1
0
Fork 0
mirror of https://github.com/beefytech/Beef.git synced 2025-06-08 11:38:21 +02:00
Beef/IDEHelper/Compiler/BfResolvedTypeUtils.cpp

5331 lines
153 KiB
C++

#include "BeefySysLib/util/AllocDebug.h"
#include "BfCompiler.h"
#include "BfParser.h"
#include "BfDefBuilder.h"
#include "BfMangler.h"
#include "BfConstResolver.h"
#include "BfModule.h"
#include "CeMachine.h"
#include "BeefySysLib/util/BeefPerf.h"
#pragma warning(disable:4996)
#pragma warning(disable:4267)
USING_NS_BF;
//void Beefy::DbgCheckType(llvm::Type* checkType)
//{
//#ifdef _DEBUG
// /*while (auto ptrType = llvm::dyn_cast<llvm::PointerType>(checkType))
// {
// checkType = ptrType->getElementType();
// }
//
// auto structType = llvm::dyn_cast<llvm::StructType>(checkType);
// if (structType != NULL)
// {
// auto stringRef = structType->getName();
// BF_ASSERT(strncmp(stringRef.data(), "DEAD", 4) != 0);
// }*/
//#endif
//}
void BfTypedValue::DbgCheckType() const
{
/*if (mType != NULL)
{
auto structType = llvm::dyn_cast<llvm::StructType>(mType->mIRType);
if (structType != NULL)
{
auto stringRef = structType->getName();
BF_ASSERT(strncmp(stringRef.data(), "DEAD", 4) != 0);
}
}*/
#ifdef _DEBUG
/*if (mValue != NULL)
{
auto checkType = mValue->getType();
Beefy::DbgCheckType(checkType);
}*/
#endif
}
bool BfTypedValue::IsValuelessType() const
{
return mType->IsValuelessType();
}
bool BfTypedValue::CanModify() const
{
return (((IsAddr()) || (mType->IsValuelessType())) && (!IsReadOnly()));
}
//////////////////////////////////////////////////////////////////////////
bool BfGenericParamInstance::IsEnum()
{
if ((mGenericParamFlags & BfGenericParamFlag_Enum) != 0)
return true;
if (mTypeConstraint != NULL)
{
auto module = mTypeConstraint->GetModule();
if ((module != NULL) && (mTypeConstraint->IsInstanceOf(module->mCompiler->mEnumTypeDef)))
return true;
}
return true;
return false;
}
//////////////////////////////////////////////////////////////////////////
bool BfDependencyMap::AddUsedBy(BfType* dependentType, BfDependencyMap::DependencyFlags flags)
{
BF_ASSERT(dependentType != NULL);
BF_ASSERT(dependentType->mRevision != -1);
//auto itr = mTypeSet.insert(BfDependencyMap::TypeMap::value_type(dependentType, DependencyEntry(dependentType->mRevision, flags)));
//if (!itr.second)
DependencyEntry* dependencyEntry = NULL;
if (mTypeSet.TryAddRaw(dependentType, NULL, &dependencyEntry))
{
if ((flags & ~DependencyFlag_UnspecializedType) != 0)
{
if (auto dependentDepType = dependentType->ToDependedType())
{
int tryDepth = dependentDepType->mDependencyMap.mMinDependDepth + 1;
if (tryDepth < mMinDependDepth)
mMinDependDepth = tryDepth;
}
}
dependencyEntry->mRevision = dependentType->mRevision;
dependencyEntry->mFlags = flags;
return true;
}
else
{
if (dependencyEntry->mRevision != dependentType->mRevision)
{
dependencyEntry->mRevision = dependentType->mRevision;
dependencyEntry->mFlags = flags;
return true;
}
else
{
if ((dependencyEntry->mFlags & flags) == flags)
return false;
dependencyEntry->mFlags = (BfDependencyMap::DependencyFlags)(dependencyEntry->mFlags | flags);
return true;
}
}
}
bool BfDependencyMap::IsEmpty()
{
return mTypeSet.size() == 0;
}
BfDependencyMap::TypeMap::iterator BfDependencyMap::begin()
{
return mTypeSet.begin();
}
BfDependencyMap::TypeMap::iterator BfDependencyMap::end()
{
return mTypeSet.end();
}
BfDependencyMap::TypeMap::iterator BfDependencyMap::erase(BfDependencyMap::TypeMap::iterator& itr)
{
return mTypeSet.Remove(itr);
}
//////////////////////////////////////////////////////////////////////////
BfFieldDef* BfFieldInstance::GetFieldDef()
{
if (mFieldIdx == -1)
return NULL;
return mOwner->mTypeDef->mFields[mFieldIdx];
}
//////////////////////////////////////////////////////////////////////////
BfType::BfType()
{
mTypeId = -1;
mContext = NULL;
mRevision = -1;
//mLastUsedRevision = -1;
mDefineState = BfTypeDefineState_Undefined;
//mDICallbackVH = NULL;
//mInnerDICallbackVH = NULL;
mRebuildFlags = BfTypeRebuildFlag_None;
mAlign = -1;
mSize = -1;
//mDICallbackVH = NULL;
//mInnerDICallbackVH = NULL;
mDirty = true;
}
BfModule* BfType::GetModule()
{
if (mContext->mCompiler->mOptions.mCompileOnDemandKind == BfCompileOnDemandKind_AlwaysInclude)
return mContext->mScratchModule;
else
return mContext->mUnreifiedModule;
}
BfTypeInstance* BfType::FindUnderlyingTypeInstance()
{
auto typeInstance = ToTypeInstance();
if (typeInstance != NULL)
return typeInstance;
auto underlyingType = GetUnderlyingType();
while (underlyingType != NULL)
{
auto underlyingTypeInst = underlyingType->ToTypeInstance();
if (underlyingTypeInst != NULL)
return underlyingTypeInst;
underlyingType = underlyingType->GetUnderlyingType();
}
return NULL;
}
void BfType::ReportMemory(MemReporter* memReporter)
{
memReporter->Add(sizeof(BfType));
}
//////////////////////////////////////////////////////////////////////////
BfNonGenericMethodRef::BfNonGenericMethodRef(BfMethodInstance* methodInstance)
{
*this = methodInstance;
}
BfNonGenericMethodRef::operator BfMethodInstance* () const
{
if (mTypeInstance == NULL)
return NULL;
if (mMethodNum < 0)
return NULL;
auto& methodSpecializationGroup = mTypeInstance->mMethodInstanceGroups[mMethodNum];
BF_ASSERT(methodSpecializationGroup.mDefault != NULL);
return methodSpecializationGroup.mDefault;
}
BfMethodInstance* BfNonGenericMethodRef::operator->() const
{
return *this;
}
BfNonGenericMethodRef& BfNonGenericMethodRef::operator=(BfMethodInstance* methodInstance)
{
if (methodInstance == NULL)
{
mTypeInstance = NULL;
mMethodNum = 0;
}
else
{
mTypeInstance = methodInstance->mMethodInstanceGroup->mOwner;
mMethodNum = methodInstance->mMethodInstanceGroup->mMethodIdx;
BF_ASSERT((methodInstance->GetNumGenericArguments() == 0) ||
((methodInstance->mIsUnspecialized) && (!methodInstance->mIsUnspecializedVariation)));
mSignatureHash = (int)mTypeInstance->mTypeDef->mSignatureHash;
}
return *this;
}
bool BfNonGenericMethodRef::operator==(const BfNonGenericMethodRef& methodRef) const
{
bool eq = ((methodRef.mKind == mKind) &&
(methodRef.mTypeInstance == mTypeInstance) &&
(methodRef.mMethodNum == mMethodNum));
if (eq)
{
BF_ASSERT((methodRef.mSignatureHash == mSignatureHash) || (methodRef.mSignatureHash == 0) || (mSignatureHash == 0));
}
return eq;
}
bool BfNonGenericMethodRef::operator==(BfMethodInstance* methodInstance) const
{
if (mTypeInstance != methodInstance->GetOwner())
return false;
return methodInstance == (BfMethodInstance*)*this;
}
size_t BfNonGenericMethodRef::Hash::operator()(const BfNonGenericMethodRef& val) const
{
return (val.mTypeInstance->mTypeId << 10) ^ val.mMethodNum;
}
//////////////////////////////////////////////////////////////////////////
BfMethodRef::BfMethodRef(BfMethodInstance* methodInstance)
{
*this = methodInstance;
}
BfMethodRef::operator BfMethodInstance* () const
{
if (mTypeInstance == NULL)
return NULL;
if (mMethodNum < 0)
return NULL;
auto& methodSpecializationGroup = mTypeInstance->mMethodInstanceGroups[mMethodNum];
if (mMethodGenericArguments.size() != 0)
{
bool isSpecialied = false;
int paramIdx = 0;
for (auto genericArg : mMethodGenericArguments)
{
if (!genericArg->IsGenericParam())
{
isSpecialied = true;
break;
}
auto genericParam = (BfGenericParamType*)genericArg;
if ((genericParam->mGenericParamKind != BfGenericParamKind_Method) || (genericParam->mGenericParamIdx != paramIdx))
{
isSpecialied = true;
break;
}
paramIdx++;
}
if (isSpecialied)
{
BfMethodInstance** methodInstancePtr = NULL;
if (methodSpecializationGroup.mMethodSpecializationMap->TryGetValue(mMethodGenericArguments, &methodInstancePtr))
return *methodInstancePtr;
return NULL;
}
}
BF_ASSERT(methodSpecializationGroup.mDefault != NULL);
return methodSpecializationGroup.mDefault;
}
BfMethodInstance* BfMethodRef::operator->() const
{
return *this;
}
BfMethodRef& BfMethodRef::operator=(BfMethodInstance* methodInstance)
{
if (methodInstance == NULL)
{
mTypeInstance = NULL;
mMethodNum = 0;
mMethodRefFlags = BfMethodRefFlag_None;
}
else
{
mTypeInstance = methodInstance->mMethodInstanceGroup->mOwner;
mMethodNum = methodInstance->mMethodInstanceGroup->mMethodIdx;
if (methodInstance->mMethodInfoEx != NULL)
{
mMethodGenericArguments.Clear();
for (auto type : methodInstance->mMethodInfoEx->mMethodGenericArguments)
mMethodGenericArguments.Add(type);
}
mSignatureHash = (int)mTypeInstance->mTypeDef->mSignatureHash;
if (methodInstance->mAlwaysInline)
mMethodRefFlags = BfMethodRefFlag_AlwaysInclude;
else
mMethodRefFlags = BfMethodRefFlag_None;
}
return *this;
}
bool BfMethodRef::operator==(const BfMethodRef& methodRef) const
{
bool eq = ((methodRef.mKind == mKind) &&
(methodRef.mTypeInstance == mTypeInstance) &&
(methodRef.mMethodNum == mMethodNum) &&
(methodRef.mMethodGenericArguments == mMethodGenericArguments) &&
(methodRef.mMethodRefFlags == mMethodRefFlags));
if (eq)
{
BF_ASSERT((methodRef.mSignatureHash == mSignatureHash) || (methodRef.mSignatureHash == 0) || (mSignatureHash == 0));
}
return eq;
}
bool BfMethodRef::operator==(BfMethodInstance* methodInstance) const
{
if (mTypeInstance != methodInstance->GetOwner())
return false;
return methodInstance == (BfMethodInstance*)*this;
}
size_t BfMethodRef::Hash::operator()(const BfMethodRef& val) const
{
return (val.mTypeInstance->mTypeId << 10) ^ (val.mMethodNum << 1) ^ (int)(val.mMethodRefFlags);
}
//////////////////////////////////////////////////////////////////////////
BfFieldRef::BfFieldRef(BfTypeInstance* typeInst, BfFieldDef* fieldDef)
{
mTypeInstance = typeInst;
mFieldIdx = fieldDef->mIdx;
}
BfFieldRef::BfFieldRef(BfFieldInstance* fieldInstance)
{
mTypeInstance = fieldInstance->mOwner;
mFieldIdx = fieldInstance->mFieldIdx;
}
BfFieldRef::operator BfFieldInstance*() const
{
BF_ASSERT(!mTypeInstance->IsDataIncomplete());
return &mTypeInstance->mFieldInstances[mFieldIdx];
}
BfFieldRef::operator BfFieldDef*() const
{
return mTypeInstance->mTypeDef->mFields[mFieldIdx];
}
//////////////////////////////////////////////////////////////////////////
BfPropertyRef::BfPropertyRef(BfTypeInstance* typeInst, BfPropertyDef* propDef)
{
mTypeInstance = typeInst;
mPropIdx = propDef->mIdx;
}
BfPropertyRef::operator BfPropertyDef*() const
{
return mTypeInstance->mTypeDef->mProperties[mPropIdx];
}
//////////////////////////////////////////////////////////////////////////
/*BfMethodInstance* BfTypeInstance::GetVTableMethodInstance(int vtableIdx)
{
auto& methodSpecializationGroup = mVirtualMethodTable[vtableIdx].mTypeInstance->mMethodInstanceGroups[mVirtualMethodTable[vtableIdx].mMethodNum];
return &methodSpecializationGroup.mMethodSpecializationMap.begin()->second;
}*/
static int gDelIdx = 0;
BfType::~BfType()
{
if (mContext != NULL)
BfLogSys(mContext->mSystem, "~BfType %p\n", this);
/*gDelIdx++;
auto typeInst = ToTypeInstance();
OutputDebugStrF("%d Deleting %08X type %s\n", gDelIdx, this, (typeInst != NULL) ? typeInst->mTypeDef->mName.c_str() : "");*/
//delete mDICallbackVH;
//delete mInnerDICallbackVH;
}
BfFieldInstance::~BfFieldInstance()
{
delete mCustomAttributes;
}
BfType* BfFieldInstance::GetResolvedType()
{
return mResolvedType;
}
void BfFieldInstance::SetResolvedType(BfType* type)
{
mResolvedType = type;
}
void BfFieldInstance::GetDataRange(int& dataIdx, int& dataCount)
{
int minMergedDataIdx = mMergedDataIdx;
int maxMergedDataIdx = minMergedDataIdx + 1;
if (mResolvedType->IsStruct())
maxMergedDataIdx = minMergedDataIdx + mResolvedType->ToTypeInstance()->mMergedFieldDataCount;
if (mOwner->mIsUnion)
{
for (auto& checkFieldInstance : mOwner->mFieldInstances)
{
if (&checkFieldInstance == this)
continue;
if (checkFieldInstance.mDataIdx == mDataIdx)
{
int checkMinMergedDataIdx = checkFieldInstance.mMergedDataIdx;
int checkMaxMergedDataIdx = checkMinMergedDataIdx + 1;
if (checkFieldInstance.GetResolvedType()->IsStruct())
checkMaxMergedDataIdx = checkMinMergedDataIdx + checkFieldInstance.mResolvedType->ToTypeInstance()->mMergedFieldDataCount;
minMergedDataIdx = BF_MIN(minMergedDataIdx, checkMinMergedDataIdx);
maxMergedDataIdx = BF_MAX(maxMergedDataIdx, checkMaxMergedDataIdx);
}
}
}
int fieldIdx = dataIdx - 1;
if (fieldIdx == -1)
{
dataIdx = minMergedDataIdx + 1;
}
else
{
fieldIdx += minMergedDataIdx;
dataIdx = fieldIdx + 1;
}
dataCount = maxMergedDataIdx - minMergedDataIdx;
}
int BfFieldInstance::GetAlign(int packing)
{
int align = mResolvedType->mAlign;
if (packing > 0)
align = BF_MIN(align, packing);
if (mCustomAttributes != NULL)
{
auto module = mOwner->mModule;
for (auto& attrib : mCustomAttributes->mAttributes)
{
if (attrib.mType->IsInstanceOf(module->mCompiler->mAlignAttributeTypeDef))
{
align = 16; // System conservative default
if (!attrib.mCtorArgs.IsEmpty())
{
BfIRConstHolder* constHolder = module->mCurTypeInstance->mConstHolder;
auto constant = constHolder->GetConstant(attrib.mCtorArgs[0]);
if (constant != NULL)
{
int alignOverride = (int)BF_MAX(1, constant->mInt64);
if ((alignOverride & (alignOverride - 1)) == 0)
align = alignOverride;
else
module->Fail("Alignment must be a power of 2", attrib.GetRefNode());
}
}
}
}
}
return align;
}
//////////////////////////////////////////////////////////////////////////
int64 BfDeferredMethodCallData::GenerateMethodId(BfModule* module, int64 methodId)
{
// The mMethodId MUST be unique within a given deferred method processor. We are even more conservative, making it
// unique per module
if (module->mDeferredMethodIds.Add(methodId))
{
return methodId;
}
else
{
// Ideally the passed in methodId just works, otherwise --
// We hope to create a hash that will hopefully be globally unique. If it isn't then it just means we will end up with two
// conflicting debug info definitions for the same name, which is not an error but may cause a debugger to show the
// wrong one to the user. Does not affect runtime correctness.
