr->mLeft);
DeferredTupleAssignData deferredTupleAssignData;
PopulateDeferrredTupleAssignData(tupleExpr, deferredTupleAssignData);
BfTypeInstance* tupleType = deferredTupleAssignData.mTupleType;
BfTypedValue rightValue;
if (assignExpr->mRight != NULL)
{
rightValue = mModule->CreateValueFromExpression(assignExpr->mRight, tupleType);
}
if (!rightValue)
{
tupleType = mModule->SantizeTupleType(tupleType);
rightValue = mModule->GetDefaultTypedValue(tupleType);
}
rightValue = mModule->LoadValue(rightValue);
AssignDeferrredTupleAssignData(assignExpr, deferredTupleAssignData, rightValue);
mResult = rightValue;
}
void BfExprEvaluator::PerformAssignment(BfAssignmentExpression* assignExpr, bool evaluatedLeft, BfTypedValue rightValue, BfTypedValue* outCascadeValue)
{
auto binaryOp = BfAssignOpToBinaryOp(assignExpr->mOp);
BfExpression* targetNode = assignExpr->mLeft;
if ((BfNodeIsA<BfMixinExpression>(targetNode)) && (!mModule->mCurMethodInstance->mIsUnspecialized))
{
// If we have a "mixin = <X>" but there's no mixin target then ignore the assignment
int mixinVar = GetMixinVariable();
if (mixinVar == -1)
{
mResult = mModule->GetDefaultTypedValue(mModule->GetPrimitiveType(BfTypeCode_None));
return;
}
}
BfAutoComplete* autoComplete = GetAutoComplete();
bool deferredFixits = false;
if ((autoComplete != NULL) && (autoComplete->mResolveType == BfResolveType_GetFixits))
{
SetAndRestoreValue<bool> ignoreFixits(autoComplete->mIgnoreFixits, true);
VisitChild(targetNode);
deferredFixits = true;
}
else if (!evaluatedLeft)
{
if (auto memberReferenceExpr = BfNodeDynCast<BfMemberReferenceExpression>(targetNode))
{
DoMemberReference(memberReferenceExpr, outCascadeValue);
}
else
VisitChild(targetNode);
}
if ((!mResult) && (mPropDef == NULL))
{
if (assignExpr->mRight != NULL)
{
auto result = mModule->CreateValueFromExpression(assignExpr->mRight);
if (deferredFixits)
{
SetAndRestoreValue<bool> ignoreErrors(mModule->mIgnoreErrors, true);
mExpectingType = result.mType;
VisitChild(targetNode);
mResult = BfTypedValue();
}
}
return;
}
ResolveGenericType();
auto ptr = mResult;
mResult = BfTypedValue();
if (mPropDef == NULL)
{
if (!CheckModifyResult(ptr, assignExpr->mOpToken, "assign to", false, false, true))
{
if (assignExpr->mRight != NULL)
mModule->CreateValueFromExpression(assignExpr->mRight, ptr.mType, BfEvalExprFlags_NoCast);
return;
}
}
if (mPropDef != NULL)
{
bool hasLeftVal = false;
auto propDef = mPropDef;
auto propTarget = mPropTarget;
auto setMethod = GetPropertyMethodDef(mPropDef, BfMethodType_PropertySetter, mPropCheckedKind, mPropTarget);
if (setMethod == NULL)
{
// Allow for a ref return on the getter to be used if a setter is not available
GetResult();
if ((mResult) && (mResult.mKind == BfTypedValueKind_Addr))
{
ptr = mResult;
mResult = BfTypedValue();
hasLeftVal = true;
}
else
{
mModule->Fail("Property has no setter", mPropSrc);
if (assignExpr->mRight != NULL)
mModule->CreateValueFromExpression(assignExpr->mRight, ptr.mType, BfEvalExprFlags_NoCast);
return;
}
}
if (!hasLeftVal)
{
auto methodInstance = GetPropertyMethodInstance(setMethod);
if (methodInstance.mMethodInstance == NULL)
return;
//BF_ASSERT(methodInstance.mMethodInstance->mMethodDef == setMethod);
CheckPropFail(setMethod, methodInstance.mMethodInstance, (mPropGetMethodFlags & BfGetMethodInstanceFlag_Friend) == 0);
auto autoComplete = GetAutoComplete();
if ((autoComplete != NULL) && (autoComplete->IsAutocompleteNode(mPropSrc)) && (autoComplete->mResolveType == BfResolveType_GetResultString))
{
autoComplete->mResultString = ":";
autoComplete->mResultString += mModule->TypeToString(methodInstance.mMethodInstance->GetParamType(0));
autoComplete->mResultString += " ";
autoComplete->mResultString += mModule->TypeToString(methodInstance.mMethodInstance->GetOwner());
autoComplete->mResultString += ".";
autoComplete->mResultString += mPropDef->mName;
}
BfTypedValue convVal;
if (binaryOp != BfBinaryOp_None)
{
PerformBinaryOperation(assignExpr->mLeft, assignExpr->mRight, binaryOp, assignExpr->mOpToken, BfBinOpFlag_ForceLeftType);
if (!mResult)
return;
convVal = mResult;
mResult = BfTypedValue();
if (!convVal)
return;
}
else
{
auto wantType = methodInstance.mMethodInstance->GetParamType(0);
if (rightValue)
{
convVal = mModule->Cast(assignExpr->mRight, rightValue, wantType);
}
else
{
if (assignExpr->mRight == NULL)
{
mModule->AssertErrorState();
return;
}
BfEvalExprFlags exprFlags = (BfEvalExprFlags)(BfEvalExprFlags_AllowSplat | BfEvalExprFlags_PendingPropSet);
if (wantType->IsRef())
exprFlags = (BfEvalExprFlags)(exprFlags | BfEvalExprFlags_AllowRefExpr);
convVal = mModule->CreateValueFromExpression(assignExpr->mRight, wantType, exprFlags);
}
if (!convVal)
{
mPropDef = NULL;
return;
}
}
if (mPropSrc != NULL)
mModule->UpdateExprSrcPos(mPropSrc);
BfResolvedArg valueArg;
valueArg.mTypedValue = convVal;
mIndexerValues.Insert(0, valueArg);
if (!setMethod->mIsStatic)
{
auto owner = methodInstance.mMethodInstance->GetOwner();
if ((mPropTarget.mType != owner) ||
((mPropTarget.mValue.IsFake()) && (!mOrigPropTarget.mValue.IsFake())))
{
if ((mPropDefBypassVirtual) || (!mPropTarget.mType->IsInterface()))
{
mPropTarget = mModule->Cast(mPropSrc, mOrigPropTarget, owner);
if (!mPropTarget)
{
mModule->Fail("Internal property error", mPropSrc);
return;
}
}
}
}
auto callFlags = mPropDefBypassVirtual ? BfCreateCallFlags_BypassVirtual : BfCreateCallFlags_None;
mResult = CreateCall(mPropSrc, mPropTarget, mOrigPropTarget, setMethod, methodInstance, callFlags, mIndexerValues, NULL);
mPropDef = NULL;
mResult = convVal;
mIndexerValues.Clear();
return;
}
}
auto toType = ptr.mType;
if (toType->IsRef())
{
auto refType = (BfRefType*)toType;
toType = refType->mElementType;
}
if ((autoComplete != NULL) && (assignExpr->mOpToken != NULL) && (toType != NULL))
autoComplete->CheckEmptyStart(assignExpr->mOpToken, toType);
BfExpression* rightExpr = assignExpr->mRight;
if (rightExpr == NULL)
{
mModule->AssertErrorState();
return;
}
bool alreadyWritten = false;
BfTypedValue convVal;
if (binaryOp != BfBinaryOp_None)
{
CheckResultForReading(ptr);
BfTypedValue leftValue = ptr;
bool deferBinop = false;
BfDeferEvalChecker deferEvalChecker;
deferEvalChecker.mDeferLiterals = false;
assignExpr->mRight->Accept(&deferEvalChecker);
if (deferEvalChecker.mNeedsDeferEval)
deferBinop = true;
if (binaryOp == BfBinaryOp_NullCoalesce)
{
deferBinop = true;
}
if (!deferBinop)
{
auto expectedType = ptr.mType;
if ((binaryOp == BfBinaryOp_LeftShift) || (binaryOp == BfBinaryOp_RightShift))
expectedType = mModule->GetPrimitiveType(BfTypeCode_IntPtr);
if ((!rightValue) && (assignExpr->mRight != NULL))
{
rightValue = mModule->CreateValueFromExpression(assignExpr->mRight, expectedType, (BfEvalExprFlags)(BfEvalExprFlags_AllowSplat | BfEvalExprFlags_NoCast));
}
}
bool handled = false;
BfResolvedArgs argValues;
if ((rightValue) || (deferBinop))
{
auto checkTypeInst = leftValue.mType->ToTypeInstance();
while (checkTypeInst != NULL)
{
for (auto operatorDef : checkTypeInst->mTypeDef->mOperators)
{
if (operatorDef->mOperatorDeclaration->mAssignOp != assignExpr->mOp)
continue;
auto methodInst = mModule->GetRawMethodInstanceAtIdx(checkTypeInst, operatorDef->mIdx);
if (methodInst->GetParamCount() != 1)
continue;
auto paramType = methodInst->GetParamType(0);
if (deferBinop)
{
if (argValues.mArguments == NULL)
{
SizedArray<BfExpression*, 2> argExprs;
argExprs.push_back(assignExpr->mRight);
BfSizedArray<BfExpression*> sizedArgExprs(argExprs);
argValues.Init(&sizedArgExprs);
ResolveArgValues(argValues, BfResolveArgsFlag_DeferParamEval);
}
rightValue = ResolveArgValue(argValues.mResolvedArgs[0], paramType);
if (!rightValue)
continue;
}
else
{
if (!mModule->CanCast(rightValue, paramType))
continue;
}
mModule->SetElementType(assignExpr->mOpToken, BfSourceElementType_Method);
if ((autoComplete != NULL) && (autoComplete->IsAutocompleteNode(assignExpr->mOpToken)))
{
if (operatorDef->mOperatorDeclaration != NULL)
autoComplete->SetDefinitionLocation(operatorDef->mOperatorDeclaration->mOpTypeToken);
}
auto moduleMethodInstance = mModule->GetMethodInstance(checkTypeInst, operatorDef, BfTypeVector());
BfExprEvaluator exprEvaluator(mModule);
SizedArray<BfIRValue, 1> args;
exprEvaluator.PushThis(assignExpr->mLeft, leftValue, moduleMethodInstance.mMethodInstance, args);
exprEvaluator.PushArg(rightValue, args);
exprEvaluator.CreateCall(assignExpr, moduleMethodInstance.mMethodInstance, moduleMethodInstance.mFunc, false, args);
convVal = leftValue;
handled = true;
break;
}
if (handled)
break;
checkTypeInst = mModule->GetBaseType(checkTypeInst);
}
if (!handled)
{
auto flags = BfBinOpFlag_ForceLeftType;
if (deferBinop)
flags = (BfBinOpFlags)(flags | BfBinOpFlag_DeferRight);
leftValue = mModule->LoadValue(leftValue);
if ((binaryOp == BfBinaryOp_NullCoalesce) && (PerformBinaryOperation_NullCoalesce(assignExpr->mOpToken, assignExpr->mLeft, assignExpr->mRight, leftValue, leftValue.mType, &ptr)))
{
return;
}
PerformBinaryOperation(assignExpr->mLeft, assignExpr->mRight, binaryOp, assignExpr->mOpToken, flags, leftValue, rightValue);
}
}
if (!handled)
{
convVal = mResult;
mResult = BfTypedValue();
}
if (!convVal)
return;
}
else
{
convVal = rightValue;
if (!convVal)
{
if (auto uninitExpr = BfNodeDynCast<BfUninitializedExpression>(rightExpr))
{
if (mResultLocalVar != NULL)
{
MarkResultAssigned();
return;
}
}
// In the cases like "structVal = GetVal()", the allowDirectStructRetWrite optimization allows us to pass the
// address of structVal into the sret. We only allow that if structVal is a local, because if it's globally
// visible then we could see the results of a partially-modified structVal
//bool allowDirectStructRetWrite = mResultLocalVarIdx != -1;
// ALTHOUGH- we can only allow this optimization if we can be sure the local value is not aliased- we could
// have the backend ensure that this local value never gets its address taken.
bool allowDirectStructWrite = false;
BfExprEvaluator exprEvaluator(mModule);
exprEvaluator.mExpectingType = toType;
if (allowDirectStructWrite)
exprEvaluator.mReceivingValue = &ptr;
exprEvaluator.Evaluate(rightExpr, false, false, true);
exprEvaluator.CheckResultForReading(exprEvaluator.mResult);
convVal = exprEvaluator.GetResult();
mModule->FixIntUnknown(convVal);
alreadyWritten = (allowDirectStructWrite) && (exprEvaluator.mReceivingValue == NULL);
if (!convVal)
convVal = mModule->GetDefaultTypedValue(toType);
// Did we use mReceivingValue as a mixin result?
if ((convVal.mValue) && (convVal.mValue == ptr.mValue))
{
mResult = convVal;
return;
}
}
}
BF_ASSERT(convVal);
if ((convVal) && (convVal.mType->IsNull()) && (ptr.mType->IsNullable()))
{
// Allow this to pass through so we can catch it in the memset later in this function
}
else
{
if (!convVal.mType->IsComposite())
convVal = mModule->LoadValue(convVal);
convVal = mModule->Cast(rightExpr, convVal, toType);
if (!convVal)
return;
convVal = mModule->LoadValue(convVal);
}
if (ptr.mType->IsVar())
{
mResult = ptr;
MarkResultAssigned();
return;
}
if (convVal.mValue)
{
if ((ptr.mType->IsStruct()) && (!ptr.mType->IsValuelessType()) && (convVal.mValue.IsConst()))
{
auto constant = mModule->mBfIRBuilder->GetConstant(convVal.mValue);
if ((constant->mTypeCode == BfTypeCode_NullPtr) || (constant->mConstType == BfConstType_AggZero))
{
auto type = ptr.mType;
mModule->mBfIRBuilder->CreateMemSet(ptr.mValue, mModule->GetConstValue(0, mModule->GetPrimitiveType(BfTypeCode_Int8)),
mModule->GetConstValue(type->mSize), type->mAlign);
mResult = ptr;
MarkResultAssigned();
return;
}
}
// if (ptr.mType->IsMethodRef())
// {
// auto methodRefType = (BfMethodRefType*)ptr.mType;
// auto methodInstance = methodRefType->mMethodInstance;
// int implicitParamCount = methodInstance->GetImplicitParamCount();
// for (int implicitParamIdx = methodInstance->HasThis() ? - 1 : 0; implicitParamIdx < implicitParamCount; implicitParamIdx++)
// {
// bool failed = false;
// auto destPtr = DoImplicitArgCapture(assignExpr, methodRefType->mMethodInstance, implicitParamIdx, failed, BfImplicitParamKind_GenericTypeMember_Addr);
// auto srcVal = DoImplicitArgCapture(assignExpr, methodRefType->mMethodInstance, implicitParamIdx, failed, BfImplicitParamKind_GenericMethodMember);
// if ((destPtr) && (srcVal))
// {
// srcVal = mModule->AggregateSplat(srcVal);
// mModule->mBfIRBuilder->CreateStore(srcVal.mValue, destPtr.mValue);
// }
// }
// }
// else
{
mModule->mBfIRBuilder->PopulateType(ptr.mType);
if (convVal.IsSplat())
{
//convVal = mModule->AggregateSplat(convVal);
mModule->AggregateSplatIntoAddr(convVal, ptr.mValue);
}
else
{
if (ptr.mType->IsValuelessType())
{
mModule->EmitEnsureInstructionAt();
}
else if (!alreadyWritten)
{
//ptr = mModule->LoadValue(ptr);
BF_ASSERT(ptr.IsAddr());
convVal = mModule->LoadValue(convVal);
auto storeInst = mModule->mBfIRBuilder->CreateAlignedStore(convVal.mValue, ptr.mValue, ptr.mType->mAlign, mIsVolatileReference);
}
}
}
}
else
{
BF_ASSERT(convVal.mType->IsValuelessType());
}
mResult = convVal;
MarkResultAssigned();
}
void BfExprEvaluator::Visit(BfAssignmentExpression* assignExpr)
{
if (assignExpr->mLeft->IsA<BfTupleExpression>())
{
DoTupleAssignment(assignExpr);
return;
}
BfAutoParentNodeEntry autoParentNodeEntry(mModule, assignExpr);
BfTypedValue cascadeValue;
PerformAssignment(assignExpr, false, BfTypedValue(), &cascadeValue);
if (cascadeValue)
mResult = cascadeValue;
}
void BfExprEvaluator::Visit(BfParenthesizedExpression* parenExpr)
{
VisitChild(parenExpr->mExpression);
MakeResultAsValue();
}
void BfExprEvaluator::InitializedSizedArray(BfSizedArrayType* arrayType, BfTokenNode* openToken, const BfSizedArray<BfExpression*>& valueExprs, const BfSizedArray<BfTokenNode*>& commas, BfTokenNode* closeToken, BfTypedValue* receivingValue)
{
struct InitValue
{
BfTypedValue mValue;
bool mIsUninitialized;
bool mIsDefaultInitializer;
bool mIsDeferred;
InitValue()
{
mIsUninitialized = false;
mIsDefaultInitializer = false;
mIsDeferred = false;
}
};
SizedArray<InitValue, 8> values;
{
//bool hasFailed = false;
HashSet<int> failedAt;
bool isAllConst = true;
//bool endUninitialzied = false;
int depth = 0;
std::function<void(BfSizedArrayType*, BfTokenNode* openToken, const BfSizedArray<BfExpression*>&, const BfSizedArray<BfTokenNode*>&, BfTokenNode*, bool)>
_GetValues = [&](BfSizedArrayType* checkArrayType, BfTokenNode* openToken, const BfSizedArray<BfExpression*>& valueExprs, const BfSizedArray<BfTokenNode*>& commas, BfTokenNode* closeToken, bool ignore)
{
int64 initCountDiff = (int)valueExprs.size() - checkArrayType->mElementCount;
if ((initCountDiff != 0) && (!valueExprs.IsEmpty()) && (!failedAt.Contains(depth)))
{
if (checkArrayType->mElementCount == -1)
{
// mModule->Fail("Initializers not supported for unknown-sized arrays", valueExprs[0]);
// failedAt.Add(depth);
}
else if (initCountDiff > 0)
{
mModule->Fail(StrFormat("Too many initializers, expected %d fewer", initCountDiff), valueExprs[BF_MAX((int)checkArrayType->mElementCount, 0)]);
failedAt.Add(depth);
}
else
{
// If it ends with ", ?) or ",)" then allow unsized
if (((valueExprs.size() == 0) || (BfNodeDynCast<BfUninitializedExpression>(valueExprs.back()) == NULL)) &&
((commas.size() < valueExprs.size()) || (valueExprs.size() == 0)))
{
BfAstNode* refNode = closeToken;
if ((refNode == NULL) && (mModule->mParentNodeEntry != NULL))
refNode = mModule->mParentNodeEntry->mNode;
BF_ASSERT(refNode != NULL);
mModule->Fail(StrFormat("Too few initializer, expected %d more", -initCountDiff), refNode);
failedAt.Add(depth);
}
}
}
for (int idx = 0; idx < BF_MAX(checkArrayType->mElementCount, valueExprs.size()); idx++)
{
BfTypedValue elementValue;
bool deferredValue = false;
BfExpression* expr = NULL;
if (idx < (int)valueExprs.size())
{
expr = valueExprs[idx];
if (expr == NULL)
{
if (idx == 0)
mModule->FailAfter("Expression expected", openToken);
else
mModule->FailAfter("Expression expected", commas[idx - 1]);
}
if ((BfNodeDynCastExact<BfUninitializedExpression>(expr) != NULL) && (idx == (int)commas.size()))
{
isAllConst = false;
break;
}
if (checkArrayType->mElementType->IsSizedArray())
{
if (auto arrayInitExpr = BfNodeDynCast<BfTupleExpression>(expr))
{
depth++;
_GetValues((BfSizedArrayType*)checkArrayType->mElementType, arrayInitExpr->mOpenParen, arrayInitExpr->mValues, arrayInitExpr->mCommas, arrayInitExpr->mCloseParen, ignore);
depth--;
continue;
}
else if (auto arrayInitExpr = BfNodeDynCast<BfCollectionInitializerExpression>(expr))
{
depth++;
_GetValues((BfSizedArrayType*)checkArrayType->mElementType, arrayInitExpr->mOpenBrace, arrayInitExpr->mValues, arrayInitExpr->mCommas, arrayInitExpr->mCloseBrace, ignore);
depth--;
continue;
}
else if (auto parenExpr = BfNodeDynCast<BfParenthesizedExpression>(expr))
{
depth++;
SizedArray<BfExpression*, 1> values;
values.Add(parenExpr->mExpression);
SizedArray<BfTokenNode*, 1> commas;
_GetValues((BfSizedArrayType*)checkArrayType->mElementType, parenExpr->mOpenParen, values, commas, parenExpr->mCloseParen, ignore);
depth--;
continue;
}
}
if (expr != NULL)
{
auto evalFlags = (BfEvalExprFlags)(mBfEvalExprFlags & BfEvalExprFlags_InheritFlags);
bool tryDefer = false;
if ((checkArrayType->IsComposite()) &&
((expr->IsA<BfInvocationExpression>()) || (expr->IsExact<BfTupleExpression>())))
{
// We evaluate with a new scope because this expression may create variables that we don't want to be visible to other
// non-deferred evaluations (since the value may actually be a FakeVal)
SetAndRestoreValue<bool> prevIgnoreWrites(mModule->mBfIRBuilder->mIgnoreWrites, true);
elementValue = mModule->CreateValueFromExpression(expr, checkArrayType->mElementType, (BfEvalExprFlags)(evalFlags | BfEvalExprFlags_CreateConditionalScope));
deferredValue = !prevIgnoreWrites.mPrevVal && elementValue.mValue.IsFake();
}
else
{
elementValue = mModule->CreateValueFromExpression(expr, checkArrayType->mElementType, evalFlags);
}
if (!elementValue)
elementValue = mModule->GetDefaultTypedValue(checkArrayType->mElementType);
if ((!elementValue) || (!CheckAllowValue(elementValue, expr)))
elementValue = mModule->GetDefaultTypedValue(checkArrayType->mElementType);
// For now, we can't properly create const-valued non-size-aligned composites
// if (checkArrayType->mElementType->NeedsExplicitAlignment())
// isAllConst = false;
if (!elementValue.mValue.IsConst())
isAllConst = false;
if (elementValue.IsAddr())
isAllConst = false;
InitValue initValue;
initValue.mValue = elementValue;
initValue.mIsDeferred = deferredValue;
values.push_back(initValue);
}
}
}
};
int valueIdx = 0;
std::function<void(BfTypedValue, BfTokenNode* openToken, const BfSizedArray<BfExpression*>&, const BfSizedArray<BfTokenNode*>&, BfTokenNode*)>
_CreateMemArray = [&](BfTypedValue arrayValue, BfTokenNode* openToken, const BfSizedArray<BfExpression*>& valueExprs, const BfSizedArray<BfTokenNode*>& commas, BfTokenNode* closeToken)
{
BF_ASSERT(arrayValue.mType->IsSizedArray());
auto checkArrayType = (BfSizedArrayType*)arrayValue.mType;
int valIdx = 0;
bool hasUninit = false;
for (int idx = 0; idx < checkArrayType->mElementCount; idx++)
{
BfExpression* expr = NULL;
BfTypedValue elementValue;
if (idx >= (int)valueExprs.size())
break;
expr = valueExprs[idx];
if ((BfNodeDynCastExact<BfUninitializedExpression>(expr) != NULL) && (idx == (int)commas.size()))
{
hasUninit = true;
break;
}
