1
0
Fork 0
mirror of https://github.com/beefytech/Beef.git synced 2025-06-08 11:38:21 +02:00
Beef/IDEHelper/Compiler/BfModuleTypeUtils.cpp
2024-10-23 16:50:50 -04:00

16289 lines
551 KiB
C++

#include "BeefySysLib/util/AllocDebug.h"
#include "BfCompiler.h"
#include "BfSystem.h"
#include "BfParser.h"
#include "BfReducer.h"
#include "BfCodeGen.h"
#include "BfExprEvaluator.h"
#include <fcntl.h>
#include "BfConstResolver.h"
#include "BfMangler.h"
#include "BeefySysLib/util/PerfTimer.h"
#include "BeefySysLib/util/BeefPerf.h"
#include "BeefySysLib/util/StackHelper.h"
#include "BfSourceClassifier.h"
#include "BfAutoComplete.h"
#include "BfDemangler.h"
#include "BfResolvePass.h"
#include "BfFixits.h"
#include "BfIRCodeGen.h"
#include "BfDefBuilder.h"
#include "CeMachine.h"
//////////////////////////////////////////////////////////////////////////
int32 GetNumLowZeroBits(int32 n)
{
if (n == 0)
return 32;
int i = 0;
while ((n & 1) == 0)
{
n = (int32)((uint32)n >> 1);
i++;
}
return i;
}
//////////////////////////////////////////////////////////////////////////
USING_NS_BF;
BfGenericExtensionEntry* BfModule::BuildGenericExtensionInfo(BfTypeInstance* genericTypeInst, BfTypeDef* partialTypeDef)
{
if (!partialTypeDef->IsExtension())
return NULL;
if (partialTypeDef->mGenericParamDefs.size() != genericTypeInst->mGenericTypeInfo->mTypeGenericArguments.size())
{
AssertErrorState();
return NULL;
}
BfGenericExtensionInfo* genericExtensionInfo = genericTypeInst->mGenericTypeInfo->mGenericExtensionInfo;
if (genericExtensionInfo == NULL)
{
genericExtensionInfo = new BfGenericExtensionInfo();
genericTypeInst->mGenericTypeInfo->mGenericExtensionInfo = genericExtensionInfo;
}
BfTypeState typeState;
typeState.mPrevState = mContext->mCurTypeState;
typeState.mType = genericTypeInst;
typeState.mCurTypeDef = partialTypeDef;
SetAndRestoreValue<BfTypeState*> prevTypeState(mContext->mCurTypeState, &typeState);
BfGenericExtensionEntry* genericExEntry;
genericExtensionInfo->mExtensionMap.TryAdd(partialTypeDef, NULL, &genericExEntry);
int startDefGenericParamIdx = (int)genericExEntry->mGenericParams.size();
for (int paramIdx = startDefGenericParamIdx; paramIdx < (int)genericTypeInst->mGenericTypeInfo->mTypeGenericArguments.size(); paramIdx++)
{
auto genericParamInstance = new BfGenericTypeParamInstance(partialTypeDef, paramIdx);
genericParamInstance->mExternType = GetGenericParamType(BfGenericParamKind_Type, paramIdx);
auto prevPtr = genericExEntry->mGenericParams.mVals;
genericExEntry->mGenericParams.push_back(genericParamInstance);
}
for (int externConstraintIdx = 0; externConstraintIdx < (int)partialTypeDef->mExternalConstraints.size(); externConstraintIdx++)
{
auto& genericConstraint = partialTypeDef->mExternalConstraints[externConstraintIdx];
auto genericParamInstance = new BfGenericTypeParamInstance(partialTypeDef, externConstraintIdx + (int)partialTypeDef->mGenericParamDefs.size());
genericParamInstance->mExternType = ResolveTypeRef(genericConstraint.mTypeRef, BfPopulateType_Identity);
auto autoComplete = mCompiler->GetAutoComplete();
if (autoComplete != NULL)
autoComplete->CheckTypeRef(genericConstraint.mTypeRef, false);
if (genericParamInstance->mExternType == NULL)
genericParamInstance->mExternType = GetPrimitiveType(BfTypeCode_Var);
ResolveGenericParamConstraints(genericParamInstance, genericTypeInst->IsUnspecializedType());
genericExEntry->mGenericParams.push_back(genericParamInstance);
}
for (int paramIdx = startDefGenericParamIdx; paramIdx < (int)genericTypeInst->mGenericTypeInfo->mTypeGenericArguments.size(); paramIdx++)
{
auto genericParamInstance = genericExEntry->mGenericParams[paramIdx];
auto rootGenericParamInstance = genericTypeInst->mGenericTypeInfo->mGenericParams[paramIdx];
genericParamInstance->mTypeConstraint = rootGenericParamInstance->mTypeConstraint;
genericParamInstance->mInterfaceConstraints = rootGenericParamInstance->mInterfaceConstraints;
genericParamInstance->mGenericParamFlags = (BfGenericParamFlags)(genericParamInstance->mGenericParamFlags | rootGenericParamInstance->mGenericParamFlags);
ResolveGenericParamConstraints(genericParamInstance, genericTypeInst->IsUnspecializedType());
}
for (auto genericParam : genericExEntry->mGenericParams)
AddDependency(genericParam, mCurTypeInstance);
ValidateGenericParams(BfGenericParamKind_Type,
Span<BfGenericParamInstance*>((BfGenericParamInstance**)genericExEntry->mGenericParams.mVals,
genericExEntry->mGenericParams.mSize));
return genericExEntry;
}
bool BfModule::InitGenericParams(BfType* resolvedTypeRef)
{
BfTypeState typeState;
typeState.mPrevState = mContext->mCurTypeState;
typeState.mResolveKind = BfTypeState::ResolveKind_BuildingGenericParams;
typeState.mType = resolvedTypeRef;
SetAndRestoreValue<BfTypeState*> prevTypeState(mContext->mCurTypeState, &typeState);
BF_ASSERT(mCurMethodInstance == NULL);
auto genericTypeInst = resolvedTypeRef->ToGenericTypeInstance();
genericTypeInst->mGenericTypeInfo->mInitializedGenericParams = true;
if (genericTypeInst->mGenericTypeInfo->mTypeGenericArguments.IsEmpty())
return true;
if (genericTypeInst->mGenericTypeInfo->mTypeGenericArguments[0]->IsGenericParam())
{
BF_ASSERT(genericTypeInst->mGenericTypeInfo->mIsUnspecialized);
}
auto typeDef = genericTypeInst->mTypeDef;
int startDefGenericParamIdx = (int)genericTypeInst->mGenericTypeInfo->mGenericParams.size();
for (int paramIdx = startDefGenericParamIdx; paramIdx < (int)genericTypeInst->mGenericTypeInfo->mTypeGenericArguments.size(); paramIdx++)
{
auto genericParamInstance = new BfGenericTypeParamInstance(typeDef, paramIdx);
genericParamInstance->mExternType = GetGenericParamType(BfGenericParamKind_Type, paramIdx);
genericTypeInst->mGenericTypeInfo->mGenericParams.push_back(genericParamInstance);
}
for (int externConstraintIdx = 0; externConstraintIdx < (int)typeDef->mExternalConstraints.size(); externConstraintIdx++)
{
auto genericParamInstance = new BfGenericTypeParamInstance(typeDef, externConstraintIdx + (int)typeDef->mGenericParamDefs.size());
genericTypeInst->mGenericTypeInfo->mGenericParams.push_back(genericParamInstance);
}
return true;
}
bool BfModule::FinishGenericParams(BfType* resolvedTypeRef)
{
BfTypeState typeState;
typeState.mPrevState = mContext->mCurTypeState;
typeState.mResolveKind = BfTypeState::ResolveKind_BuildingGenericParams;
typeState.mType = resolvedTypeRef;
SetAndRestoreValue<BfTypeState*> prevTypeState(mContext->mCurTypeState, &typeState);
Array<BfTypeReference*> deferredResolveTypes;
BF_ASSERT(mCurMethodInstance == NULL);
auto genericTypeInst = resolvedTypeRef->ToGenericTypeInstance();
genericTypeInst->mGenericTypeInfo->mFinishedGenericParams = true;
if (genericTypeInst->mGenericTypeInfo->mTypeGenericArguments[0]->IsGenericParam())
{
BF_ASSERT(genericTypeInst->mGenericTypeInfo->mIsUnspecialized);
}
auto typeDef = genericTypeInst->mTypeDef;
int startDefGenericParamIdx = (int)genericTypeInst->mGenericTypeInfo->mGenericParams.size();
if ((!resolvedTypeRef->IsTuple()) && (!resolvedTypeRef->IsDelegateFromTypeRef()) && (!resolvedTypeRef->IsFunctionFromTypeRef()))
{
startDefGenericParamIdx = startDefGenericParamIdx -
(int)genericTypeInst->mGenericTypeInfo->mTypeGenericArguments.size() -
(int)typeDef->mExternalConstraints.size();
}
BF_ASSERT(startDefGenericParamIdx >= 0);
if (!typeDef->mPartials.empty())
{
BitSet prevConstraintsPassedSet;
if (!genericTypeInst->IsUnspecializedType())
{
if (genericTypeInst->mGenericTypeInfo->mGenericExtensionInfo != NULL)
{
auto genericExtensionInfo = genericTypeInst->mGenericTypeInfo->mGenericExtensionInfo;
prevConstraintsPassedSet = genericExtensionInfo->mConstraintsPassedSet;
genericExtensionInfo->mConstraintsPassedSet.Clear();
}
}
int extensionCount = 0;
BfLogSysM("BfModule::FinishGenericParams %p\n", resolvedTypeRef);
for (auto partialTypeDef : typeDef->mPartials)
{
if (!partialTypeDef->IsExtension())
{
typeState.mCurTypeDef = partialTypeDef;
for (int paramIdx = startDefGenericParamIdx; paramIdx < (int)genericTypeInst->mGenericTypeInfo->mGenericParams.size(); paramIdx++)
{
auto genericParamInstance = genericTypeInst->mGenericTypeInfo->mGenericParams[paramIdx];
auto genericParamDef = genericParamInstance->GetGenericParamDef();
if (paramIdx < (int)typeDef->mGenericParamDefs.size())
{
genericParamInstance->mExternType = GetGenericParamType(BfGenericParamKind_Type, paramIdx);
}
else
{
auto externConstraintDef = genericParamInstance->GetExternConstraintDef();
genericParamInstance->mExternType = ResolveTypeRef(externConstraintDef->mTypeRef);
if (genericParamInstance->mExternType == NULL)
genericParamInstance->mExternType = GetPrimitiveType(BfTypeCode_Var);
}
ResolveGenericParamConstraints(genericParamInstance, genericTypeInst->IsUnspecializedType(), &deferredResolveTypes);
if (genericParamDef != NULL)
{
for (auto nameNode : genericParamDef->mNameNodes)
{
HandleTypeGenericParamRef(nameNode, typeDef, paramIdx);
}
}
}
}
else
{
auto genericExEntry = BuildGenericExtensionInfo(genericTypeInst, partialTypeDef);
if (genericExEntry == NULL)