int64 checkId = Hash64(module->mModuleName.c_str(), (int)module->mModuleName.length(), module->mDeferredMethodIds.size());
while (true)
{
if (!module->mDeferredMethodIds.Contains(checkId))
break;
checkId += 0x100;
}
module->mDeferredMethodIds.Add(checkId);
return checkId;
}
}
//////////////////////////////////////////////////////////////////////////
BfMethodCustomAttributes::~BfMethodCustomAttributes()
{
delete mCustomAttributes;
delete mReturnCustomAttributes;
for (auto paramCustomAttributes : mParamCustomAttributes)
delete paramCustomAttributes;
}
BfMethodInstance* BfMethodParam::GetDelegateParamInvoke()
{
BF_ASSERT(mResolvedType->IsDelegate() || mResolvedType->IsFunction());
auto bfModule = BfModule::GetModuleFor(mResolvedType);
BfMethodInstance* invokeMethodInstance = bfModule->GetRawMethodInstanceAtIdx(mResolvedType->ToTypeInstance(), 0, "Invoke");
return invokeMethodInstance;
}
BfMethodInfoEx::~BfMethodInfoEx()
{
for (auto genericParam : mGenericParams)
genericParam->Release();
delete mMethodCustomAttributes;
delete mClosureInstanceInfo;
}
BfMethodInstance::~BfMethodInstance()
{
Dispose(true);
if (mHasMethodRefType)
{
auto module = GetOwner()->mModule;
if (!module->mContext->mDeleting)
{
auto methodRefType = module->CreateMethodRefType(this);
module->mContext->DeleteType(methodRefType);
}
}
delete mMethodInfoEx;
}
void BfMethodInstance::Dispose(bool isDeleting)
{
if (mIsDisposed)
return;
mIsDisposed = true;
if (mMethodInstanceGroup != NULL)
{
BfLogSys(GetOwner()->mModule->mSystem, "BfMethodInstance::~BfMethodInstance %p Local:%d InCEMachine:%d Deleting:%d\n", this, mMethodDef->mIsLocalMethod, mInCEMachine, isDeleting);
}
else
{
BF_ASSERT(!mMethodDef->mIsLocalMethod);
}
if (mInCEMachine)
{
auto module = GetOwner()->mModule;
if (module->mCompiler->mCeMachine != NULL)
module->mCompiler->mCeMachine->RemoveMethod(this);
}
if (mMethodProcessRequest != NULL)
{
BF_ASSERT(mMethodProcessRequest->mMethodInstance == this);
mMethodProcessRequest->mMethodInstance = NULL;
}
if (mHotMethod != NULL)
{
mHotMethod->mFlags = (BfHotDepDataFlags)(mHotMethod->mFlags & ~BfHotDepDataFlag_IsBound);
mHotMethod->Deref();
}
}
void BfMethodInstance::CopyFrom(BfMethodInstance* methodInstance)
{
*this = *methodInstance;
if (mMethodInfoEx != NULL)
{
mMethodInfoEx = new BfMethodInfoEx();
*mMethodInfoEx = *(methodInstance->mMethodInfoEx);
for (auto genericParam : mMethodInfoEx->mGenericParams)
genericParam->AddRef();
mMethodInfoEx->mMethodCustomAttributes = NULL;
if (mMethodInfoEx->mClosureInstanceInfo != NULL)
{
mMethodInfoEx->mClosureInstanceInfo = new BfClosureInstanceInfo();
*mMethodInfoEx->mClosureInstanceInfo = *methodInstance->mMethodInfoEx->mClosureInstanceInfo;
}
}
mHasMethodRefType = false;
mHasBeenProcessed = false;
mIRFunction = BfIRValue();
mMethodProcessRequest = NULL;
mHotMethod = NULL;
}
BfImportKind BfMethodInstance::GetImportKind()
{
if (mMethodDef->mImportKind != BfImportKind_Import_Unknown)
return mMethodDef->mImportKind;
auto module = GetOwner()->mModule;
auto customAttributes = GetCustomAttributes();
if (customAttributes == NULL)
return BfImportKind_None;
BfCustomAttribute* customAttribute = customAttributes->Get(module->mCompiler->mImportAttributeTypeDef);
if (customAttribute == NULL)
return BfImportKind_Import_Static;
BfIRConstHolder* constHolder = GetOwner()->mConstHolder;
String* filePath = module->GetStringPoolString(customAttribute->mCtorArgs[0], constHolder);
if (filePath == NULL)
return BfImportKind_Import_Static;
return BfMethodDef::GetImportKindFromPath(*filePath);
}
BfMethodFlags BfMethodInstance::GetMethodFlags()
{
BfMethodFlags methodFlags = (BfMethodFlags)0;
if (mMethodDef->mProtection == BfProtection_Protected)
methodFlags = (BfMethodFlags)(methodFlags | BfMethodFlags_Protected);
if (mMethodDef->mProtection == BfProtection_Public)
methodFlags = (BfMethodFlags)(methodFlags | BfMethodFlags_Public);
if (mMethodDef->mIsStatic)
methodFlags = (BfMethodFlags)(methodFlags | BfMethodFlags_Static);
if ((mMethodDef->mIsVirtual) || (mVirtualTableIdx != -1))
methodFlags = (BfMethodFlags)(methodFlags | BfMethodFlags_Virtual);
if (mMethodDef->mCallingConvention == BfCallingConvention_Fastcall)
methodFlags = (BfMethodFlags)(methodFlags | BfMethodFlags_FastCall);
if (mMethodDef->mIsMutating)
methodFlags = (BfMethodFlags)(methodFlags | BfMethodFlags_Mutating);
if (mMethodDef->mMethodType == BfMethodType_Ctor)
methodFlags = (BfMethodFlags)(methodFlags | BfMethodFlags_Constructor);
auto callingConvention = GetOwner()->mModule->GetIRCallingConvention(this);
if (callingConvention == BfIRCallingConv_ThisCall)
methodFlags = (BfMethodFlags)(methodFlags | BfMethodFlags_ThisCall);
else if (callingConvention == BfIRCallingConv_StdCall)
methodFlags = (BfMethodFlags)(methodFlags | BfMethodFlags_StdCall);
else if (callingConvention == BfIRCallingConv_FastCall)
methodFlags = (BfMethodFlags)(methodFlags | BfMethodFlags_FastCall);
return methodFlags;
}
void BfMethodInstance::UndoDeclaration(bool keepIRFunction)
{
if (mMethodInfoEx != NULL)
{
for (auto genericParam : mMethodInfoEx->mGenericParams)
genericParam->Release();
mMethodInfoEx->mGenericParams.Clear();
delete mMethodInfoEx->mMethodCustomAttributes;
mMethodInfoEx->mMethodCustomAttributes = NULL;
mMethodInfoEx->mGenericTypeBindings.Clear();
}
mReturnType = NULL;
if (!keepIRFunction)
mIRFunction = BfIRValue();
mParams.Clear();
mDefaultValues.Clear();
if (mMethodProcessRequest != NULL)
{
BF_ASSERT(mMethodProcessRequest->mMethodInstance == this);
mMethodProcessRequest->mMethodInstance = NULL;
}
mHasStartedDeclaration = false;
mHasBeenDeclared = false;
mHasBeenProcessed = false;
mIsUnspecialized = false;
mIsUnspecializedVariation = false;
mDisallowCalling = false;
mIsIntrinsic = false;
mHasFailed = false;
mFailedConstraints = false;
}
BfTypeInstance* BfMethodInstance::GetOwner()
{
return mMethodInstanceGroup->mOwner;
}
BfModule * BfMethodInstance::GetModule()
{
return mMethodInstanceGroup->mOwner->mModule;
}
bool Beefy::BfMethodInstance::IsSpecializedGenericMethod()
{
return (mMethodInfoEx != NULL) && (mMethodInfoEx->mGenericParams.size() != 0) && (!mIsUnspecialized);
}
bool Beefy::BfMethodInstance::IsSpecializedGenericMethodOrType()
{
if ((mMethodInfoEx != NULL) && (mMethodInfoEx->mGenericParams.size() != 0) && (!mIsUnspecialized))
return true;
auto owner = GetOwner();
if (!owner->IsGenericTypeInstance())
return false;
BfTypeInstance* genericTypeInstance = (BfTypeInstance*)owner;
return !genericTypeInstance->mGenericTypeInfo->mIsUnspecialized;
}
bool BfMethodInstance::IsSpecializedByAutoCompleteMethod()
{
if (mMethodInstanceGroup->mOwner->IsSpecializedByAutoCompleteMethod())
return true;
if (mMethodInfoEx != NULL)
{
for (auto methodArg : mMethodInfoEx->mMethodGenericArguments)
{
// If we are specialized by an autocompleted method reference
if (methodArg->IsMethodRef())
{
auto methodRefType = (BfMethodRefType*)methodArg;
if (methodRefType->mIsAutoCompleteMethod)
return true;
}
}
}
return false;
}
bool BfMethodInstance::IsOrInUnspecializedVariation()
{
return (mIsUnspecializedVariation) || (GetOwner()->IsUnspecializedTypeVariation());
}
bool BfMethodInstance::HasExternConstraints()
{
return (mMethodInfoEx != NULL) && (mMethodInfoEx->mGenericParams.size() > mMethodInfoEx->mMethodGenericArguments.size());
}
bool BfMethodInstance::HasParamsArray()
{
if (mParams.size() == 0)
return false;
return GetParamKind((int)mParams.size() - 1) == BfParamKind_Params;
}
int BfMethodInstance::GetStructRetIdx(bool forceStatic)
{
if ((mReturnType->IsComposite()) && (!mReturnType->IsValuelessType()) && (!GetLoweredReturnType(NULL, NULL, forceStatic)) && (!mIsIntrinsic))
{
auto returnTypeInst = mReturnType->ToTypeInstance();
if ((returnTypeInst != NULL) && (returnTypeInst->mHasUnderlyingArray))
return -1;
auto thisType = mMethodInstanceGroup->mOwner;
if (thisType->mModule->mCompiler->mOptions.mPlatformType != BfPlatformType_Windows)
return 0;
if ((mMethodInfoEx != NULL) && (mMethodInfoEx->mClosureInstanceInfo != NULL) && (mMethodInfoEx->mClosureInstanceInfo->mThisOverride != NULL))
thisType = mMethodInfoEx->mClosureInstanceInfo->mThisOverride;
if ((!HasThis()) || (forceStatic))
return 0;
if (!thisType->IsValueType())
return 1;
if ((mMethodDef->mIsMutating) || (!thisType->IsSplattable()) || ((!AllowsSplatting(-1)) && (!thisType->GetLoweredType(BfTypeUsage_Parameter))))
return 1;
return 0;
}
return -1;
}
bool BfMethodInstance::HasSelf()
{
if (mReturnType->IsSelf())
return true;
for (int paramIdx = 0; paramIdx < GetParamCount(); paramIdx++)
if (GetParamType(paramIdx)->IsSelf())
return true;
return false;
}
bool BfMethodInstance::GetLoweredReturnType(BfTypeCode* loweredTypeCode, BfTypeCode* loweredTypeCode2, bool forceStatic)
{
// Win32 handler
if (((mMethodDef->mIsStatic) || (forceStatic)) &&
(mReturnType->IsComposite()) &&
((mReturnType->mSize == 4) || (mReturnType->mSize == 8)))
{
auto returnTypeInst = mReturnType->ToTypeInstance();
if ((returnTypeInst != NULL) && (returnTypeInst->mIsCRepr))
{
auto module = GetOwner()->mModule;
auto compiler = module->mCompiler;
if ((compiler->mOptions.mMachineType == BfMachineType_x86) && (compiler->mOptions.mPlatformType == BfPlatformType_Windows))
{
if (loweredTypeCode != NULL)
{
*loweredTypeCode = BfTypeCode_Int32;
if (mReturnType->mSize == 8)
*loweredTypeCode = BfTypeCode_Int64;
}
return true;
}
}
}
return mReturnType->GetLoweredType((mMethodDef->mIsStatic || forceStatic) ? BfTypeUsage_Return_Static : BfTypeUsage_Return_NonStatic, loweredTypeCode, loweredTypeCode2);
}
bool BfMethodInstance::WantsStructsAttribByVal(BfType* paramType)
{
auto owner = GetOwner();
if ((owner->mModule->mCompiler->mOptions.mPlatformType == BfPlatformType_Windows) &&
(owner->mModule->mCompiler->mOptions.mMachineType == BfMachineType_x64))
return false;
if (owner->mModule->mCompiler->mOptions.mMachineType == BfMachineType_AArch64)
return false;
auto typeInst = paramType->ToTypeInstance();
return (typeInst != NULL) && (typeInst->mIsCRepr);
}
bool BfMethodInstance::IsSkipCall(bool bypassVirtual)
{
if ((mMethodDef->mIsSkipCall) &&
((!mMethodDef->mIsVirtual) || (bypassVirtual)))
return true;
return false;
}
bool BfMethodInstance::IsVarArgs()
{
if (mMethodDef->mParams.IsEmpty())
return false;
return mMethodDef->mParams.back()->mParamKind == BfParamKind_VarArgs;
}
bool BfMethodInstance::AlwaysInline()
{
return mAlwaysInline;
}
BfImportCallKind BfMethodInstance::GetImportCallKind()
{
if (GetImportKind() != BfImportKind_Import_Dynamic)
return BfImportCallKind_None;
if ((mHotMethod != NULL) && ((mHotMethod->mFlags & BfHotDepDataFlag_IsOriginalBuild) == 0))
return BfImportCallKind_GlobalVar_Hot;
return BfImportCallKind_GlobalVar;
}
bool BfMethodInstance::IsTestMethod()
{
return (mMethodInfoEx != NULL) && (mMethodInfoEx->mMethodCustomAttributes != NULL) && (mMethodInfoEx->mMethodCustomAttributes->mCustomAttributes != NULL) &&
(mMethodInfoEx->mMethodCustomAttributes->mCustomAttributes != NULL) && (mMethodInfoEx->mMethodCustomAttributes->mCustomAttributes->Contains(GetOwner()->mModule->mCompiler->mTestAttributeTypeDef));
}
bool BfMethodInstance::AllowsSplatting(int paramIdx)
{
if (paramIdx == -1)
{
if (mCallingConvention != BfCallingConvention_Unspecified)
return false;
if (mMethodDef->mIsNoSplat)
return false;
return !mMethodDef->HasNoThisSplat();
}
else
{
if (mCallingConvention != BfCallingConvention_Unspecified)
return false;
if ((mMethodDef->mIsNoSplat) || (mMethodDef->mMethodType == BfMethodType_Mixin))
{
if (IsImplicitCapture(paramIdx))
return true;
return false;
}
return true;
}
}
bool BfMethodInstance::HasThis()
{
if (mMethodDef->mIsStatic)
return false;
if ((mMethodInfoEx != NULL) && (mMethodInfoEx->mClosureInstanceInfo != NULL) && (mMethodInfoEx->mClosureInstanceInfo->mThisOverride != NULL))
return !mMethodInfoEx->mClosureInstanceInfo->mThisOverride->IsValuelessType();
return (!mMethodInstanceGroup->mOwner->IsValuelessType());
}
bool BfMethodInstance::IsVirtual()
{
return mMethodDef->mIsVirtual && !mIsInnerOverride;
}
BfType* BfMethodInstance::GetThisType()
{
BF_ASSERT(!mMethodDef->mIsStatic);
if (mMethodDef->mHasExplicitThis)
{
auto thisType = mParams[0].mResolvedType;
auto owner = GetOwner();
if ((thisType->IsValueType()) && ((mMethodDef->mIsMutating) || (!AllowsSplatting(-1))) && (!thisType->GetLoweredType(BfTypeUsage_Parameter)))
return owner->mModule->CreatePointerType(thisType);
return thisType;
}
return GetParamType(-1);
}
int BfMethodInstance::GetThisIdx()
{
if (mMethodDef->mIsStatic)
return -2;
if (mMethodDef->mHasExplicitThis)
return 0;
return -1;
}
bool BfMethodInstance::HasExplicitThis()
{
if (mMethodDef->mIsStatic)
return false;
return mMethodInstanceGroup->mOwner->IsFunction();
}
int BfMethodInstance::GetParamCount()
{
return (int)mParams.size();
}
int BfMethodInstance::GetImplicitParamCount()
{
if ((mMethodInfoEx != NULL) && (mMethodInfoEx->mClosureInstanceInfo != NULL) && (mMethodDef->mIsLocalMethod))
return (int)mMethodInfoEx->mClosureInstanceInfo->mCaptureEntries.size();
return 0;
}
void BfMethodInstance::GetParamName(int paramIdx, StringImpl& name, int& namePrefixCount)
{
if (paramIdx == -1)
{
BF_ASSERT(!mMethodDef->mIsStatic);
name = "this";
return;
}
if ((mMethodInfoEx != NULL) && (mMethodInfoEx->mClosureInstanceInfo != NULL) && (mMethodDef->mIsLocalMethod))
{
if (paramIdx < (int)mMethodInfoEx->mClosureInstanceInfo->mCaptureEntries.size())
{
name = mMethodInfoEx->mClosureInstanceInfo->mCaptureEntries[paramIdx].mName;
return;
}
}
BfMethodParam* methodParam = &mParams[paramIdx];
BfParameterDef* paramDef = mMethodDef->mParams[methodParam->mParamDefIdx];
if (methodParam->mDelegateParamIdx != -1)
{
BfMethodInstance* invokeMethodInstance = methodParam->GetDelegateParamInvoke();
if (methodParam->mDelegateParamNameCombine)
name = paramDef->mName + "__" + invokeMethodInstance->GetParamName(methodParam->mDelegateParamIdx);
else
invokeMethodInstance->GetParamName(methodParam->mDelegateParamIdx, name, namePrefixCount);
return;
}
name = paramDef->mName;
namePrefixCount = paramDef->mNamePrefixCount;
}
String BfMethodInstance::GetParamName(int paramIdx)
{
String paramName;
int namePrefixCount = 0;
GetParamName(paramIdx, paramName, namePrefixCount);
return paramName;
}
String BfMethodInstance::GetParamName(int paramIdx, int& namePrefixCount)
{
String paramName;
GetParamName(paramIdx, paramName, namePrefixCount);
return paramName;
}
BfType* BfMethodInstance::GetParamType(int paramIdx, bool returnUnderlyingParamsType)
{
if (paramIdx == -1)
{
if ((mMethodInfoEx != NULL) && (mMethodInfoEx->mClosureInstanceInfo != NULL) && (mMethodInfoEx->mClosureInstanceInfo->mThisOverride != NULL))
return mMethodInfoEx->mClosureInstanceInfo->mThisOverride;
BF_ASSERT(!mMethodDef->mIsStatic);
auto owner = mMethodInstanceGroup->mOwner;
BfType* thisType = owner;
if (owner->IsFunction())
{
BF_FATAL("Wrong 'this' index");
}
if ((thisType->IsValueType()) && ((mMethodDef->mIsMutating) || (!AllowsSplatting(paramIdx))) && (!thisType->GetLoweredType(BfTypeUsage_Parameter)))
return owner->mModule->CreatePointerType(thisType);
return thisType;
}
BfMethodParam* methodParam = &mParams[paramIdx];
if (methodParam->mDelegateParamIdx != -1)
{
BfMethodInstance* invokeMethodInstance = methodParam->GetDelegateParamInvoke();
return invokeMethodInstance->GetParamType(methodParam->mDelegateParamIdx, true);
}
if (returnUnderlyingParamsType)
{
BfParameterDef* paramDef = mMethodDef->mParams[methodParam->mParamDefIdx];
if (paramDef->mParamKind == BfParamKind_Params)
{
auto underlyingType = methodParam->mResolvedType->GetUnderlyingType();
if (underlyingType != NULL)
return underlyingType;
return methodParam->mResolvedType;
}
}
return methodParam->mResolvedType;
}
bool BfMethodInstance::GetParamIsSplat(int paramIdx)
{
if (paramIdx == -1)
{
BF_ASSERT(!mMethodDef->mIsStatic);
auto owner = mMethodInstanceGroup->mOwner;
if ((owner->IsValueType()) && (mMethodDef->mIsMutating || !AllowsSplatting(paramIdx)))
return false;
return owner->mIsSplattable;
}
BfMethodParam* methodParam = &mParams[paramIdx];
if (methodParam->mDelegateParamIdx != -1)
{
BfMethodInstance* invokeMethodInstance = methodParam->GetDelegateParamInvoke();
return invokeMethodInstance->GetParamIsSplat(methodParam->mDelegateParamIdx);
}
return methodParam->mIsSplat;
}
BfParamKind BfMethodInstance::GetParamKind(int paramIdx)
{
if (paramIdx == -1)
return BfParamKind_Normal;
BfMethodParam* methodParam = &mParams[paramIdx];
if (methodParam->mParamDefIdx == -1)
return BfParamKind_ImplicitCapture;
BfParameterDef* paramDef = mMethodDef->mParams[methodParam->mParamDefIdx];
if (methodParam->mDelegateParamIdx != -1)
return BfParamKind_DelegateParam;
return paramDef->mParamKind;
}
bool BfMethodInstance::WasGenericParam(int paramIdx)
{
if (paramIdx == -1)
return false;
BfMethodParam* methodParam = &mParams[paramIdx];
return methodParam->mWasGenericParam;
}
bool BfMethodInstance::IsParamSkipped(int paramIdx)
{
if (paramIdx == -1)
return false;
BfType* paramType = GetParamType(paramIdx);
if ((paramType->CanBeValuelessType()) && (paramType->IsDataIncomplete()))
GetModule()->PopulateType(paramType, BfPopulateType_Data);
if ((paramType->IsValuelessType()) && (!paramType->IsMethodRef()))
return true;
return false;
}
bool BfMethodInstance::IsImplicitCapture(int paramIdx)
{
if (paramIdx == -1)
return false;
BfMethodParam* methodParam = &mParams[paramIdx];
if (methodParam->mParamDefIdx == -1)
return true;
return false;
}
BfExpression* BfMethodInstance::GetParamInitializer(int paramIdx)
{
if (paramIdx == -1)
return NULL;
BfMethodParam* methodParam = &mParams[paramIdx];
if (methodParam->mParamDefIdx == -1)
return NULL;
BfParameterDef* paramDef = mMethodDef->mParams[methodParam->mParamDefIdx];
if (paramDef->mParamDeclaration != NULL)
return paramDef->mParamDeclaration->mInitializer;
return NULL;
}
BfTypeReference* BfMethodInstance::GetParamTypeRef(int paramIdx)
{
if (paramIdx == -1)
return NULL;
BfMethodParam* methodParam = &mParams[paramIdx];
if (methodParam->mParamDefIdx == -1)
return NULL;
BfParameterDef* paramDef = mMethodDef->mParams[methodParam->mParamDefIdx];
if (paramDef->mParamDeclaration != NULL)
return paramDef->mParamDeclaration->mTypeRef;
return NULL;
}
BfIdentifierNode* BfMethodInstance::GetParamNameNode(int paramIdx)
{
if (paramIdx == -1)
return NULL;
if ((mMethodInfoEx != NULL) && (mMethodInfoEx->mClosureInstanceInfo != NULL) && (mMethodDef->mIsLocalMethod))
{
if (paramIdx < (int)mMethodInfoEx->mClosureInstanceInfo->mCaptureEntries.size())
return mMethodInfoEx->mClosureInstanceInfo->mCaptureEntries[paramIdx].mNameNode;
}
BfMethodParam* methodParam = &mParams[paramIdx];
BfParameterDef* paramDef = mMethodDef->mParams[methodParam->mParamDefIdx];
if (paramDef->mParamDeclaration != NULL)
return BfNodeDynCast<BfIdentifierNode>(paramDef->mParamDeclaration->mNameNode);
return NULL;
}
int BfMethodInstance::DbgGetVirtualMethodNum()
{
auto module = GetOwner()->mModule;
int vDataVal = -1;
if (mVirtualTableIdx != -1)
{
module->HadSlotCountDependency();
int vDataIdx = -1;
vDataIdx = 1 + module->mCompiler->mMaxInterfaceSlots;
vDataIdx += module->mCompiler->GetDynCastVDataCount();
if ((module->mCompiler->mOptions.mHasVDataExtender) && (module->mCompiler->IsHotCompile()))
{
auto typeInst = mMethodInstanceGroup->mOwner;
int extMethodIdx = (mVirtualTableIdx - typeInst->GetImplBaseVTableSize()) - typeInst->GetOrigSelfVTableSize();
if (extMethodIdx >= 0)
{
// Extension?