BfIRValue elemPtrValue = mModule->CreateIndexedValue(checkArrayType->mElementType, arrayValue.mValue, valIdx, true);
valIdx++;
if (checkArrayType->mElementType->IsSizedArray())
{
if (auto arrayInitExpr = BfNodeDynCast<BfTupleExpression>(expr))
{
_CreateMemArray(BfTypedValue(elemPtrValue, checkArrayType->mElementType, true), arrayInitExpr->mOpenParen, arrayInitExpr->mValues, arrayInitExpr->mCommas, arrayInitExpr->mCloseParen);
continue;
}
else if (auto arrayInitExpr = BfNodeDynCast<BfCollectionInitializerExpression>(expr))
{
_CreateMemArray(BfTypedValue(elemPtrValue, checkArrayType->mElementType, true), arrayInitExpr->mOpenBrace, arrayInitExpr->mValues, arrayInitExpr->mCommas, arrayInitExpr->mCloseBrace);
continue;
}
else if (auto parenExpr = BfNodeDynCast<BfParenthesizedExpression>(expr))
{
depth++;
SizedArray<BfExpression*, 1> values;
values.Add(parenExpr->mExpression);
SizedArray<BfTokenNode*, 1> commas;
_CreateMemArray(BfTypedValue(elemPtrValue, checkArrayType->mElementType, true), parenExpr->mOpenParen, values, commas, parenExpr->mCloseParen);
depth--;
continue;
}
}
if (expr != NULL)
{
InitValue initValue = values[valueIdx++];
elementValue = initValue.mValue;
if (initValue.mIsDeferred)
{
BfTypedValue elemePtrTypedVal = BfTypedValue(elemPtrValue, checkArrayType->mElementType, BfTypedValueKind_Addr);
BfExprEvaluator exprEvaluator(mModule);
exprEvaluator.mExpectingType = checkArrayType->mElementType;
exprEvaluator.mReceivingValue = &elemePtrTypedVal;
exprEvaluator.Evaluate(expr);
exprEvaluator.GetResult();
if (exprEvaluator.mReceivingValue == NULL)
{
// We wrote directly to the array in-place, we're done with this element
continue;
}
elementValue = exprEvaluator.mResult;
elementValue = mModule->Cast(expr, elementValue, checkArrayType->mElementType);
if (!elementValue)
{
mModule->AssertErrorState();
continue;
}
}
elementValue = mModule->LoadValue(elementValue);
mModule->mBfIRBuilder->CreateAlignedStore(elementValue.mValue, elemPtrValue, checkArrayType->mElementType->mAlign);
}
}
int fillCount = (int)(checkArrayType->mElementCount - valIdx);
if (fillCount > 0)
{
BfIRValue elemPtrValue = mModule->CreateIndexedValue(checkArrayType->mElementType, arrayValue.mValue, valIdx, true);
if (hasUninit)
{
if (!mModule->IsOptimized())
{
int setSize = std::min(checkArrayType->mElementType->mSize, 128); // Keep it to a reasonable number of bytes to trash
mModule->mBfIRBuilder->CreateMemSet(elemPtrValue, mModule->mBfIRBuilder->CreateConst(BfTypeCode_Int8, 0xCC),
mModule->GetConstValue(setSize), checkArrayType->mElementType->mAlign);
}
}
else
{
int setSize = (int)((checkArrayType->mElementType->GetStride() * (fillCount - 1)) + checkArrayType->mElementType->mSize);
if (setSize >= 0)
{
mModule->mBfIRBuilder->CreateMemSet(elemPtrValue, mModule->mBfIRBuilder->CreateConst(BfTypeCode_Int8, 0),
mModule->GetConstValue(setSize), checkArrayType->mElementType->mAlign);
}
}
}
};
std::function<BfIRValue(BfTypedValue, BfTokenNode*, const BfSizedArray<BfExpression*>&, const BfSizedArray<BfTokenNode*>&, BfTokenNode*)>
_CreateConstArray = [&](BfTypedValue arrayValue, BfTokenNode* openToken, const BfSizedArray<BfExpression*>& valueExprs, const BfSizedArray<BfTokenNode*>& commas, BfTokenNode* closeToken)
{
SizedArray<BfIRValue, 8> members;
BF_ASSERT(arrayValue.mType->IsSizedArray());
auto checkArrayType = (BfSizedArrayType*)arrayValue.mType;
int valIdx = 0;
for (int idx = 0; idx < checkArrayType->mElementCount; idx++)
{
BfTypedValue elementValue;
if (idx >= (int)valueExprs.size())
break;
auto expr = valueExprs[idx];
if (expr == NULL)
continue;
valIdx++;
if (checkArrayType->mElementType->IsSizedArray())
{
if (auto arrayInitExpr = BfNodeDynCast<BfTupleExpression>(expr))
{
members.push_back(_CreateConstArray(checkArrayType->mElementType, arrayInitExpr->mOpenParen, arrayInitExpr->mValues, arrayInitExpr->mCommas, arrayInitExpr->mCloseParen));
continue;
}
else if (auto arrayInitExpr = BfNodeDynCast<BfCollectionInitializerExpression>(expr))
{
members.push_back(_CreateConstArray(checkArrayType->mElementType, arrayInitExpr->mOpenBrace, arrayInitExpr->mValues, arrayInitExpr->mCommas, arrayInitExpr->mCloseBrace));
continue;
}
else if (auto parenExpr = BfNodeDynCast<BfParenthesizedExpression>(expr))
{
depth++;
SizedArray<BfExpression*, 1> values;
values.Add(parenExpr->mExpression);
SizedArray<BfTokenNode*, 1> commas;
members.push_back(_CreateConstArray(checkArrayType->mElementType, parenExpr->mOpenParen, values, commas, parenExpr->mCloseParen));
depth--;
continue;
}
}
InitValue initValue = values[valueIdx++];
BF_ASSERT(!initValue.mIsUninitialized);
elementValue = initValue.mValue;
members.push_back(elementValue.mValue);
}
int fillCount = (int)(checkArrayType->mElementCount - valIdx);
if (fillCount > 0)
{
// We just need to insert one default value, it will be duplicated as needed into the backend
auto defaultVal = mModule->GetDefaultTypedValue(checkArrayType->GetUnderlyingType());
BF_ASSERT(defaultVal.mValue.IsConst());
members.push_back(defaultVal.mValue);
}
auto allocArrayType = checkArrayType;
if (checkArrayType->IsUndefSizedArray())
allocArrayType = mModule->CreateSizedArrayType(checkArrayType->GetUnderlyingType(), (int)members.size());
return mModule->mBfIRBuilder->CreateConstAgg(mModule->mBfIRBuilder->MapType(checkArrayType), members);
};
_GetValues(arrayType, openToken, valueExprs, commas, closeToken, false);
if (!failedAt.IsEmpty())
{
mResult = mModule->GetDefaultTypedValue(arrayType, false, BfDefaultValueKind_Addr);
return;
}
if (receivingValue != NULL)
{
BF_ASSERT(receivingValue->mType == arrayType);
BF_ASSERT(receivingValue->IsAddr());
mResult = *receivingValue;
_CreateMemArray(mResult, openToken, valueExprs, commas, closeToken);
}
else if (isAllConst)
{
mResult = BfTypedValue(_CreateConstArray(arrayType, openToken, valueExprs, commas, closeToken), arrayType, BfTypedValueKind_Value);
}
else
{
if ((mReceivingValue != NULL) && (mReceivingValue->mType == arrayType) && (mReceivingValue->IsAddr()))
{
mResult = *mReceivingValue;
mReceivingValue = NULL;
}
else
{
auto arrayValue = mModule->CreateAlloca(arrayType);
mResult = BfTypedValue(arrayValue, arrayType, BfTypedValueKind_TempAddr);
}
if (!arrayType->IsValuelessType())
_CreateMemArray(mResult, openToken, valueExprs, commas, closeToken);
}
}
}
void BfExprEvaluator::Visit(BfTupleExpression* tupleExpr)
{
BfTypeInstance* tupleType = NULL;
bool hadFullMatch = false;
if ((mExpectingType != NULL) && (mExpectingType->IsTuple()))
{
tupleType = (BfTypeInstance*)mExpectingType;
hadFullMatch = tupleType->mFieldInstances.size() == tupleExpr->mValues.size();
}
struct InitValue
{
BfTypedValue mValue;
bool mIsUninitialized;
bool mIsDefaultInitializer;
bool mIsDeferred;
InitValue()
{
mIsUninitialized = false;
mIsDefaultInitializer = false;
mIsDeferred = false;
}
};
SizedArray<BfTypedValue, 2> typedValues;
if ((tupleExpr->mCommas.size() != 0) && (tupleExpr->mCommas.size() >= tupleExpr->mValues.size()))
{
// We would normally give this error during syntax parsing, but a TupleExpression can be an array initializer
mModule->FailAfter("Expression expected", tupleExpr->mCommas.back());
}
for (int valueIdx = 0; valueIdx < (int)tupleExpr->mValues.size(); valueIdx++)
{
BfExpression* valueExpr = tupleExpr->mValues[valueIdx];
BfType* fieldType = NULL;
BfFieldInstance* fieldInstance = NULL;
if (tupleType != NULL)
{
if (valueIdx < (int)tupleType->mFieldInstances.size())
{
fieldInstance = (BfFieldInstance*)&tupleType->mFieldInstances[valueIdx];
fieldType = fieldInstance->GetResolvedType();
if (fieldType->IsVoid())
{
typedValues.push_back(BfTypedValue());
continue;
}
if (fieldType->IsVar())
{
hadFullMatch = false;
fieldType = NULL;
}
}
}
bool tryDefer = false;
if (((fieldType == NULL) || (fieldType->IsComposite())) &&
((valueExpr->IsA<BfInvocationExpression>()) || (valueExpr->IsExact<BfTupleExpression>())))
{
tryDefer = true;
}
SetAndRestoreValue<bool> prevIgnoreWrites(mModule->mBfIRBuilder->mIgnoreWrites, mModule->mBfIRBuilder->mIgnoreWrites || tryDefer);
BfTypedValue value = mModule->CreateValueFromExpression(valueExpr, fieldType);
if (!value)
{
if (fieldType != NULL)
value = mModule->GetDefaultTypedValue(fieldType);
else
value = mModule->GetDefaultTypedValue(mModule->mContext->mBfObjectType);
}
if ((fieldInstance != NULL) && (!fieldInstance->GetFieldDef()->IsUnnamedTupleField()) && (valueIdx < (int)tupleExpr->mNames.size()))
{
auto checkName = tupleExpr->mNames[valueIdx];
if (checkName != NULL)
{
if (checkName->ToString() != fieldInstance->GetFieldDef()->mName)
hadFullMatch = false;
}
}
value = mModule->LoadValue(value);
typedValues.push_back(value);
}
if (!hadFullMatch)
{
BfTypeVector fieldTypes;
Array<String> fieldNames;
HashSet<String> fieldNameSet;
for (auto typedVal : typedValues)
{
auto type = typedVal.mType;
if (type != NULL)
fieldTypes.push_back(type);
else
fieldTypes.push_back(mModule->mContext->mBfObjectType);
}
for (BfTupleNameNode* requestedName : tupleExpr->mNames)
{
if (requestedName == NULL)
fieldNames.push_back("");
else
{
auto fieldName = requestedName->mNameNode->ToString();
if (!fieldNameSet.TryAdd(fieldName, NULL))
{
mModule->Fail(StrFormat("A field named '%s' has already been declared", fieldName.c_str()), requestedName->mNameNode);
}
fieldNames.push_back(fieldName);
}
}
tupleType = mModule->CreateTupleType(fieldTypes, fieldNames);
}
mModule->mBfIRBuilder->PopulateType(tupleType);
BfIRValue curTupleValue;
if ((mReceivingValue != NULL) && (mReceivingValue->mType == tupleType) && (mReceivingValue->IsAddr()))
{
mResult = *mReceivingValue;
mReceivingValue = NULL;
curTupleValue = mResult.mValue;
}
else
{
int valueIdx = -1;
bool isExactConst = true;
for (int fieldIdx = 0; fieldIdx < (int)tupleType->mFieldInstances.size(); fieldIdx++)
{
BfFieldInstance* fieldInstance = &tupleType->mFieldInstances[fieldIdx];
if (fieldInstance->mDataIdx < 0)
continue;
++valueIdx;
auto typedValue = typedValues[valueIdx];
if (typedValue.mType != fieldInstance->mResolvedType)
{
isExactConst = false;
break;
}
if (!typedValue.mValue.IsConst())
{
isExactConst = false;
break;
}
}
if (isExactConst)
{
mModule->PopulateType(tupleType);
Array<BfIRValue> irValues;
irValues.Resize(typedValues.mSize + 1);
irValues[0] = mModule->mBfIRBuilder->CreateConstAggZero(mModule->mBfIRBuilder->MapType(tupleType->mBaseType));
for (int fieldIdx = 0; fieldIdx < (int)tupleType->mFieldInstances.size(); fieldIdx++)
{
BfFieldInstance* fieldInstance = &tupleType->mFieldInstances[fieldIdx];
if (fieldInstance->mDataIdx < 0)
continue;
irValues[fieldInstance->mDataIdx] = typedValues[fieldIdx].mValue;
}
for (auto& val : irValues)
{
if (!val)
val = mModule->mBfIRBuilder->CreateConstArrayZero(0);
}
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateConstAgg(mModule->mBfIRBuilder->MapType(tupleType), irValues), tupleType);
return;
}
curTupleValue = mModule->CreateAlloca(tupleType);
mResultIsTempComposite = true;
mResult = BfTypedValue(curTupleValue, tupleType, BfTypedValueKind_TempAddr);
}
int valueIdx = -1;
for (int fieldIdx = 0; fieldIdx < (int)tupleType->mFieldInstances.size(); fieldIdx++)
{
BfFieldInstance* fieldInstance = &tupleType->mFieldInstances[fieldIdx];
++valueIdx;
if (fieldInstance->mResolvedType->IsValuelessType())
continue;
auto typedVal = typedValues[valueIdx];
if (!typedVal)
{
mModule->AssertErrorState();
continue;
}
if (fieldInstance->mDataIdx >= 0)
{
auto memberVal = mModule->mBfIRBuilder->CreateInBoundsGEP(curTupleValue, 0, fieldInstance->mDataIdx);
if ((!mModule->mBfIRBuilder->mIgnoreWrites) && (typedVal.mValue.IsFake()))
{
// Value was deferred. Allow us to try to init in place
BfExpression* valueExpr = tupleExpr->mValues[valueIdx];
BfTypedValue memberPtrTypedVal = BfTypedValue(memberVal, fieldInstance->mResolvedType, BfTypedValueKind_Addr);
BfExprEvaluator exprEvaluator(mModule);
exprEvaluator.mExpectingType = fieldInstance->mResolvedType;
exprEvaluator.mReceivingValue = &memberPtrTypedVal;
exprEvaluator.Evaluate(valueExpr);
exprEvaluator.GetResult();
if (exprEvaluator.mReceivingValue == NULL)
{
// We wrote directly to the array in-place, we're done with this element
continue;
}
typedVal = exprEvaluator.mResult;
typedVal = mModule->Cast(valueExpr, typedVal, fieldInstance->mResolvedType);
if (!typedVal)
{
mModule->AssertErrorState();
continue;
}
typedVal = mModule->LoadValue(typedVal);
}
if (typedVal.mType->IsVar())
{
// Do nothing
}
else if (typedVal.IsSplat())
mModule->AggregateSplatIntoAddr(typedVal, memberVal);
else
mModule->mBfIRBuilder->CreateStore(typedVal.mValue, memberVal);
}
}
}
BfTypedValue BfExprEvaluator::SetupNullConditional(BfTypedValue thisValue, BfTokenNode* dotToken)
{
bool isStaticLookup = (!thisValue) ||
((!thisValue.mType->IsValuelessType()) && (!thisValue.mValue));
if (isStaticLookup)
{
mModule->Fail("Null conditional reference not valid for static field references", dotToken);
return thisValue;
}
auto opResult = PerformUnaryOperation_TryOperator(thisValue, NULL, BfUnaryOp_NullConditional, dotToken, BfUnaryOpFlag_None);
if (opResult)
thisValue = opResult;
if (thisValue.mType->IsGenericParam())
{
bool isValid = false;
auto genericParams = mModule->GetGenericParamInstance((BfGenericParamType*)thisValue.mType);
if (genericParams->mTypeConstraint != NULL)
{
if ((genericParams->mTypeConstraint->IsNullable()) ||
(genericParams->mTypeConstraint->IsPointer()) ||
(genericParams->mTypeConstraint->IsObjectOrInterface()))
isValid = true;
}
if ((genericParams->mGenericParamFlags & (BfGenericParamFlag_Var | BfGenericParamFlag_StructPtr | BfGenericParamFlag_Class)) != 0)
isValid = true;
if (isValid)
return thisValue;
}
if (thisValue.mType->IsNullable())
{
// Success
}
else if ((thisValue.mType->IsPointer()) || (thisValue.mType->IsObjectOrInterface()))
{
// Also good
}
else
{
mModule->Warn(0, StrFormat("Null conditional reference is unnecessary since value type '%s' can never be null", mModule->TypeToString(thisValue.mType).c_str()), dotToken);
return thisValue;
}
thisValue = mModule->LoadValue(thisValue);
BfPendingNullConditional* pendingNullCond = mModule->mCurMethodState->mPendingNullConditional;
if (pendingNullCond == NULL)
{
pendingNullCond = new BfPendingNullConditional();
mModule->mCurMethodState->mPendingNullConditional = pendingNullCond;
}
if (!pendingNullCond->mPrevBB)
pendingNullCond->mPrevBB = mModule->mBfIRBuilder->GetInsertBlock();
if (!pendingNullCond->mDoneBB)
pendingNullCond->mDoneBB = mModule->mBfIRBuilder->CreateBlock("nullCond.done");
// We will in the br to checkBB later
if (!pendingNullCond->mCheckBB)
{
pendingNullCond->mCheckBB = mModule->mBfIRBuilder->CreateBlock("nullCond.check");
mModule->AddBasicBlock(pendingNullCond->mCheckBB);
}
BfIRValue isNotNull;
if (thisValue.mType->IsNullable())
{
BfTypeInstance* nullableType = (BfTypeInstance*)thisValue.mType->ToTypeInstance();
auto elementType = nullableType->GetUnderlyingType();
if (elementType->IsValuelessType())
{
thisValue = mModule->MakeAddressable(thisValue);
BfIRValue hasValuePtr = mModule->mBfIRBuilder->CreateInBoundsGEP(thisValue.mValue, 0, 1); // mHasValue
isNotNull = mModule->mBfIRBuilder->CreateLoad(hasValuePtr);
thisValue = BfTypedValue(mModule->mBfIRBuilder->GetFakeVal(), elementType, true);
}
else
{
thisValue = mModule->MakeAddressable(thisValue);
BfIRValue hasValuePtr = mModule->mBfIRBuilder->CreateInBoundsGEP(thisValue.mValue, 0, 2); // mHasValue
isNotNull = mModule->mBfIRBuilder->CreateLoad(hasValuePtr);
BfIRValue valuePtr = mModule->mBfIRBuilder->CreateInBoundsGEP(thisValue.mValue, 0, 1); // mValue
thisValue = BfTypedValue(valuePtr, elementType, true);
}
}
else
isNotNull = mModule->mBfIRBuilder->CreateIsNotNull(thisValue.mValue);
BfIRBlock notNullBB = mModule->mBfIRBuilder->CreateBlock("nullCond.notNull");
pendingNullCond->mNotNullBBs.Add(notNullBB);
mModule->mBfIRBuilder->CreateCondBr(isNotNull, notNullBB, pendingNullCond->mDoneBB);
mModule->AddBasicBlock(notNullBB);
return thisValue;
}
void BfExprEvaluator::CheckDotToken(BfTokenNode* tokenNode)
{
if ((tokenNode != NULL) && (tokenNode->mToken == BfToken_DotDot))
mModule->Fail("Unexpected cascade operation. Chaining can only be used for method invocations", tokenNode);
}
void BfExprEvaluator::DoMemberReference(BfMemberReferenceExpression* memberRefExpr, BfTypedValue* outCascadeValue)
{
CheckDotToken(memberRefExpr->mDotToken);
BfAttributeState attributeState;
attributeState.mTarget = (BfAttributeTargets)(BfAttributeTargets_MemberAccess);
String findName;
BfAstNode* nameRefNode = memberRefExpr->mMemberName;
if (auto attrIdentifierExpr = BfNodeDynCast<BfAttributedIdentifierNode>(memberRefExpr->mMemberName))
{
nameRefNode = attrIdentifierExpr->mIdentifier;
// Don't validate
attributeState.mCustomAttributes = mModule->GetCustomAttributes(attrIdentifierExpr->mAttributes, BfAttributeTargets_SkipValidate);
if (nameRefNode != NULL)
findName = attrIdentifierExpr->mIdentifier->ToString();
}
else if (memberRefExpr->mMemberName != NULL)
findName = memberRefExpr->mMemberName->ToString();
else if (memberRefExpr->mDotToken != NULL)
mModule->FailAfter("Member name expected", memberRefExpr->mDotToken);
defer
(
if (attributeState.mCustomAttributes != NULL)
{
if (mPropDef != NULL)
attributeState.mTarget = (BfAttributeTargets)(attributeState.mTarget | BfAttributeTargets_Invocation);
mModule->ValidateCustomAttributes(attributeState.mCustomAttributes, attributeState.mTarget);
}
);
SetAndRestoreValue<BfAttributeState*> prevAttributeState(mModule->mAttributeState, &attributeState);
BfTypeInstance* expectingTypeInst = NULL;
if (mExpectingType != NULL)
{
expectingTypeInst = mExpectingType->ToTypeInstance();
if (mExpectingType->IsPointer())
expectingTypeInst = mExpectingType->GetUnderlyingType()->ToTypeInstance();
else if (mExpectingType->IsNullable())
expectingTypeInst = mExpectingType->GetUnderlyingType()->ToTypeInstance();
else if (mExpectingType->IsConstExprValue())
expectingTypeInst = mExpectingType->GetUnderlyingType()->ToTypeInstance();
else if (mExpectingType->IsGenericParam())
{
auto genericParam = mModule->GetGenericParamInstance((BfGenericParamType*)mExpectingType);
if (genericParam->mTypeConstraint != NULL)
expectingTypeInst = genericParam->mTypeConstraint->ToTypeInstance();
}
}
BfAutoComplete* autoComplete = GetAutoComplete();
if (autoComplete != NULL)
{
SetAndRestoreValue<bool> prevFriendSet(autoComplete->mHasFriendSet, (attributeState.mCustomAttributes != NULL) && (attributeState.mCustomAttributes->Contains(mModule->mCompiler->mFriendAttributeTypeDef)));
if (memberRefExpr->mTarget == NULL)
{
String filter;
if ((mExpectingType != NULL) &&
(autoComplete->InitAutocomplete(memberRefExpr->mDotToken, memberRefExpr->mMemberName, filter)))
{
if (expectingTypeInst != NULL)
{
bool allowPrivate = expectingTypeInst == mModule->mCurTypeInstance;
if (expectingTypeInst->IsEnum())
autoComplete->AddEnumTypeMembers(expectingTypeInst, filter, false, allowPrivate);
autoComplete->AddSelfResultTypeMembers(expectingTypeInst, expectingTypeInst, filter, allowPrivate);
}
}
}
else
{
autoComplete->CheckMemberReference(memberRefExpr->mTarget, memberRefExpr->mDotToken, memberRefExpr->mMemberName, false, mExpectingType);
if (auto objCreateExpr = BfNodeDynCast<BfObjectCreateExpression>(memberRefExpr->mTarget))
{
// This handles a weird case where we have "obj a = new\nWhatever().Thing = 123;".