continue;
auto genericExtensionInfo = genericTypeInst->mGenericTypeInfo->mGenericExtensionInfo;
if (extensionCount == 0)
genericExtensionInfo->mConstraintsPassedSet.Resize(typeDef->mPartials.mSize);
extensionCount++;
if (!genericTypeInst->IsUnspecializedType())
{
SetAndRestoreValue<bool> prevIgnoreErrors(mIgnoreErrors, true);
for (int paramIdx = 0; paramIdx < genericExEntry->mGenericParams.size(); paramIdx++)
{
auto genericParamInstance = genericExEntry->mGenericParams[paramIdx];
BfGenericParamSource genericParamSource;
genericParamSource.mCheckAccessibility = false;
genericParamSource.mTypeInstance = genericTypeInst;
BfError* error = NULL;
BfType* genericArg;
if (paramIdx < (int)genericTypeInst->mGenericTypeInfo->mTypeGenericArguments.size())
{
genericArg = genericTypeInst->mGenericTypeInfo->mTypeGenericArguments[paramIdx];
}
else
{
genericArg = genericParamInstance->mExternType;
}
if ((genericArg == NULL) || (!CheckGenericConstraints(genericParamSource, genericArg, NULL, genericParamInstance, NULL, &error)))
{
genericExEntry->mConstraintsPassed = false;
}
}
}
if (genericExEntry->mConstraintsPassed)
genericExtensionInfo->mConstraintsPassedSet.Set(partialTypeDef->mPartialIdx);
BfLogSysM("BfModule::FinishGenericParams %p partialTypeDef:%p passed:%d\n", resolvedTypeRef, partialTypeDef, genericExEntry->mConstraintsPassed);
}
}
auto genericExtensionInfo = genericTypeInst->mGenericTypeInfo->mGenericExtensionInfo;
if ((extensionCount > 0) && (!prevConstraintsPassedSet.IsEmpty()) && (genericExtensionInfo->mConstraintsPassedSet != prevConstraintsPassedSet))
{
mContext->QueueMidCompileRebuildDependentTypes(genericTypeInst, "mConstraintsPassedSet changed");
}
}
else
{
for (int paramIdx = startDefGenericParamIdx; paramIdx < (int)genericTypeInst->mGenericTypeInfo->mGenericParams.size(); paramIdx++)
{
auto genericParamInstance = genericTypeInst->mGenericTypeInfo->mGenericParams[paramIdx];
if (paramIdx < (int)typeDef->mGenericParamDefs.size())
{
genericParamInstance->mExternType = GetGenericParamType(BfGenericParamKind_Type, paramIdx);
}
else
{
auto externConstraintDef = genericParamInstance->GetExternConstraintDef();
genericParamInstance->mExternType = ResolveTypeRef(externConstraintDef->mTypeRef);
auto autoComplete = mCompiler->GetAutoComplete();
if (autoComplete != NULL)
autoComplete->CheckTypeRef(externConstraintDef->mTypeRef, false);
if (genericParamInstance->mExternType != NULL)
{
//
}
else
genericParamInstance->mExternType = GetPrimitiveType(BfTypeCode_Var);
}
ResolveGenericParamConstraints(genericParamInstance, genericTypeInst->IsUnspecializedType(), &deferredResolveTypes);
auto genericParamDef = genericParamInstance->GetGenericParamDef();
if (genericParamDef != NULL)
{
for (auto nameNode : genericParamDef->mNameNodes)
{
HandleTypeGenericParamRef(nameNode, typeDef, paramIdx);
}
}
}
}
for (auto typeRef : deferredResolveTypes)
auto constraintType = ResolveTypeRef(typeRef, BfPopulateType_Declaration, BfResolveTypeRefFlag_None);
ValidateGenericParams(BfGenericParamKind_Type,
Span<BfGenericParamInstance*>((BfGenericParamInstance**)genericTypeInst->mGenericTypeInfo->mGenericParams.mVals,
genericTypeInst->mGenericTypeInfo->mGenericParams.mSize));
for (auto genericParam : genericTypeInst->mGenericTypeInfo->mGenericParams)
AddDependency(genericParam, mCurTypeInstance);
return true;
}
void BfModule::ValidateGenericParams(BfGenericParamKind genericParamKind, Span<BfGenericParamInstance*> genericParams)
{
std::function<void(BfType*, Array<BfGenericParamType*>&)> _CheckType = [&](BfType* type, Array<BfGenericParamType*>& foundParams)
{
if (type == NULL)
return;
if (!type->IsGenericParam())
return;
auto genericParamType = (BfGenericParamType*)type;
if (genericParamType->mGenericParamKind != genericParamKind)
return;
auto genericParam = genericParams[genericParamType->mGenericParamIdx];
if (genericParam->mTypeConstraint == NULL)
return;
if (foundParams.Contains(genericParamType))
{
String error = "Circular constraint dependency between ";
for (int i = 0; i < foundParams.mSize; i++)
{
auto foundParam = foundParams[i];
if (i > 0)
error += " and ";
error += TypeToString(foundParam, BfTypeNameFlag_ResolveGenericParamNames);
// Remove errored type constraint
genericParams[foundParam->mGenericParamIdx]->mTypeConstraint = NULL;
}
if (foundParams.mSize == 1)
error += " and itself";
Fail(error, genericParams[genericParamType->mGenericParamIdx]->GetRefNode());
return;
}
foundParams.Add(genericParamType);
_CheckType(genericParam->mTypeConstraint, foundParams);
foundParams.pop_back();
};
for (auto genericParam : genericParams)
{
if (genericParam->mTypeConstraint != NULL)
{
Array<BfGenericParamType*> foundParams;
_CheckType(genericParam->mTypeConstraint, foundParams);
}
}
}
bool BfModule::ValidateGenericConstraints(BfAstNode* typeRef, BfTypeInstance* genericTypeInst, bool ignoreErrors)
{
if ((mCurTypeInstance != NULL) && (mCurTypeInstance->IsTypeAlias()) && (mCurTypeInstance->IsGenericTypeInstance()))
{
// Don't validate constraints during the population of a concrete generic type alias instance, we want to
// throw those errors at the usage sites
return true;
}
// We don't validate constraints for things like Tuples/Delegates
if (genericTypeInst->IsOnDemand())
return true;
SetAndRestoreValue<bool> prevIgnoreErrors(mIgnoreErrors, mIgnoreErrors || ignoreErrors);
genericTypeInst->mGenericTypeInfo->mValidatedGenericConstraints = true;
if (!genericTypeInst->mGenericTypeInfo->mFinishedGenericParams)
mContext->mUnreifiedModule->PopulateType(genericTypeInst, BfPopulateType_Interfaces_All);
if (genericTypeInst->IsTypeAlias())
{
auto underlyingType = genericTypeInst->GetUnderlyingType();
if ((underlyingType != NULL) && (underlyingType->IsGenericTypeInstance()))
{
auto underlyingGenericType = underlyingType->ToGenericTypeInstance();
mContext->mUnreifiedModule->PopulateType(underlyingType, BfPopulateType_Declaration);
bool result = ValidateGenericConstraints(typeRef, underlyingGenericType, ignoreErrors);
if (underlyingGenericType->mGenericTypeInfo->mHadValidateErrors)
genericTypeInst->mGenericTypeInfo->mHadValidateErrors = true;
return result;
}
return true;
}
for (auto typeArg : genericTypeInst->mGenericTypeInfo->mTypeGenericArguments)
{
auto genericArg = typeArg->ToGenericTypeInstance();
if (genericArg != NULL)
genericTypeInst->mGenericTypeInfo->mMaxGenericDepth = BF_MAX(genericTypeInst->mGenericTypeInfo->mMaxGenericDepth, genericArg->mGenericTypeInfo->mMaxGenericDepth + 1);
}
auto typeDef = genericTypeInst->mTypeDef;
int startGenericParamIdx = 0;
if (typeDef->mOuterType != NULL)
{
startGenericParamIdx = typeDef->mOuterType->mGenericParamDefs.mSize + typeDef->mOuterType->mExternalConstraints.mSize;
auto outerType = GetOuterType(genericTypeInst);
mContext->mUnreifiedModule->PopulateType(outerType, BfPopulateType_Declaration);
if ((outerType->mGenericTypeInfo != NULL) && (outerType->mGenericTypeInfo->mHadValidateErrors))
genericTypeInst->mGenericTypeInfo->mHadValidateErrors = true;
}
for (int paramIdx = startGenericParamIdx; paramIdx < (int)genericTypeInst->mGenericTypeInfo->mGenericParams.size(); paramIdx++)
{
auto genericParamInstance = genericTypeInst->mGenericTypeInfo->mGenericParams[paramIdx];
BfType* genericArg;
if (paramIdx < (int)genericTypeInst->mGenericTypeInfo->mTypeGenericArguments.size())
{
genericArg = genericTypeInst->mGenericTypeInfo->mTypeGenericArguments[paramIdx];
}
else
{
genericArg = genericParamInstance->mExternType;
}
BfError* error = NULL;
if ((genericArg == NULL) || (!CheckGenericConstraints(BfGenericParamSource(genericTypeInst), genericArg, typeRef, genericParamInstance, NULL, &error)))
{
if (!genericTypeInst->IsUnspecializedTypeVariation())
genericTypeInst->mGenericTypeInfo->mHadValidateErrors = true;
return false;
}
}
return true;
}
BfType* BfModule::ResolveGenericMethodTypeRef(BfTypeReference* typeRef, BfMethodInstance* methodInstance, BfGenericParamInstance* genericParamInstance, BfTypeVector* methodGenericArgsOverride)
{
BfConstraintState constraintSet;
constraintSet.mPrevState = mContext->mCurConstraintState;
constraintSet.mGenericParamInstance = genericParamInstance;
constraintSet.mMethodInstance = methodInstance;
constraintSet.mMethodGenericArgsOverride = methodGenericArgsOverride;
SetAndRestoreValue<BfConstraintState*> prevConstraintSet(mContext->mCurConstraintState, &constraintSet);
if (!CheckConstraintState(NULL))
return NULL;
SetAndRestoreValue<BfMethodInstance*> prevMethodInstance(mCurMethodInstance, methodInstance);
SetAndRestoreValue<BfTypeInstance*> prevTypeInstance(mCurTypeInstance, methodInstance->GetOwner());
SetAndRestoreValue<bool> prevIgnoreErrors(mIgnoreErrors, true);
BfType* type = ResolveTypeRef(typeRef);
if (type == NULL)
type = GetPrimitiveType(BfTypeCode_Var);
return type;
}
bool BfModule::AreConstraintsSubset(BfGenericParamInstance* checkInner, BfGenericParamInstance* checkOuter)
{
if (checkOuter == NULL)
return false;
if (checkInner == NULL)
return true;
// Added new flags?