int vExtOfs = typeInst->GetOrigImplBaseVTableSize();
vDataVal = ((vDataIdx + vExtOfs + 1) << 20) | (extMethodIdx);
}
else
{
// Map this new virtual index back to the original index
vDataIdx += (mVirtualTableIdx - typeInst->GetImplBaseVTableSize()) + typeInst->GetOrigImplBaseVTableSize();
}
}
else
{
vDataIdx += mVirtualTableIdx;
}
if (vDataVal == -1)
vDataVal = vDataIdx;
}
return vDataVal;
}
void BfMethodInstance::GetIRFunctionInfo(BfModule* module, BfIRType& returnType, SizedArrayImpl<BfIRType>& paramTypes, bool forceStatic)
{
module->PopulateType(mReturnType);
BfTypeCode loweredReturnTypeCode = BfTypeCode_None;
BfTypeCode loweredReturnTypeCode2 = BfTypeCode_None;
if ((!module->mIsComptimeModule) && (GetLoweredReturnType(&loweredReturnTypeCode, &loweredReturnTypeCode2, forceStatic)) && (loweredReturnTypeCode != BfTypeCode_None))
{
auto irReturnType = module->GetIRLoweredType(loweredReturnTypeCode, loweredReturnTypeCode2);
returnType = irReturnType;
}
else if ((mReturnType->IsValuelessType()) || (mReturnType->IsVar()))
{
auto voidType = module->GetPrimitiveType(BfTypeCode_None);
returnType = module->mBfIRBuilder->MapType(voidType);
}
else if ((!module->mIsComptimeModule) && (GetStructRetIdx(forceStatic) != -1))
{
auto voidType = module->GetPrimitiveType(BfTypeCode_None);
returnType = module->mBfIRBuilder->MapType(voidType);
auto typeInst = mReturnType->ToTypeInstance();
if (typeInst != NULL)
{
paramTypes.push_back(module->mBfIRBuilder->MapTypeInstPtr(typeInst));
}
else
{
auto ptrType = module->CreatePointerType(mReturnType);
paramTypes.push_back(module->mBfIRBuilder->MapType(ptrType));
}
}
else
{
returnType = module->mBfIRBuilder->MapType(mReturnType);
}
for (int paramIdx = -1; paramIdx < GetParamCount(); paramIdx++)
{
BfType* checkType = NULL;
if (paramIdx == -1)
{
if ((mMethodDef->mIsStatic) || (forceStatic))
continue;
if (mIsClosure)
{
checkType = module->mCurMethodState->mClosureState->mClosureType;
}
else
{
if (HasExplicitThis())
checkType = GetParamType(0);
else
checkType = GetOwner();
}
}
else
{
if ((paramIdx == 0) && (mMethodDef->mHasExplicitThis))
continue; // Skip over the explicit 'this'
checkType = GetParamType(paramIdx);
}
/*if (GetParamName(paramIdx) == "this")
{
NOP;
}*/
bool checkLowered = false;
bool doSplat = false;
if (paramIdx == -1)
{
if ((!mMethodDef->mIsMutating) && (checkType->IsTypedPrimitive()))
{
checkType = checkType->GetUnderlyingType();
}
else if ((!module->mIsComptimeModule) && (checkType->IsSplattable()) && (AllowsSplatting(-1)))
{
doSplat = true;
}
else if ((!module->mIsComptimeModule) && (!mMethodDef->mIsMutating) && (mCallingConvention == BfCallingConvention_Unspecified))
checkLowered = true;
}
else
{
if ((checkType->IsComposite()) && (checkType->IsIncomplete()))
module->PopulateType(checkType, BfPopulateType_Data);
if (checkType->IsMethodRef())
{
doSplat = true;
}
else if (checkType->IsTypedPrimitive())
{
checkType = checkType->GetUnderlyingType();
}
else if ((!module->mIsComptimeModule) && (checkType->IsSplattable()) && (AllowsSplatting(paramIdx)))
{
doSplat = true;
}
else if (!module->mIsComptimeModule)
checkLowered = true;
}
BfType* checkType2 = NULL;
if (checkLowered)
{
BfTypeCode loweredTypeCode = BfTypeCode_None;
BfTypeCode loweredTypeCode2 = BfTypeCode_None;
if (checkType->GetLoweredType(BfTypeUsage_Parameter, &loweredTypeCode, &loweredTypeCode2))
{
paramTypes.push_back(module->mBfIRBuilder->GetPrimitiveType(loweredTypeCode));
if (loweredTypeCode2 != BfTypeCode_None)
paramTypes.push_back(module->mBfIRBuilder->GetPrimitiveType(loweredTypeCode2));
continue;
}
}
if (checkType->CanBeValuelessType())
module->PopulateType(checkType, BfPopulateType_Data);
if ((checkType->IsValuelessType()) && (!checkType->IsMethodRef()))
continue;
if ((doSplat) && (!checkType->IsMethodRef()))
{
int splatCount = checkType->GetSplatCount();
if ((int)paramTypes.size() + splatCount > module->mCompiler->mOptions.mMaxSplatRegs)
{
auto checkTypeInst = checkType->ToTypeInstance();
if ((checkTypeInst != NULL) && (checkTypeInst->mIsCRepr))
{
// CRepr splat means always splat
}
else
doSplat = false;
}
}
auto _AddType = [&](BfType* type)
{
if ((type->IsComposite()) || ((!doSplat) && (paramIdx == -1) && (type->IsTypedPrimitive())))
{
auto typeInst = type->ToTypeInstance();
if (typeInst != NULL)
paramTypes.push_back(module->mBfIRBuilder->MapTypeInstPtr(typeInst));
else
paramTypes.push_back(module->mBfIRBuilder->MapType(module->CreatePointerType(type)));
}
else
{
paramTypes.push_back(module->mBfIRBuilder->MapType(type));
}
};
if (doSplat)
{
BfTypeUtils::SplatIterate([&](BfType* checkType)
{
_AddType(checkType);
}, checkType);
}
else
_AddType(checkType);
if (checkType2 != NULL)
_AddType(checkType2);
}
if ((!module->mIsComptimeModule) && (GetStructRetIdx(forceStatic) == 1))
{
BF_SWAP(paramTypes[0], paramTypes[1]);
}
}
int BfMethodInstance::GetIRFunctionParamCount(BfModule* module)
{
//TODO: This is dumb, do this better
SizedArray<BfIRType, 8> params;
BfIRType returnType;
GetIRFunctionInfo(module, returnType, params);
return (int)params.size();
}
bool BfMethodInstance::IsExactMatch(BfMethodInstance* other, bool ignoreImplicitParams, bool checkThis)
{
if (mReturnType != other->mReturnType)
return false;
int implicitParamCountA = ignoreImplicitParams ? GetImplicitParamCount() : 0;
int implicitParamCountB = ignoreImplicitParams ? other->GetImplicitParamCount() : 0;
if (HasExplicitThis())
{
}
// if (other->HasExplicitThis())
// {
// if (!HasExplicitThis())
// return false;
// if (GetParamType(-1) != other->GetParamType(-1))
// return false;
// }
if (checkThis)
{
if (other->mMethodDef->mIsStatic != mMethodDef->mIsStatic)
return false;
// {
// // If we are static and we have to match a non-static method, allow us to do so if we have an explicitly defined 'this' param that matches
//
// if (other->mMethodDef->mIsStatic)
// return false;
//
// if ((GetParamCount() > 0) && (GetParamName(0) == "this"))
// {
// auto thisType = GetParamType(0);
// auto otherThisType = other->GetParamType(-1);
// if (thisType != otherThisType)
// return false;
//
// implicitParamCountA++;
// }
// else
// {
// // Valueless types don't actually pass a 'this' anyway
// if (!other->GetOwner()->IsValuelessType())
// return false;
// }
// }
if (!mMethodDef->mIsStatic)
{
if (GetThisType() != other->GetThisType())
{
return false;
}
}
}
if (mMethodDef->mHasExplicitThis)
implicitParamCountA++;
if (other->mMethodDef->mHasExplicitThis)
implicitParamCountB++;
if (GetParamCount() - implicitParamCountA != other->GetParamCount() - implicitParamCountB)
return false;
for (int i = 0; i < (int)GetParamCount() - implicitParamCountA; i++)
{
auto paramA = GetParamType(i + implicitParamCountA);
auto paramB = other->GetParamType(i + implicitParamCountB);
if (paramA != paramB)
return false;
}
return true;
}
bool BfMethodInstance::IsReifiedAndImplemented()
{
return mIsReified && mMethodInstanceGroup->IsImplemented();
}
BfMethodInfoEx* BfMethodInstance::GetMethodInfoEx()
{
if (mMethodInfoEx == NULL)
mMethodInfoEx = new BfMethodInfoEx();
return mMethodInfoEx;
}
void BfMethodInstance::ReportMemory(MemReporter* memReporter)
{
memReporter->BeginSection("MethodInstance");
memReporter->Add(sizeof(BfMethodInstance));
if (mMethodInfoEx != NULL)
{
memReporter->BeginSection("MethodInfoEx");
memReporter->Add(sizeof(BfMethodInfoEx));
if (!mMethodInfoEx->mGenericParams.IsEmpty())
memReporter->AddVecPtr("GenericParams", mMethodInfoEx->mGenericParams, false);
if (!mMethodInfoEx->mGenericTypeBindings.IsEmpty())
memReporter->AddMap("GenericTypeBindings", mMethodInfoEx->mGenericTypeBindings, false);
if (mMethodInfoEx->mMethodCustomAttributes != NULL)
{
if (mMethodInfoEx->mMethodCustomAttributes->mCustomAttributes != NULL)
mMethodInfoEx->mMethodCustomAttributes->mCustomAttributes->ReportMemory(memReporter);
}
if (!mMethodInfoEx->mMethodGenericArguments.IsEmpty())
memReporter->AddVec("MethodGenericArguments", mMethodInfoEx->mMethodGenericArguments, false);
if (!mMethodInfoEx->mMangledName.IsEmpty())
memReporter->AddStr("MangledName", mMethodInfoEx->mMangledName);
memReporter->EndSection();
}
memReporter->AddVec("Params", mParams, false);
if (!mDefaultValues.IsEmpty())
memReporter->AddVec("DefaultValues", mDefaultValues, false);
memReporter->EndSection();
}
void BfCustomAttributes::ReportMemory(MemReporter* memReporter)
{
memReporter->BeginSection("CustomAttributes");
memReporter->Add(sizeof(BfCustomAttributes));
memReporter->AddVec(mAttributes);
memReporter->EndSection();
}
//////////////////////////////////////////////////////////////////////////
BfModuleMethodInstance::BfModuleMethodInstance(BfMethodInstance* methodInstance)
{
mMethodInstance = methodInstance;
if (methodInstance != NULL)
mFunc = mMethodInstance->mIRFunction;
else
mFunc = BfIRValue();
// if (methodInstance->GetImportCallKind() == BfImportCallKind_Thunk)
// {
// auto declModule = methodInstance->mDeclModule;
// BfIRValue* irFuncPtr = NULL;
// if (declModule->mFuncReferences.TryGetValue(methodInstance, &irFuncPtr))
// mFunc = *irFuncPtr;
// }
}
//////////////////////////////////////////////////////////////////////////
BfMethodRefType::~BfMethodRefType()
{
if (!mContext->mDeleting)
BF_ASSERT(mMethodRef == NULL);
}
BfMethodInstanceGroup::BfMethodInstanceGroup(BfMethodInstanceGroup&& prev) noexcept
{
mOwner = prev.mOwner;
mDefault = prev.mDefault;
mMethodSpecializationMap = prev.mMethodSpecializationMap;
mDefaultCustomAttributes = prev.mDefaultCustomAttributes;
mMethodIdx = prev.mMethodIdx;
mRefCount = prev.mRefCount;
mOnDemandKind = prev.mOnDemandKind;
mExplicitlyReflected = prev.mExplicitlyReflected;
mHasEmittedReference = prev.mHasEmittedReference;
if (mDefault != NULL)
mDefault->mMethodInstanceGroup = this;
if (mMethodSpecializationMap != NULL)
{
for (auto& pair : *mMethodSpecializationMap)
pair.mValue->mMethodInstanceGroup = this;
}
prev.mDefaultCustomAttributes = NULL;
prev.mRefCount = 0;
prev.mDefault = NULL;
prev.mMethodSpecializationMap = NULL;
}
BfMethodInstanceGroup::~BfMethodInstanceGroup()
{
if (mRefCount != 0)
{
BF_ASSERT(mOwner->mModule->mContext->mDeleting);
}
delete mDefault;
if (mMethodSpecializationMap != NULL)
{
for (auto& kv : *mMethodSpecializationMap)
delete kv.mValue;
delete mMethodSpecializationMap;
}
delete mDefaultCustomAttributes;
}
//////////////////////////////////////////////////////////////////////////
BfTypeInstance::~BfTypeInstance()
{
ReleaseData();
delete mTypeInfoEx;
delete mGenericTypeInfo;
delete mCeTypeInfo;
delete mCustomAttributes;
delete mAttributeData;
for (auto methodInst : mInternalMethods)
delete methodInst;
for (auto operatorInfo : mOperatorInfo)
delete operatorInfo;
for (auto localMethod : mOwnedLocalMethods)
delete localMethod;
delete mHotTypeData;
delete mConstHolder;
if ((mTypeDef != NULL) && (mTypeDef->mEmitParent != NULL))
{
mMethodInstanceGroups.Clear();
BfLogSys(mModule->mSystem, "Type %p dtor deleting typeDef %p\n", this, mTypeDef);
delete mTypeDef;
}
}
void BfTypeInstance::ReleaseData()
{
for (auto& kv : mInternalAccessMap)
{
auto& internalAcessSet = kv.mValue;
for (auto& namespaceComposite : internalAcessSet.mNamespaces)
mModule->mSystem->ReleaseAtomComposite(namespaceComposite);
}
mInternalAccessMap.Clear();
}
void BfTypeInstance::Dispose()
{
delete mGenericTypeInfo;
mGenericTypeInfo = NULL;
mTypeDef = NULL;
}
int BfTypeInstance::GetSplatCount()
{
if (IsValuelessType())
return 0;
if (!mIsSplattable)
return 1;
int splatCount = 0;
BfTypeUtils::SplatIterate([&](BfType* checkType) { splatCount++; }, this);
return splatCount;
}
bool BfTypeInstance::IsString()
{
return IsInstanceOf(mContext->mCompiler->mStringTypeDef);
}
int BfTypeInstance::GetOrigVTableSize()
{
if (!mModule->mCompiler->mOptions.mHasVDataExtender)
{
BF_ASSERT(mHotTypeData == NULL);
return mVirtualMethodTableSize;
}
if (mHotTypeData != NULL)
{
// When we have a pending data change, treat it as a fresh vtable
if ((!mHotTypeData->mPendingDataChange) && (mHotTypeData->mVTableOrigLength != -1))
return mHotTypeData->mVTableOrigLength;
}
if (mBaseType != NULL)
return mBaseType->GetOrigVTableSize() + (mVirtualMethodTableSize - mBaseType->mVirtualMethodTableSize);
return mVirtualMethodTableSize;
}
int BfTypeInstance::GetSelfVTableSize()
{
if (mBaseType != NULL)
{
BF_ASSERT(mBaseType->mVirtualMethodTableSize > 0);
return mVirtualMethodTableSize - mBaseType->mVirtualMethodTableSize;
}
return mVirtualMethodTableSize;
}
int BfTypeInstance::GetOrigSelfVTableSize()
{
if (mBaseType != NULL)
return GetOrigVTableSize() - GetOrigImplBaseVTableSize();
return GetOrigVTableSize();
}
int BfTypeInstance::GetImplBaseVTableSize()
{
auto implBase = GetImplBaseType();
if (implBase != NULL)
return implBase->mVirtualMethodTableSize;
return 0;
}
int BfTypeInstance::GetOrigImplBaseVTableSize()
{
auto implBase = GetImplBaseType();
if (implBase != NULL)
return mBaseType->GetOrigVTableSize();
return 0;
}
int BfTypeInstance::GetIFaceVMethodSize()
{
int maxIFaceIdx = 0;
auto checkTypeInstance = this;
while (checkTypeInstance != NULL)
{
for (auto&& interfaceEntry : checkTypeInstance->mInterfaces)
{
maxIFaceIdx = BF_MAX(maxIFaceIdx, interfaceEntry.mStartVirtualIdx + interfaceEntry.mInterfaceType->mVirtualMethodTableSize);
}
checkTypeInstance = checkTypeInstance->mBaseType;
}
return maxIFaceIdx;
}
BfType* BfTypeInstance::GetUnionInnerType(bool* wantSplat)
{
if (wantSplat != NULL)
*wantSplat = false;
if (!mIsUnion)
return NULL;
BfTypeState typeState(this, mContext->mCurTypeState);
typeState.mPopulateType = BfPopulateType_Data;
SetAndRestoreValue<BfTypeState*> prevTypeState(mContext->mCurTypeState, &typeState);
int unionSize = 0;
BfType* unionInnerType = NULL;
bool makeRaw = false;
for (int fieldIdx = 0; fieldIdx < (int)mFieldInstances.size(); fieldIdx++)
{
auto fieldInstance = (BfFieldInstance*)&mFieldInstances[fieldIdx];
auto fieldDef = fieldInstance->GetFieldDef();
BfType* checkInnerType = NULL;
if (fieldDef == NULL)
continue;
if ((fieldDef->mIsConst) && (fieldInstance->mIsEnumPayloadCase))
{
BF_ASSERT(mIsUnion);
checkInnerType = fieldInstance->mResolvedType;
}
if (fieldInstance->mDataIdx >= 0)
{
checkInnerType = fieldInstance->mResolvedType;
}
if (checkInnerType != NULL)
{
SetAndRestoreValue<BfFieldDef*> prevTypeRef(mContext->mCurTypeState->mCurFieldDef, fieldDef);
mModule->PopulateType(checkInnerType, checkInnerType->IsValueType() ? BfPopulateType_Data : BfPopulateType_Declaration);
if (checkInnerType->mSize > unionSize)
unionSize = checkInnerType->mSize;
if ((!checkInnerType->IsValuelessType()) && (checkInnerType != unionInnerType))
{
if (unionInnerType == NULL)
{
unionInnerType = checkInnerType;
}
else
{
if (checkInnerType->mSize > unionInnerType->mSize)
{
bool needsMemberCasting = false;
if (!mModule->AreSplatsCompatible(checkInnerType, unionInnerType, &needsMemberCasting))
{
unionInnerType = NULL;
makeRaw = true;
}
else
{
unionInnerType = checkInnerType;
}
}
else
{
bool needsMemberCasting = false;
if (!mModule->AreSplatsCompatible(unionInnerType, checkInnerType, &needsMemberCasting))
{
unionInnerType = NULL;
makeRaw = true;
}
}
}
}
}
}
BF_ASSERT(unionInnerType != this);
// Don't allow a float for the inner type -- to avoid invalid loading invalid FP bit patterns during copies
if ((unionInnerType != NULL) && (!makeRaw))
{
if (wantSplat != NULL)
*wantSplat = true;
}
else
{
switch (unionSize)
{
case 0: return mModule->CreateSizedArrayType(mModule->GetPrimitiveType(BfTypeCode_Int8), 0);
case 1: return mModule->GetPrimitiveType(BfTypeCode_Int8);
case 2: if (mInstAlign >= 2) return mModule->GetPrimitiveType(BfTypeCode_Int16);
case 4: if (mInstAlign >= 4) return mModule->GetPrimitiveType(BfTypeCode_Int32);
case 8: if (mInstAlign >= 8) return mModule->GetPrimitiveType(BfTypeCode_Int64);
}
if ((unionSize % 8 == 0) && (mInstAlign >= 8))
return mModule->CreateSizedArrayType(mModule->GetPrimitiveType(BfTypeCode_Int64), unionSize / 8);
if ((unionSize % 4 == 0) && (mInstAlign >= 4))
return mModule->CreateSizedArrayType(mModule->GetPrimitiveType(BfTypeCode_Int32), unionSize / 4);
if ((unionSize % 2 == 0) && (mInstAlign >= 2))
return mModule->CreateSizedArrayType(mModule->GetPrimitiveType(BfTypeCode_Int16), unionSize / 2);
return mModule->CreateSizedArrayType(mModule->GetPrimitiveType(BfTypeCode_Int8), unionSize);
}
return unionInnerType;
}
BfPrimitiveType* BfTypeInstance::GetDiscriminatorType(int* outDataIdx)
{
BF_ASSERT(IsPayloadEnum());
auto& fieldInstance = mFieldInstances.back();
BF_ASSERT(fieldInstance.GetFieldDef() == NULL);
if (fieldInstance.mResolvedType == NULL)
{
BF_ASSERT(IsIncomplete());
// Use Int64 as a placeholder until we determine the correct type...
return mModule->GetPrimitiveType(BfTypeCode_Int64);
}
BF_ASSERT(fieldInstance.mResolvedType != NULL);
BF_ASSERT(fieldInstance.mResolvedType->IsPrimitiveType());
if (outDataIdx != NULL)
*outDataIdx = fieldInstance.mDataIdx;
return (BfPrimitiveType*)fieldInstance.mResolvedType;
}
void BfTypeInstance::GetUnderlyingArray(BfType*& type, int& size, bool& isVector)
{
if (mCustomAttributes == NULL)
return;
auto attributes = mCustomAttributes->Get(mModule->mCompiler->mUnderlyingArrayAttributeTypeDef);
if (attributes == NULL)
return;
if (attributes->mCtorArgs.size() != 3)
return;
auto typeConstant = mConstHolder->GetConstant(attributes->mCtorArgs[0]);
auto sizeConstant = mConstHolder->GetConstant(attributes->mCtorArgs[1]);
auto isVectorConstant = mConstHolder->GetConstant(attributes->mCtorArgs[2]);
if ((typeConstant == NULL) || (sizeConstant == NULL) || (isVectorConstant == NULL))
return;
if (typeConstant->mConstType != BfConstType_TypeOf)
return;
type = (BfType*)(intptr)typeConstant->mInt64;
size = sizeConstant->mInt32;
isVector = isVectorConstant->mBool;
}
bool BfTypeInstance::GetLoweredType(BfTypeUsage typeUsage, BfTypeCode* outTypeCode, BfTypeCode* outTypeCode2)
{
if ((mTypeDef->mTypeCode != BfTypeCode_Struct) || (IsBoxed()) || (mIsSplattable))
return false;
if (mHasUnderlyingArray)
return false;
bool deepCheck = false;
if (mModule->mCompiler->mOptions.mPlatformType == BfPlatformType_Windows)
{
// Odd Windows rule: composite returns for non-static methods are always sret
if (typeUsage == BfTypeUsage_Return_NonStatic)
return false;
}
else
{
// Non-Win64 systems allow lowered splitting of composites over multiple params
if (mModule->mSystem->mPtrSize == 8)
deepCheck = true;
else
{
// We know this is correct for Linux x86 and Android armv7
if (mModule->mCompiler->mOptions.mPlatformType == BfPlatformType_Linux)
{
if ((typeUsage == BfTypeUsage_Return_NonStatic) || (typeUsage == BfTypeUsage_Return_Static))
return false;
}
}
}
int maxInstSize = 16;
if (mModule->mCompiler->mOptions.mMachineType == BfMachineType_AArch64)
maxInstSize = 32;
if (deepCheck)
{
if ((mInstSize >= 4) && (mInstSize <= maxInstSize))
{
BfTypeCode types[8] = { BfTypeCode_None };
std::function<void(BfType*, int)> _CheckType = [&](BfType* type, int offset)
{
if (auto typeInst = type->ToTypeInstance())
{
if (typeInst->IsValueType())
{
if (typeInst->mBaseType != NULL)
_CheckType(typeInst->mBaseType, offset);
for (auto& fieldInstance : typeInst->mFieldInstances)
{
if (fieldInstance.mDataOffset >= 0)
_CheckType(fieldInstance.mResolvedType, offset + fieldInstance.mDataOffset);
}
}
else
{
types[offset / 4] = BfTypeCode_Object;
}
}
else if (type->IsPrimitiveType())
{
auto primType = (BfPrimitiveType*)type;
types[offset / 4] = primType->mTypeDef->mTypeCode;
}
else if (type->IsSizedArray())
{
auto sizedArray = (BfSizedArrayType*)type;
for (int i = 0; i < sizedArray->mElementCount; i++)
_CheckType(sizedArray->mElementType, offset + i * sizedArray->mElementType->GetStride());
}
};
_CheckType(this, 0);
bool handled = false;
if (mModule->mCompiler->mOptions.mMachineType == BfMachineType_AArch64)
{