// That gets parsed as "Whatever()" being the type we want to create, and then referencing
// the "Thing" member of that new object.
//if (objCreateExpr->mArraySizeSpecifier == NULL)
CheckObjectCreateTypeRef(mExpectingType, objCreateExpr->mNewNode);
}
}
}
if (memberRefExpr->mTarget == NULL)
{
if (mExpectingType == NULL)
{
if (mModule->PreFail())
mModule->Fail("Unqualified dot syntax can only be used when the result type can be inferred", nameRefNode);
return;
}
if (expectingTypeInst == NULL)
{
if (mModule->PreFail())
mModule->Fail(StrFormat("Unqualified dot syntax cannot be used with type '%s'", mModule->TypeToString(mExpectingType).c_str()), nameRefNode);
return;
}
if (mExpectingType->IsVar())
{
mResult = mModule->GetDefaultTypedValue(mExpectingType);
return;
}
BfTypedValue expectingVal(expectingTypeInst);
mResult = LookupField(memberRefExpr->mMemberName, expectingVal, findName);
if ((mResult) || (mPropDef != NULL))
return;
}
bool isNullCondLookup = (memberRefExpr->mDotToken != NULL) && (memberRefExpr->mDotToken->GetToken() == BfToken_QuestionDot);
bool isCascade = ((memberRefExpr->mDotToken != NULL) && (memberRefExpr->mDotToken->GetToken() == BfToken_DotDot));
BfIdentifierNode* nameLeft = BfNodeDynCast<BfIdentifierNode>(memberRefExpr->mTarget);
BfIdentifierNode* nameRight = BfIdentifierCast(memberRefExpr->mMemberName);
if ((nameLeft != NULL) && (nameRight != NULL) && (!isNullCondLookup) && (!isCascade))
{
bool hadError = false;
LookupQualifiedName(memberRefExpr, nameLeft, nameRight, true, &hadError);
if ((mResult) || (mPropDef != NULL))
return;
if (hadError)
return;
LookupQualifiedStaticField(memberRefExpr, nameLeft, nameRight, false);
return;
}
BfTypedValue thisValue;
if (auto exprTarget = BfNodeDynCast<BfExpression>(memberRefExpr->mTarget))
{
if (auto typeOfExpr = BfNodeDynCast<BfTypeOfExpression>(memberRefExpr->mTarget))
{
if (auto nameIdentifer = BfNodeDynCast<BfIdentifierNode>(memberRefExpr->mMemberName))
{
if (LookupTypeProp(typeOfExpr, nameIdentifer))
return;
}
}
//Hm, not using VisitChild broke our ability to write to a field for a not-initialized local struct
VisitChild(memberRefExpr->mTarget);
GetResult();
thisValue = mResult;
if (!thisValue)
{
if (auto targetIdentifier = BfNodeDynCast<BfIdentifierNode>(exprTarget))
{
thisValue = BfTypedValue(mModule->ResolveTypeRef(targetIdentifier, NULL, BfPopulateType_Declaration));
}
}
if (!thisValue.HasType())
return;
//thisValue = mResult;
}
else if (auto typeRef = BfNodeDynCast<BfTypeReference>(memberRefExpr->mTarget))
{
// Look up static field
thisValue = BfTypedValue(ResolveTypeRef(typeRef));
}
if (nameRefNode == NULL)
{
mModule->AssertErrorState();
return;
}
if (isNullCondLookup)
thisValue = SetupNullConditional(thisValue, memberRefExpr->mDotToken);
mResult = LookupField(nameRefNode, thisValue, findName);
if ((!mResult) && (mPropDef == NULL))
{
if (thisValue.mType != NULL)
{
BfTypeInstance* typeInst = thisValue.mType->ToTypeInstance();
auto compiler = mModule->mCompiler;
if ((typeInst != NULL) && (compiler->IsAutocomplete()) && (compiler->mResolvePassData->mAutoComplete->CheckFixit(memberRefExpr->mMemberName)))
{
FixitAddMember(typeInst, mExpectingType, findName, !thisValue.mValue);
}
}
if ((!thisValue.mValue) && (thisValue.mType != NULL))
{
if (auto targetIdentifier = BfNodeDynCast<BfIdentifierNode>(memberRefExpr->mMemberName))
{
mResult.mType = mModule->ResolveInnerType(thisValue.mType, targetIdentifier, BfPopulateType_Declaration);
}
}
if ((memberRefExpr->mTarget == NULL) && (expectingTypeInst != NULL) && (autoComplete != NULL))
{
if (autoComplete->CheckFixit(memberRefExpr->mMemberName))
{
autoComplete->FixitAddCase(expectingTypeInst, memberRefExpr->mMemberName->ToString(), BfTypeVector());
}
}
if (mResult.mType == NULL)
{
if (mModule->PreFail())
{
if ((thisValue) && (thisValue.mType->IsPointer()) && (thisValue.mType->GetUnderlyingType()->IsObjectOrInterface()))
mModule->Fail(StrFormat("Members cannot be referenced on type '%s' because the type is a pointer to a reference type (ie: a double-reference).",
mModule->TypeToString(thisValue.mType).c_str()), nameRefNode);
else if (thisValue)
mModule->Fail(StrFormat("Unable to find member '%s' in '%s'", findName.c_str(), mModule->TypeToString(thisValue.mType).c_str()), nameRefNode);
else
mModule->Fail("Unable to find member", nameRefNode);
}
}
}
if ((isNullCondLookup) && (mPropDef == NULL))
mResult = GetResult();
if (isCascade)
{
if (outCascadeValue != NULL)
*outCascadeValue = thisValue;
else if (mModule->PreFail())
mModule->Fail("Unexpected cascade operation. Chaining can only be used for method invocations", memberRefExpr->mDotToken);
}
}
void BfExprEvaluator::Visit(BfMemberReferenceExpression* memberRefExpr)
{
DoMemberReference(memberRefExpr, NULL);
}
void BfExprEvaluator::Visit(BfIndexerExpression* indexerExpr)
{
BfTypedValue target;
bool wantStatic = false;
// Try first as a non-static indexer, then as a static indexer
for (int pass = 0; pass < 2; pass++)
{
///
{
SetAndRestoreValue<BfEvalExprFlags> prevFlags(mBfEvalExprFlags, (BfEvalExprFlags)(mBfEvalExprFlags | BfEvalExprFlags_NoLookupError | BfEvalExprFlags_AllowBase), pass == 0);
VisitChild(indexerExpr->mTarget);
}
ResolveGenericType();
target = GetResult(true);
if (target)
break;
if (pass == 0)
{
SetAndRestoreValue<bool> prevIgnoreErrors(mModule->mIgnoreErrors, (mModule->mIgnoreErrors) || (pass == 0));
auto staticType = mModule->ResolveTypeRef(indexerExpr->mTarget, {});
if (staticType != NULL)
{
wantStatic = true;
target.mType = staticType;
break;
}
}
}
if (!target.HasType())
return;
if (target.mType->IsGenericParam())
{
auto genericParamInstance = mModule->GetGenericParamInstance((BfGenericParamType*)target.mType);
if (genericParamInstance->mTypeConstraint != NULL)
target.mType = genericParamInstance->mTypeConstraint;
}
BfCheckedKind checkedKind = BfCheckedKind_NotSet;
bool isInlined = false;
if ((mModule->mAttributeState != NULL) && (mModule->mAttributeState->mCustomAttributes != NULL))
{
if (mModule->mAttributeState->mCustomAttributes->Contains(mModule->mCompiler->mInlineAttributeTypeDef))
{
isInlined = true;
mModule->mAttributeState->mUsed = true;
}
if (mModule->mAttributeState->mCustomAttributes->Contains(mModule->mCompiler->mCheckedAttributeTypeDef))
{
checkedKind = BfCheckedKind_Checked;
mModule->mAttributeState->mUsed = true;
}
if (mModule->mAttributeState->mCustomAttributes->Contains(mModule->mCompiler->mUncheckedAttributeTypeDef))
{
checkedKind = BfCheckedKind_Unchecked;
mModule->mAttributeState->mUsed = true;
}
}
bool isNullCondLookup = (indexerExpr->mOpenBracket != NULL) && (indexerExpr->mOpenBracket->GetToken() == BfToken_QuestionLBracket);
if (isNullCondLookup)
target = SetupNullConditional(target, indexerExpr->mOpenBracket);
if (target.mType->IsVar())
{
mResult = BfTypedValue(mModule->GetDefaultValue(target.mType), target.mType, true);
return;
}
if (target.mType->IsTypeInstance())
{
mIndexerValues.clear();
SizedArray<BfExpression*, 2> argExprs;
BfSizedArray<BfExpression*> sizedArgExprs(indexerExpr->mArguments);
BfResolvedArgs argValues(&sizedArgExprs);
ResolveArgValues(argValues, (BfResolveArgsFlags)(BfResolveArgsFlag_DeferParamEval | BfResolveArgsFlag_FromIndexer));
//exprEvaluator.MatchMethod(elementExpr, NULL, initValue, false, false, "Add", argValues, NULL);
mIndexerValues = argValues.mResolvedArgs;
for (auto& val : mIndexerValues)
if (!val.mTypedValue)
val.mTypedValue = mModule->GetDefaultTypedValue(mModule->mContext->mBfObjectType);
BfMethodMatcher methodMatcher(indexerExpr->mTarget, mModule, "[]", mIndexerValues, NULL);
methodMatcher.mCheckedKind = checkedKind;
//methodMatcher.CheckType(target.mType->ToTypeInstance(), target, false);
BfMethodDef* methodDef = NULL;
auto startCheckTypeInst = target.mType->ToTypeInstance();
for (int pass = 0; pass < 2; pass++)
{
bool isFailurePass = pass == 1;
auto curCheckType = startCheckTypeInst;
while (curCheckType != NULL)
{
BfProtectionCheckFlags protectionCheckFlags = BfProtectionCheckFlag_None;
BfPropertyDef* foundProp = NULL;
BfTypeInstance* foundPropTypeInst = NULL;
int matchedIndexCount = 0;
curCheckType->mTypeDef->PopulateMemberSets();
BfMemberSetEntry* entry;
BfPropertyDef* matchedProp = NULL;
BfPropertyDef* nextProp = NULL;
if (curCheckType->mTypeDef->mPropertySet.TryGetWith(String("[]"), &entry))
nextProp = (BfPropertyDef*)entry->mMemberDef;
while (nextProp != NULL)
{
auto prop = nextProp;
nextProp = nextProp->mNextWithSameName;
//TODO: Match against setMethod (minus last param) if we have no 'get' method
for (auto checkMethod : prop->mMethods)
{
if (checkMethod->mMethodType != BfMethodType_PropertyGetter)
continue;
// For generic params - check interface constraints for an indexer, call that method
BF_ASSERT(!target.mType->IsGenericParam());
if (checkMethod->mIsStatic != wantStatic)
continue;
if (checkMethod->mExplicitInterface != NULL)
continue;
auto autoComplete = GetAutoComplete();
bool wasCapturingMethodMatchInfo = false;
if (autoComplete != NULL)
{
// Set to false to make sure we don't capture method match info from 'params' array creation
wasCapturingMethodMatchInfo = autoComplete->mIsCapturingMethodMatchInfo;
autoComplete->mIsCapturingMethodMatchInfo = false;
}
defer
(
if (autoComplete != NULL)
autoComplete->mIsCapturingMethodMatchInfo = wasCapturingMethodMatchInfo;
);
if ((!isFailurePass) && (!methodMatcher.WantsCheckMethod(protectionCheckFlags, startCheckTypeInst, curCheckType, checkMethod)))
continue;
if (!methodMatcher.IsMemberAccessible(curCheckType, checkMethod->mDeclaringType))
continue;
methodMatcher.mCheckedKind = checkedKind;
methodMatcher.mTarget = target;
methodMatcher.CheckMethod(startCheckTypeInst, curCheckType, checkMethod, false);
if ((methodMatcher.mBestMethodDef == checkMethod) ||
((foundProp == NULL) && (methodMatcher.mBackupMethodDef == checkMethod)))
{
foundPropTypeInst = curCheckType;
foundProp = prop;
matchedIndexCount = (int)checkMethod->mParams.size();
}
}
}
if (foundProp != NULL)
{
mPropSrc = indexerExpr->mOpenBracket;
mPropDef = foundProp;
if (foundProp->mIsStatic)
{
mPropTarget = BfTypedValue(curCheckType);
}
else
{
if (target.mType != foundPropTypeInst)
mPropTarget = mModule->Cast(indexerExpr->mTarget, target, foundPropTypeInst);
else
mPropTarget = target;
}
mOrigPropTarget = mPropTarget;
if (isInlined)
mPropGetMethodFlags = (BfGetMethodInstanceFlags)(mPropGetMethodFlags | BfGetMethodInstanceFlag_ForceInline);
mPropCheckedKind = checkedKind;
if ((target.IsBase()) && (mPropDef->IsVirtual()))
mPropDefBypassVirtual = true;
return;
}
curCheckType = curCheckType->mBaseType;
}
}
mModule->Fail("Unable to find indexer property", indexerExpr->mTarget);
return;
}
bool wantsChecks = checkedKind == BfCheckedKind_Checked;
if (checkedKind == BfCheckedKind_NotSet)
wantsChecks = mModule->GetDefaultCheckedKind() == BfCheckedKind_Checked;
//target.mType = mModule->ResolveGenericType(target.mType);
if (target.mType->IsVar())
{
mResult = target;
return;
}
if ((!target.mType->IsPointer()) && (!target.mType->IsSizedArray()))
{
mModule->Fail("Expected pointer or array type", indexerExpr->mTarget);
return;
}
auto _GetDefaultResult = [&]()
{
return mModule->GetDefaultTypedValue(target.mType->GetUnderlyingType(), false, BfDefaultValueKind_Addr);
};
if (indexerExpr->mArguments.size() != 1)
{
mModule->Fail("Expected single index", indexerExpr->mOpenBracket);
mResult = _GetDefaultResult();
return;
}
if (indexerExpr->mArguments[0] == NULL)
{
mModule->AssertErrorState();
mResult = _GetDefaultResult();
return;
}
bool isUndefIndex = false;
auto indexArgument = mModule->CreateValueFromExpression(indexerExpr->mArguments[0], mModule->GetPrimitiveType(BfTypeCode_IntPtr), BfEvalExprFlags_NoCast);
if (!indexArgument)
return;
if (!indexArgument.mType->IsIntegral())
{
if (indexArgument.mType->IsVar())
{
isUndefIndex = true;
indexArgument = mModule->GetDefaultTypedValue(mModule->GetPrimitiveType(BfTypeCode_IntPtr), false, BfDefaultValueKind_Undef);
}
else
{
indexArgument = mModule->Cast(indexerExpr->mArguments[0], indexArgument, mModule->GetPrimitiveType(BfTypeCode_IntPtr));
if (!indexArgument)
indexArgument = mModule->GetDefaultTypedValue(mModule->GetPrimitiveType(BfTypeCode_IntPtr));
}
}
if (indexArgument.mType->IsPrimitiveType())
{
auto primType = (BfPrimitiveType*)indexArgument.mType;
if ((!primType->IsSigned()) && (primType->mSize < 8))
{
// GEP will always do a signed upcast so we need to cast manually if we are unsigned
indexArgument = BfTypedValue(mModule->mBfIRBuilder->CreateNumericCast(indexArgument.mValue, false, BfTypeCode_IntPtr), mModule->GetPrimitiveType(BfTypeCode_IntPtr));
}
}
mModule->PopulateType(target.mType);
if (target.mType->IsSizedArray())
{
BfSizedArrayType* sizedArrayType = (BfSizedArrayType*)target.mType;
auto underlyingType = sizedArrayType->mElementType;
if (indexArgument.mValue.IsConst())
{
auto indexConst = mModule->mBfIRBuilder->GetConstant(indexArgument.mValue);
if (indexConst->mUInt64 >= (uint64)sizedArrayType->mElementCount)
{
if (!mModule->IsInSpecializedSection())
{
mModule->Fail(StrFormat("Index '%d' is out of bounds for type '%s'", indexConst->mInt32, mModule->TypeToString(target.mType).c_str()), indexerExpr->mArguments[0]);
mResult = _GetDefaultResult();
return;
}
else
{
// Is this any good?
mModule->mBfIRBuilder->CreateUnreachable();
}
}
}
else if (((mModule->HasExecutedOutput()) || (mModule->mIsComptimeModule)) &&
(wantsChecks))
{
if (checkedKind == BfCheckedKind_NotSet)
checkedKind = mModule->GetDefaultCheckedKind();
if (checkedKind == BfCheckedKind_Checked)
{
auto oobBlock = mModule->mBfIRBuilder->CreateBlock("oob", true);
auto contBlock = mModule->mBfIRBuilder->CreateBlock("cont", true);
auto indexType = (BfPrimitiveType*)indexArgument.mType;
if (!mModule->mSystem->DoesLiteralFit(indexType->mTypeDef->mTypeCode, (int64)sizedArrayType->mElementCount))
{
// We need to upsize the index so we can compare it against the larger elementCount
indexType = mModule->GetPrimitiveType(BfTypeCode_IntPtr);
indexArgument = mModule->Cast(indexerExpr->mArguments[0], indexArgument, indexType);
}
auto cmpRes = mModule->mBfIRBuilder->CreateCmpGTE(indexArgument.mValue, mModule->mBfIRBuilder->CreateConst(indexType->mTypeDef->mTypeCode, (uint64)sizedArrayType->mElementCount), false);
mModule->mBfIRBuilder->CreateCondBr(cmpRes, oobBlock, contBlock);
mModule->mBfIRBuilder->SetInsertPoint(oobBlock);
auto internalType = mModule->ResolveTypeDef(mModule->mCompiler->mInternalTypeDef);
auto oobFunc = mModule->GetMethodByName(internalType->ToTypeInstance(), "ThrowIndexOutOfRange");
if (oobFunc.mFunc)
{
/*if (!mModule->mCompiler->mIsResolveOnly)
{
OutputDebugStrF("-OOB %d %d\n", oobFunc.mFunc.mId, oobFunc.mFunc.mFlags);
}*/
if (mModule->mIsComptimeModule)
mModule->mCompiler->mCEMachine->QueueMethod(oobFunc.mMethodInstance, oobFunc.mFunc);
SizedArray<BfIRValue, 1> args;
args.push_back(mModule->GetConstValue(0));
mModule->mBfIRBuilder->CreateCall(oobFunc.mFunc, args);
mModule->mBfIRBuilder->CreateUnreachable();
mModule->mBfIRBuilder->SetInsertPoint(contBlock);
}
else
{
mModule->Fail("System.Internal class must contain method 'ThrowIndexOutOfRange'");
}
}
}
// If this is a 'bag of bytes', we should try hard not to have to make this addressable
if ((!target.IsAddr()) && (!target.mType->IsSizeAligned()))
mModule->MakeAddressable(target);
mModule->PopulateType(underlyingType);
if ((sizedArrayType->IsUndefSizedArray()) || (isUndefIndex))
{
mResult = mModule->GetDefaultTypedValue(underlyingType, false, BfDefaultValueKind_Addr);
}
else if (sizedArrayType->IsValuelessType())
{
if (underlyingType->IsValuelessType())
mResult = BfTypedValue(mModule->mBfIRBuilder->GetFakeVal(), underlyingType, true);
else
{
mResult = mModule->GetDefaultTypedValue(underlyingType, false, BfDefaultValueKind_Addr);
}
}
else if (target.IsAddr())
{
if (target.mType->IsSizeAligned())
{
auto gepResult = mModule->mBfIRBuilder->CreateInBoundsGEP(target.mValue, mModule->GetConstValue(0), indexArgument.mValue);
mResult = BfTypedValue(gepResult, underlyingType, target.IsReadOnly() ? BfTypedValueKind_ReadOnlyAddr : BfTypedValueKind_Addr);
}
else
{
auto indexResult = mModule->CreateIndexedValue(underlyingType, target.mValue, indexArgument.mValue);
mResult = BfTypedValue(indexResult, underlyingType, target.IsReadOnly() ? BfTypedValueKind_ReadOnlyAddr : BfTypedValueKind_Addr);
}
}
else
{
if ((!target.mValue.IsConst()) && (!indexArgument.mValue.IsConst()))
{
mModule->Fail("Unable to index value", indexerExpr->mTarget);
return;
}
mModule->mBfIRBuilder->PopulateType(target.mType);
auto gepResult = mModule->mBfIRBuilder->CreateExtractValue(target.mValue, indexArgument.mValue);
if ((underlyingType->IsString()) || (underlyingType->IsPointer()))
{
auto resultConst = mModule->mBfIRBuilder->GetConstant(gepResult);
if ((resultConst != NULL) && (resultConst->mTypeCode == BfTypeCode_Int32))
{
int strId = resultConst->mInt32;
const StringImpl& str = mModule->mContext->mStringObjectIdMap[strId].mString;
if (underlyingType->IsString())
gepResult = mModule->GetStringObjectValue(str, false);
else
gepResult = mModule->GetStringCharPtr(strId);
}
}
mResult = BfTypedValue(gepResult, underlyingType, BfTypedValueKind_Value);
}
}
else
{
target = mModule->LoadValue(target);
BfPointerType* pointerType = (BfPointerType*)target.mType;
auto underlyingType = pointerType->mElementType;
mModule->mBfIRBuilder->PopulateType(underlyingType);
if (isUndefIndex)
{
mResult = mModule->GetDefaultTypedValue(underlyingType, false, BfDefaultValueKind_Addr);
}
else
{
BfIRValue result = mModule->CreateIndexedValue(underlyingType, target.mValue, indexArgument.mValue);
mResult = BfTypedValue(result, underlyingType, true);
}
}
}
void BfExprEvaluator::Visit(BfUnaryOperatorExpression* unaryOpExpr)
{
BfAutoParentNodeEntry autoParentNodeEntry(mModule, unaryOpExpr);
PerformUnaryOperation(unaryOpExpr->mExpression, unaryOpExpr->mOp, unaryOpExpr->mOpToken, BfUnaryOpFlag_None);
}
void BfExprEvaluator::PerformUnaryOperation(BfExpression* unaryOpExpr, BfUnaryOp unaryOp, BfTokenNode* opToken, BfUnaryOpFlags opFlags)
{
if ((unaryOpExpr == NULL) && (unaryOp == BfUnaryOp_PartialRangeThrough))
{
PerformBinaryOperation(NULL, NULL, BfBinaryOp_ClosedRange, opToken, BfBinOpFlag_None);
return;
}
///
{
// If this is a cast, we don't want the value to be coerced before the unary operator is applied.