if ((checkInner->mGenericParamFlags | checkOuter->mGenericParamFlags) != checkOuter->mGenericParamFlags)
{
// If the outer had a type flag and the inner has a specific type constraint, then see if those are compatible
auto outerFlags = checkOuter->mGenericParamFlags;
if ((outerFlags & BfGenericParamFlag_Enum) != 0)
outerFlags = (BfGenericParamFlags)(outerFlags | BfGenericParamFlag_Struct);
if (checkOuter->mTypeConstraint != NULL)
{
if (checkOuter->mTypeConstraint->IsStruct())
outerFlags = (BfGenericParamFlags)(outerFlags | BfGenericParamFlag_Struct);
else if (checkOuter->mTypeConstraint->IsStructOrStructPtr())
outerFlags = (BfGenericParamFlags)(outerFlags | BfGenericParamFlag_StructPtr);
else if ((checkOuter->mTypeConstraint->IsObject()) && (!checkOuter->mTypeConstraint->IsDelegate()))
outerFlags = (BfGenericParamFlags)(outerFlags | BfGenericParamFlag_Class);
else if (checkOuter->mTypeConstraint->IsEnum())
outerFlags = (BfGenericParamFlags)(outerFlags | BfGenericParamFlag_Enum | BfGenericParamFlag_Struct);
else if (checkOuter->mTypeConstraint->IsInterface())
outerFlags = (BfGenericParamFlags)(outerFlags | BfGenericParamFlag_Interface);
}
auto innerFlags = checkInner->mGenericParamFlags;
if ((innerFlags & BfGenericParamFlag_Enum) != 0)
innerFlags = (BfGenericParamFlags)(innerFlags | BfGenericParamFlag_Struct);
if (((innerFlags | outerFlags) & ~BfGenericParamFlag_Var) != (outerFlags & ~BfGenericParamFlag_Var))
return false;
}
if (checkInner->mTypeConstraint != NULL)
{
if (checkOuter->mTypeConstraint == NULL)
return false;
if (!TypeIsSubTypeOf(checkOuter->mTypeConstraint->ToTypeInstance(), checkInner->mTypeConstraint->ToTypeInstance()))
return false;
}
for (auto innerIFace : checkInner->mInterfaceConstraints)
{
if (checkOuter->mInterfaceConstraints.IsEmpty())
return false;
if (checkOuter->mInterfaceConstraintSet == NULL)
{
std::function<void(BfTypeInstance*)> _AddInterface = [&](BfTypeInstance* ifaceType)
{
if (!checkOuter->mInterfaceConstraintSet->Add(ifaceType))
return;
if (ifaceType->mDefineState < BfTypeDefineState_HasInterfaces_Direct)
PopulateType(ifaceType, Beefy::BfPopulateType_Interfaces_Direct);
for (auto& ifaceEntry : ifaceType->mInterfaces)
_AddInterface(ifaceEntry.mInterfaceType);
};
checkOuter->mInterfaceConstraintSet = new HashSet<BfTypeInstance*>();
for (auto outerIFace : checkOuter->mInterfaceConstraints)
_AddInterface(outerIFace);
}
if (!checkOuter->mInterfaceConstraintSet->Contains(innerIFace))
return false;
}
for (auto& innerOp : checkInner->mOperatorConstraints)
{
if (!checkOuter->mOperatorConstraints.Contains(innerOp))
return false;
}
return true;
}
bool BfModule::CheckConstraintState(BfAstNode* refNode)
{
if (mContext->mCurConstraintState == NULL)
return true;
auto checkState = mContext->mCurConstraintState->mPrevState;
while (checkState != NULL)
{
if (*checkState == *mContext->mCurConstraintState)
{
if (refNode != NULL)
{
Fail("Constraints cause circular operator invocations", refNode);
}
return false;
}
checkState = checkState->mPrevState;
}
return true;
}
bool BfModule::ShouldAllowMultipleDefinitions(BfTypeInstance* typeInst, BfTypeDef* firstDeclaringTypeDef, BfTypeDef* secondDeclaringTypeDef)
{
if (firstDeclaringTypeDef == secondDeclaringTypeDef)
return false;
// Since we will use shared debugging info, we won't be able to differentiate between these two fields.
// If we created per-target debug info then we could "fix" this.
// Can these projects even see each other?
if ((!firstDeclaringTypeDef->mProject->ContainsReference(secondDeclaringTypeDef->mProject)) &&
(!secondDeclaringTypeDef->mProject->ContainsReference(firstDeclaringTypeDef->mProject)))
return true;
if (typeInst->IsUnspecializedType())
{
bool alwaysCoincide = true;
auto genericTypeInst = (BfTypeInstance*)typeInst;
if (genericTypeInst->mGenericTypeInfo->mGenericExtensionInfo != NULL)
{
auto firstConstraints = genericTypeInst->GetGenericParamsVector(firstDeclaringTypeDef);
auto secondConstraints = genericTypeInst->GetGenericParamsVector(secondDeclaringTypeDef);
for (int genericIdx = 0; genericIdx < (int)firstConstraints->size(); genericIdx++)
{
auto firstConstraint = (*firstConstraints)[genericIdx];
auto secondConstraint = (*secondConstraints)[genericIdx];
if ((!AreConstraintsSubset(firstConstraint, secondConstraint)) &&
(!AreConstraintsSubset(secondConstraint, firstConstraint)))
alwaysCoincide = false;
}
}
// Only show an error if we are certain both members will always appear at the same time
if (!alwaysCoincide)
return true;
}
return false;
}
void BfModule::CheckInjectNewRevision(BfTypeInstance* typeInstance)
{
if ((typeInstance != NULL) && (typeInstance->mTypeDef != NULL))
{
auto typeDef = typeInstance->mTypeDef;
if (typeDef->mEmitParent != NULL)
typeDef = typeDef->mEmitParent;
if (typeDef->mNextRevision != NULL)
{
// It's possible that our main compiler thread is generating a new typedef while we're autocompleting. This handles that case...
if (typeInstance->mDefineState == BfTypeDefineState_Undefined)
{
if (typeInstance->IsBoxed())
{
BfBoxedType* boxedType = (BfBoxedType*)typeInstance;
BfTypeInstance* innerType = boxedType->mElementType->ToTypeInstance();
PopulateType(innerType, BfPopulateType_Data);
}
else
{
mContext->HandleChangedTypeDef(typeDef);
mSystem->InjectNewRevision(typeDef);
}
}
else
{
BF_ASSERT(mCompiler->IsAutocomplete());
}
}
if ((!typeInstance->IsDeleting()) && (!mCompiler->IsAutocomplete()))
BF_ASSERT((typeDef->mDefState == BfTypeDef::DefState_Defined) || (typeDef->mDefState == BfTypeDef::DefState_New));
if ((typeInstance->mTypeDef->mDefState == BfTypeDef::DefState_EmittedDirty) && (typeInstance->mTypeDef->mEmitParent->mNextRevision == NULL))
mSystem->UpdateEmittedTypeDef(typeInstance->mTypeDef);
}
}
void BfModule::InitType(BfType* resolvedTypeRef, BfPopulateType populateType)
{
BP_ZONE("BfModule::InitType");
if (auto depType = resolvedTypeRef->ToDependedType())
{
if ((mCurMethodInstance != NULL) && (mCurMethodInstance->mMethodInfoEx != NULL))
{
depType->mDependencyMap.mMinDependDepth = mCurMethodInstance->mMethodInfoEx->mMinDependDepth + 1;
}
else if (mCurTypeInstance != NULL)
{
depType->mDependencyMap.mMinDependDepth = mCurTypeInstance->mDependencyMap.mMinDependDepth + 1;
}
}
SetAndRestoreValue<BfTypeInstance*> prevTypeInstance(mCurTypeInstance, resolvedTypeRef->ToTypeInstance());
SetAndRestoreValue<BfMethodInstance*> prevMethodInstance(mCurMethodInstance, NULL);
if (mCompiler->mHotState != NULL)
mCompiler->mHotState->mHasNewTypes = true;
auto typeInst = resolvedTypeRef->ToTypeInstance();
if (typeInst != NULL)
{
CheckInjectNewRevision(typeInst);
BF_ASSERT(!typeInst->mTypeDef->IsEmitted());
if (typeInst->mBaseType != NULL)
BF_ASSERT((typeInst->mBaseType->mRebuildFlags & BfTypeRebuildFlag_Deleted) == 0);
if ((typeInst->mTypeDef != NULL) && (typeInst->mTypeDef->mDefState == BfTypeDef::DefState_New) &&
(typeInst->mTypeDef->mNextRevision == NULL))
{
mContext->HandleChangedTypeDef(typeInst->mTypeDef);
typeInst->mTypeDef->mDefState = BfTypeDef::DefState_Defined;
}
typeInst->mIsReified = mIsReified;
//BF_ASSERT(typeInst->mTypeDef->mTypeCode != BfTypeCode_Extension);
typeInst->mRevision = mCompiler->mRevision;
if (typeInst->mTypeDef != NULL)
BF_ASSERT(typeInst->mTypeDef->mDefState != BfTypeDef::DefState_Deleted);
if (resolvedTypeRef->IsTuple())
{
auto tupleType = (BfTypeInstance*)resolvedTypeRef;
for (int fieldIdx = 0; fieldIdx < (int)tupleType->mFieldInstances.size(); fieldIdx++)
{
auto fieldInstance = (BfFieldInstance*)&tupleType->mFieldInstances[fieldIdx];
// We need to make sure dependencies get set immediately since we already resolved the types
AddFieldDependency(typeInst, fieldInstance, fieldInstance->mResolvedType);
}
}
}
if (resolvedTypeRef->IsGenericTypeInstance())
{
auto genericTypeInst = (BfTypeInstance*)resolvedTypeRef;
for (auto typeGenericArg : genericTypeInst->mGenericTypeInfo->mTypeGenericArguments)
{
BF_ASSERT((typeGenericArg->mRebuildFlags & BfTypeRebuildFlag_Deleted) == 0);
if (mIsReified)
{
// Try to reify any generic args
for (auto genericArg : typeInst->mGenericTypeInfo->mTypeGenericArguments)
{
if (!genericArg->IsReified())
PopulateType(genericArg, BfPopulateType_Declaration);
}
}
BF_ASSERT(!typeGenericArg->IsIntUnknown());
}
}
if (!mContext->mSavedTypeDataMap.IsEmpty())
{
String typeName = BfSafeMangler::Mangle(resolvedTypeRef, this);
BfSavedTypeData* savedTypeData;
if (mContext->mSavedTypeDataMap.Remove(typeName, &savedTypeData))
{
mContext->mSavedTypeData[savedTypeData->mTypeId] = NULL;
resolvedTypeRef->mTypeId = savedTypeData->mTypeId;
BfLogSysM("Using mSavedTypeData for %p %s\n", resolvedTypeRef, typeName.c_str());
if (typeInst != NULL)
{
if (IsHotCompile())
{
BfLogSysM("Using mSavedTypeData HotTypeData %p for %p\n", savedTypeData->mHotTypeData, resolvedTypeRef);
typeInst->mHotTypeData = savedTypeData->mHotTypeData;
savedTypeData->mHotTypeData = NULL;
}
}
delete savedTypeData;
mContext->mTypes[resolvedTypeRef->mTypeId] = resolvedTypeRef;
}
else
{
BfLogSysM("No mSavedTypeData entry for %p %s\n", resolvedTypeRef, typeName.c_str());
}
}
resolvedTypeRef->mContext = mContext;
if (resolvedTypeRef->IsGenericTypeInstance())
{
auto genericTypeInstance = (BfTypeInstance*)resolvedTypeRef;
#ifdef _DEBUG
for (auto genericArg : genericTypeInstance->mGenericTypeInfo->mTypeGenericArguments)
BF_ASSERT(!genericArg->IsVar());
#endif
// We need to add generic dependencies here because when we are just doing an Identity population there may be
// on-demand types that could get deleted before initializing the type
DoPopulateType_SetGenericDependencies(genericTypeInstance);
// Do it here so the location we attempted to specialize this type will throw the failure if there is one
if (!InitGenericParams(resolvedTypeRef))
return;
}
if ((typeInst != NULL) && (typeInst->mIsReified) && (!mCompiler->mIsResolveOnly))
{
BfLogSysM("REIFIED(InitType): %s Type:%p FromModule:%s FromMethod:%p\n", TypeToString(resolvedTypeRef).c_str(), resolvedTypeRef, mModuleName.c_str(), prevMethodInstance.mPrevVal);