// For returns, we want to avoid sret but not actually lower
bool writeOutCode = (typeUsage != BfTypeUsage_Return_NonStatic) && (typeUsage != BfTypeUsage_Return_Static);
if ((types[0] == BfTypeCode_Float) &&
(types[1] == BfTypeCode_Float) &&
(types[2] == BfTypeCode_None))
{
if ((outTypeCode != NULL) && (writeOutCode))
*outTypeCode = BfTypeCode_FloatX2;
return true;
}
if ((types[0] == BfTypeCode_Float) &&
(types[1] == BfTypeCode_Float) &&
(types[2] == BfTypeCode_Float) &&
(types[3] == BfTypeCode_None))
{
if ((outTypeCode != NULL) && (writeOutCode))
*outTypeCode = BfTypeCode_FloatX3;
return true;
}
if ((types[0] == BfTypeCode_Float) &&
(types[1] == BfTypeCode_Float) &&
(types[2] == BfTypeCode_Float) &&
(types[3] == BfTypeCode_Float) &&
(types[4] == BfTypeCode_None))
{
if ((outTypeCode != NULL) && (writeOutCode))
*outTypeCode = BfTypeCode_FloatX4;
return true;
}
if ((types[0] == BfTypeCode_Double) &&
(types[2] == BfTypeCode_Double) &&
(types[4] == BfTypeCode_None))
{
if ((outTypeCode != NULL) && (writeOutCode))
*outTypeCode = BfTypeCode_DoubleX2;
return true;
}
if ((types[0] == BfTypeCode_Double) &&
(types[2] == BfTypeCode_Double) &&
(types[4] == BfTypeCode_Double) &&
(types[6] == BfTypeCode_None))
{
if ((outTypeCode != NULL) && (writeOutCode))
*outTypeCode = BfTypeCode_DoubleX3;
return true;
}
if ((types[0] == BfTypeCode_Double) &&
(types[2] == BfTypeCode_Double) &&
(types[4] == BfTypeCode_Double) &&
(types[6] == BfTypeCode_Double))
{
if ((outTypeCode != NULL) && (writeOutCode))
*outTypeCode = BfTypeCode_DoubleX4;
return true;
}
if (mInstSize <= 8)
{
if ((outTypeCode != NULL) && (writeOutCode))
*outTypeCode = BfTypeCode_Int64;
return true;
}
if (mInstSize <= 16)
{
if ((outTypeCode != NULL) && (writeOutCode))
*outTypeCode = BfTypeCode_Int64X2;
return true;
}
return false;
}
else if (mModule->mCompiler->mOptions.mPlatformType == BfPlatformType_Windows)
{
bool hasFloat = false;
for (int type = 0; type < 4; type++)
{
if ((types[type] == BfTypeCode_Float) ||
(types[type] == BfTypeCode_Double))
hasFloat = false;
}
if (!hasFloat)
{
if (mInstSize == 4)
{
if (outTypeCode != NULL)
*outTypeCode = BfTypeCode_Int32;
return true;
}
if (mInstSize == 8)
{
if (outTypeCode != NULL)
*outTypeCode = BfTypeCode_Int64;
return true;
}
}
}
else
{
if (mInstSize >= 8)
{
if (outTypeCode != NULL)
*outTypeCode = BfTypeCode_Int64;
}
if (mInstSize == 8)
{
handled = true;
}
if (mInstSize == 9)
{
handled = true;
if (outTypeCode2 != NULL)
*outTypeCode2 = BfTypeCode_Int8;
}
if (mInstSize == 10)
{
handled = true;
if (outTypeCode2 != NULL)
*outTypeCode2 = BfTypeCode_Int16;
}
if (mInstSize == 12)
{
handled = true;
if (outTypeCode2 != NULL)
*outTypeCode2 = BfTypeCode_Int32;
}
if (mInstSize == 16)
{
handled = true;
if (outTypeCode2 != NULL)
*outTypeCode2 = BfTypeCode_Int64;
}
if ((types[0] == BfTypeCode_Float) && (types[1] == BfTypeCode_None))
{
handled = true;
if (outTypeCode != NULL)
*outTypeCode = BfTypeCode_Float;
}
if ((types[0] == BfTypeCode_Float) && (types[1] == BfTypeCode_Float))
{
if (outTypeCode != NULL)
*outTypeCode = BfTypeCode_Float2;
}
if (types[0] == BfTypeCode_Double)
{
if (outTypeCode != NULL)
*outTypeCode = BfTypeCode_Double;
}
if ((types[2] == BfTypeCode_Float) && (mInstSize == 12))
{
if (outTypeCode2 != NULL)
*outTypeCode2 = BfTypeCode_Float;
}
if ((types[2] == BfTypeCode_Float) && (types[3] == BfTypeCode_Float))
{
if (outTypeCode2 != NULL)
*outTypeCode2 = BfTypeCode_Float2;
}
if (types[2] == BfTypeCode_Double)
{
if (outTypeCode2 != NULL)
*outTypeCode2 = BfTypeCode_Double;
}
if (handled)
return true;
}
}
}
BfTypeCode typeCode = BfTypeCode_None;
BfTypeCode pow2TypeCode = BfTypeCode_None;
switch (mInstSize)
{
case 1:
pow2TypeCode = BfTypeCode_Int8;
break;
case 2:
pow2TypeCode = BfTypeCode_Int16;
break;
case 3:
typeCode = BfTypeCode_Int24;
break;
case 4:
pow2TypeCode = BfTypeCode_Int32;
break;
case 5:
typeCode = BfTypeCode_Int40;
break;
case 6:
typeCode = BfTypeCode_Int48;
break;
case 7:
typeCode = BfTypeCode_Int56;
break;
case 8:
if (mModule->mSystem->mPtrSize == 8)
{
pow2TypeCode = BfTypeCode_Int64;
break;
}
if ((typeUsage == BfTypeUsage_Return_Static) && (mModule->mCompiler->mOptions.mPlatformType == BfPlatformType_Windows))
{
pow2TypeCode = BfTypeCode_Int64;
break;
}
break;
}
if (pow2TypeCode != BfTypeCode_None)
{
if (outTypeCode != NULL)
*outTypeCode = pow2TypeCode;
return true;
}
if ((mModule->mCompiler->mOptions.mPlatformType != BfPlatformType_Windows) && (mModule->mSystem->mPtrSize == 8))
{
if (typeCode != BfTypeCode_None)
{
if (outTypeCode != NULL)
*outTypeCode = typeCode;
return true;
}
}
return false;
}
bool BfTypeInstance::HasEquivalentLayout(BfTypeInstance* compareTo)
{
if (mFieldInstances.size() != compareTo->mFieldInstances.size())
return false;
for (int fieldIdx = 0; fieldIdx < (int)mFieldInstances.size(); fieldIdx++)
{
auto fieldInstance = &mFieldInstances[fieldIdx];
auto otherFieldInstance = &compareTo->mFieldInstances[fieldIdx];
if (fieldInstance->mResolvedType != otherFieldInstance->mResolvedType)
return false;
}
return true;
}
BfIRConstHolder* BfTypeInstance::GetOrCreateConstHolder()
{
if (mConstHolder == NULL)
mConstHolder = new BfIRConstHolder(mModule);
return mConstHolder;
}
BfIRValue BfTypeInstance::CreateConst(BfConstant* fromConst, BfIRConstHolder* fromHolder)
{
if (mConstHolder == NULL)
mConstHolder = new BfIRConstHolder(mModule);
return mConstHolder->CreateConst(fromConst, fromHolder);
}
bool BfTypeInstance::HasOverrideMethods()
{
if (mTypeDef->mHasOverrideMethods)
return true;
if (mBaseType != NULL)
return mBaseType->HasOverrideMethods();
return false;
}
bool BfTypeInstance::GetResultInfo(BfType*& valueType, int& okTagId)
{
BF_ASSERT(!IsDataIncomplete());
if (mFieldInstances.size() < 2)
return false;
for (auto& fieldInstance : mFieldInstances)
{
if (!fieldInstance.mIsEnumPayloadCase)
continue;
if ((fieldInstance.mIsEnumPayloadCase) && (fieldInstance.GetFieldDef()->mName == "Ok") && (fieldInstance.mResolvedType->IsTuple()))
{
auto tupleType = (BfTypeInstance*)fieldInstance.mResolvedType;
if (tupleType->mFieldInstances.size() == 1)
{
valueType = tupleType->mFieldInstances[0].mResolvedType;
okTagId = -fieldInstance.mDataIdx - 1;
return true;
}
}
break;
}
return false;
}
void BfTypeInstance::ReportMemory(MemReporter* memReporter)
{
if (mGenericTypeInfo != NULL)
mGenericTypeInfo->ReportMemory(memReporter);
memReporter->Add(sizeof(BfTypeInstance));
int depSize = 0;
depSize += sizeof((int)mDependencyMap.mTypeSet.mAllocSize * sizeof(BfDependencyMap::TypeMap::EntryPair));
memReporter->Add("DepMap", depSize);
memReporter->AddVec(mInterfaces, false);
memReporter->AddVec(mInterfaceMethodTable, false);
if (mCustomAttributes != NULL)
mCustomAttributes->ReportMemory(memReporter);
int methodCount = 0;
memReporter->BeginSection("MethodData");
for (auto& methodInstGroup : mMethodInstanceGroups)
{
memReporter->Add(sizeof(BfMethodInstanceGroup));
if (methodInstGroup.mDefault != NULL)
{
methodInstGroup.mDefault->ReportMemory(memReporter);
methodCount++;
}
if (methodInstGroup.mMethodSpecializationMap != NULL)
{
memReporter->Add((int)methodInstGroup.mMethodSpecializationMap->mAllocSize * sizeof(Dictionary<BfTypeVector, BfMethodInstance*>::EntryPair));
for (auto kv : *methodInstGroup.mMethodSpecializationMap)
{
methodCount++;
kv.mValue->ReportMemory(memReporter);
}
}
}
memReporter->EndSection();
memReporter->AddVec("VirtualMethodTable", mVirtualMethodTable, false);
memReporter->AddVec(mFieldInstances, false);
memReporter->AddVec(mInternalMethods, false);
memReporter->AddMap("SpecializedMethodReferences", mSpecializedMethodReferences, false);
memReporter->AddMap("LookupResults", mLookupResults, false);
if (mConstHolder != NULL)
memReporter->Add("ConstHolder", mConstHolder->mTempAlloc.GetTotalAllocSize());
if (mHotTypeData != NULL)
{
AutoMemReporter autoMemReporter(memReporter, "HotTypeData");
memReporter->Add(sizeof(BfHotTypeData));
memReporter->AddVec(mHotTypeData->mTypeVersions, false);
for (auto typeVersion : mHotTypeData->mTypeVersions)
{
memReporter->AddVec(typeVersion->mMembers, false);
memReporter->AddVec(typeVersion->mInterfaceMapping, false);
}
memReporter->AddVec(mHotTypeData->mVTableEntries, false);
for (auto& entry : mHotTypeData->mVTableEntries)
memReporter->AddStr(entry.mFuncName, false);
}
BfLog("%s\t%d\t%d\n", mContext->mScratchModule->TypeToString(this, BfTypeNameFlags_None).c_str(), IsGenericTypeInstance(), methodCount);
}
bool BfTypeInstance::IsTypeMemberAccessible(BfTypeDef* declaringTypeDef, BfTypeDef* activeTypeDef)
{
if (activeTypeDef == NULL)
return false;
if (declaringTypeDef == activeTypeDef)
return true;
return activeTypeDef->mProject->ContainsReference(declaringTypeDef->mProject);
}
bool BfTypeInstance::IsTypeMemberAccessible(BfTypeDef* declaringTypeDef, BfProject* curProject)
{
if (declaringTypeDef->mProject == curProject)
return true;
return curProject->ContainsReference(declaringTypeDef->mProject);
}
bool BfTypeInstance::IsTypeMemberAccessible(BfTypeDef* declaringTypeDef, BfProjectSet* visibleProjectSet)
{
if (visibleProjectSet == NULL)
return false;
return visibleProjectSet->Contains(declaringTypeDef->mProject);
}
bool BfTypeInstance::WantsGCMarking()
{
BF_ASSERT(mTypeDef->mTypeCode != BfTypeCode_Extension);
if (IsObjectOrInterface())
return true;
if ((IsEnum()) && (!IsPayloadEnum()))
return false;
BF_ASSERT((mDefineState >= BfTypeDefineState_Defined) || (mTypeFailed));
return mWantsGCMarking;
}
///
BfGenericExtensionEntry::~BfGenericExtensionEntry()
{
for (auto genericParamInstance : mGenericParams)
genericParamInstance->Release();
}
///
BfGenericTypeInfo::~BfGenericTypeInfo()
{
for (auto genericParamInstance : mGenericParams)
genericParamInstance->Release();
delete mGenericExtensionInfo;
}
BfGenericTypeInfo::GenericParamsVector* BfTypeInstance::GetGenericParamsVector(BfTypeDef* declaringTypeDef)
{
if (mGenericTypeInfo == NULL)
return NULL;
if ((declaringTypeDef == mTypeDef) ||
(declaringTypeDef->mTypeDeclaration == mTypeDef->mTypeDeclaration))
return &mGenericTypeInfo->mGenericParams;
if (mGenericTypeInfo->mGenericExtensionInfo == NULL)
return NULL;
BfGenericExtensionEntry* genericExEntry = NULL;
if (mGenericTypeInfo->mGenericExtensionInfo->mExtensionMap.TryGetValue(declaringTypeDef, &genericExEntry))
return &genericExEntry->mGenericParams;
return &mGenericTypeInfo->mGenericParams;
}
void BfTypeInstance::GenerateProjectsReferenced()
{
if (mGenericTypeInfo == NULL)
return;
BF_ASSERT(mGenericTypeInfo->mProjectsReferenced.empty());
mGenericTypeInfo->mProjectsReferenced.push_back(mTypeDef->mProject);
for (auto genericArgType : mGenericTypeInfo->mTypeGenericArguments)
BfTypeUtils::GetProjectList(genericArgType, &mGenericTypeInfo->mProjectsReferenced, 0);
}
bool BfTypeInstance::IsAlwaysInclude()
{
bool alwaysInclude = mTypeDef->mIsAlwaysInclude || mTypeDef->mProject->mAlwaysIncludeAll;
if (mTypeOptionsIdx > 0)
{
auto typeOptions = mModule->mSystem->GetTypeOptions(mTypeOptionsIdx);
typeOptions->Apply(alwaysInclude, BfOptionFlags_ReflectAlwaysIncludeType);
}
if ((mAlwaysIncludeFlags & BfAlwaysIncludeFlag_Type) != 0)
alwaysInclude = true;
return alwaysInclude;
}
bool BfTypeInstance::IsSpecializedByAutoCompleteMethod()
{
if (mGenericTypeInfo == NULL)
return false;
for (auto methodArg : mGenericTypeInfo->mTypeGenericArguments)
{
// If we are specialized by an autocompleted method reference
if (methodArg->IsMethodRef())
{
auto methodRefType = (BfMethodRefType*)methodArg;
if (methodRefType->mIsAutoCompleteMethod)
return true;
}
}
return false;
}
bool BfTypeInstance::IsNullable()
{
return IsInstanceOf(mContext->mCompiler->mNullableTypeDef);
}
bool BfTypeInstance::HasVarConstraints()
{
if (mGenericTypeInfo == NULL)
return false;
for (auto genericParam : mGenericTypeInfo->mGenericParams)
{
if (genericParam->mGenericParamFlags & BfGenericParamFlag_Var)
return true;
}
return false;
}
bool BfTypeInstance::IsTypeMemberIncluded(BfTypeDef* typeDef, BfTypeDef* activeTypeDef, BfModule* module)
{
if (mGenericTypeInfo == NULL)
return true;
if (mGenericTypeInfo->mGenericExtensionInfo == NULL)
return true;
if ((typeDef == NULL) || (typeDef == activeTypeDef))
return true;
// The combined type declaration is the root type declaration, it's implicitly included
if (typeDef->mTypeDeclaration == mTypeDef->mTypeDeclaration)
return true;
BfGenericExtensionEntry* genericExEntry = NULL;
if (!mGenericTypeInfo->mGenericExtensionInfo->mExtensionMap.TryGetValue(typeDef, &genericExEntry))
return true;
if (mGenericTypeInfo->mIsUnspecialized)
{
if (module == NULL)
return true; // During population
auto declConstraints = &genericExEntry->mGenericParams;
for (int genericIdx = 0; genericIdx < (int)declConstraints->size(); genericIdx++)
{
auto declGenericParam = (*declConstraints)[genericIdx];
BfType* genericArg;
if (genericIdx < (int)mGenericTypeInfo->mTypeGenericArguments.size())
{
genericArg = mGenericTypeInfo->mTypeGenericArguments[genericIdx];
}
else
{
genericArg = declGenericParam->mExternType;
}
if ((genericArg == NULL) || (!module->CheckGenericConstraints(BfGenericParamSource(), genericArg, NULL, declGenericParam)))
return false;
}
return true;
}
return genericExEntry->mConstraintsPassed;
}
void BfGenericTypeInfo::ReportMemory(MemReporter* memReporter)
{
memReporter->Add(sizeof(BfGenericTypeInfo));
memReporter->AddVec(mTypeGenericArguments, false);
memReporter->AddVec(mGenericParams, false);
memReporter->AddVec(mProjectsReferenced, false);
}
BfType* BfTypeInstance::GetUnderlyingType()
{
if (!mIsTypedPrimitive)
{
if ((mGenericTypeInfo != NULL) && (!mGenericTypeInfo->mTypeGenericArguments.IsEmpty()))
return mGenericTypeInfo->mTypeGenericArguments[0];
return NULL;
}
if (mTypeInfoEx == NULL)
mTypeInfoEx = new BfTypeInfoEx();
if (mTypeInfoEx->mUnderlyingType != NULL)
return mTypeInfoEx->mUnderlyingType;
auto checkTypeInst = this;
while (checkTypeInst != NULL)
{
if (!checkTypeInst->mFieldInstances.empty())
{
mTypeInfoEx->mUnderlyingType = checkTypeInst->mFieldInstances.back().mResolvedType;
return mTypeInfoEx->mUnderlyingType;
}
checkTypeInst = checkTypeInst->mBaseType;
if (checkTypeInst->IsIncomplete())
mModule->PopulateType(checkTypeInst, BfPopulateType_Data);
}
BF_FATAL("Failed");
return mTypeInfoEx->mUnderlyingType;
}
bool BfTypeInstance::IsValuelessType()
{
BF_ASSERT(mTypeDef->mTypeCode != BfTypeCode_Extension);
if ((mTypeDef->mTypeCode == BfTypeCode_Object) || (mTypeDef->mTypeCode == BfTypeCode_Interface))
{
return false;
}
if (mTypeDef->mIsOpaque)
return false;
BF_ASSERT(mDefineState >= BfTypeDefineState_Defined);
BF_ASSERT(mInstSize >= 0);
if (mInstSize == 0)
{
return true;
}
return false;
}
bool BfTypeInstance::IsIRFuncUsed(BfIRFunction func)
{
for (auto& group : mMethodInstanceGroups)
{
if (group.mDefault != NULL)
if (group.mDefault->mIRFunction == func)
return true;
if (group.mMethodSpecializationMap != NULL)
{
for (auto& methodInstPair : *group.mMethodSpecializationMap)
{
auto methodInstance = methodInstPair.mValue;
if (methodInstance->mIRFunction == func)
return true;
}
}
}
return false;
}
void BfTypeInstance::CalcHotVirtualData(Array<int>* ifaceMapping)
{
if (IsIncomplete())
{
BF_ASSERT(mHotTypeData != NULL);
return;
}
if (ifaceMapping != NULL)
{
for (auto iface : mInterfaces)
{
int slotNum = iface.mInterfaceType->mSlotNum;
if (slotNum >= 0)
{
if (slotNum >= (int)ifaceMapping->size())
ifaceMapping->Resize(slotNum + 1);
(*ifaceMapping)[slotNum] = iface.mInterfaceType->mTypeId;
}
}
if (mBaseType != NULL)
mBaseType->CalcHotVirtualData(ifaceMapping);
}
}
//////////////////////////////////////////////////////////////////////////
BfClosureType::BfClosureType(BfTypeInstance* srcDelegate, Val128 closureHash) :
mSource(srcDelegate->mTypeDef->mSystem)
{
BF_ASSERT(srcDelegate->IsDelegate());
mSrcDelegate = srcDelegate;
mTypeDef = mSrcDelegate->mTypeDef;
mCreatedTypeDef = false;
mClosureHash = closureHash;
// Hash in 72 bits of closureHash (12 characters) - low does 60 bits, high does 12 bits
mNameAdd = "_" + BfTypeUtils::HashEncode64(mClosureHash.mLow) + BfTypeUtils::HashEncode64(mClosureHash.mHigh >> 52);
mIsUnique = false;
}
BfClosureType::~BfClosureType()
{
mMethodInstanceGroups.Clear();
if (mCreatedTypeDef)
{
delete mTypeDef;
mTypeDef = NULL;
}
for (auto directAllocNode : mDirectAllocNodes)
delete directAllocNode;
}
void BfClosureType::Init(BfProject* bfProject)
{
auto srcTypeDef = mSrcDelegate->mTypeDef;
auto system = mSrcDelegate->mModule->mSystem;
mTypeDef = new BfTypeDef();
mTypeDef->mSystem = system;
mTypeDef->mSource = &mSource;
mTypeDef->mSource->mRefCount++;
mTypeDef->mProject = bfProject;
mTypeDef->mTypeCode = srcTypeDef->mTypeCode;
mTypeDef->mName = system->GetAtom(srcTypeDef->mName->mString + mNameAdd);
// Purposely leave out 'mOuterType' - this fails if the outer type is generic
//mTypeDef->mOuterType = srcTypeDef->mOuterType;
mTypeDef->mNamespace = srcTypeDef->mNamespace;
system->AddNamespaceUsage(mTypeDef->mNamespace, mTypeDef->mProject);
mTypeDef->mHash = srcTypeDef->mHash;
mTypeDef->mSignatureHash = srcTypeDef->mSignatureHash;
// mTypeDef->mFullName = srcTypeDef->mFullName;
// if (!mTypeDef->mFullName.mParts.IsEmpty())
// mTypeDef->mFullName.mParts.pop_back();
// mTypeDef->mFullName.mParts.push_back(mTypeDef->mName);
if (srcTypeDef->mFullName.mSize > 0)
mTypeDef->mFullName.Set(srcTypeDef->mFullName.mParts, srcTypeDef->mFullName.mSize - 1, &mTypeDef->mName, 1);
else
mTypeDef->mFullName.Set(&mTypeDef->mName, 1, NULL, 0);
system->TrackName(mTypeDef);
mTypeDef->mTypeCode = BfTypeCode_Object;
mTypeDef->mIsDelegate = true;
mTypeDef->mIsClosure = true;
mTypeDef->mDefState = BfTypeDef::DefState_Defined;
auto baseDirectTypeRef = BfAstNode::ZeroedAlloc<BfDirectTypeReference>();
baseDirectTypeRef->Init(mSrcDelegate);
mDirectAllocNodes.push_back(baseDirectTypeRef);
mTypeDef->mBaseTypes.push_back(baseDirectTypeRef);
//mTypeDef->mBaseTypes.push_back(BfDefBuilder::AllocTypeReference(&mSource, mSrcDelegate));
mCreatedTypeDef = true;
//mTypeDef->mBaseTypes.push_back(srcTypeDef);
}
BfFieldDef* BfClosureType::AddField(BfType* type, const StringImpl& name)
{
auto directTypeRef = BfAstNode::ZeroedAlloc<BfDirectTypeReference>();
directTypeRef->Init(type);
mDirectAllocNodes.push_back(directTypeRef);
return BfDefBuilder::AddField(mTypeDef, directTypeRef, name);
}
BfMethodDef* BfClosureType::AddDtor()
{
return BfDefBuilder::AddDtor(mTypeDef);
}
void BfClosureType::Finish()
{
HASH128_MIXIN(mTypeDef->mSignatureHash, mClosureHash);
auto bfSource = mTypeDef->mSource;
auto bfSystem = bfSource->mSystem;
BfDefBuilder bfDefBuilder(bfSystem);
bfDefBuilder.mCurTypeDef = mTypeDef;
bfDefBuilder.FinishTypeDef(false);
}
//////////////////////////////////////////////////////////////////////////
BfDelegateType::~BfDelegateType()
{
mMethodInstanceGroups.Clear();
delete mTypeDef;
mTypeDef = NULL;
}
void BfDelegateType::Dispose()
{
delete mTypeDef;
mTypeDef = NULL;
BfTypeInstance::Dispose();
}
//////////////////////////////////////////////////////////////////////////
BfTupleType::BfTupleType()
{
mCreatedTypeDef = false;
mSource = NULL;
mTypeDef = NULL;
mIsUnspecializedType = false;
mIsUnspecializedTypeVariation = false;
mGenericDepth = 0;
}
BfTupleType::~BfTupleType()
{
mMethodInstanceGroups.Clear();
if (mCreatedTypeDef)
{
delete mTypeDef;
mTypeDef = NULL;
}
delete mSource;
}
void BfTupleType::Init(BfProject* bfProject, BfTypeInstance* valueTypeInstance)
{
auto srcTypeDef = valueTypeInstance->mTypeDef;
auto system = valueTypeInstance->mModule->mSystem;
if (mTypeDef == NULL)
mTypeDef = new BfTypeDef();
for (auto field : mTypeDef->mFields)
delete field;
mTypeDef->mFields.Clear();
mTypeDef->mSystem = system;
mTypeDef->mProject = bfProject;
mTypeDef->mTypeCode = srcTypeDef->mTypeCode;
mTypeDef->mName = system->mEmptyAtom;
mTypeDef->mSystem = system;