// WAIT: Why not?
//SetAndRestoreValue<BfType*> prevExpectingType(mExpectingType, NULL);
BfType* prevExpedcting = mExpectingType;
switch (unaryOp)
{
case BfUnaryOp_Negate:
case BfUnaryOp_Positive:
case BfUnaryOp_InvertBits:
// If we're expecting an int64 or uint64 then just leave the type as unknown
if ((mExpectingType != NULL) && (mExpectingType->IsInteger()) && (mExpectingType->mSize == 8))
mExpectingType = NULL;
// Otherwise keep expecting type
break;
default:
mExpectingType = NULL;
}
VisitChild(unaryOpExpr);
mExpectingType = prevExpedcting;
}
BfExprEvaluator::PerformUnaryOperation_OnResult(unaryOpExpr, unaryOp, opToken, opFlags);
}
BfTypedValue BfExprEvaluator::PerformUnaryOperation_TryOperator(const BfTypedValue& inValue, BfExpression* unaryOpExpr, BfUnaryOp unaryOp, BfTokenNode* opToken, BfUnaryOpFlags opFlags)
{
if ((!inValue.mType->IsTypeInstance()) && (!inValue.mType->IsGenericParam()))
return BfTypedValue();
SizedArray<BfResolvedArg, 1> args;
BfResolvedArg resolvedArg;
resolvedArg.mTypedValue = inValue;
args.push_back(resolvedArg);
BfMethodMatcher methodMatcher(opToken, mModule, "", args, NULL);
methodMatcher.mBfEvalExprFlags = BfEvalExprFlags_NoAutoComplete;
methodMatcher.mAllowImplicitRef = true;
BfBaseClassWalker baseClassWalker(inValue.mType, NULL, mModule);
BfUnaryOp findOp = unaryOp;
bool isPostOp = false;
if (findOp == BfUnaryOp_PostIncrement)
{
findOp = BfUnaryOp_Increment;
isPostOp = true;
}
if (findOp == BfUnaryOp_PostDecrement)
{
findOp = BfUnaryOp_Decrement;
isPostOp = true;
}
bool isConstraintCheck = ((opFlags & BfUnaryOpFlag_IsConstraintCheck) != 0);
BfType* operatorConstraintReturnType = NULL;
BfType* bestSelfType = NULL;
while (true)
{
auto entry = baseClassWalker.Next();
auto checkType = entry.mTypeInstance;
if (checkType == NULL)
break;
for (auto operatorDef : checkType->mTypeDef->mOperators)
{
if (operatorDef->mOperatorDeclaration->mUnaryOp == findOp)
{
if (!methodMatcher.IsMemberAccessible(checkType, operatorDef->mDeclaringType))
continue;
int prevArgSize = (int)args.mSize;
if (!operatorDef->mIsStatic)
{
// Try without arg
args.mSize = 0;
}
if (isConstraintCheck)
{
auto returnType = mModule->CheckOperator(checkType, operatorDef, inValue, BfTypedValue());
if (returnType != NULL)
{
operatorConstraintReturnType = returnType;
methodMatcher.mBestMethodDef = operatorDef;
}
}
else
{
if (methodMatcher.CheckMethod(NULL, checkType, operatorDef, false))
methodMatcher.mSelfType = entry.mSrcType;
}
args.mSize = prevArgSize;
}
}
}
methodMatcher.FlushAmbiguityError();
if (methodMatcher.mBestMethodDef == NULL)
{
// Check method generic constraints
if ((mModule->mCurMethodInstance != NULL) && (mModule->mCurMethodInstance->mIsUnspecialized) && (mModule->mCurMethodInstance->mMethodInfoEx != NULL))
{
for (int genericParamIdx = 0; genericParamIdx < mModule->mCurMethodInstance->mMethodInfoEx->mGenericParams.size(); genericParamIdx++)
{
auto genericParam = mModule->mCurMethodInstance->mMethodInfoEx->mGenericParams[genericParamIdx];
for (auto& opConstraint : genericParam->mOperatorConstraints)
{
if (opConstraint.mUnaryOp == findOp)
{
if (mModule->CanCast(args[0].mTypedValue, opConstraint.mRightType, isConstraintCheck ? BfCastFlags_IsConstraintCheck : BfCastFlags_None))
{
return BfTypedValue(mModule->mBfIRBuilder->GetFakeVal(), genericParam->mExternType);
}
}
}
}
}
// Check type generic constraints
if ((mModule->mCurTypeInstance->IsGenericTypeInstance()) && (mModule->mCurTypeInstance->IsUnspecializedType()))
{
auto genericTypeInst = (BfTypeInstance*)mModule->mCurTypeInstance;
for (int genericParamIdx = 0; genericParamIdx < genericTypeInst->mGenericTypeInfo->mGenericParams.size(); genericParamIdx++)
{
auto genericParam = mModule->GetGenericTypeParamInstance(genericParamIdx);
for (auto& opConstraint : genericParam->mOperatorConstraints)
{
if (opConstraint.mUnaryOp == findOp)
{
if (mModule->CanCast(args[0].mTypedValue, opConstraint.mRightType, isConstraintCheck ? BfCastFlags_IsConstraintCheck : BfCastFlags_None))
{
return BfTypedValue(mModule->mBfIRBuilder->GetFakeVal(), genericParam->mExternType);
}
}
}
}
}
return BfTypedValue();
}
if ((!baseClassWalker.mMayBeFromInterface) && (opToken != NULL))
mModule->SetElementType(opToken, BfSourceElementType_Method);
auto methodDef = methodMatcher.mBestMethodDef;
auto autoComplete = GetAutoComplete();
if ((autoComplete != NULL) && (autoComplete->IsAutocompleteNode(opToken)))
{
auto operatorDecl = BfNodeDynCast<BfOperatorDeclaration>(methodDef->mMethodDeclaration);
if ((operatorDecl != NULL) && (operatorDecl->mOpTypeToken != NULL))
autoComplete->SetDefinitionLocation(operatorDecl->mOpTypeToken);
}
SizedArray<BfExpression*, 2> argSrcs;
argSrcs.push_back(unaryOpExpr);
BfTypedValue targetVal = args[0].mTypedValue;
BfTypedValue postOpVal;
if (isPostOp)
postOpVal = mModule->LoadValue(targetVal);
BfTypedValue callTarget;
if (!methodMatcher.mBestMethodDef->mIsStatic)
{
callTarget = targetVal;
args.Clear();
}
BfTypedValue result;
if (isConstraintCheck)
{
result = BfTypedValue(mModule->mBfIRBuilder->GetFakeVal(), operatorConstraintReturnType);
}
else
{
SetAndRestoreValue<BfEvalExprFlags> prevFlags(mBfEvalExprFlags, (BfEvalExprFlags)(mBfEvalExprFlags | BfEvalExprFlags_NoAutoComplete));
result = CreateCall(&methodMatcher, callTarget);
}
if (!methodMatcher.mBestMethodDef->mIsStatic)
{
if (!isPostOp)
result = mModule->LoadValue(targetVal);
}
else if ((result.mType != NULL) && (methodMatcher.mSelfType != NULL) && (result.mType->IsSelf()))
{
BF_ASSERT(mModule->IsInGeneric());
result = mModule->GetDefaultTypedValue(methodMatcher.mSelfType);
}
if ((methodMatcher.mBestMethodInstance) &&
((findOp == BfUnaryOp_Increment) || (findOp == BfUnaryOp_Decrement)))
{
if (methodMatcher.mBestMethodInstance.mMethodInstance->mIsIntrinsic)
{
if (args[0].mTypedValue.IsAddr())
mModule->mBfIRBuilder->CreateStore(result.mValue, args[0].mTypedValue.mValue);
else
{
mModule->AssertErrorState();
}
}
else
{
if (!result.mType->IsValuelessType())
{
if (targetVal.IsAddr())
{
result = mModule->LoadValue(result);
mModule->mBfIRBuilder->CreateStore(result.mValue, targetVal.mValue);
}
}
}
}
if (postOpVal)
result = postOpVal;
return result;
}
void BfExprEvaluator::PerformUnaryOperation_OnResult(BfExpression* unaryOpExpr, BfUnaryOp unaryOp, BfTokenNode* opToken, BfUnaryOpFlags opFlags)
{
BfAstNode* propSrc = mPropSrc;
BfTypedValue propTarget = mPropTarget;
BfPropertyDef* propDef = mPropDef;
SizedArray<BfResolvedArg, 2> indexerVals = mIndexerValues;
BfTypedValue writeToProp;
GetResult();
if (!mResult)
return;
if (mResult.mType->IsRef())
mResult.mType = mResult.mType->GetUnderlyingType();
if (mResult.mType->IsVar())
{
mResult = BfTypedValue(mModule->GetDefaultValue(mResult.mType), mResult.mType);
return;
}
if (BfCanOverloadOperator(unaryOp))
{
auto opResult = PerformUnaryOperation_TryOperator(mResult, unaryOpExpr, unaryOp, opToken, opFlags);
if (opResult)
{
mResult = opResult;
return;
}
}
bool numericFail = false;
switch (unaryOp)
{
case BfUnaryOp_Not:
{
CheckResultForReading(mResult);
auto boolType = mModule->GetPrimitiveType(BfTypeCode_Boolean);
auto value = mModule->LoadValue(mResult);
value = mModule->Cast(unaryOpExpr, value, boolType);
if (!value)
{
mResult = BfTypedValue();
return;
}
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateNot(value.mValue), boolType);
}
break;
case BfUnaryOp_Positive:
return;
case BfUnaryOp_Negate:
{
CheckResultForReading(mResult);
auto value = mModule->LoadValue(mResult);
if (!value)
{
mResult = BfTypedValue();
return;
}
BfType* origType = value.mType;
if (value.mType->IsTypedPrimitive())
value.mType = value.mType->GetUnderlyingType();
if (value.mType->IsIntegral())
{
auto primType = (BfPrimitiveType*)value.mType;
auto wantType = primType;
auto constant = mModule->mBfIRBuilder->GetConstant(value.mValue);
if ((constant != NULL) && (mModule->mBfIRBuilder->IsInt(constant->mTypeCode)))
{
if ((primType->mTypeDef->mTypeCode == BfTypeCode_UInt32) && (constant->mInt64 == 0x80000000LL))
{
mResult = BfTypedValue(mModule->GetConstValue32(-0x80000000LL), mModule->GetPrimitiveType(BfTypeCode_Int32));
return;
}
else if ((primType->mTypeDef->mTypeCode == BfTypeCode_UInt64) && (constant->mInt64 == 0x8000000000000000LL))
{
mResult = BfTypedValue(mModule->GetConstValue64(-0x8000000000000000LL), mModule->GetPrimitiveType(BfTypeCode_Int64));
return;
}
}
/*if (auto constantInt = dyn_cast<ConstantInt>((Value*)value.mValue))
{
int64 i64Val = constantInt->getSExtValue();
// This is a special case where the user entered -0x80000000 (maxint) but we thought "0x80000000" was a uint in the parser
// which would get upcasted to an int64 for this negate. Properly bring back down to an int32
if ((primType->mTypeDef->mTypeCode == BfTypeCode_UInt32) && (i64Val == -0x80000000LL))
{
mResult = BfTypedValue(mModule->GetConstValue((int)i64Val), mModule->GetPrimitiveType(BfTypeCode_Int32));
return;
}
}*/
if (!primType->IsSigned())
{
if (primType->mSize == 1)
wantType = mModule->GetPrimitiveType(BfTypeCode_Int16);
else if (primType->mSize == 2)
wantType = mModule->GetPrimitiveType(BfTypeCode_Int32);
else if (primType->mSize == 4)
wantType = mModule->GetPrimitiveType(BfTypeCode_Int64);
else
mModule->Fail("Operator '-' cannot be applied to uint64", opToken);
}
if (primType != wantType)
{
value = mModule->Cast(unaryOpExpr, value, wantType, BfCastFlags_Explicit);
if (!value)
{
mResult = BfTypedValue();
return;
}
}
if (origType->mSize == wantType->mSize) // Allow negative of primitive typed but not if we had to upsize
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateNeg(value.mValue), origType);
else
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateNeg(value.mValue), wantType);
}
else if (value.mType->IsFloat())
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateNeg(value.mValue), origType);
else
numericFail = true;
}
break;
case BfUnaryOp_InvertBits:
{
CheckResultForReading(mResult);
auto value = mModule->LoadValue(mResult);
if (!value)
return;
bool isInteger = value.mType->IsIntegral();
if (value.mType->IsTypedPrimitive())
isInteger = value.mType->GetUnderlyingType()->IsIntegral();
if (!isInteger)
{
mResult = BfTypedValue();
mModule->Fail("Operator can only be used on integer types", opToken);
return;
}
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateNot(value.mValue), value.mType);
}
break;
case BfUnaryOp_AddressOf:
{
MarkResultUsed();
mModule->FixIntUnknown(mResult);
mModule->PopulateType(mResult.mType);
auto ptrType = mModule->CreatePointerType(mResult.mType);
if (mResult.mType->IsValuelessType())
{
// Sentinel value
auto val = mModule->mBfIRBuilder->CreateIntToPtr(mModule->mBfIRBuilder->CreateConst(BfTypeCode_IntPtr, 1), mModule->mBfIRBuilder->MapType(ptrType));
mResult = BfTypedValue(val, ptrType);
}
else if (!CheckModifyResult(mResult, unaryOpExpr, "take address of", false, true))
{
if (!mResult.IsAddr())
mResult = mModule->MakeAddressable(mResult);
mResult = BfTypedValue(mResult.mValue, ptrType, false);
}
else
mResult = BfTypedValue(mResult.mValue, ptrType, false);
}
break;
case BfUnaryOp_Dereference:
{
CheckResultForReading(mResult);
if (!mResult.mType->IsPointer())
{
mResult = BfTypedValue();
mModule->Fail("Cannot dereference non-pointer type", unaryOpExpr);
return;
}
if (mResult.mValue.IsConst())
{
auto constant = mModule->mBfIRBuilder->GetConstant(mResult.mValue);
bool isNull = constant->mTypeCode == BfTypeCode_NullPtr;
if (constant->mConstType == BfConstType_ExtractValue)
{
auto constExtract = (BfConstantExtractValue*)constant;
auto targetConst = mModule->mBfIRBuilder->GetConstantById(constExtract->mTarget);
if (targetConst->mConstType == BfConstType_AggZero)
isNull = true;
}
if (isNull)
{
mModule->Warn(0, "Cannot dereference a null pointer", unaryOpExpr);
mResult = mModule->GetDefaultTypedValue(mResult.mType, false, BfDefaultValueKind_Addr);
mResult = mModule->LoadValue(mResult);
}
}
auto derefTarget = mModule->LoadValue(mResult);
BfPointerType* pointerType = (BfPointerType*)derefTarget.mType;
auto resolvedType = mModule->ResolveType(pointerType->mElementType);
if (resolvedType == NULL)
{
mResult = BfTypedValue();
return;
}
mModule->PopulateType(resolvedType);
if (resolvedType->IsValuelessType())
mResult = BfTypedValue(mModule->mBfIRBuilder->GetFakeVal(), resolvedType, true);
else
mResult = BfTypedValue(derefTarget.mValue, resolvedType, true);
}
break;
case BfUnaryOp_PostIncrement:
case BfUnaryOp_Increment:
{
CheckResultForReading(mResult);
auto ptr = mResult;
//if ((propDef == NULL) && (!mModule->CheckModifyValue(ptr, opToken)))
if ((propDef == NULL) && (!CheckModifyResult(ptr, opToken, "increment")))
return;
BfTypedValue origTypedVal = mModule->LoadValue(ptr, NULL, mIsVolatileReference);
BfIRValue origVal = origTypedVal.mValue;
BfIRValue constValue = mModule->GetConstValue(1, ptr.mType);
BfIRValue resultValue;
if (ptr.mType->IsPointer())
{
BfPointerType* ptrType = (BfPointerType*)ptr.mType;
BfType* intPtrType = mModule->GetPrimitiveType(BfTypeCode_IntPtr);
constValue = mModule->GetConstValue(ptrType->mElementType->GetStride(), intPtrType);
auto i8PtrType = mModule->mBfIRBuilder->GetPointerTo(mModule->mBfIRBuilder->GetPrimitiveType(BfTypeCode_Int8));
BfIRValue origPtrValue = mModule->mBfIRBuilder->CreateBitCast(origVal, i8PtrType);
BfIRValue newPtrValue = mModule->mBfIRBuilder->CreateInBoundsGEP(origPtrValue, constValue);
resultValue = mModule->mBfIRBuilder->CreateBitCast(newPtrValue, mModule->mBfIRBuilder->MapType(ptr.mType));
}
else
{
constValue = mModule->GetConstValue(1, ptr.mType);
if (!constValue)
{
numericFail = true;
break;
}
if ((ptr.mType->IsIntegral()) || (ptr.mType->IsEnum()) || (ptr.mType->IsFloat()))
{
resultValue = mModule->mBfIRBuilder->CreateAdd(origVal, constValue/*, "inc"*/);
}
else
{
numericFail = true;
break;
}
}
if ((propDef != NULL) && (!ptr.IsAddr()))
writeToProp = BfTypedValue(resultValue, ptr.mType);
else
mModule->mBfIRBuilder->CreateStore(resultValue, ptr.mValue, mIsVolatileReference);
if (unaryOp == BfUnaryOp_PostIncrement)
mResult = BfTypedValue(origVal, ptr.mType, false);
else
mResult = BfTypedValue(resultValue, ptr.mType, false);
}
break;
case BfUnaryOp_PostDecrement:
case BfUnaryOp_Decrement:
{
CheckResultForReading(mResult);
auto ptr = mResult;
//if ((propDef == NULL) && (!mModule->CheckModifyValue(ptr, opToken)))
//return;
if ((propDef == NULL) && (!CheckModifyResult(ptr, opToken, "decrement")))
return;
BfTypedValue origTypedVal = mModule->LoadValue(ptr, NULL, mIsVolatileReference);
BfIRValue origVal = origTypedVal.mValue;
BfIRValue constValue = mModule->GetConstValue(1, ptr.mType);
BfIRValue resultValue;
if (ptr.mType->IsPointer())
{
BfPointerType* ptrType = (BfPointerType*)ptr.mType;
BfType* intPtrType = mModule->GetPrimitiveType(BfTypeCode_IntPtr);
constValue = mModule->GetConstValue(-ptrType->mElementType->GetStride(), intPtrType);
auto i8PtrType = mModule->mBfIRBuilder->GetPointerTo(mModule->mBfIRBuilder->GetPrimitiveType(BfTypeCode_Int8));
BfIRValue origPtrValue = mModule->mBfIRBuilder->CreateBitCast(origVal, i8PtrType);
BfIRValue newPtrValue = mModule->mBfIRBuilder->CreateInBoundsGEP(origPtrValue, constValue);
resultValue = mModule->mBfIRBuilder->CreateBitCast(newPtrValue, mModule->mBfIRBuilder->MapType(ptr.mType));
}
else
{
BfIRValue constValue = mModule->GetConstValue(1, ptr.mType);
if (!constValue)
{
numericFail = true;
break;
}
if ((ptr.mType->IsIntegral()) || (ptr.mType->IsEnum()))
{
resultValue = mModule->mBfIRBuilder->CreateSub(origVal, constValue);
}
else if (ptr.mType->IsFloat())
{
resultValue = mModule->mBfIRBuilder->CreateSub(origVal, constValue);
}
else
{
numericFail = true;
break;
}
}
if ((propDef != NULL) && (!ptr.IsAddr()))
writeToProp = BfTypedValue(resultValue, ptr.mType);
else
mModule->mBfIRBuilder->CreateStore(resultValue, ptr.mValue, mIsVolatileReference);
if (unaryOp == BfUnaryOp_PostDecrement)
mResult = BfTypedValue(origVal, ptr.mType, false);
else
mResult = BfTypedValue(resultValue, ptr.mType, false);
}
break;
case BfUnaryOp_Ref:
case BfUnaryOp_Mut:
{
if (mAllowReadOnlyReference)
{
if (mResult.mKind == BfTypedValueKind_ReadOnlyAddr)
mResult.mKind = BfTypedValueKind_Addr;
}
CheckResultForReading(mResult);
if ((unaryOp == BfUnaryOp_Mut) && (!mResult.mType->IsComposite()) && (!mResult.mType->IsGenericParam()))
{
// Non-composite types are already mutable, leave them alone...
break;
}
if ((unaryOp != BfUnaryOp_Mut) || (mResult.mKind != BfTypedValueKind_MutableValue))
{
if (!CheckModifyResult(mResult, unaryOpExpr, StrFormat("use '%s' on", BfGetOpName(unaryOp)).c_str()))
{
// Just leave the non-ref version in mResult
return;
}
}
if ((mBfEvalExprFlags & BfEvalExprFlags_AllowRefExpr) == 0)
{
mResult = BfTypedValue();
mModule->Fail(StrFormat("Invalid usage of '%s' expression", BfGetOpName(unaryOp)), opToken);
return;
}
ResolveGenericType();
if (mResult.mType->IsVar())
break;
mResult = BfTypedValue(mResult.mValue, mModule->CreateRefType(mResult.mType, (unaryOp == BfUnaryOp_Ref) ? BfRefType::RefKind_Ref : BfRefType::RefKind_Mut));
}
break;
case BfUnaryOp_Out:
{
if (!CheckModifyResult(mResult, unaryOpExpr, "use 'out' on"))
{
// Just leave the non-ref version in mResult
return;
}
if ((mBfEvalExprFlags & BfEvalExprFlags_AllowOutExpr) == 0)
{
mModule->Fail("Invalid usage of 'out' expression", opToken);
return;
}
if (mInsidePendingNullable)
{
// 'out' inside null conditionals never actually causes a definite assignment...