}
BfLogSysM("%p InitType: %s Type: %p TypeDef: %p Revision:%d\n", mContext, TypeToString(resolvedTypeRef).c_str(), resolvedTypeRef, (typeInst != NULL) ? typeInst->mTypeDef : NULL, mCompiler->mRevision);
// When we're autocomplete, we can't do the method processing so we have to add this type to the type work list
if (((populateType < BfPopulateType_Full) || (mCompiler->IsAutocomplete())) /*&& (!resolvedTypeRef->IsUnspecializedTypeVariation())*/ && (resolvedTypeRef->IsTypeInstance()) &&
(!resolvedTypeRef->IsTypeAlias()))
{
BfTypeProcessRequest* typeProcessRequest = mContext->mPopulateTypeWorkList.Alloc();
typeProcessRequest->mType = resolvedTypeRef;
BF_ASSERT(resolvedTypeRef->mContext == mContext);
mCompiler->mStats.mTypesQueued++;
mCompiler->UpdateCompletion();
}
PopulateType(resolvedTypeRef, populateType);
}
void BfModule::AddFieldDependency(BfTypeInstance* typeInstance, BfFieldInstance* fieldInstance, BfType* fieldType)
{
auto depFlag = fieldType->IsValueType() ? BfDependencyMap::DependencyFlag_ValueTypeMemberData : BfDependencyMap::DependencyFlag_PtrMemberData;
if (fieldInstance->IsAppendedObject())
depFlag = BfDependencyMap::DependencyFlag_ValueTypeMemberData;
AddDependency(fieldType, typeInstance, depFlag);
if ((fieldType->IsStruct()) && (fieldType->IsGenericTypeInstance()))
{
// When we're a generic struct, our data layout can depend on our generic parameters as well
auto genericTypeInstance = (BfTypeInstance*)fieldType;
for (auto typeGenericArg : genericTypeInstance->mGenericTypeInfo->mTypeGenericArguments)
AddFieldDependency(typeInstance, fieldInstance, typeGenericArg);
}
}
BfFieldInstance* BfModule::GetFieldByName(BfTypeInstance* typeInstance, const StringImpl& fieldName, bool isRequired, BfAstNode* refNode)
{
PopulateType(typeInstance);
typeInstance->mTypeDef->PopulateMemberSets();
BfMemberSetEntry* entry = NULL;
BfFieldDef* fieldDef = NULL;
if (typeInstance->mTypeDef->mFieldSet.TryGetWith(fieldName, &entry))
{
fieldDef = (BfFieldDef*)entry->mMemberDef;
return &typeInstance->mFieldInstances[fieldDef->mIdx];
}
if (isRequired)
{
FailInternal(StrFormat("Field '%s' not found in '%s'", fieldName.c_str(), TypeToString(typeInstance).c_str()), refNode);
}
return NULL;
}
void BfModule::CheckMemberNames(BfTypeInstance* typeInst)
{
struct MemberRef
{
BfMemberDef* mMemberDef;
StringView mName;
StringView mKindName;
BfTypeInstance* mTypeInst;
BfAstNode* mNameNode;
BfProtection mProtection;
BfTypeDef* mDeclaringType;
bool mIsOverride;
};
SizedArray<MemberRef, 64> memberList;
// Check base types first and then current type
auto checkType = typeInst;
while (checkType != NULL)
{
for (auto prop : checkType->mTypeDef->mProperties)
{
BfPropertyDeclaration* propDecl = (BfPropertyDeclaration*)prop->mFieldDeclaration;
if ((propDecl != NULL) && (propDecl->mExplicitInterface != NULL))
continue;
if (!typeInst->IsTypeMemberIncluded(prop->mDeclaringType))
continue;
MemberRef memberRef = { 0 };
memberRef.mMemberDef = prop;
memberRef.mTypeInst = checkType;
memberRef.mProtection = prop->mProtection;
memberRef.mName = prop->mName;
memberRef.mKindName = "property";
auto fieldDecl = prop->GetFieldDeclaration();
if (fieldDecl != NULL)
memberRef.mNameNode = fieldDecl->mNameNode;
memberRef.mDeclaringType = prop->mDeclaringType;
auto propertyDeclaration = BfNodeDynCast<BfPropertyDeclaration>(prop->mFieldDeclaration);
if (propertyDeclaration != NULL)
memberRef.mIsOverride = (propertyDeclaration->mNewSpecifier != NULL) ||
((propertyDeclaration->mVirtualSpecifier != NULL) && (propertyDeclaration->mVirtualSpecifier->GetToken() == BfToken_Override));
memberList.push_back(memberRef);
}
for (auto field : checkType->mTypeDef->mFields)
{
if (!typeInst->IsTypeMemberIncluded(field->mDeclaringType))
continue;
MemberRef memberRef = { 0 };
memberRef.mMemberDef = field;
memberRef.mTypeInst = checkType;
memberRef.mProtection = field->mProtection;
memberRef.mName = field->mName;
memberRef.mKindName = "field";
memberRef.mDeclaringType = field->mDeclaringType;
if (auto fieldDecl = field->GetFieldDeclaration())
{
memberRef.mNameNode = fieldDecl->mNameNode;
memberRef.mIsOverride = fieldDecl->mNewSpecifier != NULL;
}
else if (auto paramDecl = field->GetParamDeclaration())
{
memberRef.mNameNode = paramDecl->mNameNode;
}
memberList.push_back(memberRef);
}
checkType = checkType->mBaseType;
}
Dictionary<StringView, MemberRef> memberMap;
memberMap.Reserve(memberList.size());
for (int i = (int)memberList.size() - 1; i >= 0; i--)
{
MemberRef& memberRef = memberList[i];
if (memberRef.mName.IsEmpty())
continue;
if ((memberRef.mTypeInst == typeInst) && (!memberRef.mIsOverride))
{
MemberRef* prevMemberRef = NULL;
if (memberMap.TryGetValue(memberRef.mName, &prevMemberRef))
{
if ((prevMemberRef->mDeclaringType->IsExtension()) && (!memberRef.mDeclaringType->IsExtension()))
continue;
MemberRef* firstMemberRef = &memberRef;
MemberRef* secondMemberRef = prevMemberRef;
bool showPrevious = false;
BfError* error = NULL;
if (prevMemberRef->mTypeInst != typeInst)
{
if ((prevMemberRef->mProtection != BfProtection_Private) && (memberRef.mNameNode != NULL))
{
error = Warn(BfWarning_CS0108_MemberHidesInherited, StrFormat("%s hides inherited member '%s'. Use the 'new' keyword if hiding was intentional.", String(prevMemberRef->mKindName).c_str(), String(memberRef.mName).c_str()), memberRef.mNameNode, true);
showPrevious = true;
}
}
else
{
if (ShouldAllowMultipleDefinitions(typeInst, firstMemberRef->mDeclaringType, secondMemberRef->mDeclaringType))
{
if (firstMemberRef->mMemberDef != NULL)
{
firstMemberRef->mMemberDef->mHasMultiDefs = true;
secondMemberRef->mMemberDef->mHasMultiDefs = true;
}
continue;
}
bool wantsSwap = false;
if ((secondMemberRef->mNameNode != NULL) && (firstMemberRef->mNameNode != NULL) &&
(secondMemberRef->mNameNode->GetSourceData() == firstMemberRef->mNameNode->GetSourceData()) &&
(secondMemberRef->mNameNode->GetSrcStart() < firstMemberRef->mNameNode->GetSrcStart()))
{
wantsSwap = true;
}
if (secondMemberRef->mDeclaringType->IsExtension() != firstMemberRef->mDeclaringType->IsExtension())
{
wantsSwap = firstMemberRef->mDeclaringType->IsExtension();
}
if (wantsSwap)
{
std::swap(firstMemberRef, secondMemberRef);
}
if (typeInst->mTypeDef->mIsCombinedPartial)
{
if ((firstMemberRef->mKindName == "property") && (secondMemberRef->mKindName == "property"))
{
auto firstPropertyDef = (BfPropertyDef*)firstMemberRef->mMemberDef;
auto secondPropertyDef = (BfPropertyDef*)secondMemberRef->mMemberDef;
if (auto secondPropertyDeclaration = BfNodeDynCast<BfPropertyDeclaration>(secondPropertyDef->mFieldDeclaration))
{
if ((secondPropertyDeclaration->mVirtualSpecifier != NULL) && (secondPropertyDeclaration->mVirtualSpecifier->mToken == BfToken_Override))
continue;
}
}
}
if (secondMemberRef->mNameNode != NULL)
error = Fail(StrFormat("A %s named '%s' has already been declared.", String(secondMemberRef->mKindName).c_str(), String(memberRef.mName).c_str()), secondMemberRef->mNameNode, true);
showPrevious = true;
typeInst->mHasDeclError = true;
}
if ((secondMemberRef->mNameNode != NULL) && (error != NULL))
mCompiler->mPassInstance->MoreInfo("Previous declaration", firstMemberRef->mNameNode);
}
}
memberMap.TryAdd(memberRef.mName, memberRef);
}
}
void BfModule::TypeFailed(BfTypeInstance* typeInstance)
{
BfLogSysM("TypeFailed: %p\n", typeInstance);
typeInstance->mTypeFailed = true;
// Punt on field types - just substitute 'var' where we have NULLs
for (auto& fieldInstance : typeInstance->mFieldInstances)
{
if ((fieldInstance.mResolvedType == NULL) || (fieldInstance.mResolvedType->IsNull()))
{
if (fieldInstance.mDataIdx >= 0)
fieldInstance.mResolvedType = GetPrimitiveType(BfTypeCode_Var);
}
if (fieldInstance.mOwner == NULL)
fieldInstance.mOwner = typeInstance;
}
if (typeInstance->mAlign == -1)
typeInstance->mAlign = 1;
if (typeInstance->mSize == -1)
typeInstance->mSize = 1;
mContext->mFailTypes.TryAdd(typeInstance, BfFailKind_Normal);
mHadBuildError = true;
}
bool BfModule::CheckCircularDataError(bool failTypes)
{
// Find two loops of mCurTypeInstance. Just finding one loop can give some false errors.
BfTypeState* circularTypeStateEnd = NULL;
int checkIdx = 0;
auto checkTypeState = mContext->mCurTypeState;
bool isPreBaseCheck = checkTypeState->mPopulateType == BfPopulateType_Declaration;
while (true)
{
if (checkTypeState == NULL)
return false;
if (checkTypeState->mResolveKind == BfTypeState::ResolveKind_UnionInnerType)
{
checkTypeState = checkTypeState->mPrevState;
continue;
}
if (isPreBaseCheck)
{
if (checkTypeState->mPopulateType != BfPopulateType_Declaration)
return false;
}
else
{
if (checkTypeState->mPopulateType == BfPopulateType_Declaration)
return false;
if ((checkIdx > 0) && (checkTypeState->mCurBaseTypeRef == NULL) && (checkTypeState->mCurAttributeTypeRef == NULL) && (checkTypeState->mCurFieldDef == NULL) &&
((checkTypeState->mType == NULL) || (checkTypeState->mType->IsTypeInstance())))
return false;
}
if ((checkTypeState->mType == mCurTypeInstance) && (checkIdx > 1))
{
if (circularTypeStateEnd == NULL)
circularTypeStateEnd = checkTypeState;
else
break;
}
checkTypeState = checkTypeState->mPrevState;
checkIdx++;
}
bool hadError = false;
checkTypeState = mContext->mCurTypeState->mPrevState;
while (true)
{
if (checkTypeState == NULL)
return hadError;
if (checkTypeState == circularTypeStateEnd)
return hadError;
if (checkTypeState->mResolveKind == BfTypeState::ResolveKind_UnionInnerType)
{
// Skip over this to actual data references
checkTypeState = checkTypeState->mPrevState;
continue;
}
if ((checkTypeState->mCurAttributeTypeRef == NULL) && (checkTypeState->mCurBaseTypeRef == NULL) && (checkTypeState->mCurFieldDef == NULL) &&
((checkTypeState->mType == NULL) || (checkTypeState->mType->IsTypeInstance())))
return hadError;
hadError = true;
if (!failTypes)
return hadError;
// We only get one chance to fire off these errors, they can't be ignored.