mTypeDef->mHash = srcTypeDef->mHash;
mTypeDef->mSignatureHash = srcTypeDef->mSignatureHash;
mTypeDef->mTypeCode = BfTypeCode_Struct;
mCreatedTypeDef = true;
}
void BfTupleType::Dispose()
{
if (mCreatedTypeDef)
{
delete mTypeDef;
mTypeDef = NULL;
mCreatedTypeDef = false;
}
BfTypeInstance::Dispose();
}
BfFieldDef* BfTupleType::AddField(const StringImpl& name)
{
return BfDefBuilder::AddField(mTypeDef, NULL, name);
}
void BfTupleType::Finish()
{
BF_ASSERT(!mTypeFailed);
auto bfSystem = mTypeDef->mSystem;
mSource = new BfSource(bfSystem);
mTypeDef->mSource = mSource;
mTypeDef->mSource->mRefCount++;
BfDefBuilder bfDefBuilder(bfSystem);
bfDefBuilder.mCurTypeDef = mTypeDef;
bfDefBuilder.mCurDeclaringTypeDef = mTypeDef;
bfDefBuilder.FinishTypeDef(true);
}
//////////////////////////////////////////////////////////////////////////
BfBoxedType::~BfBoxedType()
{
//if ((mTypeDef != NULL) && (mTypeDef->mEmitParent != NULL))
mTypeDef = NULL;
}
BfType* BfBoxedType::GetModifiedElementType()
{
if ((mBoxedFlags & BoxedFlags_StructPtr) != 0)
{
auto module = mModule;
if (module == NULL)
module = mContext->mUnreifiedModule;
return module->CreatePointerType(mElementType);
}
return mElementType;
}
//////////////////////////////////////////////////////////////////////////
int BfArrayType::GetLengthBitCount()
{
if (mBaseType == NULL)
mModule->PopulateType(mBaseType, BfPopulateType_BaseType);
mModule->PopulateType(mBaseType);
if ((mBaseType->mFieldInstances.size() == 0) || (mBaseType->mFieldInstances[0].GetFieldDef()->mName != "mLength"))
{
return 0;
}
return mBaseType->mFieldInstances[0].mResolvedType->mSize * 8;
}
//////////////////////////////////////////////////////////////////////////
int BfMethodRefType::GetCaptureDataCount()
{
if (mMethodRef == NULL)
return 0;
return (int)mDataToParamIdx.size();
}
BfType* BfMethodRefType::GetCaptureType(int captureDataIdx)
{
return mMethodRef->GetParamType(mDataToParamIdx[captureDataIdx]);
}
int BfMethodRefType::GetDataIdxFromParamIdx(int paramIdx)
{
if (paramIdx == -1)
{
if (mMethodRef->HasThis())
return 0;
return -1;
}
return mParamToDataIdx[paramIdx];
}
int BfMethodRefType::GetParamIdxFromDataIdx(int dataIdx)
{
return mDataToParamIdx[dataIdx];
}
bool BfMethodRefType::WantsDataPassedAsSplat(int dataIdx)
{
if (dataIdx != -1)
return false;
return mMethodRef->GetParamIsSplat(mDataToParamIdx[dataIdx]);
}
//////////////////////////////////////////////////////////////////////////
size_t BfTypeVectorHash::operator()(const BfTypeVector& typeVec) const
{
size_t hash = typeVec.size();
BfResolvedTypeSet::LookupContext ctx;
for (auto type : typeVec)
hash = ((hash ^ BfResolvedTypeSet::Hash(type, &ctx, Beefy::BfResolvedTypeSet::BfHashFlag_None, 0)) << 5) - hash;
return hash;
}
bool BfTypeVectorEquals::operator()(const BfTypeVector& lhs, const BfTypeVector& rhs) const
{
if (lhs.size() != rhs.size())
return false;
for (int i = 0; i < (int)lhs.size(); i++)
if (lhs[i] != rhs[i])
return false;
return true;
}
//////////////////////////////////////////////////////////////////////////
bool BfCustomAttributes::Contains(BfTypeDef* typeDef)
{
for (auto& customAttr : mAttributes)
if (customAttr.mType->mTypeDef->GetDefinition() == typeDef)
return true;
return false;
}
BfCustomAttribute* BfCustomAttributes::Get(BfTypeDef * typeDef)
{
for (auto& customAttr : mAttributes)
if (customAttr.mType->mTypeDef->GetDefinition() == typeDef)
return &customAttr;
return NULL;
}
BfCustomAttribute* BfCustomAttributes::Get(BfType* type)
{
for (auto& customAttr : mAttributes)
if (customAttr.mType == type)
return &customAttr;
return NULL;
}
BfCustomAttribute* BfCustomAttributes::Get(int idx)
{
if (idx >= mAttributes.size())
return NULL;
return &mAttributes[idx];
}
//////////////////////////////////////////////////////////////////////////
BfResolvedTypeSet::~BfResolvedTypeSet()
{
}
#define HASH_MIX(origHashVal, newHashVal) ((((origHashVal) << 5) - (origHashVal)) ^ (newHashVal))
#define HASH_VAL_PTR 1
#define HASH_VAL_BOXED 2
#define HASH_VAL_REF 3
#define HASH_VAL_OUT 4
#define HASH_VAL_MUT 5
#define HASH_MODTYPE 6
#define HASH_CONCRETE_INTERFACE 7
#define HASH_SIZED_ARRAY 8
#define HASH_CONSTTYPE 9
#define HASH_VAL_TUPLE 10
#define HASH_DELEGATE 11
#define HASH_CONSTEXPR 12
#define HASH_GLOBAL 13
#define HASH_DOTDOTDOT 14
BfVariant BfResolvedTypeSet::EvaluateToVariant(LookupContext* ctx, BfExpression* expr, BfType*& outType)
{
outType = NULL;
BfConstResolver constResolver(ctx->mModule);
BfVariant variant;
constResolver.mBfEvalExprFlags = BfEvalExprFlags_NoCast;
constResolver.mBfEvalExprFlags = (BfEvalExprFlags)(constResolver.mBfEvalExprFlags | BfEvalExprFlags_AllowGenericConstValue);
constResolver.mExpectingType = ctx->mModule->GetPrimitiveType(BfTypeCode_Int64);
auto result = constResolver.Resolve(expr);
if (result)
{
// Limit the types of constants to prevent duplicate values with different types - we don't want to hash a typeref with an int32
// when the constraint requirement is int64 (but we don't know that at hash time)
if ((result.mType->IsInteger()) && ((result.mType->mSize < 8) || (result.mType->GetTypeCode() == BfTypeCode_IntPtr)))
result = ctx->mModule->Cast(expr, result, ctx->mModule->GetPrimitiveType(BfTypeCode_Int64));
else if ((result.mType->IsFloat()) && (result.mType->mSize < 8))
result = ctx->mModule->Cast(expr, result, ctx->mModule->GetPrimitiveType(BfTypeCode_Double));
else if ((result.mType->IsChar()) && (result.mType->mSize < 4))
result = ctx->mModule->Cast(expr, result, ctx->mModule->GetPrimitiveType(BfTypeCode_Char32));
outType = result.mType;
if (result.mKind == BfTypedValueKind_GenericConstValue)
{
return variant;
}
else
{
variant = ctx->mModule->TypedValueToVariant(expr, result, true);
}
}
return variant;
}
int BfResolvedTypeSet::DoHash(BfType* type, LookupContext* ctx, bool allowRef, int hashSeed)
{
//BP_ZONE("BfResolvedTypeSet::Hash");
// if (type->IsTypeAlias())
// {
// auto underlyingType = type->GetUnderlyingType();
// BF_ASSERT(underlyingType != NULL);
// if (underlyingType == NULL)
// {
// ctx->mFailed = true;
// return 0;
// }
// return Hash(underlyingType, ctx, allowRef);
// }
// else
if (type->IsBoxed())
{
BfBoxedType* boxedType = (BfBoxedType*)type;
int elemHash = Hash(boxedType->mElementType, ctx, BfHashFlag_None, hashSeed) ^ HASH_VAL_BOXED;
return (elemHash << 5) - elemHash;
}
else if (type->IsArray())
{
BfArrayType* arrayType = (BfArrayType*)type;
int elemHash = Hash(arrayType->mGenericTypeInfo->mTypeGenericArguments[0], ctx, BfHashFlag_None, hashSeed) ^ (arrayType->mDimensions << 8);
return (elemHash << 5) - elemHash;
}
else if (type->IsDelegateFromTypeRef() || type->IsFunctionFromTypeRef())
{
auto typeInst = (BfTypeInstance*)type;
int hashVal = HASH_DELEGATE;
auto delegateInfo = type->GetDelegateInfo();
hashVal = HASH_MIX(hashVal, Hash(delegateInfo->mReturnType, ctx, BfHashFlag_None, hashSeed + 1));
auto methodDef = typeInst->mTypeDef->mMethods[0];
BF_ASSERT(methodDef->mName == "Invoke");
int infoParamCount = (int)delegateInfo->mParams.size();
if (delegateInfo->mHasVarArgs)
infoParamCount++;
BF_ASSERT(infoParamCount == methodDef->mParams.size());
for (int paramIdx = 0; paramIdx < delegateInfo->mParams.size(); paramIdx++)
{
// Parse attributes?
hashVal = HASH_MIX(hashVal, Hash(delegateInfo->mParams[paramIdx], ctx, BfHashFlag_None, hashSeed + 1));
String paramName = methodDef->mParams[paramIdx]->mName;
int nameHash = (int)Hash64(paramName.c_str(), (int)paramName.length());
hashVal = HASH_MIX(hashVal, nameHash);
}
if (delegateInfo->mHasVarArgs)
hashVal = HASH_MIX(hashVal, HASH_DOTDOTDOT);
return hashVal;
}
else if (type->IsTypeInstance())
{
BfTypeInstance* typeInst = (BfTypeInstance*)type;
int hashVal;
if (typeInst->mTypeDef != NULL)
hashVal = typeInst->mTypeDef->mHash;
if (type->IsClosure())
{
auto closureType = (BfClosureType*)type;
if (closureType->mIsUnique)
return false;
hashVal = ((hashVal ^ (int)closureType->mClosureHash.mLow) << 5) - hashVal;
}
else if (type->IsTuple())
{
hashVal = HASH_VAL_TUPLE;
BfTypeInstance* tupleType = (BfTypeInstance*)type;
for (int fieldIdx = 0; fieldIdx < (int)tupleType->mFieldInstances.size(); fieldIdx++)
{
BfFieldInstance* fieldInstance = &tupleType->mFieldInstances[fieldIdx];
auto fieldType = fieldInstance->mResolvedType;
hashVal = HASH_MIX(hashVal, Hash(fieldType, ctx, BfHashFlag_None, hashSeed + 1));
BfFieldDef* fieldDef = NULL;
if (tupleType->mTypeDef != NULL)
fieldDef = fieldInstance->GetFieldDef();
int nameHash = 0;
if (fieldDef == NULL)
{
char nameStr[64];
sprintf(nameStr, "%d", fieldIdx);
nameHash = (int)Hash64(nameStr, strlen(nameStr));
}
else
{
nameHash = (int)Hash64(fieldDef->mName.c_str(), (int)fieldDef->mName.length());
}
hashVal = HASH_MIX(hashVal, nameHash);
}
}
else if (type->IsGenericTypeInstance())
{
BfTypeInstance* genericType = (BfTypeInstance*)type;
for (auto genericArg : genericType->mGenericTypeInfo->mTypeGenericArguments)
hashVal = HASH_MIX(hashVal, Hash(genericArg, ctx, BfHashFlag_None, hashSeed + 1));
}
return hashVal;
}
else if (type->IsPrimitiveType())
{
BfPrimitiveType* primType = (BfPrimitiveType*)type;
return primType->mTypeDef->mHash;
}
else if (type->IsPointer())
{
BfPointerType* pointerType = (BfPointerType*) type;
int elemHash = Hash(pointerType->mElementType, ctx, BfHashFlag_None, hashSeed) ^ HASH_VAL_PTR;
return (elemHash << 5) - elemHash;
}
else if (type->IsGenericParam())
{
auto genericParam = (BfGenericParamType*)type;
return (((int)genericParam->mGenericParamKind + 0xB00) << 8) ^ (genericParam->mGenericParamIdx + 1);
}
else if (type->IsRef())
{
auto refType = (BfRefType*)type;
int elemHash = Hash(refType->mElementType, ctx, BfHashFlag_None, hashSeed) ^ (HASH_VAL_REF + (int)refType->mRefKind);
return (elemHash << 5) - elemHash;
}
else if (type->IsModifiedTypeType())
{
auto modifiedTypeType = (BfModifiedTypeType*)type;
int elemHash = Hash(modifiedTypeType->mElementType, ctx, BfHashFlag_None, hashSeed) ^ HASH_MODTYPE + (int)modifiedTypeType->mModifiedKind;
return (elemHash << 5) - elemHash;
}
else if (type->IsConcreteInterfaceType())
{
auto concreteInterfaceType = (BfConcreteInterfaceType*)type;
int elemHash = Hash(concreteInterfaceType->mInterface, ctx, BfHashFlag_None, hashSeed) ^ HASH_CONCRETE_INTERFACE;
return (elemHash << 5) - elemHash;
}
else if (type->IsSizedArray())
{
auto sizedArray = (BfSizedArrayType*)type;
int elemHash = Hash(sizedArray->mElementType, ctx, BfHashFlag_None, hashSeed) ^ HASH_SIZED_ARRAY;
int hashVal = (elemHash << 5) - elemHash;
if (type->IsUnknownSizedArrayType())
{
auto unknownSizedArray = (BfUnknownSizedArrayType*)type;
int elemHash = Hash(unknownSizedArray->mElementCountSource, ctx, BfHashFlag_None, hashSeed);
hashVal = ((hashVal ^ elemHash) << 5) - hashVal;
}
else
hashVal = ((hashVal ^ (int)sizedArray->mElementCount) << 5) - hashVal;
return hashVal;
}
else if (type->IsMethodRef())
{
auto methodRefType = (BfMethodRefType*)type;
if (methodRefType->IsNull())
return 0;
return (int)((int)(intptr)(methodRefType->mMethodRef) << 5) ^ (int)(intptr)(methodRefType->mOwner) ^ methodRefType->mOwnerRevision;
}
else if (type->IsConstExprValue())
{
BfConstExprValueType* constExprValueType = (BfConstExprValueType*)type;
int hashVal = ((int)constExprValueType->mValue.mTypeCode << 17) ^ (constExprValueType->mValue.mInt32 << 3) ^ HASH_CONSTTYPE;
hashVal = ((hashVal ^ (Hash(constExprValueType->mType, ctx, BfHashFlag_AllowRef, hashSeed))) << 5) - hashVal;
return hashVal;
}
else
{
BF_FATAL("Not handled");
}
return 0;
}
int BfResolvedTypeSet::Hash(BfType* type, LookupContext* ctx, bool allowRef, int hashSeed)
{
int hashVal = DoHash(type, ctx, allowRef, hashSeed);
if (hashSeed == 0)
return hashVal;
return HASH_MIX(hashVal, hashSeed);
}
void BfResolvedTypeSet::HashGenericArguments(BfTypeReference* typeRef, LookupContext* ctx, int& hashVal, int hashSeed)
{
if (auto genericTypeRef = BfNodeDynCast<BfGenericInstanceTypeRef>(typeRef))
{
for (int genericIdx = 0; genericIdx < BF_MAX(genericTypeRef->mGenericArguments.mSize, genericTypeRef->mCommas.mSize + 1); genericIdx++)
{
bool allowUnboundGeneric = ((ctx->mResolveFlags & BfResolveTypeRefFlag_AllowUnboundGeneric) != 0) && (hashSeed == 0);
BfAstNode* genericArgTypeRef = NULL;
if (genericIdx < genericTypeRef->mGenericArguments.mSize)
genericArgTypeRef = genericTypeRef->mGenericArguments[genericIdx];
if (allowUnboundGeneric)
{
if (BfNodeIsExact<BfWildcardTypeReference>(genericArgTypeRef))
genericArgTypeRef = NULL;
}
int argHashVal = 0;
if (genericArgTypeRef != NULL)
{
argHashVal = Hash(genericArgTypeRef, ctx, BfHashFlag_AllowGenericParamConstValue, hashSeed + 1);
if ((allowUnboundGeneric) && ((ctx->mResolveFlags & BfResolveTypeRefFlag_ForceUnboundGeneric) != 0))
genericArgTypeRef = NULL;
}
if (genericArgTypeRef == NULL)
{
if (allowUnboundGeneric)
{
ctx->mIsUnboundGeneric = true;
argHashVal = (((int)BfGenericParamKind_Type + 0xB00) << 8) ^ (genericIdx + 1);
argHashVal = HASH_MIX(argHashVal, hashSeed + 1);
}
else
{
ctx->mFailed = true;
return;
}
}
hashVal = HASH_MIX(hashVal, argHashVal);
}
}
}
static int HashNode(BfAstNode* node)
{
if (node == NULL)
return (int)Hash64(NULL, 0);
const char* nameStr = node->GetSourceData()->mSrc + node->GetSrcStart();
return (int)Hash64(nameStr, node->GetSrcLength());
}
BfResolveTypeRefFlags BfResolvedTypeSet::GetResolveFlags(BfAstNode* typeRef, LookupContext* ctx, BfHashFlags flags)
{
bool isHeadType = typeRef == ctx->mRootTypeRef;
BfResolveTypeRefFlags resolveFlags = ctx->mResolveFlags;
if ((flags & BfHashFlag_AllowGenericParamConstValue) != 0)
resolveFlags = (BfResolveTypeRefFlags)(resolveFlags | BfResolveTypeRefFlag_AllowGenericParamConstValue);
if (!isHeadType)
resolveFlags = (BfResolveTypeRefFlags)(resolveFlags & ~BfResolveTypeRefFlag_Attribute);
return resolveFlags;
}
int BfResolvedTypeSet::DirectHash(BfTypeReference* typeRef, LookupContext* ctx, BfHashFlags flags, int hashSeed)
{
auto resolvedType = ctx->mModule->ResolveTypeRef(typeRef, BfPopulateType_Identity, GetResolveFlags(typeRef, ctx, flags));
if (resolvedType == NULL)
{
ctx->mFailed = true;
return 0;
}
return Hash(resolvedType, ctx, BfHashFlag_None, hashSeed);
}
BfTypeDef* BfResolvedTypeSet::FindRootCommonOuterType(BfTypeDef* outerType, LookupContext* ctx, BfTypeInstance*& outOuterTypeInstance)
{
if (ctx->mModule->mCurTypeInstance == NULL)
return NULL;
BfTypeDef* commonOuterType = ctx->mModule->FindCommonOuterType(ctx->mModule->mCurTypeInstance->mTypeDef, outerType);
if ((commonOuterType == NULL) && (outerType != NULL))
{
auto staticSearch = ctx->mModule->GetStaticSearch();
if (staticSearch != NULL)
{
for (auto staticTypeInst : staticSearch->mStaticTypes)
{
auto foundOuterType = ctx->mModule->FindCommonOuterType(staticTypeInst->mTypeDef, outerType);
if ((foundOuterType != NULL) &&
((commonOuterType == NULL) || (foundOuterType->mNestDepth > commonOuterType->mNestDepth)))
{
commonOuterType = foundOuterType;
outOuterTypeInstance = staticTypeInst;
}
}
}
}
if (outOuterTypeInstance != NULL)
ctx->mRootOuterTypeInstance = outOuterTypeInstance;
return commonOuterType;
}
int BfResolvedTypeSet::DoHash(BfTypeReference* typeRef, LookupContext* ctx, BfHashFlags flags, int& hashSeed)
{
if ((typeRef == ctx->mRootTypeRef) && (ctx->mRootTypeDef != NULL) &&
((typeRef->IsNamedTypeReference()) || (BfNodeIsA<BfDirectTypeDefReference>(typeRef))))
{
BfTypeDef* typeDef = ctx->mRootTypeDef;
int hashVal = typeDef->mHash;
if (typeDef->mGenericParamDefs.size() != 0)
{
auto checkTypeInstance = ctx->mModule->mCurTypeInstance;
if (checkTypeInstance->IsBoxed())
checkTypeInstance = checkTypeInstance->GetUnderlyingType()->ToTypeInstance();
auto outerType = ctx->mModule->mSystem->GetOuterTypeNonPartial(typeDef);
BfTypeDef* commonOuterType;
if (typeRef == ctx->mRootTypeRef)
commonOuterType = FindRootCommonOuterType(outerType, ctx, checkTypeInstance);
else
commonOuterType = ctx->mModule->FindCommonOuterType(ctx->mModule->mCurTypeInstance->mTypeDef, outerType);
if ((commonOuterType == NULL) && (outerType != NULL))
{
auto staticSearch = ctx->mModule->GetStaticSearch();
if (staticSearch != NULL)
{
for (auto staticTypeInst : staticSearch->mStaticTypes)
{
auto foundOuterType = ctx->mModule->FindCommonOuterType(staticTypeInst->mTypeDef, outerType);
if ((foundOuterType != NULL) &&
((commonOuterType == NULL) || (foundOuterType->mNestDepth > commonOuterType->mNestDepth)))
{
commonOuterType = foundOuterType;
checkTypeInstance = staticTypeInst;
}
}
}
}
if ((commonOuterType == NULL) || (commonOuterType->mGenericParamDefs.size() == 0))
{
ctx->mModule->Fail("Generic arguments expected", typeRef);
ctx->mFailed = true;
return 0;
}
BF_ASSERT(checkTypeInstance->IsGenericTypeInstance());
auto curGenericTypeInst = (BfTypeInstance*)checkTypeInstance;
int numParentGenericParams = (int)commonOuterType->mGenericParamDefs.size();
for (int i = 0; i < numParentGenericParams; i++)
{
hashVal = HASH_MIX(hashVal, Hash(curGenericTypeInst->mGenericTypeInfo->mTypeGenericArguments[i], ctx, BfHashFlag_None, hashSeed + 1));
}
}
return hashVal;
}
if (typeRef->IsNamedTypeReference())
{
int hashVal = DirectHash(typeRef, ctx, flags, hashSeed);
hashSeed = 0;
return hashVal;
}
if (auto genericInstTypeRef = BfNodeDynCastExact<BfGenericInstanceTypeRef>(typeRef))
{
//BfType* type = NULL;
BfTypeDef* elementTypeDef = ctx->mModule->ResolveGenericInstanceDef(genericInstTypeRef, NULL, GetResolveFlags(genericInstTypeRef, ctx, flags));
if (elementTypeDef == NULL)
{
ctx->mFailed = true;
return 0;
}
// Don't translate aliases for the root type, just element types
if (ctx->mRootTypeRef == typeRef)
{
BF_ASSERT((ctx->mRootTypeDef == NULL) || (ctx->mRootTypeDef == elementTypeDef));
ctx->mRootTypeDef = elementTypeDef;
}
else if (elementTypeDef->mTypeCode == BfTypeCode_TypeAlias)
{
BfTypeVector genericArgs;
for (auto genericArgTypeRef : genericInstTypeRef->mGenericArguments)
{
auto argType = ctx->mModule->ResolveTypeRef(genericArgTypeRef, NULL, BfPopulateType_Identity, GetResolveFlags(genericArgTypeRef, ctx, flags));
if (argType != NULL)
genericArgs.Add(argType);
else
ctx->mFailed = true;
}
if (!ctx->mFailed)
{
auto resolvedType = ctx->mModule->ResolveTypeDef(elementTypeDef, genericArgs);
if ((resolvedType != NULL) && (resolvedType->IsTypeAlias()))
{
auto underlyingType = resolvedType->GetUnderlyingType();
if (underlyingType == NULL)
{
ctx->mFailed = true;
return 0;
}
int hashVal = Hash(underlyingType, ctx, flags, hashSeed);
hashSeed = 0;
return hashVal;
}
}
}
bool fullyQualified = false;
int hashVal = elementTypeDef->mHash;
BfTypeInstance* outerType = NULL;
int checkIdx = 0;
auto checkTypeRef = genericInstTypeRef->mElementType;
while (checkTypeRef != NULL)
{
checkIdx++;
if (checkIdx >= 2)
{
fullyQualified = true;
if ((elementTypeDef->mOuterType != NULL) && (!elementTypeDef->mOuterType->mGenericParamDefs.IsEmpty()))
{
auto resolvedType = ctx->mModule->ResolveTypeRef(checkTypeRef, BfPopulateType_Identity,
(BfResolveTypeRefFlags)(GetResolveFlags(checkTypeRef, ctx, flags) | BfResolveTypeRefFlag_IgnoreLookupError));
if (resolvedType == NULL)
{
ctx->mFailed = true;
return hashVal;
}
ctx->SetCachedResolvedType(checkTypeRef, resolvedType);
outerType = resolvedType->ToTypeInstance();
}
break;
}
if (auto elementedTypeRef = BfNodeDynCast<BfElementedTypeRef>(checkTypeRef))
{
checkTypeRef = elementedTypeRef->mElementType;
continue;
}
if (auto qualifiedTypeRef = BfNodeDynCast<BfQualifiedTypeReference>(checkTypeRef))
{
checkTypeRef = qualifiedTypeRef->mLeft;
continue;
}
break;
}
if (fullyQualified)
{
if (outerType != NULL)
{
for (auto genericArg : outerType->mGenericTypeInfo->mTypeGenericArguments)
hashVal = HASH_MIX(hashVal, Hash(genericArg, ctx, Beefy::BfResolvedTypeSet::BfHashFlag_None, hashSeed + 1));
}
}
else
{
// Do we need to add generic arguments from an in-context outer class?