}
else
MarkResultAssigned();
MarkResultUsed();
ResolveGenericType();
if (mResult.mType->IsVar())
break;
mResult = BfTypedValue(mResult.mValue, mModule->CreateRefType(mResult.mType, BfRefType::RefKind_Out));
}
break;
case BfUnaryOp_Params:
{
bool allowParams = (mBfEvalExprFlags & BfEvalExprFlags_AllowParamsExpr) != 0;
if (allowParams)
{
if ((mResultLocalVar != NULL) && (mResultLocalVar->mCompositeCount >= 0)) // Delegate params
{
allowParams = true;
}
else
{
auto isValid = false;
auto genericTypeInst = mResult.mType->ToGenericTypeInstance();
if ((genericTypeInst != NULL) && (genericTypeInst->IsInstanceOf(mModule->mCompiler->mSpanTypeDef)))
isValid = true;
else if (mResult.mType->IsArray())
isValid = true;
if (!isValid)
{
mModule->Fail(StrFormat("A 'params' expression cannot be used on type '%s'", mModule->TypeToString(mResult.mType).c_str()), opToken);
}
}
}
if (allowParams)
{
mResult = mModule->LoadValue(mResult);
if (mResult.IsSplat())
mResult.mKind = BfTypedValueKind_ParamsSplat;
else
mResult.mKind = BfTypedValueKind_Params;
}
else
{
mModule->Fail("Illegal use of 'params' expression", opToken);
}
}
break;
case BfUnaryOp_Cascade:
{
mModule->Fail("Illegal use of argument cascade expression", opToken);
}
break;
case BfUnaryOp_FromEnd:
{
CheckResultForReading(mResult);
auto value = mModule->Cast(unaryOpExpr, mResult, mModule->GetPrimitiveType(BfTypeCode_IntPtr));
value = mModule->LoadValue(value);
if (value)
{
auto indexType = mModule->ResolveTypeDef(mModule->mCompiler->mIndexTypeDef);
auto alloca = mModule->CreateAlloca(indexType);
mModule->mBfIRBuilder->CreateStore(value.mValue, mModule->mBfIRBuilder->CreateInBoundsGEP(mModule->mBfIRBuilder->CreateInBoundsGEP(alloca, 0, 1), 0, 1));
mModule->mBfIRBuilder->CreateStore(mModule->mBfIRBuilder->CreateConst(BfTypeCode_Int8, 1), mModule->mBfIRBuilder->CreateInBoundsGEP(alloca, 0, 2));
mResult = BfTypedValue(alloca, indexType, BfTypedValueKind_Addr);
}
}
break;
case BfUnaryOp_PartialRangeUpTo:
PerformBinaryOperation(NULL, unaryOpExpr, BfBinaryOp_Range, opToken, BfBinOpFlag_None);
break;
case BfUnaryOp_PartialRangeThrough:
PerformBinaryOperation(NULL, unaryOpExpr, BfBinaryOp_ClosedRange, opToken, BfBinOpFlag_None);
break;
case BfUnaryOp_PartialRangeFrom:
PerformBinaryOperation(unaryOpExpr, NULL, BfBinaryOp_ClosedRange, opToken, BfBinOpFlag_None);
break;
default:
mModule->Fail(StrFormat("Illegal use of '%s' unary operator", BfGetOpName(unaryOp)), unaryOpExpr);
break;
}
if (numericFail)
{
if (opToken == NULL)
{
BF_ASSERT(mModule->mBfIRBuilder->mIgnoreWrites);
}
else if ((mResult.mType != NULL) && (mResult.mType->IsInterface()))
{
mModule->Fail(
StrFormat("Operator '%s' cannot be used on interface '%s'. Consider rewriting using generics and use this interface as a generic constraint.",
BfTokenToString(opToken->mToken), mModule->TypeToString(mResult.mType).c_str()), opToken);
}
else
{
mModule->Fail(
StrFormat("Operator '%s' cannot be used because type '%s' is neither a numeric type nor does it define an applicable operator overload",
BfTokenToString(opToken->mToken), mModule->TypeToString(mResult.mType).c_str()), opToken);
}
mResult = BfTypedValue();
}
if (writeToProp)
{
auto setMethod = GetPropertyMethodDef(propDef, BfMethodType_PropertySetter, mPropCheckedKind, mPropTarget);
if (setMethod == NULL)
{
mModule->Fail("Property has no setter", propSrc);
return;
}
auto methodInstance = GetPropertyMethodInstance(setMethod);
if (!methodInstance.mFunc)
return;
if (propSrc != NULL)
mModule->UpdateExprSrcPos(propSrc);
SizedArray<BfIRValue, 4> args;
if (!setMethod->mIsStatic)
PushThis(propSrc, propTarget, methodInstance.mMethodInstance, args);
//args.push_back(propTarget.mValue);
for (int paramIdx = 0; paramIdx < (int)indexerVals.size(); paramIdx++)
{
auto val = mModule->Cast(propSrc, indexerVals[paramIdx].mTypedValue, methodInstance.mMethodInstance->GetParamType(paramIdx));
if (!val)
return;
PushArg(val, args);
}
PushArg(writeToProp, args);
CreateCall(opToken, methodInstance.mMethodInstance, methodInstance.mFunc, false, args);
}
}
void BfExprEvaluator::PerformBinaryOperation(BfExpression* leftExpression, BfExpression* rightExpression, BfBinaryOp binaryOp, BfTokenNode* opToken, BfBinOpFlags flags, BfTypedValue leftValue)
{
BfTypedValue rightValue;
if (rightExpression == NULL)
{
mModule->AssertErrorState();
return;
}
if (!leftValue)
{
if (!rightValue)
mModule->CreateValueFromExpression(rightExpression, mExpectingType, (BfEvalExprFlags)(mBfEvalExprFlags & BfEvalExprFlags_InheritFlags));
return;
}
if (leftValue.mType->IsRef())
leftValue.mType = leftValue.mType->GetUnderlyingType();
if ((binaryOp == BfBinaryOp_ConditionalAnd) || (binaryOp == BfBinaryOp_ConditionalOr))
{
if (mModule->mCurMethodState->mDeferredLocalAssignData != NULL)
mModule->mCurMethodState->mDeferredLocalAssignData->BreakExtendChain();
if (mModule->mCurMethodState->mCurScope->mScopeKind == BfScopeKind_StatementTarget)
mModule->mCurMethodState->mCurScope->mScopeKind = BfScopeKind_StatementTarget_Conditional;
bool isAnd = binaryOp == BfBinaryOp_ConditionalAnd;
auto boolType = mModule->GetPrimitiveType(BfTypeCode_Boolean);
leftValue = mModule->Cast(leftExpression, leftValue, boolType);
if (!leftValue)
{
mModule->CreateValueFromExpression(rightExpression);
return;
}
auto prevBB = mModule->mBfIRBuilder->GetInsertBlock();
SetAndRestoreValue<bool> prevInCondBlock(mModule->mCurMethodState->mInConditionalBlock, true);
// The RHS is not guaranteed to be executed
if ((mModule->mCurMethodState->mDeferredLocalAssignData != NULL) &&
(mModule->mCurMethodState->mDeferredLocalAssignData->mIsIfCondition))
mModule->mCurMethodState->mDeferredLocalAssignData->mIfMayBeSkipped = true;
if (isAnd)
{
bool isConstBranch = false;
bool constResult = false;
if (leftValue.mValue.IsConst())
{
auto constValue = mModule->mBfIRBuilder->GetConstant(leftValue.mValue);
if (constValue->mTypeCode == BfTypeCode_Boolean)
{
isConstBranch = true;
constResult = constValue->mBool;
}
}
if (isConstBranch)
{
if ((constResult) || (HasVariableDeclaration(rightExpression)))
{
// Only right side
rightValue = mModule->CreateValueFromExpression(rightExpression, boolType, (BfEvalExprFlags)(mBfEvalExprFlags & BfEvalExprFlags_InheritFlags));
mResult = rightValue;
}
else
{
// Always false
SetAndRestoreValue<bool> prevIgnoreWrites(mModule->mBfIRBuilder->mIgnoreWrites, true);
rightValue = mModule->CreateValueFromExpression(rightExpression, boolType, (BfEvalExprFlags)(mBfEvalExprFlags & BfEvalExprFlags_InheritFlags));
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateConst(BfTypeCode_Boolean, 0), boolType);
}
}
else
{
auto rhsBB = mModule->mBfIRBuilder->CreateBlock("land.rhs");
auto endBB = mModule->mBfIRBuilder->CreateBlock("land.end");
// This makes any 'scope' allocs be dyn since we aren't sure if this will be short-circuited
SetAndRestoreValue<bool> prevIsConditional(mModule->mCurMethodState->mCurScope->mIsConditional, true);
mModule->mBfIRBuilder->CreateCondBr(leftValue.mValue, rhsBB, endBB);
mModule->AddBasicBlock(rhsBB);
rightValue = mModule->CreateValueFromExpression(rightExpression, boolType, (BfEvalExprFlags)(mBfEvalExprFlags & BfEvalExprFlags_InheritFlags));
mModule->mBfIRBuilder->CreateBr(endBB);
auto endRhsBB = mModule->mBfIRBuilder->GetInsertBlock();
mModule->AddBasicBlock(endBB);
auto phi = mModule->mBfIRBuilder->CreatePhi(mModule->mBfIRBuilder->MapType(boolType), 2);
mModule->mBfIRBuilder->AddPhiIncoming(phi, mModule->GetConstValue(0, boolType), prevBB);
if (rightValue)
mModule->mBfIRBuilder->AddPhiIncoming(phi, rightValue.mValue, endRhsBB);
mResult = BfTypedValue(phi, boolType);
}
}
else
{
// Put variables in here into a 'possibly assigned' but never commit it.
// Because if we had "if ((Get(out a)) || (GetOther(out a))" then the LHS would already set it as defined, so
// the RHS is inconsequential
BfDeferredLocalAssignData deferredLocalAssignData;
deferredLocalAssignData.ExtendFrom(mModule->mCurMethodState->mDeferredLocalAssignData, false);
deferredLocalAssignData.mVarIdBarrier = mModule->mCurMethodState->GetRootMethodState()->mCurLocalVarId;
SetAndRestoreValue<BfDeferredLocalAssignData*> prevDLA(mModule->mCurMethodState->mDeferredLocalAssignData, &deferredLocalAssignData);
bool isConstBranch = false;
bool constResult = false;
if (leftValue.mValue.IsConst())
{
auto constValue = mModule->mBfIRBuilder->GetConstant(leftValue.mValue);
if (constValue->mTypeCode == BfTypeCode_Boolean)
{
isConstBranch = true;
constResult = constValue->mBool;
}
}
if (isConstBranch)
{
if ((constResult) && (!HasVariableDeclaration(rightExpression)))
{
// Always true
SetAndRestoreValue<bool> prevIgnoreWrites(mModule->mBfIRBuilder->mIgnoreWrites, true);
rightValue = mModule->CreateValueFromExpression(rightExpression, boolType, (BfEvalExprFlags)(mBfEvalExprFlags & BfEvalExprFlags_InheritFlags));
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateConst(BfTypeCode_Boolean, 1), boolType);
}
else
{
// Only right side
rightValue = mModule->CreateValueFromExpression(rightExpression, boolType, (BfEvalExprFlags)(mBfEvalExprFlags & BfEvalExprFlags_InheritFlags));
mResult = rightValue;
}
}
else
{
auto rhsBB = mModule->mBfIRBuilder->CreateBlock("lor.rhs");
auto endBB = mModule->mBfIRBuilder->CreateBlock("lor.end");
// This makes any 'scope' allocs be dyn since we aren't sure if this will be short-circuited
SetAndRestoreValue<bool> prevIsConditional(mModule->mCurMethodState->mCurScope->mIsConditional, true);
mModule->mBfIRBuilder->CreateCondBr(leftValue.mValue, endBB, rhsBB);
mModule->AddBasicBlock(rhsBB);
rightValue = mModule->CreateValueFromExpression(rightExpression, boolType, (BfEvalExprFlags)(mBfEvalExprFlags & BfEvalExprFlags_InheritFlags));
mModule->mBfIRBuilder->CreateBr(endBB);
auto endRhsBB = mModule->mBfIRBuilder->GetInsertBlock();
mModule->AddBasicBlock(endBB);
auto phi = mModule->mBfIRBuilder->CreatePhi(mModule->mBfIRBuilder->MapType(boolType), 2);
mModule->mBfIRBuilder->AddPhiIncoming(phi, mModule->GetConstValue(1, boolType), prevBB);
if (rightValue)
mModule->mBfIRBuilder->AddPhiIncoming(phi, rightValue.mValue, endRhsBB);
mResult = BfTypedValue(phi, boolType);
}
}
return;
}
BfType* wantType = leftValue.mType;
BfType* origWantType = wantType;
if ((binaryOp == BfBinaryOp_LeftShift) || (binaryOp == BfBinaryOp_RightShift))
wantType = NULL; // Don't presume
wantType = mModule->FixIntUnknown(wantType);
if ((binaryOp == BfBinaryOp_NullCoalesce) && (PerformBinaryOperation_NullCoalesce(opToken, leftExpression, rightExpression, leftValue, wantType, NULL)))
return;
BfType* rightWantType = wantType;
if (origWantType->IsIntUnknown())
rightWantType = NULL;
else if ((mExpectingType != NULL) && (wantType != NULL) && (mExpectingType->IsIntegral()) && (wantType->IsIntegral()) && (mExpectingType->mSize > wantType->mSize) &&
((binaryOp == BfBinaryOp_Add) || (binaryOp == BfBinaryOp_Subtract) || (binaryOp == BfBinaryOp_Multiply)))
rightWantType = mExpectingType;
rightValue = mModule->CreateValueFromExpression(rightExpression, rightWantType, (BfEvalExprFlags)((mBfEvalExprFlags & BfEvalExprFlags_InheritFlags) | BfEvalExprFlags_NoCast));
if ((rightWantType != wantType) && (rightValue.mType == rightWantType))
wantType = rightWantType;
if ((!leftValue) || (!rightValue))
return;
PerformBinaryOperation(leftExpression, rightExpression, binaryOp, opToken, flags, leftValue, rightValue);
}
bool BfExprEvaluator::PerformBinaryOperation_NullCoalesce(BfTokenNode* opToken, BfExpression* leftExpression, BfExpression* rightExpression, BfTypedValue leftValue, BfType* wantType, BfTypedValue* assignTo)
{
if ((leftValue) && ((leftValue.mType->IsPointer()) || (leftValue.mType->IsFunction()) || (leftValue.mType->IsObject())))
{
leftValue = mModule->LoadValue(leftValue);
auto prevBB = mModule->mBfIRBuilder->GetInsertBlock();
auto rhsBB = mModule->mBfIRBuilder->CreateBlock("nullc.rhs");
auto endBB = mModule->mBfIRBuilder->CreateBlock("nullc.end");
auto lhsBB = endBB;
auto endLhsBB = prevBB;
BfIRValue isNull;
if (leftValue.mType->IsFunction())
isNull = mModule->mBfIRBuilder->CreateIsNull(
mModule->mBfIRBuilder->CreateIntToPtr(leftValue.mValue, mModule->mBfIRBuilder->MapType(mModule->GetPrimitiveType(BfTypeCode_NullPtr))));
else
isNull = mModule->mBfIRBuilder->CreateIsNull(leftValue.mValue);
mModule->AddBasicBlock(rhsBB);
BfTypedValue rightValue;
if (assignTo != NULL)
rightValue = mModule->CreateValueFromExpression(rightExpression, wantType, (BfEvalExprFlags)((mBfEvalExprFlags & BfEvalExprFlags_InheritFlags)));
else
rightValue = mModule->CreateValueFromExpression(rightExpression, wantType, (BfEvalExprFlags)((mBfEvalExprFlags & BfEvalExprFlags_InheritFlags) | BfEvalExprFlags_NoCast));
if (!rightValue)
{
mModule->AssertErrorState();
return true;
}
rightValue = mModule->LoadValue(rightValue);
if (assignTo == NULL)
{
auto rightToLeftValue = mModule->CastToValue(rightExpression, rightValue, leftValue.mType, BfCastFlags_SilentFail);
if (rightToLeftValue)
{
rightValue = BfTypedValue(rightToLeftValue, leftValue.mType);
}
else
{
lhsBB = mModule->mBfIRBuilder->CreateBlock("nullc.lhs", true);
mModule->mBfIRBuilder->SetInsertPoint(lhsBB);
auto leftToRightValue = mModule->CastToValue(leftExpression, leftValue, rightValue.mType, BfCastFlags_SilentFail);
if (leftToRightValue)
{
leftValue = BfTypedValue(leftToRightValue, rightValue.mType);
}
else
{
// Note: Annoying trigraph split for '??'
mModule->Fail(StrFormat("Operator '?" "?' cannot be applied to operands of type '%s' and '%s'",
mModule->TypeToString(leftValue.mType).c_str(), mModule->TypeToString(rightValue.mType).c_str()), opToken);
leftValue = mModule->GetDefaultTypedValue(rightValue.mType);
}
mModule->mBfIRBuilder->CreateBr(endBB);
endLhsBB = mModule->mBfIRBuilder->GetInsertBlock();
mModule->mBfIRBuilder->SetInsertPoint(rhsBB);
}
}
if (assignTo != NULL)
mModule->mBfIRBuilder->CreateStore(rightValue.mValue, assignTo->mValue);
mModule->mBfIRBuilder->CreateBr(endBB);
auto endRhsBB = mModule->mBfIRBuilder->GetInsertBlock();
// Actually add CondBr at start
mModule->mBfIRBuilder->SetInsertPoint(prevBB);
mModule->mBfIRBuilder->CreateCondBr(isNull, rhsBB, lhsBB);
mModule->AddBasicBlock(endBB);
if (assignTo != NULL)
{
mResult = *assignTo;
}
else
{
auto phi = mModule->mBfIRBuilder->CreatePhi(mModule->mBfIRBuilder->MapType(leftValue.mType), 2);
mModule->mBfIRBuilder->AddPhiIncoming(phi, leftValue.mValue, endLhsBB);
mModule->mBfIRBuilder->AddPhiIncoming(phi, rightValue.mValue, endRhsBB);
mResult = BfTypedValue(phi, leftValue.mType);
}
return true;
}
return false;
}
void BfExprEvaluator::PerformBinaryOperation(BfExpression* leftExpression, BfExpression* rightExpression, BfBinaryOp binaryOp, BfTokenNode* opToken, BfBinOpFlags flags)
{
if ((binaryOp == BfBinaryOp_Range) || (binaryOp == BfBinaryOp_ClosedRange))
{
auto intType = mModule->GetPrimitiveType(BfTypeCode_IntPtr);
bool isIndexExpr = false;
BfTypeDef* typeDef = NULL;
if (auto unaryOpExpr = BfNodeDynCast<BfUnaryOperatorExpression>(leftExpression))
if (unaryOpExpr->mOp == BfUnaryOp_FromEnd)
isIndexExpr = true;
if (rightExpression == NULL)
isIndexExpr = true;
if (auto unaryOpExpr = BfNodeDynCast<BfUnaryOperatorExpression>(rightExpression))
if (unaryOpExpr->mOp == BfUnaryOp_FromEnd)
isIndexExpr = true;
if (isIndexExpr)
typeDef = mModule->mCompiler->mIndexRangeTypeDef;
else
typeDef = (binaryOp == BfBinaryOp_Range) ? mModule->mCompiler->mRangeTypeDef : mModule->mCompiler->mClosedRangeTypeDef;
auto allocType = mModule->ResolveTypeDef(typeDef)->ToTypeInstance();
auto alloca = mModule->CreateAlloca(allocType);
BfTypedValueExpression leftTypedValueExpr;
BfTypedValueExpression rightTypedValueExpr;
BfTypedValueExpression isClosedTypedValueExpr;
SizedArray<BfExpression*, 2> argExprs;
if (leftExpression != NULL)
{
argExprs.Add(leftExpression);
}
else
{
leftTypedValueExpr.mRefNode = opToken;
leftTypedValueExpr.mTypedValue = BfTypedValue(mModule->mBfIRBuilder->CreateConst(BfTypeCode_IntPtr, 0), mModule->GetPrimitiveType(BfTypeCode_IntPtr));
argExprs.Add(&leftTypedValueExpr);
}
if (rightExpression != NULL)
{
argExprs.Add(rightExpression);
}
else
{
// Add as a `^1`
auto indexType = mModule->ResolveTypeDef(mModule->mCompiler->mIndexTypeDef)->ToTypeInstance();
rightTypedValueExpr.mRefNode = opToken;
auto valueTypeEmpty = mModule->mBfIRBuilder->CreateConstAgg(mModule->mBfIRBuilder->MapType(indexType->mBaseType->mBaseType), {});
SizedArray<BfIRValue, 8> enumMembers;
enumMembers.Add(valueTypeEmpty);
auto enumValue = mModule->mBfIRBuilder->CreateConstAgg(mModule->mBfIRBuilder->MapType(indexType->mBaseType), enumMembers);
SizedArray<BfIRValue, 8> tupleMembers;
tupleMembers.Add(valueTypeEmpty);
tupleMembers.Add(mModule->mBfIRBuilder->CreateConst(BfTypeCode_IntPtr, 1));
auto tupleValue = mModule->mBfIRBuilder->CreateConstAgg(mModule->mBfIRBuilder->MapType(indexType->mFieldInstances[0].mResolvedType), tupleMembers);
SizedArray<BfIRValue, 8> indexMembers;
indexMembers.Add(enumValue);
indexMembers.Add(tupleValue);
indexMembers.Add(mModule->mBfIRBuilder->CreateConst(BfTypeCode_Int8, 1));
auto indexValue = mModule->mBfIRBuilder->CreateConstAgg(mModule->mBfIRBuilder->MapType(indexType), indexMembers);
rightTypedValueExpr.mTypedValue = BfTypedValue(indexValue, indexType);
argExprs.Add(&rightTypedValueExpr);
}
if (isIndexExpr)
{
isClosedTypedValueExpr.mRefNode = opToken;
isClosedTypedValueExpr.mTypedValue = BfTypedValue(mModule->mBfIRBuilder->CreateConst(BfTypeCode_Boolean, (binaryOp == BfBinaryOp_ClosedRange) ? 1 : 0), mModule->GetPrimitiveType(BfTypeCode_Boolean));
argExprs.Add(&isClosedTypedValueExpr);
}
BfSizedArray<BfExpression*> args = argExprs;
BfResolvedArgs argValues;
argValues.Init(&args);
ResolveArgValues(argValues, BfResolveArgsFlag_DeferParamEval);
mResult = BfTypedValue(alloca, allocType, true);
MatchConstructor(opToken, NULL, mResult, allocType, argValues, true, false);
return;
}
BfTypedValue leftValue;
if (leftExpression != NULL)
{
leftValue = mModule->CreateValueFromExpression(leftExpression, mExpectingType, (BfEvalExprFlags)((mBfEvalExprFlags & BfEvalExprFlags_InheritFlags) | BfEvalExprFlags_NoCast | BfEvalExprFlags_AllowIntUnknown));
}
PerformBinaryOperation(leftExpression, rightExpression, binaryOp, opToken, flags, leftValue);
}
bool BfExprEvaluator::CheckConstCompare(BfBinaryOp binaryOp, BfAstNode* opToken, const BfTypedValue& leftValue, const BfTypedValue& rightValue)
{
if ((binaryOp < BfBinaryOp_Equality) || (binaryOp > BfBinaryOp_LessThanOrEqual))
return false;
// LHS is expected to be a value and RHS is expected to be a const
if (!leftValue.mType->IsIntegral())
return false;
BF_ASSERT(rightValue.mValue.IsConst());
auto rightConst = mModule->mBfIRBuilder->GetConstant(rightValue.mValue);
if (!mModule->mBfIRBuilder->IsInt(rightConst->mTypeCode))
return false;
BfType* checkType = leftValue.mType;
if (checkType->IsTypedPrimitive())
checkType = checkType->GetUnderlyingType();
if (!checkType->IsPrimitiveType())
return false;
BfTypeCode typeCode = ((BfPrimitiveType*)checkType)->mTypeDef->mTypeCode;
int64 minValue = 0;
int64 maxValue = 0;
switch (typeCode)
{
case BfTypeCode_Int8:
minValue = -0x80;
maxValue = 0x7F;
break;
case BfTypeCode_Int16:
minValue = -0x8000;
maxValue = 0x7FFF;
break;
case BfTypeCode_Int32:
minValue = -0x80000000LL;
maxValue = 0x7FFFFFFF;
break;
case BfTypeCode_Int64:
minValue = -0x8000000000000000LL;
maxValue = 0x7FFFFFFFFFFFFFFFLL;
break;
case BfTypeCode_UInt8:
maxValue = 0xFF;
break;
case BfTypeCode_UInt16:
maxValue = 0xFFFF;
break;
case BfTypeCode_UInt32:
maxValue = 0xFFFFFFFF;
break;
default:
return false;
}
int constResult = -1;
if (typeCode == BfTypeCode_UInt64)
{
switch (binaryOp)
{
case BfBinaryOp_Equality:
case BfBinaryOp_StrictEquality:
if (rightConst->mInt64 < minValue)
constResult = 0;
break;
case BfBinaryOp_InEquality:
case BfBinaryOp_StrictInEquality:
if (rightConst->mInt64 < minValue)
constResult = 1;
break;
case BfBinaryOp_LessThan:
if (rightConst->mInt64 <= minValue)
constResult = 0;
break;
case BfBinaryOp_LessThanOrEqual:
if (rightConst->mInt64 < minValue)
constResult = 0;
break;
default: break;
}
return false;
}
else
{
switch (binaryOp)
{
case BfBinaryOp_Equality:
case BfBinaryOp_StrictEquality:
if (rightConst->mInt64 < minValue)
constResult = 0;
else if (rightConst->mInt64 > maxValue)
constResult = 0;
break;
case BfBinaryOp_InEquality:
case BfBinaryOp_StrictInEquality:
if (rightConst->mInt64 < minValue)
constResult = 1;
else if (rightConst->mInt64 > maxValue)
constResult = 1;
break;
case BfBinaryOp_LessThan:
if (rightConst->mInt64 <= minValue)
constResult = 0;
else if (rightConst->mInt64 > maxValue)
constResult = 1;
break;
case BfBinaryOp_LessThanOrEqual:
if (rightConst->mInt64 < minValue)
constResult = 0;
else if (rightConst->mInt64 >= maxValue)
constResult = 1;
break;
case BfBinaryOp_GreaterThan:
if (rightConst->mInt64 >= maxValue)
constResult = 0;
else if (rightConst->mInt64 < minValue)
constResult = 1;
break;
case BfBinaryOp_GreaterThanOrEqual:
if (rightConst->mInt64 > maxValue)
constResult = 0;
else if (rightConst->mInt64 <= minValue)
constResult = 1;
break;
default: break;
}
}
if (constResult == 0)
{
mModule->Warn(0, "The result of this operation is always 'false'", opToken);
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateConst(BfTypeCode_Boolean, 0), mModule->GetPrimitiveType(BfTypeCode_Boolean));
return true;
}
else if (constResult == 1)
{
mModule->Warn(0, "The result of this operation is always 'true'", opToken);
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateConst(BfTypeCode_Boolean, 1), mModule->GetPrimitiveType(BfTypeCode_Boolean));
return true;
}
return false;
}
void BfExprEvaluator::AddStrings(const BfTypedValue& leftValue, const BfTypedValue& rightValue, BfAstNode* refNode)
{
if ((leftValue.mValue.IsConst()) && (rightValue.mValue.IsConst()))
{
String* lhsStr = mModule->GetStringPoolString(leftValue.mValue, mModule->mBfIRBuilder);
String* rhsStr = mModule->GetStringPoolString(rightValue.mValue, mModule->mBfIRBuilder);
if ((lhsStr != NULL) && (rhsStr != NULL))
{
String resultStr = *lhsStr + *rhsStr;
BfVariant variant;
variant.mTypeCode = BfTypeCode_CharPtr;
variant.mString = &resultStr;
GetLiteral(refNode, variant);
return;
}
}
mModule->Fail("Strings can only be added when they are constants. Consider allocating a string and using Concat.", refNode);
return;
}
void BfExprEvaluator::PerformBinaryOperation(BfAstNode* leftExpression, BfAstNode* rightExpression, BfBinaryOp binaryOp, BfAstNode* opToken, BfBinOpFlags flags, BfTypedValue leftValue, BfTypedValue rightValue)
{
bool noClassify = (flags & BfBinOpFlag_NoClassify) != 0;
bool forceLeftType = (flags & BfBinOpFlag_ForceLeftType) != 0;
bool deferRight = (flags & BfBinOpFlag_DeferRight) != 0;
if (deferRight)
{
rightValue = mModule->GetDefaultTypedValue(mModule->GetPrimitiveType(BfTypeCode_Var));
}
if ((rightValue.mValue.IsConst()) && (!leftValue.mValue.IsConst()))
{
if (CheckConstCompare(binaryOp, opToken, leftValue, rightValue))
return;
}
else if ((leftValue.mValue.IsConst()) && (!rightValue.mValue.IsConst()))
{
if (CheckConstCompare(BfGetOppositeBinaryOp(binaryOp), opToken, rightValue, leftValue))
return;
}
if ((binaryOp == BfBinaryOp_LeftShift) || (binaryOp == BfBinaryOp_RightShift))
{
forceLeftType = true;
}
if (rightValue.mType->IsRef())
rightValue.mType = rightValue.mType->GetUnderlyingType();
mModule->FixIntUnknown(leftValue, rightValue);
// Prefer floats, prefer chars
int leftCompareSize = leftValue.mType->mSize;
if (leftValue.mType->IsFloat())
leftCompareSize += 0x10;
if (leftValue.mType->IsChar())
leftCompareSize += 0x100;
if (!leftValue.mType->IsPrimitiveType())
leftCompareSize += 0x1000;
int rightCompareSize = rightValue.mType->mSize;
if (rightValue.mType->IsFloat())
rightCompareSize += 0x10;
if (rightValue.mType->IsChar())
rightCompareSize += 0x100;
if (!rightValue.mType->IsPrimitiveType())
rightCompareSize += 0x1000;
if ((leftValue.mType->IsTypeInstance()) && (rightValue.mType->IsTypeInstance()))
{
int leftInheritDepth = leftValue.mType->ToTypeInstance()->mInheritDepth;
int rightInheritDepth = rightValue.mType->ToTypeInstance()->mInheritDepth;
if (leftInheritDepth < rightInheritDepth)
{
// If both are type instances then choose the type with the lowest inherit depth
// so we will choose the base type when applicable
forceLeftType = true;
}
}
auto resultType = leftValue.mType;
if (!forceLeftType)
{
bool handled = false;
BfType* expectingType = mExpectingType;
if (leftValue.mType == rightValue.mType)
{
// All good
handled = true;
}
else if ((expectingType != NULL) &&
(mModule->CanCast(leftValue, expectingType, BfCastFlags_NoBox)) &&
(mModule->CanCast(rightValue, expectingType, BfCastFlags_NoBox)) &&
(!leftValue.mType->IsVar()) && (!rightValue.mType->IsVar()))
{
resultType = expectingType;
handled = true;
}
else
{
// If one of these is a constant that can be converted into a smaller type, then do that
if (rightValue.mValue.IsConst())
{
if (mModule->CanCast(rightValue, leftValue.mType, BfCastFlags_NoBox))
{
resultType = leftValue.mType;
handled = true;
}
}
// If left is an IntUnknown, allow the right to inform the type
if (leftValue.mType->IsIntUnknown())
{
if (leftValue.mValue.IsConst())
{
if (mModule->CanCast(leftValue, rightValue.mType))
{
resultType = rightValue.mType;
handled = true;
}
}
}
if ((leftValue.mType->IsPointer()) &&
(rightValue.mType->IsPointer()))
{
BfPointerType* leftPointerType = (BfPointerType*)leftValue.mType;
BfPointerType* rightPointerType = (BfPointerType*)rightValue.mType;
// If one is a pointer to a sized array then use the other type
if (leftPointerType->mElementType->IsSizedArray())
{
resultType = rightPointerType;
handled = true;
}
else if (rightPointerType->mElementType->IsSizedArray())
{
resultType = leftPointerType;
handled = true;
}
}
}
if (!handled)
{
if ((resultType->IsNull()) ||
(rightCompareSize > leftCompareSize) ||
(((rightCompareSize == leftCompareSize) && (!rightValue.mType->IsSigned()))) ||
(rightValue.mType->IsTypedPrimitive()))
{
// Select the type with the "most information"
if (!rightValue.mType->IsNull())
resultType = rightValue.mType;
}
if ((!resultType->IsPointer()) && (rightValue.mType->IsPointer()))
resultType = rightValue.mType;
}
}
bool explicitCast = false;
BfTypedValue* resultTypedValue;
BfTypedValue* otherTypedValue;
BfType* otherType;
BfAstNode* resultTypeSrc;
BfAstNode* otherTypeSrc;
if (resultType == leftValue.mType)
{
resultTypedValue = &leftValue;
resultTypeSrc = leftExpression;
otherTypedValue = &rightValue;
otherTypeSrc = rightExpression;
otherType = otherTypedValue->mType;
}
else
{
resultTypedValue = &rightValue;
resultTypeSrc = rightExpression;
otherTypedValue = &leftValue;
otherTypeSrc = leftExpression;
otherType = otherTypedValue->mType;
}
auto _OpFail = [&]()
{
if ((rightValue.mType != NULL) && (leftValue.mType != NULL))
{
if (rightValue.mType != leftValue.mType)
mModule->Fail(StrFormat("Cannot perform binary operation '%s' between types '%s' and '%s'",
BfGetOpName(binaryOp), mModule->TypeToString(leftValue.mType).c_str(), mModule->TypeToString(rightValue.mType).c_str()), opToken);
else
{
if (leftValue.mType->IsInterface())
{
mModule->Fail(StrFormat("Cannot perform binary operation '%s' between two instances of interface '%s'. Consider rewriting using generics and use this interface as a generic constraint.",
BfGetOpName(binaryOp), mModule->TypeToString(leftValue.mType).c_str()), opToken);
}
else
{
mModule->Fail(StrFormat("Cannot perform binary operation '%s' between two instances of type '%s'",
BfGetOpName(binaryOp), mModule->TypeToString(leftValue.mType).c_str()), opToken);
}
}
}
else
mModule->Fail(StrFormat("Cannot perform binary operation '%s'", BfGetOpName(binaryOp)), opToken);
};
// This case fixes cases like "c == 0" where "0" is technically an int but can be reduced
if (BfBinOpEqualityCheck(binaryOp))
{
if ((resultType != otherType) && (resultTypedValue->mValue.IsConst()) && (mModule->CanCast(*resultTypedValue, otherType)))
{
std::swap(resultTypedValue, otherTypedValue);
std::swap(resultTypeSrc, otherTypeSrc);
std::swap(resultType, otherType);
}
}
BfIRValue convLeftValue;
BfIRValue convRightValue;
if (((resultType->IsVar()) || (otherType->IsVar())) && (!deferRight))
{
bool isComparison = (binaryOp >= BfBinaryOp_Equality) && (binaryOp <= BfBinaryOp_LessThanOrEqual);
if (isComparison)
mResult = mModule->GetDefaultTypedValue(mModule->GetPrimitiveType(BfTypeCode_Boolean), false, BfDefaultValueKind_Addr);
else if (mExpectingType != NULL)
mResult = mModule->GetDefaultTypedValue(mExpectingType, false, BfDefaultValueKind_Addr);
else
mResult = mModule->GetDefaultTypedValue(resultType, false, BfDefaultValueKind_Addr);
return;
}
if ((otherType->IsNull()) && (BfBinOpEqualityCheck(binaryOp)))
{
bool isEquality = (binaryOp == BfBinaryOp_Equality) || (binaryOp == BfBinaryOp_StrictEquality);
if ((resultType->IsValueType()) && (!resultType->IsFunction()))
{
auto boolType = mModule->GetPrimitiveType(BfTypeCode_Boolean);
if (resultType->IsNullable())
{
auto elementType = resultType->GetUnderlyingType();
mModule->PopulateType(elementType);
if (elementType->IsValuelessType())
{
mModule->mBfIRBuilder->PopulateType(resultType);
BfTypedValue nullableTypedVale = mModule->MakeAddressable(*resultTypedValue);
BfIRValue hasValuePtr = mModule->mBfIRBuilder->CreateInBoundsGEP(nullableTypedVale.mValue, 0, 1);
BfIRValue hasValueValue = mModule->mBfIRBuilder->CreateLoad(hasValuePtr);
if (isEquality)
hasValueValue = mModule->mBfIRBuilder->CreateNot(hasValueValue);
mResult = BfTypedValue(hasValueValue, boolType);
}
else
{
mModule->mBfIRBuilder->PopulateType(resultType);
BfTypedValue nullableTypedVale = mModule->MakeAddressable(*resultTypedValue);
BfIRValue hasValuePtr = mModule->mBfIRBuilder->CreateInBoundsGEP(nullableTypedVale.mValue, 0, 2);
BfIRValue hasValueValue = mModule->mBfIRBuilder->CreateLoad(hasValuePtr);
if (isEquality)
hasValueValue = mModule->mBfIRBuilder->CreateNot(hasValueValue);
mResult = BfTypedValue(hasValueValue, boolType);
}
return;
}
if (resultType->IsNull())
{
// Null always equals null
mResult = BfTypedValue(mModule->GetConstValue(isEquality ? 1 : 0, boolType), boolType);
return;
}
if (!mModule->IsInSpecializedSection())
{
//CS0472: The result of the expression is always 'true' since a value of type 'int' is never equal to 'null' of type '<null>'
mModule->Warn(BfWarning_CS0472_ValueTypeNullCompare,
StrFormat("The result of the expression is always '%s' since a value of type '%s' can never be null",
isEquality ? "false" : "true", mModule->TypeToString(resultType).c_str()), otherTypeSrc);
}
// Valuetypes never equal null
mResult = BfTypedValue(mModule->GetConstValue(isEquality ? 0 : 1, boolType), boolType);
return;
}
}
// Check for constant equality checks (mostly for strings)
if (BfBinOpEqualityCheck(binaryOp))
{
auto leftConstant = mModule->mBfIRBuilder->GetConstant(leftValue.mValue);
auto rightConstant = mModule->mBfIRBuilder->GetConstant(rightValue.mValue);
if ((leftConstant != NULL) && (rightConstant != NULL))
{
auto boolType = mModule->GetPrimitiveType(BfTypeCode_Boolean);
int leftStringPoolIdx = mModule->GetStringPoolIdx(leftValue.mValue, mModule->mBfIRBuilder);
if (leftStringPoolIdx != -1)
{
int rightStringPoolIdx = mModule->GetStringPoolIdx(rightValue.mValue, mModule->mBfIRBuilder);
if (rightStringPoolIdx != -1)
{
bool isEqual = leftStringPoolIdx == rightStringPoolIdx;
if ((binaryOp == BfBinaryOp_InEquality) || (binaryOp == BfBinaryOp_StrictInEquality))
isEqual = !isEqual;
mResult = BfTypedValue(mModule->GetConstValue(isEqual ? 1 : 0, boolType), boolType);
return;
}
}
int eqResult = mModule->mBfIRBuilder->CheckConstEquality(leftValue.mValue, rightValue.mValue);
if (eqResult != -1)
{
bool isEqual = eqResult == 1;
if ((binaryOp == BfBinaryOp_InEquality) || (binaryOp == BfBinaryOp_StrictInEquality))
isEqual = !isEqual;
mResult = BfTypedValue(mModule->GetConstValue(isEqual ? 1 : 0, boolType), boolType);
return;
}
}
}
if ((leftValue.mType->IsTypeInstance()) || (leftValue.mType->IsGenericParam()) ||
(rightValue.mType->IsTypeInstance()) || (rightValue.mType->IsGenericParam()))
{
// As an optimization, we don't call user operator overloads for null checks
bool skipOpOverload = false;
if ((binaryOp == BfBinaryOp_StrictEquality) || (binaryOp == BfBinaryOp_StrictInEquality))
skipOpOverload = true;
else if (BfBinOpEqualityCheck(binaryOp))
{
if (!leftValue.IsAddr())
{
auto leftConstant = mModule->mBfIRBuilder->GetConstant(leftValue.mValue);
if ((leftConstant != NULL) && (leftConstant->IsNull()))
skipOpOverload = true;
}
if (!rightValue.IsAddr())
{
auto rightConstant = mModule->mBfIRBuilder->GetConstant(rightValue.mValue);
if ((rightConstant != NULL) && (rightConstant->IsNull()))
skipOpOverload = true;
}
}
if ((binaryOp == BfBinaryOp_Add) && (resultType->IsInstanceOf(mModule->mCompiler->mStringTypeDef)))
{
// Allow failover to constant string addition
if ((leftValue.mValue.IsConst()) && (rightValue.mValue.IsConst()))
skipOpOverload = true;
}
if (!skipOpOverload)
{
BfBinaryOp findBinaryOp = binaryOp;
bool isComparison = (binaryOp >= BfBinaryOp_Equality) && (binaryOp <= BfBinaryOp_LessThanOrEqual);
for (int pass = 0; pass < 2; pass++)
{
BfBinaryOp oppositeBinaryOp = BfGetOppositeBinaryOp(findBinaryOp);
BfBinaryOp overflowBinaryOp = BfBinaryOp_None;
if (findBinaryOp == BfBinaryOp_OverflowAdd)
overflowBinaryOp = BfBinaryOp_Add;
else if (findBinaryOp == BfBinaryOp_OverflowSubtract)
overflowBinaryOp = BfBinaryOp_Subtract;
else if (findBinaryOp == BfBinaryOp_OverflowMultiply)
overflowBinaryOp = BfBinaryOp_Multiply;
bool foundOp = false;
BfResolvedArg leftArg;
leftArg.mExpression = leftExpression;
leftArg.mTypedValue = leftValue;
BfResolvedArg rightArg;
rightArg.mExpression = rightExpression;
rightArg.mTypedValue = rightValue;
if (deferRight)
{
BfResolvedArgs argValues;
SizedArray<BfExpression*, 2> argExprs;
argExprs.push_back(BfNodeDynCast<BfExpression>(rightExpression));
BfSizedArray<BfExpression*> sizedArgExprs(argExprs);
argValues.Init(&sizedArgExprs);
ResolveArgValues(argValues, BfResolveArgsFlag_DeferParamEval);
rightArg = argValues.mResolvedArgs[0];
}
SizedArray<BfResolvedArg, 2> args;
if (pass == 0)
{
args.push_back(leftArg);
args.push_back(rightArg);
}
else
{
args.push_back(rightArg);
args.push_back(leftArg);
}
auto checkLeftType = leftValue.mType;
auto checkRightType = rightValue.mType;
BfMethodMatcher methodMatcher(opToken, mModule, "", args, NULL);
methodMatcher.mAllowImplicitRef = true;
methodMatcher.mBfEvalExprFlags = BfEvalExprFlags_NoAutoComplete;
BfBaseClassWalker baseClassWalker(checkLeftType, checkRightType, mModule);
bool invertResult = false;
BfType* operatorConstraintReturnType = NULL;
bool wasTransformedUsage = (pass == 1);
while (true)
{
auto entry = baseClassWalker.Next();
auto checkType = entry.mTypeInstance;
if (checkType == NULL)
break;
bool foundExactMatch = false;
SizedArray<BfOperatorDef*, 8> oppositeOperatorDefs;
for (auto operatorDef : checkType->mTypeDef->mOperators)
{
bool allowOp = operatorDef->mOperatorDeclaration->mBinOp == findBinaryOp;
if ((isComparison) && (operatorDef->mOperatorDeclaration->mBinOp == BfBinaryOp_Compare))
allowOp = true;
if (allowOp)
{
foundOp = true;
if (!methodMatcher.IsMemberAccessible(checkType, operatorDef->mDeclaringType))
continue;
if ((flags & BfBinOpFlag_IsConstraintCheck) != 0)
{
if (operatorDef->mGenericParams.IsEmpty())
{
// Fast check
auto returnType = mModule->CheckOperator(checkType, operatorDef, args[0].mTypedValue, args[1].mTypedValue);
if (returnType != NULL)
{
operatorConstraintReturnType = returnType;
methodMatcher.mBestMethodDef = operatorDef;
methodMatcher.mBestMethodTypeInstance = checkType;
foundExactMatch = true;
}
}
else
{
if (methodMatcher.CheckMethod(NULL, checkType, operatorDef, false))
{
auto rawMethodInstance = mModule->GetRawMethodInstance(checkType, operatorDef);
auto returnType = mModule->ResolveGenericType(rawMethodInstance->mReturnType, NULL, &methodMatcher.mBestMethodGenericArguments);
if (returnType != NULL)
{
operatorConstraintReturnType = returnType;
foundExactMatch = true;
}
}
}
}
else
{
if (methodMatcher.CheckMethod(NULL, checkType, operatorDef, false))
{
methodMatcher.mSelfType = entry.mSrcType;
if (operatorDef->mOperatorDeclaration->mBinOp == findBinaryOp)
foundExactMatch = true;
}
}
}
else if ((operatorDef->mOperatorDeclaration->mBinOp == oppositeBinaryOp) || (operatorDef->mOperatorDeclaration->mBinOp == overflowBinaryOp))
oppositeOperatorDefs.Add(operatorDef);
}
if ((((methodMatcher.mBestMethodDef == NULL) && (operatorConstraintReturnType == NULL)) || (!foundExactMatch)) && (!oppositeOperatorDefs.IsEmpty()))
{
foundOp = true;
for (auto oppositeOperatorDef : oppositeOperatorDefs)
{
if ((flags & BfBinOpFlag_IsConstraintCheck) != 0)
{
if (oppositeOperatorDef->mGenericParams.IsEmpty())
{
// Fast check
auto returnType = mModule->CheckOperator(checkType, oppositeOperatorDef, args[0].mTypedValue, args[1].mTypedValue);
if (returnType != NULL)
{
operatorConstraintReturnType = returnType;
methodMatcher.mBestMethodDef = oppositeOperatorDef;
methodMatcher.mBestMethodTypeInstance = checkType;
methodMatcher.mSelfType = entry.mSrcType;
if (oppositeBinaryOp != BfBinaryOp_None)
wasTransformedUsage = true;
}
}
else
{
if (methodMatcher.CheckMethod(NULL, checkType, oppositeOperatorDef, false))
{
auto rawMethodInstance = mModule->GetRawMethodInstance(checkType, oppositeOperatorDef);
auto returnType = mModule->ResolveGenericType(rawMethodInstance->mReturnType, NULL, &methodMatcher.mBestMethodGenericArguments);
if (returnType != NULL)
{
operatorConstraintReturnType = returnType;
methodMatcher.mSelfType = entry.mSrcType;
if (oppositeBinaryOp != BfBinaryOp_None)
wasTransformedUsage = true;
}
}
}
}
else
{
if (methodMatcher.CheckMethod(NULL, checkType, oppositeOperatorDef, false))
{
methodMatcher.mSelfType = entry.mSrcType;
if (oppositeBinaryOp != BfBinaryOp_None)
wasTransformedUsage = true;
}
}
}
}
}
bool hadMatch = (methodMatcher.mBestMethodDef != NULL);
if ((methodMatcher.mBestMethodDef != NULL) && ((flags & BfBinOpFlag_IgnoreOperatorWithWrongResult) != 0))
{
auto matchedOp = ((BfOperatorDeclaration*)methodMatcher.mBestMethodDef->mMethodDeclaration)->mBinOp;
methodMatcher.mBestMethodInstance = GetSelectedMethod(methodMatcher.mTargetSrc, methodMatcher.mBestMethodTypeInstance, methodMatcher.mBestMethodDef, methodMatcher);