SetAndRestoreValue<bool> prevIgnoreErrors(mIgnoreErrors, false);
if (checkTypeState->mCurAttributeTypeRef != NULL)
{
Fail(StrFormat("Attribute type '%s' causes a data cycle", BfTypeUtils::TypeToString(checkTypeState->mCurAttributeTypeRef).c_str()), checkTypeState->mCurAttributeTypeRef, true);
}
else if (checkTypeState->mCurBaseTypeRef != NULL)
{
Fail(StrFormat("Base type '%s' causes a data cycle", BfTypeUtils::TypeToString(checkTypeState->mCurBaseTypeRef).c_str()), checkTypeState->mCurBaseTypeRef, true);
}
else if ((checkTypeState->mCurFieldDef != NULL) && (checkTypeState->mCurFieldDef->mFieldDeclaration != NULL))
{
Fail(StrFormat("Field '%s.%s' causes a data cycle", TypeToString(checkTypeState->mType).c_str(), checkTypeState->mCurFieldDef->mName.c_str()),
checkTypeState->mCurFieldDef->mTypeRef, true);
}
else if (checkTypeState->mCurFieldDef != NULL)
{
BfAstNode* refNode = checkTypeState->mCurFieldDef->GetRefNode();
if (refNode == NULL)
{
if (checkTypeState->mCurTypeDef != NULL)
refNode = checkTypeState->mCurTypeDef->GetRefNode();
}
auto checkSrcTypeState = checkTypeState;
while ((refNode == NULL) && (checkSrcTypeState != NULL))
{
if (checkSrcTypeState->mCurFieldDef != NULL)
refNode = checkSrcTypeState->mCurFieldDef->GetRefNode();
checkSrcTypeState = checkSrcTypeState->mPrevState;
}
Fail(StrFormat("Field '%s.%s' causes a data cycle", TypeToString(checkTypeState->mType).c_str(), checkTypeState->mCurFieldDef->mName.c_str()), refNode, true);
}
else
{
BfAstNode* refNode = NULL;
if (checkTypeState->mCurTypeDef != NULL)
refNode = checkTypeState->mCurTypeDef->GetRefNode();
Fail(StrFormat("Type '%s' causes a data cycle", TypeToString(checkTypeState->mType).c_str()), refNode, true);
}
auto typeInstance = checkTypeState->mType->ToTypeInstance();
auto module = GetModuleFor(checkTypeState->mType);
if (module != NULL)
module->TypeFailed(typeInstance);
else if (typeInstance != NULL)
typeInstance->mTypeFailed = true;
checkTypeState = checkTypeState->mPrevState;
}
}
void BfModule::PopulateType(BfType* resolvedTypeRef, BfPopulateType populateType)
{
if ((populateType == BfPopulateType_Declaration) && (resolvedTypeRef->mDefineState >= BfTypeDefineState_Declared))
return;
if ((resolvedTypeRef->mRebuildFlags & BfTypeRebuildFlag_PendingGenericArgDep) != 0)
{
BfLogSysM("PopulateType handling BfTypeRebuildFlag_PendingGenericArgDep for type %p\n", resolvedTypeRef);
// Reinit dependencies
resolvedTypeRef->mRebuildFlags = (BfTypeRebuildFlags)(resolvedTypeRef->mRebuildFlags & ~BfTypeRebuildFlag_PendingGenericArgDep);
DoPopulateType_SetGenericDependencies(resolvedTypeRef->ToTypeInstance());
}
// Are we "demanding" to reify a type that is currently resolve-only?
if ((mIsReified) && (populateType >= BfPopulateType_Declaration))
{
if (resolvedTypeRef->IsTypeInstance())
{
auto typeModule = resolvedTypeRef->GetModule();
if ((typeModule != NULL) && (typeModule->mIsSpecialModule))
{
auto typeInst = resolvedTypeRef->ToTypeInstance();
if (!typeInst->mIsReified)
{
BfLogSysM("Reifying type %p in scratch module in PopulateType\n", resolvedTypeRef);
// It's important for unspecialized types to be in the correct module --
// when we process their methods, new types will be determined as
// resolve-only or reified based on the module the unresolved type is in
BF_ASSERT(typeInst->mModule == mContext->mUnreifiedModule);
typeInst->mIsReified = true;
typeInst->mModule = mContext->mScratchModule;
// Why did we need to do this at all? Why is just marking the type as reified not enough?
// This causes issues where we may delete a method instance that is currently being used as the generic bindings for
// a method of a specialized generic type
// if (typeInst->IsOnDemand())
// {
// RebuildMethods(typeInst);
// }
// else
// mContext->RebuildType(typeInst, false, false);
if (typeInst->mGenericTypeInfo != NULL)
{
for (auto genericArg : typeInst->mGenericTypeInfo->mTypeGenericArguments)
{
if (!genericArg->IsReified())
PopulateType(genericArg, BfPopulateType_Declaration);
}
}
}
}
else
{
if ((typeModule != NULL) && (!typeModule->mIsReified) && (!typeModule->mReifyQueued))
{
bool canFastReify = false;
if (typeModule->mAwaitingInitFinish)
{
canFastReify = true;
for (auto ownedTypes : typeModule->mOwnedTypeInstances)
if (ownedTypes->mDefineState > BfTypeDefineState_HasInterfaces_Direct)
canFastReify = false;
}
if (!mCompiler->mIsResolveOnly)
{
for (auto ownedTypes : typeModule->mOwnedTypeInstances)
{
BfLogSysM("REIFIED(PopulateType-Reference): %s %p FromModule:%s FromMethod: %p\n", TypeToString(ownedTypes).c_str(), ownedTypes, mModuleName.c_str(), mCurMethodInstance);
}
}
if (canFastReify)
{
BfLogSysM("Setting reified type %p in module %p in PopulateType on module awaiting finish\n", resolvedTypeRef, typeModule);
typeModule->mIsReified = true;
typeModule->CalcGeneratesCode();
typeModule->mWantsIRIgnoreWrites = false;
for (auto ownedTypes : typeModule->mOwnedTypeInstances)
{
ownedTypes->mIsReified = true;
if (ownedTypes->mCustomAttributes != NULL)
{
for (auto& attr : ownedTypes->mCustomAttributes->mAttributes)
{
if ((attr.mType->mAttributeData != NULL) && ((attr.mType->mAttributeData->mFlags & BfCustomAttributeFlags_ReflectAttribute) != 0))
{
// Reify this attribute
typeModule->PopulateType(attr.mType);
}
}
}
}
mCompiler->mStats.mReifiedModuleCount++;
if (typeModule->mBfIRBuilder != NULL)
{
typeModule->mBfIRBuilder->ClearNonConstData();
typeModule->mBfIRBuilder->mIgnoreWrites = false;
typeModule->SetupIRBuilder(false);
}
else
typeModule->PrepareForIRWriting(resolvedTypeRef->ToTypeInstance());
}
else
{
BF_ASSERT((mCompiler->mCompileState != BfCompiler::CompileState_Unreified) && (mCompiler->mCompileState != BfCompiler::CompileState_VData));
BfLogSysM("Queued reification of type %p in module %p in PopulateType\n", resolvedTypeRef, typeModule);
BF_ASSERT((typeModule != mContext->mUnreifiedModule) && (typeModule != mContext->mScratchModule));
BF_ASSERT(!typeModule->mIsSpecialModule);
// This caused issues - we may need to reify a type and then request a method
typeModule->mReifyQueued = true;
mContext->mReifyModuleWorkList.Add(typeModule);
//typeModule->ReifyModule();
}
}
}
}
else
{
// If we're a type like "A*", make sure we reify "A" if necessary
auto checkUnderlying = resolvedTypeRef->GetUnderlyingType();
while (checkUnderlying != NULL)
{
auto checkTypeInst = checkUnderlying->ToTypeInstance();
if (checkTypeInst != NULL)
{
if (!checkTypeInst->mIsReified)
PopulateType(checkTypeInst, BfPopulateType_BaseType);
break;
}
checkUnderlying = checkUnderlying->GetUnderlyingType();
}
}
}
if (!resolvedTypeRef->IsIncomplete())
return;
if (populateType <= BfPopulateType_TypeDef)
return;
auto typeInstance = resolvedTypeRef->ToTypeInstance();
CheckInjectNewRevision(typeInstance);
SetAndRestoreValue<BfTypeInstance*> prevTypeInstance(mCurTypeInstance, typeInstance);
SetAndRestoreValue<BfMethodInstance*> prevMethodInstance(mCurMethodInstance, NULL);
SetAndRestoreValue<BfMethodState*> prevMethodState(mCurMethodState, NULL);
if ((resolvedTypeRef->mRebuildFlags & (BfTypeRebuildFlag_Deleted | BfTypeRebuildFlag_DeleteQueued)) != 0)
{
if (mContext->mGhostDependencies.Contains(resolvedTypeRef))
{
// Not a nice state, but we should be able to recover
return;
}
InternalError("Attempting PopulateType on deleted type");
return;
}
bool isNew = resolvedTypeRef->mDefineState == BfTypeDefineState_Undefined;
if (isNew)
{
BP_ZONE("BfModule::PopulateType");
if (resolvedTypeRef->mTypeId == -1)
{
mCompiler->mTypeInitCount++;
auto typeInstance = resolvedTypeRef->ToTypeInstance();
if (!mCompiler->mTypeIdFreeList.IsEmpty())
{
resolvedTypeRef->mTypeId = mCompiler->mTypeIdFreeList.back();
mCompiler->mTypeIdFreeList.pop_back();
}
else
resolvedTypeRef->mTypeId = mCompiler->mCurTypeId++;
while (resolvedTypeRef->mTypeId >= (int)mContext->mTypes.size())
mContext->mTypes.Add(NULL);
mContext->mTypes[resolvedTypeRef->mTypeId] = resolvedTypeRef;
if (typeInstance != NULL)
{
typeInstance->mSignatureRevision = mCompiler->mRevision;
typeInstance->mLastNonGenericUsedRevision = mCompiler->mRevision;
}
}
BfTypeDef* typeDef = NULL;
if (typeInstance != NULL)
typeDef = typeInstance->mTypeDef;
auto typeModule = resolvedTypeRef->GetModule();
if (typeModule != NULL)
BF_ASSERT(!typeModule->mAwaitingFinish);
BfLogSysM("PopulateType: %p %s populateType:%d ResolveOnly:%d Reified:%d AutoComplete:%d Ctx:%p Mod:%p TypeId:%d TypeDef:%p\n", resolvedTypeRef, TypeToString(resolvedTypeRef, BfTypeNameFlags_None).c_str(), populateType, mCompiler->mIsResolveOnly, mIsReified, mCompiler->IsAutocomplete(), mContext, resolvedTypeRef->GetModule(), resolvedTypeRef->mTypeId, typeDef);
BF_ASSERT(!resolvedTypeRef->IsDeleting());
}
if (resolvedTypeRef->IsRef())
{
BfRefType* refType = (BfRefType*)resolvedTypeRef;
if (refType->mElementType->IsValueType())
{
PopulateType(refType->mElementType, populateType);
resolvedTypeRef->mDefineState = refType->mElementType->mDefineState;
}
else
{
PopulateType(refType->mElementType, BfPopulateType_Identity);
resolvedTypeRef->mDefineState = BfTypeDefineState_Defined;
}
refType->mSize = refType->mAlign = mSystem->mPtrSize;
return;
}
if (resolvedTypeRef->IsTypeAlias())
{
// Always populate these all the way