if ((elementTypeDef->mOuterType != NULL) && (ctx->mModule->mCurTypeInstance != NULL))
{
BfTypeInstance* checkTypeInstance = ctx->mModule->mCurTypeInstance;
BfTypeDef* commonOuterType;
if (typeRef == ctx->mRootTypeRef)
commonOuterType = FindRootCommonOuterType(elementTypeDef->mOuterType, ctx, checkTypeInstance);
else
commonOuterType = ctx->mModule->FindCommonOuterType(ctx->mModule->mCurTypeInstance->mTypeDef, elementTypeDef->mOuterType);
if ((commonOuterType != NULL) && (checkTypeInstance->IsGenericTypeInstance()))
{
auto parentTypeInstance = checkTypeInstance;
int numParentGenericParams = (int)commonOuterType->mGenericParamDefs.size();
for (int i = 0; i < numParentGenericParams; i++)
hashVal = HASH_MIX(hashVal, Hash(parentTypeInstance->mGenericTypeInfo->mTypeGenericArguments[i], ctx, Beefy::BfResolvedTypeSet::BfHashFlag_None, hashSeed + 1));
}
}
}
HashGenericArguments(genericInstTypeRef, ctx, hashVal, hashSeed);
return hashVal;
}
else if (auto tupleTypeRef = BfNodeDynCastExact<BfTupleTypeRef>(typeRef))
{
int hashVal = HASH_VAL_TUPLE;
for (int fieldIdx = 0; fieldIdx < (int)tupleTypeRef->mFieldTypes.size(); fieldIdx++)
{
BfTypeReference* fieldType = tupleTypeRef->mFieldTypes[fieldIdx];
hashVal = HASH_MIX(hashVal, Hash(fieldType, ctx, BfHashFlag_None, hashSeed + 1));
int nameHash = 0;
BfIdentifierNode* fieldName = NULL;
if (fieldIdx < (int)tupleTypeRef->mFieldNames.size())
fieldName = tupleTypeRef->mFieldNames[fieldIdx];
if (fieldName != NULL)
{
const char* nameStr = fieldName->GetSourceData()->mSrc + fieldName->GetSrcStart();
nameHash = (int)Hash64(nameStr, fieldName->GetSrcLength());
}
else
{
char nameStr[64];
sprintf(nameStr, "%d", fieldIdx);
nameHash = (int)Hash64(nameStr, strlen(nameStr));
}
hashVal = HASH_MIX(hashVal, nameHash);
}
return hashVal;
}
else if (auto arrayType = BfNodeDynCastExact<BfArrayTypeRef>(typeRef))
{
if ((arrayType->mDimensions == 1) && (arrayType->mParams.size() != 0))
{
int rawElemHash = Hash(arrayType->mElementType, ctx, BfHashFlag_None, hashSeed);
int elemHash = rawElemHash ^ HASH_SIZED_ARRAY;
int hashVal = (elemHash << 5) - elemHash;
// Sized array
if (arrayType->mParams.size() != 1)
{
ctx->mFailed = true;
ctx->mModule->Fail("Only one size parameter expected", arrayType->mParams[1]);
return 0;
}
intptr elementCount = -1;
BfExpression* sizeExpr = BfNodeDynCast<BfExpression>(arrayType->mParams[0]);
BF_ASSERT(sizeExpr != NULL);
if (sizeExpr != NULL)
{
BfMethodState methodState;
methodState.mTempKind = BfMethodState::TempKind_Static;
SetAndRestoreValue<BfMethodState*> prevMethodState;
if (ctx->mModule->mCurMethodState == NULL)
prevMethodState.Init(ctx->mModule->mCurMethodState, &methodState);
BfConstResolver constResolver(ctx->mModule);
BfType* intType = ctx->mModule->GetPrimitiveType(BfTypeCode_IntPtr);
constResolver.mBfEvalExprFlags = (BfEvalExprFlags)(constResolver.mBfEvalExprFlags | BfEvalExprFlags_AllowGenericConstValue);
constResolver.mExpectingType = intType;
BfTypedValue typedVal = constResolver.Resolve(sizeExpr, NULL, BfConstResolveFlag_ArrayInitSize);
if (typedVal.mKind == BfTypedValueKind_GenericConstValue)
{
int elemHash = Hash(typedVal.mType, ctx, BfHashFlag_None, hashSeed);
hashVal = ((hashVal ^ elemHash) << 5) - hashVal;
return hashVal;
}
if (!typedVal)
ctx->mFailed = true;
if (typedVal)
{
SetAndRestoreValue<bool> prevIgnoreWrites(ctx->mModule->mBfIRBuilder->mIgnoreWrites, true);
typedVal = ctx->mModule->Cast(sizeExpr, typedVal, intType);
}
if (typedVal)
{
auto constant = ctx->mModule->mBfIRBuilder->GetConstant(typedVal.mValue);
if (constant == NULL)
{
ctx->mFailed = true;
ctx->mModule->Fail("Array size not a constant value", arrayType->mParams[0]);
}
else if (constant->mConstType == BfConstType_Undef)
{
elementCount = -1; // Marker for undef
if ((arrayType->IsInferredSize()) && ((ctx->mResolveFlags & BfResolveTypeRefFlag_AllowInferredSizedArray) == 0))
{
ctx->mModule->Fail("Invalid use of inferred-sized array", sizeExpr);
}
}
else if (!BfIRBuilder::IsInt(constant->mTypeCode))
{
ctx->mFailed = true;
ctx->mModule->Fail("Array size not a constant value", arrayType->mParams[0]);
}
else
{
elementCount = (intptr)constant->mInt64;
if (elementCount < 0)
{
ctx->mFailed = true;
ctx->mModule->Fail("Arrays cannot have negative sizes", arrayType->mParams[0]);
return 0;
}
}
}
}
hashVal = ((hashVal ^ (int)elementCount) << 5) - hashVal;
return hashVal;
}
else
{
if (arrayType->mDimensions != (int)arrayType->mParams.size() + 1)
{
for (auto arg : arrayType->mParams)
{
if (auto tokenNode = BfNodeDynCastExact<BfTokenNode>(arg))
{
if (tokenNode->GetToken() == BfToken_Comma)
continue;
}
ctx->mFailed = true;
ctx->mModule->Fail("Multidimensional arrays cannot have explicit sizes. Consider using a strided array (ie: int[2][2]) instead.", arg);
return 0;
}
}
int elemHash = Hash(arrayType->mElementType, ctx, BfHashFlag_None, hashSeed) ^ (arrayType->mDimensions << 8);
return (elemHash << 5) - elemHash;
}
}
else if (auto pointerType = BfNodeDynCastExact<BfPointerTypeRef>(typeRef))
{
int elemHash = Hash(pointerType->mElementType, ctx, BfHashFlag_None, hashSeed) ^ HASH_VAL_PTR;
return (elemHash << 5) - elemHash;
}
else if (auto nullableType = BfNodeDynCastExact<BfNullableTypeRef>(typeRef))
{
if (ctx->mRootTypeRef == typeRef)
ctx->mRootTypeDef = ctx->mModule->mCompiler->mNullableTypeDef;
int hashVal = ctx->mModule->mCompiler->mNullableTypeDef->mHash;
hashVal = HASH_MIX(hashVal, Hash(nullableType->mElementType, ctx, BfHashFlag_None, hashSeed + 1));
return hashVal;
}
else if (auto refType = BfNodeDynCastExact<BfRefTypeRef>(typeRef))
{
if ((flags & BfHashFlag_AllowRef) != 0)
{
auto refKind = BfRefType::RefKind_Ref;
if (refType->mRefToken == NULL)
refKind = BfRefType::RefKind_Ref;
else if (refType->mRefToken->GetToken() == BfToken_In)
refKind = BfRefType::RefKind_In;
else if (refType->mRefToken->GetToken() == BfToken_Out)
refKind = BfRefType::RefKind_Out;
else if (refType->mRefToken->GetToken() == BfToken_Mut)
refKind = BfRefType::RefKind_Mut;
int elemHash = Hash(refType->mElementType, ctx, BfHashFlag_None, hashSeed) ^ (HASH_VAL_REF + (int)refKind);
return (elemHash << 5) - elemHash;
}
else
{
ctx->mModule->ResolveTypeRef(typeRef, BfPopulateType_Identity, GetResolveFlags(typeRef, ctx, flags)); // To throw an error...
ctx->mFailed = true;
return 0;
//return Hash(refType->mElementType, ctx);
}
}
else if (auto genericParamTypeRef = BfNodeDynCastExact<BfGenericParamTypeRef>(typeRef))
{
return (((int)genericParamTypeRef->mGenericParamKind) << 8) ^ (genericParamTypeRef->mGenericParamIdx + 1);
}
else if (auto qualifiedTypeRef = BfNodeDynCastExact<BfQualifiedTypeReference>(typeRef))
{
/*auto leftType = ctx->mModule->ResolveTypeRef(qualifiedTypeRef->mLeft, BfPopulateType_Identity);
if (leftType == NULL)
{
ctx->mFailed = true;
return 0;
}
if (qualifiedTypeRef->mRight == NULL)
{
ctx->mFailed = true;
return 0;
}
auto rightType = ctx->mModule->ResolveInnerType(leftType, qualifiedTypeRef->mRight);
if (rightType == NULL)
{
ctx->mFailed = true;
return 0;
}
return Hash(rightType, ctx);*/
auto resolvedType = ctx->mModule->ResolveTypeRef(typeRef, BfPopulateType_Identity, GetResolveFlags(typeRef, ctx, flags));
if (resolvedType == NULL)
{
ctx->mFailed = true;
return 0;
}
int hashVal = Hash(resolvedType, ctx, BfHashFlag_None, hashSeed);
hashSeed = 0;
return hashVal;
}
else if (auto varType = BfNodeDynCastExact<BfVarTypeReference>(typeRef))
{
// Don't allow 'var'
ctx->mModule->Fail("Invalid use of 'var'", typeRef);
ctx->mFailed = true;
return 0;
}
else if (auto letType = BfNodeDynCastExact<BfLetTypeReference>(typeRef))
{
// Don't allow 'let'
ctx->mModule->Fail("Invalid use of 'let'", typeRef);
ctx->mFailed = true;
return 0;
}
else if (auto retTypeTypeRef = BfNodeDynCastExact<BfModifiedTypeRef>(typeRef))
{
// Don't cause infinite loop, but if we have an inner 'rettype' then try to directly resolve that --
// Only use the HAS_RETTYPE for root-level rettype insertions
if (ctx->mRootTypeRef != retTypeTypeRef)
{
auto type = ctx->mModule->ResolveTypeRef(retTypeTypeRef, BfPopulateType_Identity, GetResolveFlags(retTypeTypeRef, ctx, flags));
if ((type != NULL) && (type->IsRef()))
type = type->GetUnderlyingType();
return Hash(type, ctx, flags, hashSeed);
}
int elemHash = Hash(retTypeTypeRef->mElementType, ctx, BfHashFlag_None, hashSeed) ^ HASH_MODTYPE + retTypeTypeRef->mRetTypeToken->mToken;
return (elemHash << 5) - elemHash;
}
else if (auto resolvedTypeRef = BfNodeDynCastExact<BfResolvedTypeReference>(typeRef))
{
return Hash(resolvedTypeRef->mType, ctx, BfHashFlag_None, hashSeed);
}
else if (auto constTypeRef = BfNodeDynCastExact<BfConstTypeRef>(typeRef))
{
// We purposely don't mix in a HASH_CONSTTYPE because there's no such thing as a const type in Beef, so we just strip it
return Hash(constTypeRef->mElementType, ctx, flags, hashSeed);
}
else if (auto delegateTypeRef = BfNodeDynCastExact<BfDelegateTypeRef>(typeRef))
{
int hashVal = HASH_DELEGATE;
if (delegateTypeRef->mReturnType != NULL)
hashVal = HASH_MIX(hashVal, Hash(delegateTypeRef->mReturnType, ctx, BfHashFlag_AllowRef, hashSeed + 1));
else
ctx->mFailed = true;
bool isFirstParam = true;
for (int paramIdx = 0; paramIdx < delegateTypeRef->mParams.size(); paramIdx++)
{
auto param = delegateTypeRef->mParams[paramIdx];
// Parse attributes?
BfTypeReference* fieldType = param->mTypeRef;
if (isFirstParam)
{
if ((param->mNameNode != NULL) && (param->mNameNode->Equals("this")))
{
if (auto refNode = BfNodeDynCast<BfRefTypeRef>(fieldType))
fieldType = refNode->mElementType;
}
}
if (paramIdx == delegateTypeRef->mParams.size() - 1)
{
if (auto dotTypeRef = BfNodeDynCastExact<BfDotTypeReference>(fieldType))
{
if (dotTypeRef->mDotToken->mToken == BfToken_DotDotDot)
{
hashVal = HASH_MIX(hashVal, HASH_DOTDOTDOT);
continue;
}
}
}
if (fieldType != NULL)
hashVal = HASH_MIX(hashVal, Hash(fieldType, ctx, (BfHashFlags)(BfHashFlag_AllowRef), hashSeed + 1));
hashVal = HASH_MIX(hashVal, HashNode(param->mNameNode));
isFirstParam = true;
}
return hashVal;
}
else if (auto exprModTypeRef = BfNodeDynCastExact<BfExprModTypeRef>(typeRef))
{
auto cachedResolvedType = ctx->GetCachedResolvedType(typeRef);
if (cachedResolvedType == NULL)
{
if (exprModTypeRef->mTarget != NULL)
{
BfTypedValue result;
//
{
BfMethodState methodState;
SetAndRestoreValue<BfMethodState*> prevMethodState(ctx->mModule->mCurMethodState, &methodState, false);
if (ctx->mModule->mCurMethodState == NULL)
prevMethodState.Set();
methodState.mTempKind = BfMethodState::TempKind_NonStatic;
SetAndRestoreValue<bool> ignoreWrites(ctx->mModule->mBfIRBuilder->mIgnoreWrites, true);
SetAndRestoreValue<bool> allowUninitReads(ctx->mModule->mCurMethodState->mAllowUinitReads, true);
BfEvalExprFlags exprFlags = BfEvalExprFlags_None;
if ((ctx->mResolveFlags & BfResolveTypeRefFlag_DisallowComptime) != 0)
{
exprFlags = (BfEvalExprFlags)(exprFlags | BfEvalExprFlags_DisallowComptime);
}
if (exprModTypeRef->mToken->mToken == BfToken_Comptype)
{
auto typeType = ctx->mModule->ResolveTypeDef(ctx->mModule->mCompiler->mTypeTypeDef);
exprFlags = (BfEvalExprFlags)(exprFlags | BfEvalExprFlags_Comptime | BfEvalExprFlags_NoCast);
result = ctx->mModule->CreateValueFromExpression(exprModTypeRef->mTarget, typeType, exprFlags);
if ((result.mType != NULL) && (!result.mType->IsInteger()) && (result.mType != typeType) &&
(!result.mType->IsInstanceOf(ctx->mModule->mCompiler->mReflectTypeIdTypeDef)))
result = ctx->mModule->Cast(exprModTypeRef->mTarget, result, typeType);
}
else
{
result = ctx->mModule->CreateValueFromExpression(exprModTypeRef->mTarget, NULL, BfEvalExprFlags_DeclType);
}
}
if ((result) && (exprModTypeRef->mToken->mToken == BfToken_Comptype))
{
auto constant = ctx->mModule->mBfIRBuilder->GetConstant(result.mValue);
if (constant != NULL)
{
if ((constant->mConstType == BfConstType_TypeOf) || (constant->mConstType == BfConstType_TypeOf_WithData))
{
auto typeOf = (BfTypeOf_Const*)constant;
cachedResolvedType = typeOf->mType;
}
else if (constant->mConstType == BfConstType_Undef)
{
ctx->mHadVar = true;
cachedResolvedType = ctx->mModule->GetPrimitiveType(BfTypeCode_Var);
}
else if (BfIRConstHolder::IsInt(constant->mTypeCode))
{
int typeId = constant->mInt32;
BfType* type = NULL;
if ((typeId >= 0) && (typeId < ctx->mModule->mContext->mTypes.mSize))
type = ctx->mModule->mContext->mTypes[typeId];
if (type != NULL)
{
cachedResolvedType = type;
}
else
{
ctx->mModule->Fail(StrFormat("Invalid type id '%d'", typeId), exprModTypeRef->mTarget);
ctx->mHadVar = true;
cachedResolvedType = ctx->mModule->GetPrimitiveType(BfTypeCode_Var);
}
}
}
if (cachedResolvedType == NULL)
ctx->mModule->Fail("Constant System.Type value required", exprModTypeRef->mTarget);
}
else
cachedResolvedType = result.mType;
if ((cachedResolvedType != NULL) && (cachedResolvedType->IsRef()))
cachedResolvedType = cachedResolvedType->GetUnderlyingType();
if (cachedResolvedType != NULL)
ctx->SetCachedResolvedType(typeRef, cachedResolvedType);
}
}
if (cachedResolvedType == NULL)
{
ctx->mFailed = true;
return 0;
}
int hashVal = Hash(cachedResolvedType, ctx, flags, hashSeed);
hashSeed = 0;
return hashVal;
}
else if (auto constExprTypeRef = BfNodeDynCastExact<BfConstExprTypeRef>(typeRef))
{
if ((flags & BfHashFlag_AllowGenericParamConstValue) == 0)
{
ctx->mModule->Fail("Invalid use of const expression", constExprTypeRef->mConstToken);
ctx->mFailed = true;
return 0;
}
BfVariant result;
BfType* resultType = NULL;
if (constExprTypeRef->mConstExpr != NULL)
{
result = EvaluateToVariant(ctx, constExprTypeRef->mConstExpr, resultType);
if ((resultType != NULL) && (resultType->IsGenericParam()))
{
int hashVal = Hash(resultType, ctx, BfHashFlag_None, hashSeed);
hashSeed = 0;
return hashVal;
}
}
if (resultType == NULL)
{
ctx->mFailed = true;
return 0;
}
auto hashVal = ((int)result.mTypeCode << 17) ^ (result.mInt32 << 3) ^ HASH_CONSTTYPE;
hashVal = ((hashVal ^ (Hash(resultType, ctx, BfHashFlag_AllowRef, hashSeed))) << 5) - hashVal;
return hashVal;
}
else if (auto dotTypeRef = BfNodeDynCastExact<BfDotTypeReference>(typeRef))
{
ctx->mModule->ResolveTypeRef(dotTypeRef, BfPopulateType_Identity, GetResolveFlags(dotTypeRef, ctx, flags));
ctx->mFailed = true;
return 0;
}
else if (auto wildcardTypeRef = BfNodeDynCastExact<BfWildcardTypeReference>(typeRef))
{
ctx->mFailed = true;
return 0;
}
else
{
BF_FATAL("Not handled");
}
return 0;
}
int BfResolvedTypeSet::Hash(BfTypeReference* typeRef, LookupContext* ctx, BfHashFlags flags, int hashSeed)
{
int hashVal = DoHash(typeRef, ctx, flags, hashSeed);
if (hashSeed == 0)
return hashVal;
return HASH_MIX(hashVal, hashSeed);
}
int BfResolvedTypeSet::Hash(BfAstNode* typeRefNode, LookupContext* ctx, BfHashFlags flags, int hashSeed)
{
if (auto typeRef = BfNodeDynCast<BfTypeReference>(typeRefNode))
return Hash(typeRef, ctx, flags, hashSeed);
auto result = ctx->mModule->ResolveTypeRef(typeRefNode, NULL, BfPopulateType_Identity, (BfResolveTypeRefFlags)(ctx->mResolveFlags | BfResolveTypeRefFlag_AllowImplicitConstExpr));
if (result == NULL)
{
ctx->mFailed = true;
return 0;
}
ctx->mResolvedTypeMap[typeRefNode] = result;
return Hash(result, ctx, false, hashSeed);
}
bool BfResolvedTypeSet::Equals(BfType* lhs, BfType* rhs, LookupContext* ctx)
{
if (lhs->IsBoxed())
{
if (!rhs->IsBoxed())
return false;
BfBoxedType* lhsBoxedType = (BfBoxedType*)lhs;
BfBoxedType* rhsBoxedType = (BfBoxedType*)rhs;
if (lhsBoxedType->mBoxedFlags != rhsBoxedType->mBoxedFlags)
return false;
return lhsBoxedType->mElementType == rhsBoxedType->mElementType;
}
else if (lhs->IsArray())
{
if (!rhs->IsArray())
return false;
BfArrayType* lhsArrayType = (BfArrayType*) lhs;
BfArrayType* rhsArrayType = (BfArrayType*) rhs;
if (lhsArrayType->mDimensions != rhsArrayType->mDimensions)
return false;
return lhsArrayType->mGenericTypeInfo->mTypeGenericArguments[0] == rhsArrayType->mGenericTypeInfo->mTypeGenericArguments[0];
}
else if (lhs->IsTypeInstance())
{
if ((!rhs->IsTypeInstance()) || (rhs->IsBoxed()))
return false;
BfTypeInstance* lhsInst = (BfTypeInstance*)lhs;
BfTypeInstance* rhsInst = (BfTypeInstance*)rhs;
if (lhs->IsClosure())
{
if (!rhs->IsClosure())
return false;
auto lhsClosure = (BfClosureType*)lhs;
auto rhsClosure = (BfClosureType*)rhs;
if ((lhsClosure->mIsUnique) || (rhsClosure->mIsUnique))
return false;
if (lhsClosure->mBaseType != rhsClosure->mBaseType)
return false;
return lhsClosure->mClosureHash == rhsClosure->mClosureHash;
}
if (lhs->IsDelegateFromTypeRef() || lhs->IsFunctionFromTypeRef())
{
if (!rhs->IsDelegateFromTypeRef() && !rhs->IsFunctionFromTypeRef())
return false;
if (lhs->IsDelegate() != rhs->IsDelegate())
return false;
BfDelegateInfo* lhsDelegateInfo = lhs->GetDelegateInfo();
BfDelegateInfo* rhsDelegateInfo = rhs->GetDelegateInfo();
if (lhsInst->mTypeDef->mIsDelegate != rhsInst->mTypeDef->mIsDelegate)
return false;
if (lhsDelegateInfo->mCallingConvention != rhsDelegateInfo->mCallingConvention)
return false;
auto lhsMethodDef = lhsInst->mTypeDef->mMethods[0];
auto rhsMethodDef = rhsInst->mTypeDef->mMethods[0];
if (lhsMethodDef->mCallingConvention != rhsMethodDef->mCallingConvention)
return false;
if (lhsMethodDef->mIsMutating != rhsMethodDef->mIsMutating)
return false;
if (lhsDelegateInfo->mReturnType != rhsDelegateInfo->mReturnType)
return false;
if (lhsDelegateInfo->mParams.size() != rhsDelegateInfo->mParams.size())
return false;
for (int paramIdx = 0; paramIdx < lhsDelegateInfo->mParams.size(); paramIdx++)
{
if (lhsDelegateInfo->mParams[paramIdx] != rhsDelegateInfo->mParams[paramIdx])
return false;
if (lhsMethodDef->mParams[paramIdx]->mName != rhsMethodDef->mParams[paramIdx]->mName)
return false;
}
return true;
}
if (lhs->IsTuple())
{
if (!rhs->IsTuple())
return false;
BfTypeInstance* lhsTupleType = (BfTypeInstance*)lhs;
BfTypeInstance* rhsTupleType = (BfTypeInstance*)rhs;
if (lhsTupleType->mFieldInstances.size() != rhsTupleType->mFieldInstances.size())
return false;
for (int fieldIdx = 0; fieldIdx < (int)lhsTupleType->mFieldInstances.size(); fieldIdx++)