if ((methodMatcher.mBestMethodInstance.mMethodInstance->mReturnType != mExpectingType) &&
((matchedOp == binaryOp) || (matchedOp == oppositeBinaryOp)))
{
if (binaryOp == BfBinaryOp_Equality)
binaryOp = BfBinaryOp_StrictEquality;
if (binaryOp == BfBinaryOp_InEquality)
binaryOp = BfBinaryOp_StrictEquality;
hadMatch = false;
break;
}
}
if (hadMatch)
{
methodMatcher.FlushAmbiguityError();
auto matchedOp = ((BfOperatorDeclaration*)methodMatcher.mBestMethodDef->mMethodDeclaration)->mBinOp;
bool invertResult = matchedOp == oppositeBinaryOp;
auto methodDef = methodMatcher.mBestMethodDef;
auto autoComplete = GetAutoComplete();
bool wasCapturingMethodInfo = false;
if ((autoComplete != NULL) && (autoComplete->IsAutocompleteNode(opToken)))
{
auto operatorDecl = BfNodeDynCast<BfOperatorDeclaration>(methodDef->mMethodDeclaration);
if ((operatorDecl != NULL) && (operatorDecl->mOpTypeToken != NULL))
autoComplete->SetDefinitionLocation(operatorDecl->mOpTypeToken);
}
if ((wasTransformedUsage) && (methodDef->mCommutableKind != BfCommutableKind_Operator))
{
auto error = mModule->Warn(BfWarning_BF4206_OperatorCommutableUsage, "Transformed operator usage requires 'Commutable' attribute to be added to the operator declaration", opToken);
if ((error != NULL) && (methodDef->GetRefNode() != NULL))
mModule->mCompiler->mPassInstance->MoreInfo(StrFormat("See operator declaration"), methodDef->GetRefNode());
}
if (opToken != NULL)
{
if ((opToken->IsA<BfTokenNode>()) && (!noClassify) && (!baseClassWalker.mMayBeFromInterface))
mModule->SetElementType(opToken, BfSourceElementType_Method);
}
if ((flags & BfBinOpFlag_IsConstraintCheck) != 0)
{
mResult = BfTypedValue(mModule->mBfIRBuilder->GetFakeVal(), operatorConstraintReturnType);
}
else
{
SetAndRestoreValue<BfEvalExprFlags> prevFlags(mBfEvalExprFlags, (BfEvalExprFlags)(mBfEvalExprFlags | BfEvalExprFlags_NoAutoComplete));
mResult = CreateCall(&methodMatcher, BfTypedValue());
}
if ((mResult.mType != NULL) && (methodMatcher.mSelfType != NULL) && (mResult.mType->IsSelf()))
{
BF_ASSERT(mModule->IsInGeneric());
mResult = mModule->GetDefaultTypedValue(methodMatcher.mSelfType, false, BfDefaultValueKind_Value);
}
if ((invertResult) && (mResult.mType == mModule->GetPrimitiveType(BfTypeCode_Boolean)))
mResult.mValue = mModule->mBfIRBuilder->CreateNot(mResult.mValue);
if (pass == 1)
{
if (findBinaryOp == BfBinaryOp_Compare)
{
mResult = mModule->LoadValue(mResult);
if (mResult.mType->IsIntegral())
mResult.mValue = mModule->mBfIRBuilder->CreateNeg(mResult.mValue);
}
}
if ((isComparison) && (matchedOp == BfBinaryOp_Compare))
{
auto intType = mModule->GetPrimitiveType(BfTypeCode_IntPtr);
mResult = mModule->LoadValue(mResult);
if (mResult.mType != intType)
mResult = mModule->GetDefaultTypedValue(intType);
auto zeroVal = mModule->mBfIRBuilder->CreateConst(BfTypeCode_IntPtr, 0);
auto useBinaryOp = binaryOp;
if (pass == 1)
useBinaryOp = BfGetFlippedBinaryOp(useBinaryOp);
auto boolType = mModule->GetPrimitiveType(BfTypeCode_Boolean);
switch (useBinaryOp)
{
case BfBinaryOp_Equality:
case BfBinaryOp_StrictEquality:
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateCmpEQ(mResult.mValue, zeroVal), boolType);
break;
case BfBinaryOp_InEquality:
case BfBinaryOp_StrictInEquality:
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateCmpNE(mResult.mValue, zeroVal), boolType);
break;
case BfBinaryOp_GreaterThan:
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateCmpGT(mResult.mValue, zeroVal, true), boolType);
break;
case BfBinaryOp_LessThan:
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateCmpLT(mResult.mValue, zeroVal, true), boolType);
break;
case BfBinaryOp_GreaterThanOrEqual:
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateCmpGTE(mResult.mValue, zeroVal, true), boolType);
break;
case BfBinaryOp_LessThanOrEqual:
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateCmpLTE(mResult.mValue, zeroVal, true), boolType);
break;
default: break;
}
}
return;
}
auto _CheckBinaryOp = [&](BfGenericParamInstance* genericParam)
{
for (auto& opConstraint : genericParam->mOperatorConstraints)
{
BfType* returnType = genericParam->mExternType;
bool works = false;
if (opConstraint.mBinaryOp == findBinaryOp)
{
if ((mModule->CanCast(args[0].mTypedValue, opConstraint.mLeftType)) &&
(mModule->CanCast(args[1].mTypedValue, opConstraint.mRightType)))
{
works = true;
}
}
if ((isComparison) && (opConstraint.mBinaryOp == BfBinaryOp_Compare))
{
if ((mModule->CanCast(args[0].mTypedValue, opConstraint.mLeftType)) &&
(mModule->CanCast(args[1].mTypedValue, opConstraint.mRightType)))
{
works = true;
}
else if ((mModule->CanCast(args[0].mTypedValue, opConstraint.mRightType)) &&
(mModule->CanCast(args[1].mTypedValue, opConstraint.mLeftType)))
{
works = true;
}
if (works)
{
returnType = mModule->GetPrimitiveType(BfTypeCode_Boolean);
}
}
if (works)
{
BF_ASSERT(genericParam->mExternType != NULL);
mResult = BfTypedValue(mModule->mBfIRBuilder->GetFakeVal(), returnType);
return true;
}
}
return false;
};
// Check method generic constraints
if ((mModule->mCurMethodInstance != NULL) && (mModule->mCurMethodInstance->mIsUnspecialized) && (mModule->mCurMethodInstance->mMethodInfoEx != NULL))
{
for (int genericParamIdx = 0; genericParamIdx < mModule->mCurMethodInstance->mMethodInfoEx->mGenericParams.size(); genericParamIdx++)
{
auto genericParam = mModule->mCurMethodInstance->mMethodInfoEx->mGenericParams[genericParamIdx];
if (_CheckBinaryOp(genericParam))
return;
}
}
// Check type generic constraints
if ((mModule->mCurTypeInstance->IsGenericTypeInstance()) && (mModule->mCurTypeInstance->IsUnspecializedType()))
{
SizedArray<BfGenericParamInstance*, 4> genericParams;
mModule->GetActiveTypeGenericParamInstances(genericParams);
for (auto genericParam : genericParams)
{
if (_CheckBinaryOp(genericParam))
return;
}
}
if (pass == 1)
break;
auto flippedBinaryOp = BfGetFlippedBinaryOp(findBinaryOp);
if (flippedBinaryOp != BfBinaryOp_None)
findBinaryOp = flippedBinaryOp;
}
auto prevResultType = resultType;
if ((leftValue.mType->IsPrimitiveType()) && (!rightValue.mType->IsTypedPrimitive()))
resultType = leftValue.mType;
if ((rightValue.mType->IsPrimitiveType()) && (!leftValue.mType->IsTypedPrimitive()))
resultType = rightValue.mType;
}
}
if (deferRight)
{
auto expectedType = resultType;
if ((binaryOp == BfBinaryOp_LeftShift) || (binaryOp == BfBinaryOp_RightShift))
expectedType = mModule->GetPrimitiveType(BfTypeCode_IntPtr);
rightValue = mModule->CreateValueFromExpression(BfNodeDynCast<BfExpression>(rightExpression), expectedType, (BfEvalExprFlags)((mBfEvalExprFlags & BfEvalExprFlags_InheritFlags) | BfEvalExprFlags_AllowSplat | BfEvalExprFlags_NoCast));
if (rightValue)
PerformBinaryOperation(leftExpression, rightExpression, binaryOp, opToken, (BfBinOpFlags)(flags & ~BfBinOpFlag_DeferRight), leftValue, rightValue);
return;
}
if (mModule->IsUnboundGeneric(resultType))
{
mResult = mModule->GetDefaultTypedValue(mModule->GetPrimitiveType(BfTypeCode_Var));
return;
}
if (resultType->IsPointer() && otherType->IsPointer())
{
if ((binaryOp == BfBinaryOp_Add) && (resultType == otherType) &&
(resultType->GetUnderlyingType() == mModule->GetPrimitiveType(BfTypeCode_Char8)))
{
AddStrings(leftValue, rightValue, opToken);
return;
}
//TODO: Allow all pointer comparisons, but only allow SUBTRACTION between equal pointer types
if ((binaryOp == BfBinaryOp_Subtract) || (binaryOp == BfBinaryOp_OverflowSubtract))
{
if (!mModule->CanCast(*otherTypedValue, resultType))
{
mModule->Fail(StrFormat("Operands '%s' and '%s' are not comparable types.",
mModule->TypeToString(leftValue.mType).c_str(), mModule->TypeToString(rightValue.mType).c_str()),
opToken);
return;
}
BfPointerType* resultPointerType = (BfPointerType*)resultType;
BfType* intPtrType = mModule->GetPrimitiveType(BfTypeCode_IntPtr);
convLeftValue = mModule->CastToValue(leftExpression, leftValue, intPtrType, (BfCastFlags)(BfCastFlags_Explicit | BfCastFlags_FromCompiler));
convRightValue = mModule->CastToValue(rightExpression, rightValue, intPtrType, (BfCastFlags)(BfCastFlags_Explicit | BfCastFlags_FromCompiler));
BfIRValue diffValue = mModule->mBfIRBuilder->CreateSub(convLeftValue, convRightValue);
diffValue = mModule->mBfIRBuilder->CreateDiv(diffValue, mModule->GetConstValue(resultPointerType->mElementType->mSize, intPtrType), true);
mResult = BfTypedValue(diffValue, intPtrType);
return;
}
else if ((binaryOp != BfBinaryOp_Equality) && (binaryOp != BfBinaryOp_StrictEquality) &&
(binaryOp != BfBinaryOp_InEquality) && (binaryOp != BfBinaryOp_StrictInEquality) &&
(binaryOp != BfBinaryOp_LessThan) && (binaryOp != BfBinaryOp_LessThanOrEqual) &&
(binaryOp != BfBinaryOp_GreaterThan) && (binaryOp != BfBinaryOp_GreaterThanOrEqual))
{
if (mModule->PreFail())
mModule->Fail("Invalid operation on pointers", opToken);
return;
}
if ((!BfBinOpEqualityCheck(binaryOp)) || (resultType != otherType))
{
resultType = mModule->GetPrimitiveType(BfTypeCode_UIntPtr);
explicitCast = true;
}
}
else if (resultType->IsPointer())
{
if (otherType->IsNull())
{
if (!BfBinOpEqualityCheck(binaryOp))
{
if (mModule->PreFail())
mModule->Fail(StrFormat("Invalid operation between '%s' and null", mModule->TypeToString(resultType).c_str()), opToken);
return;
}
if ((binaryOp == BfBinaryOp_Equality) || (binaryOp == BfBinaryOp_StrictEquality))
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateIsNull(resultTypedValue->mValue), mModule->GetPrimitiveType(BfTypeCode_Boolean));
else
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateIsNotNull(resultTypedValue->mValue), mModule->GetPrimitiveType(BfTypeCode_Boolean));
return;
}
// One pointer
if ((!otherType->IsIntegral()) ||
((binaryOp != BfBinaryOp_Add) && (binaryOp != BfBinaryOp_Subtract) && (binaryOp != BfBinaryOp_OverflowAdd) && (binaryOp != BfBinaryOp_OverflowSubtract)))
{
_OpFail();
return;
}
auto underlyingType = resultType->GetUnderlyingType();
BfIRValue addValue = otherTypedValue->mValue;
if ((!otherTypedValue->mType->IsSigned()) && (otherTypedValue->mType->mSize < mModule->mSystem->mPtrSize))
addValue = mModule->mBfIRBuilder->CreateNumericCast(addValue, false, BfTypeCode_UIntPtr);
if ((binaryOp == BfBinaryOp_Subtract) || (binaryOp == BfBinaryOp_OverflowSubtract))
{
if (resultTypeSrc == rightExpression)
mModule->Fail("Cannot subtract a pointer from an integer", resultTypeSrc);
addValue = mModule->mBfIRBuilder->CreateNeg(addValue);
}
mModule->PopulateType(underlyingType);
if (underlyingType->IsValuelessType())
{
if (!mModule->IsInSpecializedSection())
{
mModule->Warn(0, "Adding to a pointer to a zero-sized element has no effect", opToken);
}
mResult = *resultTypedValue;
return;
}
mModule->mBfIRBuilder->PopulateType(underlyingType);
mResult = BfTypedValue(mModule->CreateIndexedValue(underlyingType, resultTypedValue->mValue, addValue), resultType);
return;
}
if ((resultType->IsFunction()) || (resultType->IsPointer()) || (resultType->IsObject()) || (resultType->IsInterface()) || (resultType->IsGenericParam()))
{
if ((binaryOp == BfBinaryOp_Add) &&
(resultType->IsInstanceOf(mModule->mCompiler->mStringTypeDef)) &&
(otherType->IsInstanceOf(mModule->mCompiler->mStringTypeDef)))
{
AddStrings(leftValue, rightValue, opToken);
return;
}
if (!BfGetBinaryOpPrecendence(binaryOp))
{
//mModule->Fail("Invalid operation for objects", opToken);
_OpFail();
return;
}
if ((binaryOp == BfBinaryOp_Equality) || (binaryOp == BfBinaryOp_StrictEquality) || (binaryOp == BfBinaryOp_InEquality) || (binaryOp == BfBinaryOp_StrictInEquality))
{
if (resultType->IsInterface())
{
// Compare as objects instead
resultType = mModule->mContext->mBfObjectType;
*resultTypedValue = mModule->Cast(resultTypeSrc, *resultTypedValue, resultType);
}
if (otherType->IsNull())
{
if (resultType->IsFunction())
{
if ((binaryOp == BfBinaryOp_Equality) || (binaryOp == BfBinaryOp_StrictEquality))
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateCmpEQ(mModule->mBfIRBuilder->CreateConst(BfTypeCode_IntPtr, 0), resultTypedValue->mValue), mModule->GetPrimitiveType(BfTypeCode_Boolean));
else
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateCmpNE(mModule->mBfIRBuilder->CreateConst(BfTypeCode_IntPtr, 0), resultTypedValue->mValue), mModule->GetPrimitiveType(BfTypeCode_Boolean));
}
else
{
if ((binaryOp == BfBinaryOp_Equality) || (binaryOp == BfBinaryOp_StrictEquality))
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateIsNull(resultTypedValue->mValue), mModule->GetPrimitiveType(BfTypeCode_Boolean));
else
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateIsNotNull(resultTypedValue->mValue), mModule->GetPrimitiveType(BfTypeCode_Boolean));
}
}
else
{
auto convertedValue = mModule->Cast(otherTypeSrc, *otherTypedValue, resultType, BfCastFlags_NoBox);
if (!convertedValue)
return;
convertedValue = mModule->LoadValue(convertedValue);
if ((binaryOp == BfBinaryOp_Equality) || (binaryOp == BfBinaryOp_StrictEquality))
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateCmpEQ(resultTypedValue->mValue, convertedValue.mValue), mModule->GetPrimitiveType(BfTypeCode_Boolean));
else
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateCmpNE(resultTypedValue->mValue, convertedValue.mValue), mModule->GetPrimitiveType(BfTypeCode_Boolean));
}
return;
}
}
if (resultType->IsTypedPrimitive())
{
bool needsOtherCast = true;
if (otherType != resultType)
{
if ((otherType->IsPrimitiveType()) && (!otherType->IsValuelessType()))
{
// Allow zero comparisons to match all typed primitives
if ((binaryOp == BfBinaryOp_Equality) || (binaryOp == BfBinaryOp_InEquality))
{
auto constant = mModule->mBfIRBuilder->GetConstant(otherTypedValue->mValue);
if ((constant != NULL) && (mModule->mBfIRBuilder->IsInt(constant->mTypeCode)) && (constant->mInt64 == 0))
needsOtherCast = false;
}
// Allow integer offsetting
if ((binaryOp == BfBinaryOp_Add) || (binaryOp == BfBinaryOp_Subtract) || (binaryOp == BfBinaryOp_OverflowAdd) || (binaryOp == BfBinaryOp_OverflowSubtract))
{
if (otherType->IsIntegral())
needsOtherCast = false;
}
}
if (needsOtherCast)
{
// The only purpose of this cast is to potentially throw a casting error
BfIRValue otherCastResult = mModule->CastToValue(otherTypeSrc, *otherTypedValue, resultType, explicitCast ? BfCastFlags_Explicit : BfCastFlags_None);
if (!otherCastResult)
return;
}
}
auto underlyingType = resultType->GetUnderlyingType();
BfIRValue convResultValue = mModule->CastToValue(resultTypeSrc, *resultTypedValue, underlyingType, BfCastFlags_Explicit);
BfIRValue convOtherValue = mModule->CastToValue(otherTypeSrc, *otherTypedValue, underlyingType, BfCastFlags_Explicit);
if ((!underlyingType->IsValuelessType()) && ((!convResultValue) || (!convOtherValue)))
return;
if (resultTypedValue == &leftValue)
PerformBinaryOperation(underlyingType, convResultValue, convOtherValue, binaryOp, opToken);
else
PerformBinaryOperation(underlyingType, convOtherValue, convResultValue, binaryOp, opToken);
if (mResult.mType == underlyingType)
mResult.mType = resultType;
return;
}
auto _CallValueTypeEquals = [&]()
{
BfModuleMethodInstance moduleMethodInstance;
auto typeInst = leftValue.mType->ToTypeInstance();
if (typeInst != NULL)
{
if ((binaryOp == BfBinaryOp_StrictEquality) || (binaryOp == BfBinaryOp_StrictInEquality))
moduleMethodInstance = mModule->GetMethodByName(typeInst, BF_METHODNAME_DEFAULT_STRICT_EQUALS);
else
moduleMethodInstance = mModule->GetMethodByName(typeInst, BF_METHODNAME_DEFAULT_EQUALS);
}
else
{
BF_ASSERT(leftValue.mType->IsSizedArray() || leftValue.mType->IsMethodRef());
auto valueTypeInst = mModule->ResolveTypeDef(mModule->mCompiler->mValueTypeTypeDef)->ToTypeInstance();
BfMethodDef* equalsMethodDef = mModule->mCompiler->mValueTypeTypeDef->GetMethodByName("Equals");
BfTypeVector typeVec;
typeVec.push_back(leftValue.mType);
moduleMethodInstance = mModule->GetMethodInstance(valueTypeInst, equalsMethodDef, typeVec);
}
if (moduleMethodInstance)
{
if ((opToken != NULL) && (!noClassify))
mModule->SetElementType(opToken, BfSourceElementType_Method);
SizedArray<BfResolvedArg, 4> argValues;
BfResolvedArg resolvedArg;
resolvedArg.mTypedValue = leftValue;
argValues.push_back(resolvedArg);
resolvedArg.mTypedValue = rightValue;
argValues.push_back(resolvedArg);
mResult = CreateCall(opToken, BfTypedValue(), BfTypedValue(), moduleMethodInstance.mMethodInstance->mMethodDef, moduleMethodInstance, BfCreateCallFlags_None, argValues);
if ((mResult) &&
((binaryOp == BfBinaryOp_InEquality) || (binaryOp == BfBinaryOp_StrictInEquality)))
mResult.mValue = mModule->mBfIRBuilder->CreateNot(mResult.mValue);
return true;
}
return false;
};
//if (((leftValue.mType->IsComposite()) || (leftValue.mType->IsObject())))
if (((resultType->IsComposite()) || (resultType->IsObject())))
{
bool areEquivalentTuples = false;
if ((leftValue.mType->IsTuple()) && (rightValue.mType->IsTuple()))
{
auto leftTupleType = (BfTypeInstance*)leftValue.mType;
auto rightTupleType = (BfTypeInstance*)rightValue.mType;
// We only do this for tuples, because we would allow an implicit struct
// truncation if we allow it for all structs, which would result in only
// the base class's fields being compared
if (mModule->CanCast(rightValue, leftValue.mType))
rightValue = mModule->Cast(opToken, rightValue, leftValue.mType, BfCastFlags_Explicit);
else if (mModule->CanCast(leftValue, rightValue.mType))
leftValue = mModule->Cast(opToken, leftValue, rightValue.mType, BfCastFlags_Explicit);
}
if (leftValue.mType == rightValue.mType)
{
if (BfBinOpEqualityCheck(binaryOp))
{
auto intCoercibleType = mModule->GetIntCoercibleType(leftValue.mType);
if (intCoercibleType != NULL)
{
auto intLHS = mModule->GetIntCoercible(leftValue);
auto intRHS = mModule->GetIntCoercible(rightValue);
auto boolType = mModule->GetPrimitiveType(BfTypeCode_Boolean);
if ((binaryOp == BfBinaryOp_Equality) || (binaryOp == BfBinaryOp_StrictEquality))
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateCmpEQ(intLHS.mValue, intRHS.mValue), boolType);
else
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateCmpNE(intLHS.mValue, intRHS.mValue), boolType);
return;
}
// Valueless types always compare as 'equal' if we can ensure no members could have an equality operator overload
if (leftValue.mType->IsComposite())
{
mModule->PopulateType(leftValue.mType);
if (leftValue.mType->IsValuelessType())
{
bool mayHaveEqualOverload = false;
auto leftTypeInst = leftValue.mType->ToTypeInstance();
if (leftTypeInst != NULL)
{
std::function<bool(BfType*)> _HasTypeInstance = [&](BfType* type)
{
if (type == NULL)
return false;
if (type->IsTypeInstance())
return true;
if (type->IsSizedArray())
return _HasTypeInstance(((BfSizedArrayType*)type)->mElementType);
return false;
};
for (auto& fieldInstance : leftTypeInst->mFieldInstances)
{
if (_HasTypeInstance(fieldInstance.mResolvedType))
mayHaveEqualOverload = true;
}
}
if (!mayHaveEqualOverload)
{
auto boolType = mModule->GetPrimitiveType(BfTypeCode_Boolean);
bool isEqual = (binaryOp == BfBinaryOp_Equality) || (binaryOp == BfBinaryOp_StrictEquality);
mResult = BfTypedValue(mModule->GetConstValue(isEqual ? 1 : 0, boolType), boolType);
return;
}
}
}
if (_CallValueTypeEquals())
return;
}