if (populateType != BfPopulateType_IdentityNoRemapAlias)
populateType = BfPopulateType_Data;
}
if (resolvedTypeRef->IsSizedArray())
{
resolvedTypeRef->mRevision = mRevision;
bool typeFailed = false;
BfSizedArrayType* arrayType = (BfSizedArrayType*)resolvedTypeRef;
auto elementType = arrayType->mElementType;
int elementSize = 0;
int elementAlign = 0;
int elementStride = 0;
if (elementType->IsValueType())
{
resolvedTypeRef->mDefineState = BfTypeDefineState_ResolvingBaseType;
BfTypeState typeState(arrayType, mContext->mCurTypeState);
typeState.mPopulateType = BfPopulateType_Data;
SetAndRestoreValue<BfTypeState*> prevTypeState(mContext->mCurTypeState, &typeState);
SetAndRestoreValue<BfTypeInstance*> prevTypeInstance(mCurTypeInstance, NULL);
if (!CheckCircularDataError())
{
PopulateType(arrayType->mElementType, BfPopulateType_Data);
}
else
{
typeFailed = true;
PopulateType(arrayType->mElementType, BfPopulateType_Identity);
}
resolvedTypeRef->mDefineState = arrayType->mElementType->mDefineState;
AddDependency(elementType, resolvedTypeRef, BfDependencyMap::DependencyFlag_ValueTypeMemberData);
elementSize = arrayType->mElementType->mSize;
elementAlign = arrayType->mElementType->mAlign;
elementStride = arrayType->mElementType->GetStride();
}
else
{
PopulateType(arrayType->mElementType, BfPopulateType_Identity);
resolvedTypeRef->mDefineState = BfTypeDefineState_Defined;
AddDependency(elementType, resolvedTypeRef, BfDependencyMap::DependencyFlag_PtrMemberData);
elementSize = mSystem->mPtrSize;
elementAlign = mSystem->mPtrSize;
elementStride = mSystem->mPtrSize;
}
if (arrayType->mElementCount > 0)
{
arrayType->mSize = (int)(elementStride * arrayType->mElementCount);
if (elementSize > 0)
{
int64 maxElements = 0x7FFFFFFF / elementStride;
if (arrayType->mElementCount > maxElements)
{
Fail(StrFormat("Array size overflow: %s", TypeToString(arrayType).c_str()));
arrayType->mSize = 0x7FFFFFFF;
}
}
arrayType->mAlign = std::max(elementAlign, 1);
}
else if (arrayType->mElementCount < 0)
{
// Unknown size, don't assume it's valueless
arrayType->mSize = 1;
arrayType->mAlign = 1;
}
else
{
arrayType->mSize = 0;
arrayType->mAlign = 1;
}
BF_ASSERT(arrayType->mSize >= 0);
if (!typeFailed)
arrayType->mWantsGCMarking = elementType->WantsGCMarking();
resolvedTypeRef->mDefineState = BfTypeDefineState_DefinedAndMethodsSlotted;
resolvedTypeRef->mRebuildFlags = BfTypeRebuildFlag_None;
bool isValueless = arrayType->IsValuelessType();
return;
}
if (isNew)
{
BfTypeDef* typeDef = NULL;
if (typeInstance != NULL)
{
if ((populateType == BfPopulateType_Data) && (typeInstance->mNeedsMethodProcessing))
return;
typeDef = typeInstance->mTypeDef;
}
if (resolvedTypeRef->IsMethodRef())
return;
if (resolvedTypeRef->IsPointer())
{
BfPointerType* pointerType = (BfPointerType*)resolvedTypeRef;
if (pointerType->mElementType->IsIncomplete())
PopulateType(pointerType->mElementType, BfPopulateType_Declaration);
pointerType->mSize = pointerType->mAlign = mSystem->mPtrSize;
resolvedTypeRef->mDefineState = BfTypeDefineState_Defined;
return;
}
if (resolvedTypeRef->IsGenericParam())
{
BfGenericParamType* genericParamType = (BfGenericParamType*)resolvedTypeRef;
PopulateType(mContext->mBfObjectType);
genericParamType->mSize = mContext->mBfObjectType->mSize;
genericParamType->mAlign = mContext->mBfObjectType->mAlign;
resolvedTypeRef->mDefineState = BfTypeDefineState_Defined;
return;
}
if (resolvedTypeRef->IsModifiedTypeType())
{
BfModifiedTypeType* retTypeType = (BfModifiedTypeType*)resolvedTypeRef;
BF_ASSERT(retTypeType->mElementType->IsGenericParam());
resolvedTypeRef->mSize = mContext->mBfObjectType->mSize;
resolvedTypeRef->mAlign = mContext->mBfObjectType->mAlign;
resolvedTypeRef->mDefineState = BfTypeDefineState_Defined;
return;
}
if (resolvedTypeRef->IsConcreteInterfaceType())
{
BfConcreteInterfaceType* concreteInterfaceType = (BfConcreteInterfaceType*)resolvedTypeRef;
BF_ASSERT(concreteInterfaceType->mInterface->IsInterface());
resolvedTypeRef->mSize = mContext->mBfObjectType->mSize;
resolvedTypeRef->mAlign = mContext->mBfObjectType->mAlign;
resolvedTypeRef->mDefineState = BfTypeDefineState_Defined;
return;
}
if (resolvedTypeRef->IsConstExprValue())
{
BfConstExprValueType* constExprType = (BfConstExprValueType*)resolvedTypeRef;
resolvedTypeRef->mRevision = mRevision;
resolvedTypeRef->mSize = 0;
resolvedTypeRef->mAlign = 0;
resolvedTypeRef->mDefineState = BfTypeDefineState_Defined;
if (constExprType->mType->IsTypeInstance())
AddDependency(constExprType->mType, resolvedTypeRef, BfDependencyMap::DependencyFlag_TypeGenericArg);
return;
}
// The autocomplete pass doesn't need to do the method processing, allow type to be (partially) incomplete
if ((mCompiler->mResolvePassData != NULL) && (mCompiler->mResolvePassData->mAutoComplete != NULL) &&
(typeInstance != NULL) && (typeInstance->mNeedsMethodProcessing) && (!typeInstance->IsDelegate()))
return;
BfPrimitiveType* primitiveType = NULL;
if (typeInstance == NULL)
{
BF_ASSERT(resolvedTypeRef->IsPrimitiveType());
primitiveType = (BfPrimitiveType*)resolvedTypeRef;
typeDef = primitiveType->mTypeDef;
}
#define PRIMITIVE_TYPE(name, llvmType, size, dType) \
primitiveType->mSize = primitiveType->mAlign = size; \
primitiveType->mDefineState = BfTypeDefineState_Defined;
switch (typeDef->mTypeCode)
{
case BfTypeCode_None:
primitiveType->mSize = primitiveType->mAlign = 0;
resolvedTypeRef->mDefineState = BfTypeDefineState_Defined;
return;
case BfTypeCode_Self:
case BfTypeCode_Dot:
case BfTypeCode_Var:
case BfTypeCode_Let:
{
primitiveType->mSize = mSystem->mPtrSize;
primitiveType->mAlign = mSystem->mPtrSize;
resolvedTypeRef->mDefineState = BfTypeDefineState_Defined;
}
return;
case BfTypeCode_NullPtr:
primitiveType->mSize = primitiveType->mAlign = mSystem->mPtrSize;
primitiveType->mDefineState = BfTypeDefineState_Defined;
return;
case BfTypeCode_Boolean:
PRIMITIVE_TYPE("bool", Int1, 1, DW_ATE_boolean);
return;
case BfTypeCode_Int8:
PRIMITIVE_TYPE("sbyte", Int8, 1, DW_ATE_signed);
return;
case BfTypeCode_UInt8:
PRIMITIVE_TYPE("byte", Int8, 1, DW_ATE_unsigned);
return;
case BfTypeCode_Int16:
PRIMITIVE_TYPE("short", Int16, 2, DW_ATE_signed);
return;
case BfTypeCode_UInt16:
PRIMITIVE_TYPE("ushort", Int16, 2, DW_ATE_unsigned);
return;
case BfTypeCode_Int32:
PRIMITIVE_TYPE("int", Int32, 4, DW_ATE_signed);
return;
case BfTypeCode_UInt32:
PRIMITIVE_TYPE("uint", Int32, 4, DW_ATE_unsigned);
return;
case BfTypeCode_Int64:
PRIMITIVE_TYPE("long", Int64, 8, DW_ATE_signed);
return;
case BfTypeCode_UInt64:
PRIMITIVE_TYPE("ulong", Int64, 8, DW_ATE_unsigned);
return;
case BfTypeCode_IntPtr:
if (mSystem->mPtrSize == 4)
{
PRIMITIVE_TYPE("intptr", Int32, 4, DW_ATE_signed);
}
else
{
PRIMITIVE_TYPE("intptr", Int64, 8, DW_ATE_signed);
}
return;
case BfTypeCode_UIntPtr:
if (mSystem->mPtrSize == 4)
{
PRIMITIVE_TYPE("uintptr", Int32, 4, DW_ATE_unsigned);
}
else
{
PRIMITIVE_TYPE("uintptr", Int64, 8, DW_ATE_unsigned);
}
return;
case BfTypeCode_IntUnknown:
case BfTypeCode_UIntUnknown:
return;
case BfTypeCode_Char8:
PRIMITIVE_TYPE("char8", Int8, 1, DW_ATE_unsigned_char);
return;
case BfTypeCode_Char16:
PRIMITIVE_TYPE("char16", Int16, 2, DW_ATE_unsigned_char);
return;
case BfTypeCode_Char32:
PRIMITIVE_TYPE("char32", Int32, 4, DW_ATE_unsigned_char);
return;
case BfTypeCode_Float:
PRIMITIVE_TYPE("float", Float, 4, DW_ATE_float);
return;
case BfTypeCode_Double:
PRIMITIVE_TYPE("double", Double, 8, DW_ATE_float);
return;
case BfTypeCode_Object:
case BfTypeCode_Struct:
case BfTypeCode_Interface:
case BfTypeCode_Enum:
case BfTypeCode_TypeAlias:
// Implemented below
break;
case BfTypeCode_Extension:
// This can only happen if we didn't actually find the type the extension referred to
break;
default:
//NotImpl(resolvedTypeRef->mTypeRef);
BFMODULE_FATAL(this, "Invalid type");
return;
}
//////////////////////////////////////////////////////////////////////////
BF_ASSERT(typeInstance != NULL);
if (!typeInstance->IsArray())
{
BF_ASSERT(typeInstance->mTypeDef != mContext->mCompiler->mArray1TypeDef);
}
if (mContext->mBfObjectType == NULL)
{
if (typeInstance->IsInstanceOf(mCompiler->mBfObjectTypeDef))
mContext->mBfObjectType = typeInstance;
else if (mCompiler->mBfObjectTypeDef != NULL)
ResolveTypeDef(mCompiler->mBfObjectTypeDef);
}
if (typeInstance->mModule == NULL)
{
// Create a module for this type
mContext->HandleTypeWorkItem(resolvedTypeRef);
}
}
if (typeInstance == NULL)
return;
if (typeInstance->mModule == NULL)
{
BF_ASSERT(typeInstance->mTypeFailed);
return;
}
typeInstance->mModule->DoPopulateType(typeInstance, populateType);
}
BfTypeOptions* BfModule::GetTypeOptions(BfTypeDef* typeDef)
{
if (mContext->mSystem->mTypeOptions.size() == 0)
{
return NULL;
}
Array<int> matchedIndices;
if (!mCompiler->mAttributeTypeOptionMap.IsEmpty())
{
auto customAttributes = typeDef->mTypeDeclaration->mAttributes;
while (customAttributes != NULL)
{
if (!mCompiler->mAttributeTypeOptionMap.IsEmpty())
{
SetAndRestoreValue<bool> prevIgnoreErrors(mIgnoreErrors, true);
auto typeRef = customAttributes->mAttributeTypeRef;
// StringT<128> attrName;
// for (auto& customAttrs : customAttributes->mAttributeTypeRef)
// {
// attrName.Clear();