{
auto lhsFieldInstance = &lhsTupleType->mFieldInstances[fieldIdx];
auto rhsFieldInstance = &rhsTupleType->mFieldInstances[fieldIdx];
if (lhsFieldInstance->mResolvedType != rhsFieldInstance->mResolvedType)
return false;
auto lhsFieldDef = lhsFieldInstance->GetFieldDef();
if (rhsTupleType->mTypeDef == NULL)
{
char c = lhsFieldDef->mName[0];
if ((c < '0') || (c > '9'))
return false;
}
else
{
auto rhsFieldDef = rhsFieldInstance->GetFieldDef();
if (lhsFieldDef->mName != rhsFieldDef->mName)
return false;
}
}
return true;
}
if (lhs->IsGenericTypeInstance())
{
if (!rhs->IsGenericTypeInstance())
return false;
BfTypeInstance* lhsGenericType = (BfTypeInstance*)lhs;
BfTypeInstance* rhsGenericType = (BfTypeInstance*)rhs;
if (lhsGenericType->mGenericTypeInfo->mTypeGenericArguments.size() != rhsGenericType->mGenericTypeInfo->mTypeGenericArguments.size())
return false;
if (lhsGenericType->mTypeDef->GetDefinition() != rhsGenericType->mTypeDef->GetDefinition())
return false;
for (int i = 0; i < (int)lhsGenericType->mGenericTypeInfo->mTypeGenericArguments.size(); i++)
{
if (lhsGenericType->mGenericTypeInfo->mTypeGenericArguments[i] != rhsGenericType->mGenericTypeInfo->mTypeGenericArguments[i])
return false;
}
}
return lhsInst->mTypeDef->GetDefinition() == rhsInst->mTypeDef->GetDefinition();
}
else if (lhs->IsPrimitiveType())
{
if (!rhs->IsPrimitiveType())
return false;
BfPrimitiveType* lhsPrimType = (BfPrimitiveType*)lhs;
BfPrimitiveType* rhsPrimType = (BfPrimitiveType*)rhs;
return lhsPrimType->mTypeDef == rhsPrimType->mTypeDef;
}
else if (lhs->IsPointer())
{
if (!rhs->IsPointer())
return false;
BfPointerType* lhsPtrType = (BfPointerType*)lhs;
BfPointerType* rhsPtrType = (BfPointerType*)rhs;
return lhsPtrType->mElementType == rhsPtrType->mElementType;
}
else if (lhs->IsGenericParam())
{
if (!rhs->IsGenericParam())
return false;
BfGenericParamType* lhsGenericParamType = (BfGenericParamType*)lhs;
BfGenericParamType* rhsGenericParamType = (BfGenericParamType*)rhs;
return (lhsGenericParamType->mGenericParamKind == rhsGenericParamType->mGenericParamKind) &&
(lhsGenericParamType->mGenericParamIdx == rhsGenericParamType->mGenericParamIdx);
}
else if (lhs->IsRef())
{
if (!rhs->IsRef())
return false;
BfRefType* lhsRefType = (BfRefType*)lhs;
BfRefType* rhsRefType = (BfRefType*)rhs;
return (lhsRefType->mElementType == rhsRefType->mElementType) && (lhsRefType->mRefKind == rhsRefType->mRefKind);
}
else if (lhs->IsModifiedTypeType())
{
if (!rhs->IsModifiedTypeType())
return false;
BfModifiedTypeType* lhsRetTypeType = (BfModifiedTypeType*)lhs;
BfModifiedTypeType* rhsRetTypeType = (BfModifiedTypeType*)rhs;
return (lhsRetTypeType->mModifiedKind == rhsRetTypeType->mModifiedKind) &&
(lhsRetTypeType->mElementType == rhsRetTypeType->mElementType);
}
else if (lhs->IsConcreteInterfaceType())
{
if (!rhs->IsConcreteInterfaceType())
return false;
BfConcreteInterfaceType* lhsConcreteInterfaceType = (BfConcreteInterfaceType*)lhs;
BfConcreteInterfaceType* rhsConcreteInterfaceType = (BfConcreteInterfaceType*)rhs;
return (lhsConcreteInterfaceType->mInterface == rhsConcreteInterfaceType->mInterface);
}
else if (lhs->IsSizedArray())
{
if (!rhs->IsSizedArray())
return false;
BfSizedArrayType* lhsSizedArrayType = (BfSizedArrayType*)lhs;
BfSizedArrayType* rhsSizedArrayType = (BfSizedArrayType*)rhs;
return (lhsSizedArrayType->mElementType == rhsSizedArrayType->mElementType) &&
(lhsSizedArrayType->mElementCount == rhsSizedArrayType->mElementCount);
}
else if (lhs->IsMethodRef())
{
if (!rhs->IsMethodRef())
return false;
BfMethodRefType* lhsMethodRefType = (BfMethodRefType*)lhs;
BfMethodRefType* rhsMethodRefType = (BfMethodRefType*)rhs;
return (lhsMethodRefType->mMethodRef == rhsMethodRefType->mMethodRef) &&
(lhsMethodRefType->mOwner == rhsMethodRefType->mOwner) &&
(lhsMethodRefType->mOwnerRevision == rhsMethodRefType->mOwnerRevision);
}
else if ((lhs->IsConstExprValue()) || (rhs->IsConstExprValue()))
{
if (!lhs->IsConstExprValue() || !rhs->IsConstExprValue())
return false;
BfConstExprValueType* lhsConstExprValueType = (BfConstExprValueType*)lhs;
BfConstExprValueType* rhsConstExprValueType = (BfConstExprValueType*)rhs;
return (lhsConstExprValueType->mType == rhsConstExprValueType->mType) &&
(lhsConstExprValueType->mValue.mInt64 == rhsConstExprValueType->mValue.mInt64);
}
else
{
BF_FATAL("Not handled");
}
return 0;
}
bool BfResolvedTypeSet::GenericTypeEquals(BfTypeInstance* lhsGenericType, BfTypeVector* lhsTypeGenericArguments, BfTypeReference* rhs, LookupContext* ctx, int& genericParamOffset, bool skipElement)
{
//BP_ZONE("BfResolvedTypeSet::GenericTypeEquals");
if (!skipElement)
{
if (auto elementedTypeRef = BfNodeDynCast<BfElementedTypeRef>(rhs))
{
if (!GenericTypeEquals(lhsGenericType, lhsTypeGenericArguments, elementedTypeRef->mElementType, ctx, genericParamOffset))
return false;
//_GetTypeRefs(elementedTypeRef->mElementType);
}
else if (auto qualifiedTypeRef = BfNodeDynCastExact<BfQualifiedTypeReference>(rhs))
{
//_GetTypeRefs(qualifiedTypeRef->mLeft);
if (!GenericTypeEquals(lhsGenericType, lhsTypeGenericArguments, qualifiedTypeRef->mLeft, ctx, genericParamOffset))
return false;
}
}
if (auto genericTypeRef = BfNodeDynCastExact<BfGenericInstanceTypeRef>(rhs))
{
int rhsGenericArgCount = BF_MAX(genericTypeRef->mGenericArguments.mSize, genericTypeRef->mCommas.mSize + 1);
if (genericTypeRef->mGenericArguments.size() > rhsGenericArgCount + genericParamOffset)
return false;
for (int genericIdx = 0; genericIdx < BF_MAX(genericTypeRef->mGenericArguments.mSize, genericTypeRef->mCommas.mSize + 1); genericIdx++)
{
BfType* lhsArgType = (*lhsTypeGenericArguments)[genericParamOffset++];
BfAstNode* genericArgTypeRef = NULL;
if (genericIdx < genericTypeRef->mGenericArguments.mSize)
genericArgTypeRef = genericTypeRef->mGenericArguments[genericIdx];
if ((ctx->mResolveFlags & BfResolveTypeRefFlag_ForceUnboundGeneric) != 0)
{
genericArgTypeRef = NULL;
}
else if ((ctx->mResolveFlags & BfResolveTypeRefFlag_AllowUnboundGeneric) != 0)
{
if (BfNodeIsExact<BfWildcardTypeReference>(genericArgTypeRef))
genericArgTypeRef = NULL;
}
if (genericArgTypeRef == NULL)
{
if (lhsArgType->IsGenericParam())
{
auto lhsGenericArgType = (BfGenericParamType*)lhsArgType;
if ((lhsGenericArgType->mGenericParamKind != BfGenericParamKind_Type) || (lhsGenericArgType->mGenericParamIdx != genericIdx))
return false;
}
else
return false;
}
else
{
if (!Equals(lhsArgType, genericArgTypeRef, ctx))
return false;
}
}
}
return true;
}
bool BfResolvedTypeSet::GenericTypeEquals(BfTypeInstance* lhsGenericType, BfTypeVector* lhsTypeGenericArguments, BfTypeReference* rhs, BfTypeDef* rhsTypeDef, LookupContext* ctx)
{
int genericParamOffset = 0;
bool isFullyQualified = false;
BfTypeInstance* outerType = NULL;
if (auto genericInstTypeRef = BfNodeDynCast<BfGenericInstanceTypeRef>(rhs))
{
int checkIdx = 0;
auto checkTypeRef = genericInstTypeRef->mElementType;
while (checkTypeRef != NULL)
{
checkIdx++;
if (checkIdx >= 2)
{
isFullyQualified = true;
BfType* checkType = ctx->GetCachedResolvedType(checkTypeRef);
if (checkType != NULL)
outerType = checkType->ToTypeInstance();
if (outerType != NULL)
{
BfTypeInstance* lhsCheckType = lhsGenericType;
while (lhsCheckType->mTypeDef->mNestDepth > outerType->mTypeDef->mNestDepth)
{
lhsCheckType = ctx->mModule->GetOuterType(lhsCheckType);
}
if (lhsCheckType != outerType)
return false;
if (outerType->mGenericTypeInfo != NULL)
genericParamOffset = (int)outerType->mGenericTypeInfo->mTypeGenericArguments.mSize;
}
break;
}
if (auto elementedTypeRef = BfNodeDynCast<BfElementedTypeRef>(checkTypeRef))
{
checkTypeRef = elementedTypeRef->mElementType;
continue;
}
if (auto qualifiedTypeRef = BfNodeDynCast<BfQualifiedTypeReference>(checkTypeRef))
{
checkTypeRef = qualifiedTypeRef->mLeft;
continue;
}
break;
}
}
BfTypeInstance* rootOuterTypeInstance = NULL;
auto rhsGenericTypeInstRef = BfNodeDynCastExact<BfGenericInstanceTypeRef>(rhs);
if (!isFullyQualified)
{
rootOuterTypeInstance = ctx->mModule->mCurTypeInstance;
if ((rhsTypeDef == ctx->mRootTypeDef) && (ctx->mRootOuterTypeInstance != NULL))
rootOuterTypeInstance = ctx->mRootOuterTypeInstance;
if (rhsGenericTypeInstRef == NULL)
{
if (auto rhsNullableTypeRef = BfNodeDynCastExact<BfNullableTypeRef>(rhs))
{
if (rhsNullableTypeRef != NULL)
{
if (lhsGenericType->mTypeDef != ctx->mModule->mContext->mCompiler->mNullableTypeDef)
return false;
auto rhsElemType = ctx->mModule->ResolveTypeRef(rhsNullableTypeRef->mElementType, BfPopulateType_Identity, ctx->mResolveFlags);
return lhsGenericType->mGenericTypeInfo->mTypeGenericArguments[0] == rhsElemType;
}
}
if ((rhsTypeDef != NULL) && (rootOuterTypeInstance != NULL))
{
// See if we're referring to an non-generic inner type where the outer type is generic
if (lhsGenericType->mTypeDef->GetDefinition() != rhsTypeDef->GetDefinition())
return false;
BfTypeDef* commonOuterType = ctx->mModule->FindCommonOuterType(rootOuterTypeInstance->mTypeDef, rhsTypeDef->mOuterType);
if (commonOuterType != NULL)
{
BfTypeInstance* checkTypeInstance = rootOuterTypeInstance;
if (checkTypeInstance->IsBoxed())
checkTypeInstance = checkTypeInstance->GetUnderlyingType()->ToTypeInstance();
BF_ASSERT(checkTypeInstance->IsGenericTypeInstance());
int numParentGenericParams = (int)commonOuterType->mGenericParamDefs.size();
auto curTypeInstance = (BfTypeInstance*)checkTypeInstance;
if (lhsGenericType->mGenericTypeInfo->mTypeGenericArguments.size() != numParentGenericParams)
return false;
for (int i = 0; i < (int)numParentGenericParams; i++)
if ((*lhsTypeGenericArguments)[i] != curTypeInstance->mGenericTypeInfo->mTypeGenericArguments[i])
return false;
return true;
}
}
if (auto rhsQualifiedTypeRef = BfNodeDynCastExact<BfQualifiedTypeReference>(rhs))
{
auto rhsRightType = ctx->mModule->ResolveTypeRef(rhs, BfPopulateType_Identity, ctx->mResolveFlags);
return rhsRightType == lhsGenericType;
}
return false;
}
}
if (rhsGenericTypeInstRef == NULL)
return true;
BfTypeDef* elementTypeDef = ctx->mModule->ResolveGenericInstanceDef(rhsGenericTypeInstRef, NULL, ctx->mResolveFlags);
if (elementTypeDef == NULL)
return false;
if (elementTypeDef->GetDefinition() != lhsGenericType->mTypeDef->GetDefinition())
return false;
// Do we need to add generic arguments from an in-context outer class?
if ((elementTypeDef->mOuterType != NULL) && (rootOuterTypeInstance != NULL) && (rootOuterTypeInstance->IsGenericTypeInstance()))
{
BfTypeDef* commonOuterType = ctx->mModule->FindCommonOuterType(rootOuterTypeInstance->mTypeDef, elementTypeDef->mOuterType);
if (commonOuterType != NULL)
{
auto parentTypeInstance = rootOuterTypeInstance;
genericParamOffset = (int) commonOuterType->mGenericParamDefs.size();
for (int i = 0; i < genericParamOffset; i++)
for (auto genericArg : parentTypeInstance->mGenericTypeInfo->mTypeGenericArguments)
{
if (parentTypeInstance->mGenericTypeInfo->mTypeGenericArguments[i] != (*lhsTypeGenericArguments)[i])
return false;
}
}
}
if (!GenericTypeEquals(lhsGenericType, lhsTypeGenericArguments, rhs, ctx, genericParamOffset, isFullyQualified))
return false;
return genericParamOffset == (int)lhsTypeGenericArguments->size();
}
BfType* BfResolvedTypeSet::LookupContext::GetCachedResolvedType(BfTypeReference* typeReference)
{
if (typeReference == mRootTypeRef)
return mRootResolvedType;
BfType** typePtr = NULL;
if (mResolvedTypeMap.TryGetValue(typeReference, &typePtr))
return *typePtr;
return NULL;
}
void BfResolvedTypeSet::LookupContext::SetCachedResolvedType(BfTypeReference* typeReference, BfType* type)
{
if (typeReference == mRootTypeRef)
mRootResolvedType = type;
else
mResolvedTypeMap[typeReference] = type;
}
BfType* BfResolvedTypeSet::LookupContext::ResolveTypeRef(BfTypeReference* typeReference)
{
return mModule->ResolveTypeRef(typeReference, BfPopulateType_Identity, BfResolveTypeRefFlag_AllowGenericParamConstValue);
}
BfTypeDef* BfResolvedTypeSet::LookupContext::ResolveToTypeDef(BfTypeReference* typeReference, BfType** outType)
{
if (outType != NULL)
*outType = NULL;
if (typeReference == mRootTypeRef)
return mRootTypeDef;
if (auto typeDefTypeRef = BfNodeDynCast<BfDirectTypeDefReference>(typeReference))
{
return typeDefTypeRef->mTypeDef;
}
auto type = mModule->ResolveTypeRef(typeReference, BfPopulateType_Identity, BfResolveTypeRefFlag_AllowGenericParamConstValue);
if (type == NULL)
return NULL;
if (outType != NULL)
*outType = type;
if (type->IsPrimitiveType())
return ((BfPrimitiveType*)type)->mTypeDef;
auto typeInst = type->ToTypeInstance();
if (typeInst == NULL)
return NULL;
return typeInst->mTypeDef->GetDefinition();
}
bool BfResolvedTypeSet::Equals(BfType* lhs, BfTypeReference* rhs, BfTypeDef* rhsTypeDef, LookupContext* ctx)
{
auto rhsType = ctx->mModule->ResolveTypeDef(rhsTypeDef, BfPopulateType_Identity);
if (rhsType == NULL)
{
ctx->mFailed = true;
return false;
}
return BfResolvedTypeSet::Equals(lhs, rhsType, ctx);
}
bool BfResolvedTypeSet::Equals(BfType* lhs, BfTypeReference* rhs, LookupContext* ctx)
{
//BP_ZONE("BfResolvedTypeSet::Equals");
if (ctx->mRootTypeRef != rhs)
{
if (auto retTypeRef = BfNodeDynCastExact<BfModifiedTypeRef>(rhs))
{
auto resolvedType = ctx->mModule->ResolveTypeRef(rhs);
if ((resolvedType != NULL) && (resolvedType->IsRef()))
resolvedType = resolvedType->GetUnderlyingType();
return lhs == resolvedType;
}
}
if ((rhs->IsNamedTypeReference()) || (rhs->IsA<BfGenericInstanceTypeRef>()) || (rhs->IsA<BfQualifiedTypeReference>()))
{
if ((ctx->mRootTypeRef != rhs) || (ctx->mRootTypeDef == NULL))
{
auto rhsResolvedType = ctx->ResolveTypeRef(rhs);
if (rhsResolvedType == NULL)
{
ctx->mFailed = true;
return false;
}
return lhs == rhsResolvedType;
}
}
if (auto declTypeRef = BfNodeDynCastExact<BfExprModTypeRef>(rhs))
{
auto cachedResolveType = ctx->GetCachedResolvedType(rhs);
BF_ASSERT(cachedResolveType != NULL);
return lhs == cachedResolveType;
}
// Strip off 'const' - it's just an error when applied to a typeRef in Beef
auto constTypeRef = BfNodeDynCastExact<BfConstTypeRef>(rhs);
if (constTypeRef != NULL)
return Equals(lhs, constTypeRef->mElementType, ctx);
if (lhs->IsBoxed())
{
return false;
}
else if (lhs->IsArray())
{
auto rhsArrayTypeRef = BfNodeDynCastExact<BfArrayTypeRef>(rhs);
if (rhsArrayTypeRef == NULL)
return false;
// Any non-comma param means it's a sized array
for (auto param : rhsArrayTypeRef->mParams)
{
bool isComma = false;
if (auto tokenNode = BfNodeDynCast<BfTokenNode>(param))
isComma = tokenNode->mToken == BfToken_Comma;
if (!isComma)
return false;
}
BfArrayType* lhsArrayType = (BfArrayType*) lhs;
if (lhsArrayType->mDimensions != rhsArrayTypeRef->mDimensions)
return false;
return Equals(lhsArrayType->mGenericTypeInfo->mTypeGenericArguments[0], rhsArrayTypeRef->mElementType, ctx);
}
else if (lhs->IsDelegateFromTypeRef() || lhs->IsFunctionFromTypeRef())
{
auto rhsDelegateType = BfNodeDynCastExact<BfDelegateTypeRef>(rhs);
if (rhsDelegateType == NULL)
return false;
bool wantGeneric = false;
BfDelegateInfo* lhsDelegateInfo = lhs->GetDelegateInfo();
auto lhsTypeInstance = lhs->ToTypeInstance();
BfMethodDef* invokeMethodDef = lhsTypeInstance->mTypeDef->mMethods[0];
BF_ASSERT(invokeMethodDef->mName == "Invoke");
bool rhsIsDelegate = rhsDelegateType->mTypeToken->GetToken() == BfToken_Delegate;
if ((lhs->IsDelegate()) != rhsIsDelegate)
return false;
auto _CheckType = [&](BfType* type)
{
if (type->IsTypeGenericParam())
wantGeneric = true;
};
BfCallingConvention rhsCallingConvention = BfCallingConvention_Unspecified;
if (ctx->mRootTypeRef == rhsDelegateType)
rhsCallingConvention = ctx->mCallingConvention;
else
ctx->mModule->GetDelegateTypeRefAttributes(rhsDelegateType, rhsCallingConvention);
if (lhsDelegateInfo->mCallingConvention != rhsCallingConvention)
return false;
if (!Equals(lhsDelegateInfo->mReturnType, rhsDelegateType->mReturnType, ctx))
return false;
_CheckType(lhsDelegateInfo->mReturnType);
bool isMutating = true;
int paramRefOfs = 0;
if ((!rhsDelegateType->mParams.IsEmpty()) && (lhs->IsFunction()))
{
auto param0 = rhsDelegateType->mParams[0];
if ((param0->mNameNode != NULL) && (param0->mNameNode->Equals("this")))
{
if (!lhsDelegateInfo->mHasExplicitThis)
return false;
bool handled = false;
auto lhsThisType = lhsDelegateInfo->mParams[0];
auto rhsThisType = ctx->mModule->ResolveTypeRef(param0->mTypeRef, BfPopulateType_Identity, (BfResolveTypeRefFlags)(BfResolveTypeRefFlag_NoWarnOnMut | BfResolveTypeRefFlag_AllowRef));
bool wantsMutating = false;
if (rhsThisType->IsRef())
{
if (lhsThisType != rhsThisType->GetUnderlyingType())
return false;
wantsMutating = (lhsThisType->IsValueType()) || (lhsThisType->IsGenericParam());
}
else
{
if (lhsThisType != rhsThisType)
return false;
}
if (invokeMethodDef->mIsMutating != wantsMutating)
return false;
paramRefOfs = 1;
}
}
int lhsParamsCount = (int)lhsDelegateInfo->mParams.size();
if (lhsDelegateInfo->mHasVarArgs)
lhsParamsCount++;
if (lhsParamsCount != (int)rhsDelegateType->mParams.size())
return false;
for (int paramIdx = paramRefOfs; paramIdx < lhsDelegateInfo->mParams.size(); paramIdx++)
{
auto paramTypeRef = rhsDelegateType->mParams[paramIdx]->mTypeRef;
if (!Equals(lhsDelegateInfo->mParams[paramIdx], paramTypeRef, ctx))
return false;
_CheckType(lhsDelegateInfo->mParams[paramIdx]);
StringView rhsParamName;
if (rhsDelegateType->mParams[paramIdx]->mNameNode != NULL)
rhsParamName = rhsDelegateType->mParams[paramIdx]->mNameNode->ToStringView();
if (invokeMethodDef->mParams[paramIdx]->mName != rhsParamName)
return false;
}
if ((ctx->mModule->mCurTypeInstance == NULL) || (!ctx->mModule->mCurTypeInstance->IsGenericTypeInstance()))
wantGeneric = false;
//TODO:
wantGeneric = false;
if (wantGeneric != lhsTypeInstance->IsGenericTypeInstance())
return false;
return true;
}
else if (lhs->IsTypeInstance())
{
BfTypeInstance* lhsInst = (BfTypeInstance*) lhs;
if (lhs->IsTuple())
{
if (!rhs->IsA<BfTupleTypeRef>())
return false;
BfTupleTypeRef* rhsTupleTypeRef = (BfTupleTypeRef*)rhs;