if (mModule->PreFail())
{
mModule->Fail(StrFormat("Operator '%s' cannot be applied to operands of type '%s'",
BfGetOpName(binaryOp),
mModule->TypeToString(leftValue.mType).c_str()), opToken);
}
return;
}
else
{
bool handled = false;
for (int pass = 0; pass < 2; pass++)
{
BfTypedValue& fromValue = (pass == 0) ? leftValue : rightValue;
BfType* toType = (pass == 0) ? rightValue.mType : leftValue.mType;
if (mModule->CanCast(fromValue, toType))
{
auto result = mModule->Cast(opToken, fromValue, toType);
if (result)
{
resultType = toType;
fromValue = result;
handled = true;
break;
}
}
}
if (!handled)
{
if ((leftValue.mType->IsUndefSizedArray()) || (rightValue.mType->IsUndefSizedArray()))
{
if ((leftValue.mType->IsSizedArray()) && (rightValue.mType->IsSizedArray() &&
(leftValue.mType->GetUnderlyingType() == rightValue.mType->GetUnderlyingType())))
{
if (BfBinOpEqualityCheck(binaryOp))
{
auto boolType = mModule->GetPrimitiveType(BfTypeCode_Boolean);
mResult = mModule->GetDefaultTypedValue(boolType, false, BfDefaultValueKind_Undef);
return;
}
}
}
mModule->Fail(StrFormat("Operator '%s' cannot be applied to operands of type '%s' and '%s'",
BfGetOpName(binaryOp),
mModule->TypeToString(leftValue.mType).c_str(),
mModule->TypeToString(rightValue.mType).c_str()), opToken);
return;
}
}
}
if (resultType->IsMethodRef() && otherType->IsMethodRef())
{
if (BfBinOpEqualityCheck(binaryOp))
{
auto boolType = mModule->GetPrimitiveType(BfTypeCode_Boolean);
BfMethodRefType* lhsMethodRefType = (BfMethodRefType*)leftValue.mType;
BfMethodRefType* rhsMethodRefType = (BfMethodRefType*)rightValue.mType;
if (lhsMethodRefType->mMethodRef != rhsMethodRefType->mMethodRef)
{
mResult = BfTypedValue(mModule->GetConstValue(((binaryOp == BfBinaryOp_Equality) || (binaryOp == BfBinaryOp_StrictEquality)) ? 0 : 1, boolType), boolType);
return;
}
if (_CallValueTypeEquals())
return;
}
}
if (resultType->IsIntegral())
{
if ((binaryOp == BfBinaryOp_LeftShift) || (binaryOp == BfBinaryOp_RightShift))
{
if (rightValue.mValue.IsConst())
{
auto constVal = mModule->mBfIRBuilder->GetConstant(rightValue.mValue);
if ((constVal->mInt64 < 0) || (constVal->mInt64 >= 8 * resultType->mSize))
{
mModule->Fail(StrFormat("Shift value '%lld' is out of range for type '%s'", constVal->mInt64, mModule->TypeToString(resultType).c_str()), opToken);
}
}
}
// We're trying a simplified scheme that doesn't always try to up-convert into an 'int'
if (leftValue.mType != rightValue.mType)
{
bool isBitwiseExpr =
(binaryOp == BfBinaryOp_BitwiseAnd) ||
(binaryOp == BfBinaryOp_BitwiseOr) ||
(binaryOp == BfBinaryOp_ExclusiveOr) ||
(binaryOp == BfBinaryOp_LeftShift) ||
(binaryOp == BfBinaryOp_RightShift) ||
(binaryOp == BfBinaryOp_Equality) ||
(binaryOp == BfBinaryOp_InEquality) ||
(binaryOp == BfBinaryOp_StrictEquality) ||
(binaryOp == BfBinaryOp_StrictInEquality);
if ((binaryOp == BfBinaryOp_LeftShift) || (binaryOp == BfBinaryOp_RightShift))
{
// For shifts we have more lenient rules - shifts are naturally limited so any int type is equally valid
if (rightValue.mType->IsIntegral())
explicitCast = true;
}
else if (((binaryOp == BfBinaryOp_Add) || (binaryOp == BfBinaryOp_Subtract) || (binaryOp == BfBinaryOp_OverflowAdd) || (binaryOp == BfBinaryOp_OverflowSubtract)) && (resultType->IsChar()) && (otherType->IsInteger()))
{
// charVal += intVal;
explicitCast = true;
}
else if ((!resultType->IsSigned()) && (otherType->IsSigned()))
{
if (mModule->CanCast(*otherTypedValue, resultType))
{
// If we can convert the 'other' value implicitly then it's a convertible literal, leave as uint
}
else
{
mModule->Fail(StrFormat("Operator cannot be applied to operands of type '%s' and '%s'",
mModule->TypeToString(leftValue.mType).c_str(),
mModule->TypeToString(rightValue.mType).c_str()), opToken);
return;
}
}
else if ((isBitwiseExpr) && (otherType->IsIntegral()) && (resultType->mSize == otherType->mSize))
{
// Forget about signed/unsigned mismatches for bitwise operations
explicitCast = true;
}
else
{
if (((binaryOp == BfBinaryOp_Subtract) || (binaryOp == BfBinaryOp_OverflowSubtract)) &&
(resultType->IsChar()) && (otherType->IsChar()))
{
// "wchar - char" subtraction will always fit into int32, because of unicode range
resultType = mModule->GetPrimitiveType(BfTypeCode_Int32);
explicitCast = true;
}
else if ((otherType->IsChar()) &&
((binaryOp == BfBinaryOp_Add) || (binaryOp == BfBinaryOp_Subtract) || (binaryOp == BfBinaryOp_OverflowAdd) || (binaryOp == BfBinaryOp_OverflowSubtract)))
{
mModule->Fail(StrFormat("Cannot perform operation between types '%s' and '%s'",
mModule->TypeToString(leftValue.mType).c_str(),
mModule->TypeToString(rightValue.mType).c_str()), opToken);
}
}
}
else if ((!resultType->IsSigned()) && (binaryOp == BfBinaryOp_Subtract) && (!forceLeftType))
{
if ((mExpectingType == NULL) || (mExpectingType->IsSigned()) || (resultType->IsChar()))
{
if ((resultType->IsChar()) && (resultType->mSize == 4))
{
// "wchar - wchar" subtraction will always fit into int32, because of unicode range
resultType = mModule->GetPrimitiveType(BfTypeCode_Int32);
}
else
{
// The result of uint8 - uint8 is int16 (for example)
switch (resultType->mSize)
{
case 1:
resultType = mModule->GetPrimitiveType(BfTypeCode_Int16);
break;
case 2:
resultType = mModule->GetPrimitiveType(BfTypeCode_Int32);
break;
case 4:
resultType = mModule->GetPrimitiveType(BfTypeCode_Int64);
break;
}
}
explicitCast = true;
}
}
else if (resultType->IsChar())
{
bool canDoOp =
(binaryOp == BfBinaryOp_BitwiseAnd) ||
(binaryOp == BfBinaryOp_BitwiseOr) ||
((binaryOp >= BfBinaryOp_Equality) && (binaryOp <= BfBinaryOp_Compare));
if (!canDoOp)
{
mModule->Fail(StrFormat("Cannot perform operation on type '%s'", mModule->TypeToString(resultType).c_str()), opToken);
return;
}
}
}
if (!convLeftValue)
convLeftValue = mModule->CastToValue(leftExpression, leftValue, resultType,
explicitCast ? (BfCastFlags)(BfCastFlags_Explicit | BfCastFlags_FromCompiler) : BfCastFlags_None);
if (!convRightValue)
convRightValue = mModule->CastToValue(rightExpression, rightValue, resultType,
explicitCast ? (BfCastFlags)(BfCastFlags_Explicit | BfCastFlags_FromCompiler) : BfCastFlags_None);
PerformBinaryOperation(resultType, convLeftValue, convRightValue, binaryOp, opToken);
}
void BfExprEvaluator::PerformBinaryOperation(BfType* resultType, BfIRValue convLeftValue, BfIRValue convRightValue, BfBinaryOp binaryOp, BfAstNode* opToken)
{
if (resultType->IsValuelessType())
{
switch (binaryOp)
{
case BfBinaryOp_Equality:
case BfBinaryOp_StrictEquality:
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateConst(BfTypeCode_Boolean, 1),
mModule->GetPrimitiveType(BfTypeCode_Boolean));
return;
case BfBinaryOp_InEquality:
case BfBinaryOp_StrictInEquality:
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateConst(BfTypeCode_Boolean, 0),
mModule->GetPrimitiveType(BfTypeCode_Boolean));
return;
default:
break;
}
}
if ((!convLeftValue) || (!convRightValue))
return;
if (resultType->IsPrimitiveType())
{
auto primType = (BfPrimitiveType*)resultType;
if (primType->mTypeDef->mTypeCode == BfTypeCode_Boolean)
{
bool passThrough = false;
switch (binaryOp)
{
case BfBinaryOp_Equality:
case BfBinaryOp_StrictEquality:
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateCmpEQ(convLeftValue, convRightValue),
mModule->GetPrimitiveType(BfTypeCode_Boolean));
break;
case BfBinaryOp_InEquality:
case BfBinaryOp_StrictInEquality:
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateCmpNE(convLeftValue, convRightValue),
mModule->GetPrimitiveType(BfTypeCode_Boolean));
break;
case BfBinaryOp_BitwiseAnd:
case BfBinaryOp_ConditionalAnd:
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateAnd(convLeftValue, convRightValue),
mModule->GetPrimitiveType(BfTypeCode_Boolean));
break;
case BfBinaryOp_BitwiseOr:
case BfBinaryOp_ConditionalOr:
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateOr(convLeftValue, convRightValue),
mModule->GetPrimitiveType(BfTypeCode_Boolean));
break;
case BfBinaryOp_ExclusiveOr:
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateXor(convLeftValue, convRightValue),
mModule->GetPrimitiveType(BfTypeCode_Boolean));
break;
case BfBinaryOp_Compare:
passThrough = true;
break;
default:
if (mModule->PreFail())
mModule->Fail("Invalid operation for booleans", opToken);
break;
}
if (!passThrough)
return;
}
}
if ((!resultType->IsIntegralOrBool()) && (!resultType->IsFloat()))
{
if (mModule->PreFail())
mModule->Fail(StrFormat("Cannot perform operation on type '%s'", mModule->TypeToString(resultType).c_str()), opToken);
return;
}
if (resultType->IsIntegral())
{
switch (binaryOp)
{
case BfBinaryOp_BitwiseAnd:
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateAnd(convLeftValue, convRightValue), resultType);
return;
case BfBinaryOp_BitwiseOr:
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateOr(convLeftValue, convRightValue), resultType);
return;
case BfBinaryOp_ExclusiveOr:
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateXor(convLeftValue, convRightValue), resultType);
return;
case BfBinaryOp_LeftShift:
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateShl(convLeftValue, convRightValue), resultType);
mModule->CheckRangeError(resultType, opToken);
return;
case BfBinaryOp_RightShift:
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateShr(convLeftValue, convRightValue, resultType->IsSigned()), resultType);
return;
default: break;
}
}
if ((resultType->IsChar()) &&
((binaryOp == BfBinaryOp_Multiply) ||
(binaryOp == BfBinaryOp_OverflowMultiply) ||
(binaryOp == BfBinaryOp_Divide) ||
(binaryOp == BfBinaryOp_Modulus)))
{
mModule->Fail(StrFormat("Cannot perform operation on type '%s'", mModule->TypeToString(resultType).c_str()), opToken);
return;
}
auto _GetOverflowKind = [&](bool wantOverflow)
{
if (resultType->IsFloat())
return BfOverflowCheckKind_None;
if (!wantOverflow)
return BfOverflowCheckKind_None;
if (mModule->GetDefaultCheckedKind() != BfCheckedKind_Checked)
return BfOverflowCheckKind_None;
bool arithmeticChecks = mModule->mCompiler->mOptions.mArithmeticChecks;
auto typeOptions = mModule->GetTypeOptions();
if (typeOptions != NULL)
arithmeticChecks = typeOptions->Apply(arithmeticChecks, BfOptionFlags_ArithmeticCheck);
if (!arithmeticChecks)
return BfOverflowCheckKind_None;
BfOverflowCheckKind overflowCheckKind = (resultType->IsSigned()) ? BfOverflowCheckKind_Signed : BfOverflowCheckKind_Unsigned;
if (!mModule->IsOptimized())
overflowCheckKind = (BfOverflowCheckKind)(overflowCheckKind | BfOverflowCheckKind_Flag_UseAsm);
return overflowCheckKind;
};
switch (binaryOp)
{
case BfBinaryOp_Add:
case BfBinaryOp_OverflowAdd:
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateAdd(convLeftValue, convRightValue, _GetOverflowKind(binaryOp == BfBinaryOp_Add)), resultType);
if (binaryOp != BfBinaryOp_OverflowAdd)
mModule->CheckRangeError(resultType, opToken);
break;
case BfBinaryOp_Subtract:
case BfBinaryOp_OverflowSubtract:
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateSub(convLeftValue, convRightValue, _GetOverflowKind(binaryOp == BfBinaryOp_Subtract)), resultType);
if (binaryOp != BfBinaryOp_OverflowSubtract)
mModule->CheckRangeError(resultType, opToken);
break;
case BfBinaryOp_Multiply:
case BfBinaryOp_OverflowMultiply:
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateMul(convLeftValue, convRightValue, _GetOverflowKind(binaryOp == BfBinaryOp_Multiply)), resultType);
if (binaryOp != BfBinaryOp_OverflowMultiply)
mModule->CheckRangeError(resultType, opToken);
break;
case BfBinaryOp_Divide:
{
bool isZero = false;
if (convRightValue.IsConst())
{
auto constVal = mModule->mBfIRBuilder->GetConstant(convRightValue);
if (BfIRBuilder::IsInt(constVal->mTypeCode))
isZero = constVal->mInt64 == 0;
}
if (isZero)
{
mModule->Fail("Divide by zero", opToken);
mResult = mModule->GetDefaultTypedValue(resultType);
}
else
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateDiv(convLeftValue, convRightValue, resultType->IsSigned()), resultType);
}
break;
case BfBinaryOp_Modulus:
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateRem(convLeftValue, convRightValue, resultType->IsSigned()), resultType);
break;
case BfBinaryOp_Equality:
case BfBinaryOp_StrictEquality:
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateCmpEQ(convLeftValue, convRightValue),
mModule->GetPrimitiveType(BfTypeCode_Boolean));
break;
case BfBinaryOp_InEquality:
case BfBinaryOp_StrictInEquality:
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateCmpNE(convLeftValue, convRightValue),
mModule->GetPrimitiveType(BfTypeCode_Boolean));
break;
case BfBinaryOp_LessThan:
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateCmpLT(convLeftValue, convRightValue, resultType->IsSigned()),
mModule->GetPrimitiveType(BfTypeCode_Boolean));
break;
case BfBinaryOp_LessThanOrEqual:
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateCmpLTE(convLeftValue, convRightValue, resultType->IsSigned()),
mModule->GetPrimitiveType(BfTypeCode_Boolean));
break;
case BfBinaryOp_GreaterThan:
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateCmpGT(convLeftValue, convRightValue, resultType->IsSigned()),
mModule->GetPrimitiveType(BfTypeCode_Boolean));
break;
case BfBinaryOp_GreaterThanOrEqual:
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateCmpGTE(convLeftValue, convRightValue, resultType->IsSigned()),
mModule->GetPrimitiveType(BfTypeCode_Boolean));
break;
case BfBinaryOp_Compare:
{
auto intType = mModule->GetPrimitiveType(BfTypeCode_IntPtr);
if ((convLeftValue.IsConst()) && (convRightValue.IsConst()))
{
auto cmpLtVal = mModule->mBfIRBuilder->CreateCmpLT(convLeftValue, convRightValue, resultType->IsSigned());
auto ltConstant = mModule->mBfIRBuilder->GetConstant(cmpLtVal);
if (ltConstant->mBool)
{
mResult = BfTypedValue(mModule->GetConstValue(-1, mModule->GetPrimitiveType(BfTypeCode_IntPtr)), intType);
}
else
{
auto cmpGtVal = mModule->mBfIRBuilder->CreateCmpGT(convLeftValue, convRightValue, resultType->IsSigned());
auto rtConstant = mModule->mBfIRBuilder->GetConstant(cmpGtVal);
if (rtConstant->mBool)
mResult = BfTypedValue(mModule->GetConstValue(1, mModule->GetPrimitiveType(BfTypeCode_IntPtr)), intType);
else
mResult = BfTypedValue(mModule->GetConstValue(0, mModule->GetPrimitiveType(BfTypeCode_IntPtr)), intType);
}
}
else if ((resultType->IsIntegralOrBool()) && (resultType->mSize < intType->mSize))
{
auto leftIntValue = mModule->mBfIRBuilder->CreateNumericCast(convLeftValue, resultType->IsSigned(), BfTypeCode_IntPtr);
auto rightIntValue = mModule->mBfIRBuilder->CreateNumericCast(convRightValue, resultType->IsSigned(), BfTypeCode_IntPtr);
mResult = BfTypedValue(mModule->mBfIRBuilder->CreateSub(leftIntValue, rightIntValue), intType);
}
else
{
BfIRBlock checkGtBlock = mModule->mBfIRBuilder->CreateBlock("cmpCheckGt");
BfIRBlock eqBlock = mModule->mBfIRBuilder->CreateBlock("cmpEq");
BfIRBlock endBlock = mModule->mBfIRBuilder->CreateBlock("cmpEnd");
auto startBlock = mModule->mBfIRBuilder->GetInsertBlock();
auto cmpLtVal = mModule->mBfIRBuilder->CreateCmpLT(convLeftValue, convRightValue, resultType->IsSigned());
mModule->mBfIRBuilder->CreateCondBr(cmpLtVal, endBlock, checkGtBlock);
mModule->mBfIRBuilder->AddBlock(checkGtBlock);
mModule->mBfIRBuilder->SetInsertPoint(checkGtBlock);
auto cmpGtVal = mModule->mBfIRBuilder->CreateCmpGT(convLeftValue, convRightValue, resultType->IsSigned());
mModule->mBfIRBuilder->CreateCondBr(cmpGtVal, endBlock, eqBlock);
mModule->mBfIRBuilder->AddBlock(eqBlock);
mModule->mBfIRBuilder->SetInsertPoint(eqBlock);
mModule->mBfIRBuilder->CreateBr(endBlock);
mModule->mBfIRBuilder->AddBlock(endBlock);
mModule->mBfIRBuilder->SetInsertPoint(endBlock);
auto phiVal = mModule->mBfIRBuilder->CreatePhi(mModule->mBfIRBuilder->MapType(intType), 3);
mModule->mBfIRBuilder->AddPhiIncoming(phiVal, mModule->mBfIRBuilder->CreateConst(BfTypeCode_IntPtr, -1), startBlock);
mModule->mBfIRBuilder->AddPhiIncoming(phiVal, mModule->mBfIRBuilder->CreateConst(BfTypeCode_IntPtr, 1), checkGtBlock);
mModule->mBfIRBuilder->AddPhiIncoming(phiVal, mModule->mBfIRBuilder->CreateConst(BfTypeCode_IntPtr, 0), eqBlock);
mResult = BfTypedValue(phiVal, intType);
}
}
break;
default:
if (mModule->PreFail())
mModule->Fail("Invalid operation", opToken);
break;
}
}
void BfExprEvaluator::Visit(BfBinaryOperatorExpression* binOpExpr)
{
BfAutoParentNodeEntry autoParentNodeEntry(mModule, binOpExpr);
// There are a few binary operations that could actually be casts followed by an unary operation
// We can't determine that until we know whether the identifier in the parens is a typename or not
// (double)-1.0 (intptr)&val (BaseStruct)*val
BfUnaryOp unaryOp = BfUnaryOp_None;
switch (binOpExpr->mOp)
{
case BfBinaryOp_Add: unaryOp = BfUnaryOp_Positive; break;
case BfBinaryOp_Subtract: unaryOp = BfUnaryOp_Negate; break;
case BfBinaryOp_Multiply: unaryOp = BfUnaryOp_Dereference; break;
case BfBinaryOp_BitwiseAnd: unaryOp = BfUnaryOp_AddressOf; break;
default: break;
}
if (unaryOp != BfUnaryOp_None)
{
if (auto parenExpr = BfNodeDynCast<BfParenthesizedExpression>(binOpExpr->mLeft))
{
if (auto castTypeExpr = BfNodeDynCast<BfIdentifierNode>(parenExpr->mExpression))
{
SetAndRestoreValue<bool> prevIgnoreError(mModule->mIgnoreErrors, true);
auto resolvedType = mModule->ResolveTypeRef(castTypeExpr, NULL);
prevIgnoreError.Restore();
if (resolvedType != NULL)
{
if (auto rightBinOpExpr = BfNodeDynCast<BfBinaryOperatorExpression>(binOpExpr->mRight))
{
int leftPrecedence = BfGetBinaryOpPrecendence(binOpExpr->mOp);
int rightPrecedence = BfGetBinaryOpPrecendence(rightBinOpExpr->mOp);
// Do we have a precedence order issue due to mis-parsing this?
// An example is: "(int)-5.5 * 10"
if (rightPrecedence > leftPrecedence)
{
mModule->FailAfter("Cast target must be wrapped in parentheses", binOpExpr->mLeft);
}
}
PerformUnaryOperation(binOpExpr->mRight, unaryOp, binOpExpr->mOpToken, BfUnaryOpFlag_None);
if (mResult)
{
mResult = mModule->LoadValue(mResult);
mResult = mModule->Cast(binOpExpr, mResult, resolvedType, BfCastFlags_Explicit);
}
return;
}
}
}
}
if ((binOpExpr->mOp == BfBinaryOp_LeftShift) || (binOpExpr->mOp == BfBinaryOp_RightShift) ||
(binOpExpr->mOp == BfBinaryOp_BitwiseAnd) || (binOpExpr->mOp == BfBinaryOp_BitwiseOr) ||
(binOpExpr->mOp == BfBinaryOp_ExclusiveOr))
{
for (int side = 0; side < 2; side++)
{
if (auto innerBinOpExpr = BfNodeDynCast<BfBinaryOperatorExpression>((side == 0) ? binOpExpr->mLeft : binOpExpr->mRight))
{
if ((innerBinOpExpr->mOp == BfBinaryOp_Add) || (innerBinOpExpr->mOp == BfBinaryOp_Subtract))
{
mModule->Warn(BfWarning_C4554_PossiblePrecedenceError, "Check operator precedence for possible error. Consider using parentheses to clarify precedence", innerBinOpExpr);
}
}
}
}
if (binOpExpr->mRight == NULL)
{
// We visit the children for autocompletion only
if (binOpExpr->mLeft != NULL)
VisitChild(binOpExpr->mLeft);
if (mResult)
{
auto autoComplete = GetAutoComplete();
if (autoComplete != NULL)
autoComplete->CheckEmptyStart(binOpExpr->mOpToken, mResult.mType);
}
if (binOpExpr->mRight != NULL)
VisitChild(binOpExpr->mRight);
return;
}
PerformBinaryOperation(binOpExpr->mLeft, binOpExpr->mRight, binOpExpr->mOp, binOpExpr->mOpToken, BfBinOpFlag_None);
}