// customAttrs.mType->mTypeDef->mFullName.ToString(attrName);
// Array<int>* arrPtr;
// if (mCompiler->mAttributeTypeOptionMap.TryGetValue(attrName, &arrPtr))
// {
// for (auto optionsIdx : *arrPtr)
// {
// matchedIndices.Add(optionsIdx);
// }
// }
// }
}
customAttributes = customAttributes->mNextAttribute;
}
}
int typeOptionsCount = (int)mContext->mSystem->mTypeOptions.size();
auto _CheckTypeName = [&](const StringImpl& typeName)
{
for (int optionIdx = 0; optionIdx < (int)mContext->mSystem->mTypeOptions.size(); optionIdx++)
{
auto& typeOptions = mContext->mSystem->mTypeOptions[optionIdx];
bool matched = false;
for (auto& filter : typeOptions.mTypeFilters)
{
int filterIdx = 0;
int typeNameIdx = 0;
const char* filterPtr = filter.c_str();
const char* namePtr = typeName.c_str();
char prevFilterC = 0;
while (true)
{
char filterC;
while (true)
{
filterC = *(filterPtr++);
if (filterC != ' ')
break;
}
char nameC;
while (true)
{
nameC = *(namePtr++);
if (nameC != ' ')
break;
}
if ((filterC == 0) || (nameC == 0))
{
matched = (filterC == 0) && (nameC == 0);
break;
}
bool doWildcard = false;
if (nameC != filterC)
{
if (filterC == '*')
doWildcard = true;
else if (((filterC == ',') || (filterC == '>')) &&
((prevFilterC == '<') || (prevFilterC == ',')))
{
doWildcard = true;
filterPtr--;
}
if (!doWildcard)
{
matched = false;
break;
}
}
if (doWildcard)
{
int openDepth = 0;
const char* startNamePtr = namePtr;
while (true)
{
nameC = *(namePtr++);
if (nameC == 0)
{
namePtr--;
if (openDepth != 0)
matched = false;
break;
}
if ((nameC == '>') && (openDepth == 0))
{
namePtr--;
break;
}
if (nameC == '<')
openDepth++;
else if (nameC == '>')
openDepth--;
else if ((nameC == ',') && (openDepth == 0))
{
namePtr--;
break;
}
}
if (!matched)
break;
}
prevFilterC = filterC;
}
}
if (matched)
matchedIndices.push_back(optionIdx);
}
};
// if (typeInstance->IsTypedPrimitive())
// {
// auto underlyingType = typeInstance->GetUnderlyingType();
// if (underlyingType != NULL)
// {
// String typeName = TypeToString(underlyingType);
// _CheckTypeName(typeName);
// }
// else
// {
// // Can this only happen for functions that are being extended?
// }
// }
//
// if ((!typeInstance->IsBoxed()) && (typeInstance->mTypeDef == mCompiler->mPointerTTypeDef))
// {
// BF_ASSERT(typeInstance->IsGenericTypeInstance());
// auto innerType = typeInstance->mGenericTypeInfo->mTypeGenericArguments[0];
// auto ptrType = CreatePointerType(innerType);
// String typeName = TypeToString(ptrType);
// _CheckTypeName(typeName);
// }
String typeName = BfTypeUtils::TypeToString(typeDef);
_CheckTypeName(typeName);
int matchedIdx = -1;
if (matchedIndices.size() == 1)
{
matchedIdx = matchedIndices[0];
}
else if (matchedIndices.size() > 1)
{
// Try to find a merged typeoptions with these indices
for (int mergedIdx = 0; mergedIdx < (int)mContext->mSystem->mMergedTypeOptions.size(); mergedIdx++)
{
auto& typeOptions = mContext->mSystem->mMergedTypeOptions[mergedIdx];
if (typeOptions.mMatchedIndices == matchedIndices)
{
matchedIdx = typeOptionsCount + mergedIdx;
break;
}
}
// Otherwise make one...
if (matchedIdx == -1)
{
auto& first = mContext->mSystem->mTypeOptions[matchedIndices[0]];
BfTypeOptions mergedTypeOptions;
mergedTypeOptions.mSIMDSetting = first.mSIMDSetting;
mergedTypeOptions.mOptimizationLevel = first.mOptimizationLevel;
mergedTypeOptions.mEmitDebugInfo = first.mEmitDebugInfo;
mergedTypeOptions.mAndFlags = first.mAndFlags;
mergedTypeOptions.mOrFlags = first.mOrFlags;
mergedTypeOptions.mAllocStackTraceDepth = first.mAllocStackTraceDepth;
mergedTypeOptions.mReflectMethodFilters = first.mReflectMethodFilters;
mergedTypeOptions.mReflectMethodAttributeFilters = first.mReflectMethodAttributeFilters;
mergedTypeOptions.mMatchedIndices = matchedIndices;
for (int idx = 1; idx < (int)matchedIndices.size(); idx++)
{
auto& typeOptions = mContext->mSystem->mTypeOptions[matchedIndices[idx]];
if (typeOptions.mSIMDSetting != -1)
mergedTypeOptions.mSIMDSetting = typeOptions.mSIMDSetting;
if (typeOptions.mOptimizationLevel != -1)
mergedTypeOptions.mOptimizationLevel = typeOptions.mOptimizationLevel;
if (typeOptions.mEmitDebugInfo != -1)
mergedTypeOptions.mEmitDebugInfo = typeOptions.mEmitDebugInfo;
mergedTypeOptions.mOrFlags = (BfOptionFlags)(mergedTypeOptions.mOrFlags | typeOptions.mOrFlags);
mergedTypeOptions.mAndFlags = (BfOptionFlags)(mergedTypeOptions.mAndFlags | typeOptions.mOrFlags);
mergedTypeOptions.mAndFlags = (BfOptionFlags)(mergedTypeOptions.mAndFlags & typeOptions.mAndFlags);
mergedTypeOptions.mOrFlags = (BfOptionFlags)(mergedTypeOptions.mOrFlags & typeOptions.mAndFlags);
if (mergedTypeOptions.HasReflectMethodFilters())
{
// If merging filter has non-default method flags but no filter then we need to append it as a filtered modification
if ((!typeOptions.HasReflectMethodFilters()) &&
(((typeOptions.mAndFlags & BfOptionFlags_Reflect_MethodMask) != BfOptionFlags_Reflect_MethodMask) ||
((typeOptions.mOrFlags & BfOptionFlags_Reflect_MethodMask) != 0)))
{
mergedTypeOptions.mReflectMethodFilters.Add({"*", typeOptions.mAndFlags, typeOptions.mOrFlags});
}
mergedTypeOptions.mAndFlags = (BfOptionFlags)(mergedTypeOptions.mAndFlags | BfOptionFlags_Reflect_MethodMask);
mergedTypeOptions.mOrFlags = (BfOptionFlags)(mergedTypeOptions.mOrFlags & ~BfOptionFlags_Reflect_MethodMask);
}
if (typeOptions.mAllocStackTraceDepth != -1)
mergedTypeOptions.mAllocStackTraceDepth = typeOptions.mAllocStackTraceDepth;
for (auto filter : typeOptions.mReflectMethodFilters)
mergedTypeOptions.mReflectMethodFilters.Add(filter);
for (auto filter : typeOptions.mReflectMethodAttributeFilters)
mergedTypeOptions.mReflectMethodAttributeFilters.Add(filter);
}
matchedIdx = typeOptionsCount + (int)mContext->mSystem->mMergedTypeOptions.size();
mContext->mSystem->mMergedTypeOptions.push_back(mergedTypeOptions);
}
}
return mSystem->GetTypeOptions( matchedIdx);
}
bool BfModule::ApplyTypeOptionMethodFilters(bool includeMethod, BfMethodDef* methodDef, BfTypeOptions* typeOptions)
{
BfOptionFlags findFlag = BfOptionFlags_None;
if (methodDef->mMethodType == BfMethodType_Ctor)
findFlag = BfOptionFlags_ReflectConstructors;
else if (methodDef->mIsStatic)
findFlag = BfOptionFlags_ReflectStaticMethods;
else
findFlag = BfOptionFlags_ReflectNonStaticMethods;
if ((typeOptions->mAndFlags & findFlag) == 0)
includeMethod = false;
if ((typeOptions->mOrFlags & findFlag) != 0)
includeMethod = true;
if (!typeOptions->mReflectMethodFilters.IsEmpty())
{
for (auto& filter : typeOptions->mReflectMethodFilters)
{
if (BfCheckWildcard(filter.mFilter, methodDef->mName))
{
if ((filter.mAndFlags & findFlag) == 0)
includeMethod = false;
if ((filter.mAndFlags | findFlag) != 0)
includeMethod = true;
}
}
}
return includeMethod;
}
int BfModule::GenerateTypeOptions(BfCustomAttributes* customAttributes, BfTypeInstance* typeInstance, bool checkTypeName)
{
if (mContext->mSystem->mTypeOptions.size() == 0)
{
return -1;
}
Array<int> matchedIndices;
if ((!checkTypeName) && (typeInstance->mTypeOptionsIdx != -1))
{
// Methods should 'inherit' the owner's type options before applying type options from custom attributes
auto typeOptions = mSystem->GetTypeOptions(typeInstance->mTypeOptionsIdx);
if (typeOptions->mMatchedIndices.size() == 0)
matchedIndices.push_back(typeInstance->mTypeOptionsIdx);
else
matchedIndices = typeOptions->mMatchedIndices;
}
if (customAttributes != NULL)
{
if (!mCompiler->mAttributeTypeOptionMap.IsEmpty())
{
StringT<128> attrName;
for (auto& customAttrs : customAttributes->mAttributes)
{
attrName.Clear();
customAttrs.mType->mTypeDef->mFullName.ToString(attrName);
Array<int>* arrPtr;
if (mCompiler->mAttributeTypeOptionMap.TryGetValue(attrName, &arrPtr))
{
for (auto optionsIdx : *arrPtr)
{
matchedIndices.Add(optionsIdx);
}
}
}
}
}
int typeOptionsCount = (int)mContext->mSystem->mTypeOptions.size();
if (checkTypeName)
{
auto _CheckType = [&](BfType* type)
{
StringImpl typeName = TypeToString(type);
for (int optionIdx = 0; optionIdx < (int)mContext->mSystem->mTypeOptions.size(); optionIdx++)
{
auto& typeOptions = mContext->mSystem->mTypeOptions[optionIdx];
bool matched = false;
for (auto& filter : typeOptions.mTypeFilters)
{
int filterIdx = 0;
int typeNameIdx = 0;
if (filter.StartsWith(':'))
{
BfTypeInstance* typeInst = type->ToTypeInstance();
if (typeInst != NULL)
{
int startPos = 1;
for (; startPos < (int)filter.length(); startPos++)
if (filter[startPos] != ' ')
break;
String checkFilter;
checkFilter.Reference(filter.c_str() + startPos, filter.mLength - startPos);
BfTypeInstance* checkTypeInst = typeInst;
while (checkTypeInst != NULL)
{
for (auto& iface : checkTypeInst->mInterfaces)
{
StringT<128> ifaceName = TypeToString(iface.mInterfaceType);
if (BfCheckWildcard(checkFilter, ifaceName))
{
matched = true;
break;
}
}
checkTypeInst = checkTypeInst->mBaseType;
}
if (matched)
break;
}
}
else if (BfCheckWildcard(filter, typeName))
{
matched = true;
break;
}
}
if (matched)
matchedIndices.push_back(optionIdx);
}
};
if (typeInstance->IsTypedPrimitive())
{
auto underlyingType = typeInstance->GetUnderlyingType();
if (underlyingType != NULL)
{
_CheckType(underlyingType);
}
else
{
// Can this only happen for functions that are being extended?