BfTypeInstance* lhsTupleType = (BfTypeInstance*)lhs;
if (lhsTupleType->mFieldInstances.size() != rhsTupleTypeRef->mFieldTypes.size())
return false;
for (int fieldIdx = 0; fieldIdx < (int)lhsTupleType->mFieldInstances.size(); fieldIdx++)
{
BfFieldInstance* fieldInstance = &lhsTupleType->mFieldInstances[fieldIdx];
auto rhsResolvedType = ctx->mModule->ResolveTypeRef(rhsTupleTypeRef->mFieldTypes[fieldIdx], BfPopulateType_Identity);
if (rhsResolvedType != fieldInstance->mResolvedType)
return false;
BfFieldDef* fieldTypeDef = fieldInstance->GetFieldDef();
BfIdentifierNode* fieldName = NULL;
if (fieldIdx < (int)rhsTupleTypeRef->mFieldNames.size())
fieldName = rhsTupleTypeRef->mFieldNames[fieldIdx];
if (fieldName != NULL)
{
if (fieldName->ToString() != fieldTypeDef->mName)
return false;
}
else
{
char nameStr[64];
sprintf(nameStr, "%d", fieldIdx);
if (fieldTypeDef->mName != nameStr)
return false;
}
}
return true;
}
else if (lhs->IsGenericTypeInstance())
{
BfType* rhsType = NULL;
auto rhsTypeDef = ctx->ResolveToTypeDef(rhs, &rhsType);
if (rhsTypeDef == NULL)
return false;
if (rhsType != NULL)
return lhs == rhsType;
BfTypeInstance* lhsGenericType = (BfTypeInstance*) lhs;
return GenericTypeEquals(lhsGenericType, &lhsGenericType->mGenericTypeInfo->mTypeGenericArguments, rhs, rhsTypeDef, ctx);
}
else
{
if (rhs->IsA<BfElementedTypeRef>())
return false;
if (!rhs->IsTypeDefTypeReference())
{
if (rhs->IsA<BfDelegateTypeRef>())
return false; // Would have caught it before
if (rhs->IsA<BfQualifiedTypeReference>())
{
//TODO: Under what circumstances was this supposed to be used? This caused an infinite loop comparing
// 'var' against a delegate type instance
auto resolvedType = ctx->mModule->ResolveTypeRef(rhs, BfPopulateType_Identity);
if (resolvedType == lhsInst)
{
return true;
}
}
return false;
}
auto rhsTypeDef = ctx->ResolveToTypeDef(rhs);
if (rhsTypeDef == NULL)
return false;
return lhsInst->IsInstanceOf(rhsTypeDef);
}
}
else if (lhs->IsPrimitiveType())
{
if (lhs->IsDot())
{
auto varTypeReference = BfNodeDynCastExact<BfDotTypeReference>(rhs);
if (varTypeReference != NULL)
return true;
}
if (lhs->IsVar())
{
auto varTypeReference = BfNodeDynCastExact<BfVarTypeReference>(rhs);
if (varTypeReference != NULL)
return true;
}
if (lhs->IsLet())
{
auto letTypeReference = BfNodeDynCastExact<BfLetTypeReference>(rhs);
if (letTypeReference != NULL)
return true;
}
BfPrimitiveType* lhsPrimType = (BfPrimitiveType*)lhs;
auto rhsTypeDef = ctx->ResolveToTypeDef(rhs);
// if (rhsTypeDef->mTypeCode == BfTypeCode_TypeAlias)
// return Equals(lhs, rhs, rhsTypeDef, ctx);
return lhsPrimType->mTypeDef == rhsTypeDef;
}
else if (lhs->IsPointer())
{
auto rhsPointerTypeRef = BfNodeDynCastExact<BfPointerTypeRef>(rhs);
if (rhsPointerTypeRef == NULL)
return false;
BfPointerType* lhsPtrType = (BfPointerType*)lhs;
return Equals(lhsPtrType->mElementType, rhsPointerTypeRef->mElementType, ctx);
}
else if (lhs->IsGenericParam())
{
auto lhsGenericParamType = (BfGenericParamType*)lhs;
auto rhsGenericParamTypeRef = BfNodeDynCastExact<BfGenericParamTypeRef>(rhs);
if (rhsGenericParamTypeRef == NULL)
{
if (auto constExprTypeRef = BfNodeDynCastExact<BfConstExprTypeRef>(rhs))
{
BfVariant result;
if (constExprTypeRef->mConstExpr == NULL)
return false;
BfType* resultType = NULL;
result = EvaluateToVariant(ctx, constExprTypeRef->mConstExpr, resultType);
return resultType == lhs;
}
return false;
}
return (lhsGenericParamType->mGenericParamKind == rhsGenericParamTypeRef->mGenericParamKind) &&
(lhsGenericParamType->mGenericParamIdx == rhsGenericParamTypeRef->mGenericParamIdx);
}
else if (lhs->IsRef())
{
auto lhsRefType = (BfRefType*)lhs;
auto rhsRefTypeRef = BfNodeDynCastExact<BfRefTypeRef>(rhs);
if (rhsRefTypeRef == NULL)
return false;
auto refKind = BfRefType::RefKind_Ref;
if (rhsRefTypeRef->mRefToken == NULL)
refKind = BfRefType::RefKind_Ref;
else if (rhsRefTypeRef->mRefToken->GetToken() == BfToken_In)
refKind = BfRefType::RefKind_In;
else if (rhsRefTypeRef->mRefToken->GetToken() == BfToken_Out)
refKind = BfRefType::RefKind_Out;
else if (rhsRefTypeRef->mRefToken->GetToken() == BfToken_Mut)
refKind = BfRefType::RefKind_Mut;
return (lhsRefType->mRefKind == refKind) &&
Equals(lhsRefType->mElementType, rhsRefTypeRef->mElementType, ctx);
}
else if (lhs->IsModifiedTypeType())
{
auto lhsRetTypeType = (BfModifiedTypeType*)lhs;
auto rhsRetTypeTypeRef = BfNodeDynCastExact<BfModifiedTypeRef>(rhs);
if (rhsRetTypeTypeRef == NULL)
return false;
if (lhsRetTypeType->mModifiedKind != rhsRetTypeTypeRef->mRetTypeToken->mToken)
return false;
return Equals(lhsRetTypeType->mElementType, rhsRetTypeTypeRef->mElementType, ctx);
}
else if (lhs->IsConcreteInterfaceType())
{
// No way to create a reference to one of these
return false;
}
else if (lhs->IsSizedArray())
{
auto rhsArrayTypeRef = BfNodeDynCastExact<BfArrayTypeRef>(rhs);
if (rhsArrayTypeRef == NULL)
return false;
if ((rhsArrayTypeRef->mDimensions != 1) && (rhsArrayTypeRef->mParams.size() != 1))
return false;
BfSizedArrayType* lhsArrayType = (BfSizedArrayType*)lhs;
if (!Equals(lhsArrayType->mElementType, rhsArrayTypeRef->mElementType, ctx))
return false;
intptr elementCount = -1;
BfExpression* sizeExpr = BfNodeDynCast<BfExpression>(rhsArrayTypeRef->mParams[0]);
BF_ASSERT(sizeExpr != NULL);
if (sizeExpr != NULL)
{
SetAndRestoreValue<bool> prevIgnoreError(ctx->mModule->mIgnoreErrors, true);
BfConstResolver constResolver(ctx->mModule);
BfType* intType = ctx->mModule->GetPrimitiveType(BfTypeCode_IntPtr);
constResolver.mBfEvalExprFlags = (BfEvalExprFlags)(constResolver.mBfEvalExprFlags | BfEvalExprFlags_AllowGenericConstValue);
constResolver.mExpectingType = intType;
BfTypedValue typedVal = constResolver.Resolve(sizeExpr, NULL, BfConstResolveFlag_ArrayInitSize);
if (typedVal.mKind == BfTypedValueKind_GenericConstValue)
{
if (!lhs->IsUnknownSizedArrayType())
return false;
auto lhsUnknownSizedArray = (BfUnknownSizedArrayType*)lhs;
return lhsUnknownSizedArray->mElementCountSource = typedVal.mType;
}
if (typedVal)
typedVal = ctx->mModule->Cast(sizeExpr, typedVal, intType);
if (typedVal)
{
if (lhs->IsUnknownSizedArrayType())
return false;
auto constant = ctx->mModule->mBfIRBuilder->GetConstant(typedVal.mValue);
if ((constant->mConstType == BfConstType_Undef) || (!BfIRBuilder::IsInt(constant->mTypeCode)))
{
elementCount = -1; // Marker for undef
}
else
{
elementCount = (intptr)constant->mInt64;
BF_ASSERT(elementCount >= 0); // Should have been caught in hash
}
}
}
return lhsArrayType->mElementCount == elementCount;
}
else if (lhs->IsMethodRef())
{
// Always make these unique. The MethodInstance value will change on rebuild anyway
return false;
}
else if (lhs->IsConstExprValue())
{
auto constExprTypeRef = BfNodeDynCastExact<BfConstExprTypeRef>(rhs);
if (constExprTypeRef == NULL)
return false;
if (!lhs->IsConstExprValue())
return false;
BfConstExprValueType* lhsConstExprType = (BfConstExprValueType*)lhs;
BfVariant result;
if (constExprTypeRef->mConstExpr != NULL)
{
BfType* resultType = NULL;
result = EvaluateToVariant(ctx, constExprTypeRef->mConstExpr, resultType);
if (resultType != lhsConstExprType->mType)
return false;
}
return (result.mTypeCode == lhsConstExprType->mValue.mTypeCode) &&
(result.mInt64 == lhsConstExprType->mValue.mInt64);
}
else
{
BF_FATAL("Not handled");
}
return false;
}
bool BfResolvedTypeSet::Equals(BfType* lhs, BfAstNode* rhs, LookupContext* ctx)
{
if (auto rhsTypeRef = BfNodeDynCast<BfTypeReference>(rhs))
return Equals(lhs, rhsTypeRef, ctx);
BfType* rhsResultType;
if (ctx->mResolvedTypeMap.TryGetValue(rhs, &rhsResultType))
return lhs == rhsResultType;
BF_FATAL("Invalid value in BfResolvedTypeSet::Equals");
return false;
}
void BfResolvedTypeSet::RemoveEntry(BfResolvedTypeSet::Entry* entry)
{
int hashIdx = (entry->mHash & 0x7FFFFFFF) % mHashSize;
// if (entry->mPrev == NULL)
// {
// if (entry->mNext != NULL)
// entry->mNext->mPrev = NULL;
// BF_ASSERT(mHashHeads[bucket] == entry);
// mHashHeads[bucket] = entry->mNext;
// }
// else
// {
// entry->mPrev->mNext = entry->mNext;
// if (entry->mNext != NULL)
// entry->mNext->mPrev = entry->mPrev;
// }
//
// mSize--;
bool found = false;
Entry** srcCheckEntryPtr = &this->mHashHeads[hashIdx];
Entry* checkEntry = *srcCheckEntryPtr;
while (checkEntry != NULL)
{
if (checkEntry == entry)
{
this->mCount--;
*srcCheckEntryPtr = checkEntry->mNext;
found = true;
}
srcCheckEntryPtr = &checkEntry->mNext;
checkEntry = checkEntry->mNext;
}
BF_ASSERT(found);
BF_ASSERT(entry->mValue == NULL);
Deallocate(entry);
}
// BfResolvedTypeSet::Iterator BfResolvedTypeSet::begin()
// {
// return ++Iterator(this);
// }
//
// BfResolvedTypeSet::Iterator BfResolvedTypeSet::end()
// {
// Iterator itr(this);
// itr.mCurBucket = HashSize;
// return itr;
// }
//
// BfResolvedTypeSet::Iterator BfResolvedTypeSet::erase(BfResolvedTypeSet::Iterator& itr)
// {
// auto next = itr;
// ++next;
//
// auto cur = itr.mCurEntry;
//
// auto& hashHead = itr.mTypeSet->mHashHeads[itr.mCurBucket];
//
// if (hashHead == cur)
// hashHead = cur->mNext;
// if (cur->mPrev != NULL)
// cur->mPrev->mNext = cur->mNext;
// if (cur->mNext != NULL)
// cur->mNext->mPrev = cur->mPrev;
// delete cur;
//
// //BfLogSys("Deleting node %@ from bucket %d\n", cur, itr.mCurBucket);
//
// mSize--;
// return next;
// }
//////////////////////////////////////////////////////////////////////////
BfHotTypeVersion::~BfHotTypeVersion()
{
for (auto member : mMembers)
member->Deref();
}
BfHotTypeData::~BfHotTypeData()
{
for (auto version : mTypeVersions)
{
version->Deref();
}
}
BfHotTypeVersion* BfHotTypeData::GetTypeVersion(int hotCommitedIdx)
{
for (int checkIdx = (int)mTypeVersions.size() - 1; checkIdx >= 0; checkIdx--)
{
BfHotTypeVersion* hotTypeVersion = mTypeVersions[checkIdx];
if (hotTypeVersion->mDeclHotCompileIdx <= hotCommitedIdx)
return hotTypeVersion;
}
return NULL;
}
BfHotTypeVersion* BfHotTypeData::GetLatestVersion()
{
return mTypeVersions.back();
}
BfHotTypeVersion* BfHotTypeData::GetLatestVersionHead()
{
auto lastestVersion = mTypeVersions.back();
for (int versionIdx = (int)mTypeVersions.size() - 1; versionIdx >= 0; versionIdx--)
{
auto checkVersion = mTypeVersions[versionIdx];
if (checkVersion->mDataHash != lastestVersion->mDataHash)
break;
lastestVersion = checkVersion;
}
return lastestVersion;
}
void BfHotTypeData::ClearVersionsAfter(int hotIdx)
{
while (!mTypeVersions.IsEmpty())
{
auto hotTypeVersion = mTypeVersions.back();
if (hotTypeVersion->mDeclHotCompileIdx > hotIdx)
{
hotTypeVersion->Deref();
mTypeVersions.pop_back();
}
else
break;
}
}
void BfHotDepData::Deref()
{
mRefCount--;
BF_ASSERT(mRefCount >= 0);
if (mRefCount == 0)
{
switch (mDataKind)
{
case BfHotDepDataKind_TypeVersion:
delete (BfHotTypeVersion*)this;
break;
case BfHotDepDataKind_ThisType:
delete (BfHotThisType*)this;
break;
case BfHotDepDataKind_Allocation:
delete (BfHotAllocation*)this;
break;
case BfHotDepDataKind_Method:
delete (BfHotMethod*)this;
break;
case BfHotDepDataKind_DupMethod:
delete (BfHotDupMethod*)this;
break;
case BfHotDepDataKind_DevirtualizedMethod:
delete (BfHotDevirtualizedMethod*)this;
break;
case BfHotDepDataKind_InnerMethod:
delete (BfHotInnerMethod*)this;
break;
case BfHotDepDataKind_FunctionPtr:
delete (BfHotFunctionReference*)this;
break;
case BfHotDepDataKind_VirtualDecl:
delete (BfHotVirtualDeclaration*)this;
break;
default:
BF_FATAL("Not handled");
}
}
}
void BfHotMethod::Clear(bool keepDupMethods)
{
if (mPrevVersion != NULL)
{
mPrevVersion->Deref();
mPrevVersion = NULL;
}
if (mSrcTypeVersion != NULL)
{
mSrcTypeVersion->Deref();
mSrcTypeVersion = NULL;
}
if ((keepDupMethods) && ((mFlags & BfHotDepDataFlag_HasDup) != 0))
{
int writeIdx = 0;
for (int i = 0; i < (int)mReferences.size(); i++)
{
auto depData = mReferences[i];
if (depData->mDataKind == BfHotDepDataKind_DupMethod)
{
mReferences[writeIdx++] = depData;
}
else
{
depData->Deref();
}
}
mReferences.mSize = writeIdx;
}
else
{
for (auto depData : mReferences)
{
depData->Deref();
}
mReferences.Clear();
}
}
BfHotMethod::~BfHotMethod()
{
Clear();
}
//////////////////////////////////////////////////////////////////////////
#pragma warning(disable:4146)
// Only 63 chars - skip zero
static const char cHash64bToChar[] = { 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p',
'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', 'A', 'B', 'C', 'D', 'E', 'F',
'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V',
'W', 'X', 'Y', 'Z', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '_' };
String BfTypeUtils::HashEncode64(uint64 val)
{
String outStr;
if ((int64)val < 0)
{
uint64 flippedNum = (uint64)-(int64)val;
// Only flip if the encoded result would actually be shorter
if (flippedNum <= 0x00FFFFFFFFFFFFFFLL)
{
val = flippedNum;
outStr.Append('_');
}
}
while (val > 0)
{
int charIdx = val % 0x3F;
val /= 0x3F;
outStr.Append(cHash64bToChar[charIdx]);
}
return outStr;
}
BfPrimitiveType* BfTypeUtils::GetPrimitiveType(BfModule* module, BfTypeCode typeCode)
{
return module->GetPrimitiveType(typeCode);
}
void BfTypeUtils::PopulateType(BfModule* module, BfType* type)
{
module->PopulateType(type);
}
String BfTypeUtils::TypeToString(BfAstNode* typeRefNode)
{
if (auto identifierNode = BfNodeDynCast<BfIdentifierNode>(typeRefNode))
return identifierNode->ToString();
auto typeRef = BfNodeDynCast<BfTypeReference>(typeRefNode);
if (typeRef == NULL)
return "";
if (auto typeDefTypeRef = BfNodeDynCast<BfDirectTypeDefReference>(typeRef))
{
if (!typeDefTypeRef->mTypeDef->mNamespace.IsEmpty())
return typeDefTypeRef->mTypeDef->mNamespace.ToString() + "." + typeDefTypeRef->mTypeDef->mName->mString;
else
return String(typeDefTypeRef->mTypeDef->mName->mString);
}
if (typeRef->IsNamedTypeReference())
{
return typeRef->ToString();
}
if (auto ptrType = BfNodeDynCast<BfPointerTypeRef>(typeRef))
return TypeToString(ptrType->mElementType) + "*";
if (auto ptrType = BfNodeDynCast<BfArrayTypeRef>(typeRef))
{
String name = TypeToString(ptrType->mElementType) + "[";
for (int i = 1; i < ptrType->mDimensions; i++)
name += ",";
name += "]";
return name;
}
if (auto genericInstanceType = BfNodeDynCast<BfGenericInstanceTypeRef>(typeRef))
{
String name = TypeToString(genericInstanceType->mElementType);
name += "<";
for (int i = 0; i < (int)genericInstanceType->mGenericArguments.size(); i++)
{
if (i > 0)
name += ", ";
name += TypeToString(genericInstanceType->mGenericArguments[i]);
}
name += ">";
return name;
}
if (auto genericParamTypeRef = BfNodeDynCast<BfGenericParamTypeRef>(typeRef))
{
if (genericParamTypeRef->mGenericParamKind == BfGenericParamKind_Method)
return StrFormat("@M%d", genericParamTypeRef->mGenericParamIdx);
return StrFormat("@T%d", genericParamTypeRef->mGenericParamIdx);
}
if (auto qualifiedTypeRef = BfNodeDynCast<BfQualifiedTypeReference>(typeRef))
{
return TypeToString(qualifiedTypeRef->mLeft) + "." + TypeToString(qualifiedTypeRef->mRight);
}
if (auto refTypeRef = BfNodeDynCast<BfRefTypeRef>(typeRef))
{
String str = BfTokenToString(refTypeRef->mRefToken->GetToken());
str += " ";
str += TypeToString(refTypeRef->mElementType);
return str;
}
if (auto directStrTypeName = BfNodeDynCast<BfDirectStrTypeReference>(typeRef))
return directStrTypeName->mTypeName;
if (auto tupleTypeRef = BfNodeDynCast<BfTupleTypeRef>(typeRef))
{
String name = "(";
for (int i = 0; i < tupleTypeRef->mFieldTypes.size(); i++)
{
if (i > 0)
name += ", ";
name += TypeToString(tupleTypeRef->mFieldTypes[i]);
if ((i < tupleTypeRef->mFieldNames.size()) && (tupleTypeRef->mFieldNames[i] != NULL))
{
name += " ";
name += tupleTypeRef->mFieldNames[i]->ToString();
}
}
name += ")";
return name;
}
if (auto constTypeRef = BfNodeDynCast<BfConstExprTypeRef>(typeRef))
{
String name = "const ";
name += constTypeRef->mConstExpr->ToString();
return name;
}
//BF_DBG_FATAL("Not implemented");
return typeRef->ToString();
}
bool BfTypeUtils::TypeEquals(BfType* typeA, BfType* typeB, BfTypeInstance* selfType)
{
if (typeA->IsUnspecializedTypeVariation())
typeA = selfType->mModule->ResolveSelfType(typeA, selfType);
if (typeB->IsUnspecializedTypeVariation())
typeB = selfType->mModule->ResolveSelfType(typeB, selfType);
return typeA == typeB;
}
String BfTypeUtils::TypeToString(BfTypeDef* typeDef, BfTypeNameFlags typeNameFlags)
{
String str;
TypeToString(str, typeDef, typeNameFlags);
return str;
}
bool BfTypeUtils::TypeToString(StringImpl& str, BfTypeDef* typeDef, BfTypeNameFlags typeNameFlags)
{
auto checkTypeDef = typeDef;
char needsSep = 0;
if (checkTypeDef->mOuterType != NULL)
{
if (TypeToString(str, checkTypeDef->mOuterType, typeNameFlags))
{
if ((typeNameFlags & BfTypeNameFlag_InternalName) != 0)
needsSep = '+';
else
needsSep = '.';
}
}
else
{
if (((typeNameFlags & BfTypeNameFlag_OmitNamespace) == 0) && (!typeDef->mNamespace.IsEmpty()))
{
typeDef->mNamespace.ToString(str);
needsSep = '.';
}
}
if (needsSep != 0)
str += needsSep;
if (((typeNameFlags & BfTypeNameFlag_HideGlobalName) != 0) && (typeDef->IsGlobalsContainer()))
return false;
typeDef->mName->ToString(str);
if (typeDef->mGenericParamDefs.size() != 0)
{
int prevGenericParamCount = 0;
if (checkTypeDef->mOuterType != NULL)
prevGenericParamCount = (int)typeDef->mOuterType->mGenericParamDefs.size();
if (prevGenericParamCount != (int)checkTypeDef->mGenericParamDefs.size())
{
str += "<";
for (int i = prevGenericParamCount; i < (int)checkTypeDef->mGenericParamDefs.size(); i++)
{
if ((typeNameFlags & BfTypeNameFlag_InternalName) != 0)
{
if (i > prevGenericParamCount)
str += ",";
}
else
{
if (i > prevGenericParamCount)
str += ", ";
str += checkTypeDef->mGenericParamDefs[i]->mName;
}
}
str += ">";
}
}
return true;
}
int BfTypeUtils::GetSplatCount(BfType* type)
{
int splatCount = 0;
SplatIterate([&](BfType* checkType) { splatCount++; }, type);
return splatCount;
}
BfConstExprValueType::~BfConstExprValueType()
{
// mContext->mTypeConstExprCount--;
// BF_ASSERT(mContext->mTypeConstExprCount == 0);
}