}
}
if ((!typeInstance->IsBoxed()) && (typeInstance->IsInstanceOf(mCompiler->mPointerTTypeDef)))
{
BF_ASSERT(typeInstance->IsGenericTypeInstance());
auto innerType = typeInstance->mGenericTypeInfo->mTypeGenericArguments[0];
auto ptrType = CreatePointerType(innerType);
_CheckType(ptrType);
}
_CheckType(typeInstance);
}
int matchedIdx = -1;
if (matchedIndices.size() == 1)
{
matchedIdx = matchedIndices[0];
}
else if (matchedIndices.size() > 1)
{
// Try to find a merged typeoptions with these indices
for (int mergedIdx = 0; mergedIdx < (int)mContext->mSystem->mMergedTypeOptions.size(); mergedIdx++)
{
auto& typeOptions = mContext->mSystem->mMergedTypeOptions[mergedIdx];
if (typeOptions.mMatchedIndices == matchedIndices)
{
matchedIdx = typeOptionsCount + mergedIdx;
break;
}
}
// Otherwise make one...
if (matchedIdx == -1)
{
auto& first = mContext->mSystem->mTypeOptions[matchedIndices[0]];
BfTypeOptions mergedTypeOptions;
mergedTypeOptions.mSIMDSetting = first.mSIMDSetting;
mergedTypeOptions.mOptimizationLevel = first.mOptimizationLevel;
mergedTypeOptions.mEmitDebugInfo = first.mEmitDebugInfo;
mergedTypeOptions.mAndFlags = first.mAndFlags;
mergedTypeOptions.mOrFlags = first.mOrFlags;
mergedTypeOptions.mAllocStackTraceDepth = first.mAllocStackTraceDepth;
mergedTypeOptions.mReflectMethodFilters = first.mReflectMethodFilters;
mergedTypeOptions.mReflectMethodAttributeFilters = first.mReflectMethodAttributeFilters;
mergedTypeOptions.mMatchedIndices = matchedIndices;
for (int idx = 1; idx < (int)matchedIndices.size(); idx++)
{
auto& typeOptions = mContext->mSystem->mTypeOptions[matchedIndices[idx]];
if (typeOptions.mSIMDSetting != -1)
mergedTypeOptions.mSIMDSetting = typeOptions.mSIMDSetting;
if (typeOptions.mOptimizationLevel != -1)
mergedTypeOptions.mOptimizationLevel = typeOptions.mOptimizationLevel;
if (typeOptions.mEmitDebugInfo != -1)
mergedTypeOptions.mEmitDebugInfo = typeOptions.mEmitDebugInfo;
mergedTypeOptions.mOrFlags = (BfOptionFlags)(mergedTypeOptions.mOrFlags | typeOptions.mOrFlags);
mergedTypeOptions.mAndFlags = (BfOptionFlags)(mergedTypeOptions.mAndFlags | typeOptions.mOrFlags);
mergedTypeOptions.mAndFlags = (BfOptionFlags)(mergedTypeOptions.mAndFlags & typeOptions.mAndFlags);
mergedTypeOptions.mOrFlags = (BfOptionFlags)(mergedTypeOptions.mOrFlags & typeOptions.mAndFlags);
if (typeOptions.mAllocStackTraceDepth != -1)
mergedTypeOptions.mAllocStackTraceDepth = typeOptions.mAllocStackTraceDepth;
for (auto& filter : typeOptions.mReflectMethodFilters)
mergedTypeOptions.mReflectMethodFilters.Add(filter);
for (auto& filter : typeOptions.mReflectMethodAttributeFilters)
mergedTypeOptions.mReflectMethodAttributeFilters.Add(filter);
}
matchedIdx = typeOptionsCount + (int)mContext->mSystem->mMergedTypeOptions.size();
mContext->mSystem->mMergedTypeOptions.push_back(mergedTypeOptions);
}
}
return matchedIdx;
}
void BfModule::SetTypeOptions(BfTypeInstance* typeInstance)
{
typeInstance->mTypeOptionsIdx = GenerateTypeOptions(typeInstance->mCustomAttributes, typeInstance, true);
}
BfCEParseContext BfModule::CEEmitParse(BfTypeInstance* typeInstance, BfTypeDef* declaringType, const StringImpl& src, BfAstNode* refNode, BfCeTypeEmitSourceKind emitSourceKind)
{
if (mCompiler->mResolvePassData != NULL)
mCompiler->mResolvePassData->mHadEmits = true;
BfCEParseContext ceParseContext;
ceParseContext.mFailIdx = mCompiler->mPassInstance->mFailedIdx;
ceParseContext.mWarnIdx = mCompiler->mPassInstance->mWarnIdx;
if (typeInstance->mTypeDef->mEmitParent == NULL)
{
if (typeInstance->mTypeDef->mNextRevision != NULL)
{
InternalError("CEEmitParse preconditions failed");
return ceParseContext;
}
}
bool createdParser = false;
int startSrcIdx = 0;
BfParser* emitParser = NULL;
int64 emitSourceMapKey = ((int64)declaringType->mPartialIdx << 32) | refNode->mSrcStart;
if (typeInstance->mCeTypeInfo == NULL)
typeInstance->mCeTypeInfo = new BfCeTypeInfo();
auto ceTypeInfo = typeInstance->mCeTypeInfo;
if (ceTypeInfo->mNext != NULL)
ceTypeInfo = ceTypeInfo->mNext;
BfCeTypeEmitSource* ceEmitSource = NULL;
if ((mCurMethodState != NULL) && (mCurMethodState->mClosureState != NULL) && (mCurMethodState->mClosureState->mCapturing))
{
// Don't create emit sources when we're in a capture phase
}
else
{
auto refParser = refNode->GetParser();
if ((refParser != NULL) && (refParser->mIsEmitted))
{
// Default to type declaration
emitSourceMapKey = mCurTypeInstance->mTypeDef->GetRefNode()->mSrcStart;
for (auto& kv : ceTypeInfo->mEmitSourceMap)
{
if ((refNode->mSrcStart >= kv.mValue.mSrcStart) && (refNode->mSrcStart < kv.mValue.mSrcEnd))
{
// We found the initial emit source
emitSourceMapKey = kv.mKey;
break;
}
}
}
if (ceTypeInfo->mEmitSourceMap.TryAdd(emitSourceMapKey, NULL, &ceEmitSource))
{
if (typeInstance->IsSpecializedType())
{
auto unspecializedType = GetUnspecializedTypeInstance(typeInstance);
if ((unspecializedType->mCeTypeInfo == NULL) || (!unspecializedType->mCeTypeInfo->mEmitSourceMap.ContainsKey(emitSourceMapKey)))
ceTypeInfo->mMayHaveUniqueEmitLocations = true;
}
}
ceEmitSource->mKind = emitSourceKind;
}
BfLogSysM("CEEmitParse type %p ceTypeInfo %p\n", typeInstance, ceTypeInfo);
int emitSrcStart = 0;
BfEmitEmbedEntry* emitEmbedEntry = NULL;
if (typeInstance->mTypeDef->mEmitParent == NULL)
{
BF_ASSERT(typeInstance->mTypeDef->mNextRevision == NULL);
BfTypeDef* emitTypeDef = new BfTypeDef();
emitTypeDef->mEmitParent = typeInstance->mTypeDef;
mSystem->CopyTypeDef(emitTypeDef, typeInstance->mTypeDef);
emitTypeDef->mDefState = BfTypeDef::DefState_Emitted;
typeInstance->mTypeDef = emitTypeDef;
createdParser = true;
emitParser = new BfParser(mSystem, typeInstance->mTypeDef->mProject);
emitParser->mIsEmitted = true;
BfLogSys(mSystem, "Emit typeDef for type %p created %p parser %p typeDecl %p\n", typeInstance, emitTypeDef, emitParser, emitTypeDef->mTypeDeclaration);
String typeName = TypeToString(typeInstance, BfTypeNameFlag_AddProjectName);
if ((mCompiler->mResolvePassData != NULL) && (!mCompiler->mResolvePassData->mEmitEmbedEntries.IsEmpty()))
mCompiler->mResolvePassData->mEmitEmbedEntries.TryGetValue(typeName, &emitEmbedEntry);
emitParser->mFileName = "$Emit$";
emitParser->mFileName += typeName;
emitTypeDef->mSource = emitParser;
emitParser->mRefCount++;
emitParser->SetSource(src.c_str(), src.mLength);
if (emitEmbedEntry != NULL)
{
emitEmbedEntry->mRevision = typeInstance->mRevision;
emitEmbedEntry->mParser = emitParser;
emitEmbedEntry->mParser->mSourceClassifier = new BfSourceClassifier(emitEmbedEntry->mParser, NULL);
mCompiler->mPassInstance->mFilterErrorsTo.Add(emitEmbedEntry->mParser->mParserData);
if (emitEmbedEntry->mCursorIdx != -1)
{
emitParser->SetCursorIdx(emitEmbedEntry->mCursorIdx);
emitParser->mParserFlags = (BfParserFlag)(emitParser->mParserFlags | ParserFlag_Autocomplete | ParserFlag_Classifying);
}
}
// If we emit only from method attributes then we will already have method instances created
auto _FixMethod = [&](BfMethodInstance* methodInstance)
{
if (methodInstance == NULL)
return;
methodInstance->mMethodDef = emitTypeDef->mMethods[methodInstance->mMethodDef->mIdx];
};
for (auto& methodInstanceGroup : typeInstance->mMethodInstanceGroups)
{
_FixMethod(methodInstanceGroup.mDefault);
if (methodInstanceGroup.mMethodSpecializationMap != NULL)
{
for (auto& kv : *methodInstanceGroup.mMethodSpecializationMap)
_FixMethod(kv.mValue);
}
};
}
else
{
emitParser = typeInstance->mTypeDef->mSource->ToParser();
if ((mCompiler->mResolvePassData != NULL) && (!mCompiler->mResolvePassData->mEmitEmbedEntries.IsEmpty()))
{
int dollarPos = (int)emitParser->mFileName.LastIndexOf('$');
if (dollarPos != -1)
mCompiler->mResolvePassData->mEmitEmbedEntries.TryGetValue(emitParser->mFileName.Substring(dollarPos + 1), &emitEmbedEntry);
}
int idx = emitParser->AllocChars(2 + src.mLength + 1);
emitSrcStart = idx + 2;
memcpy((uint8*)emitParser->mSrc + idx, "\n\n", 2);
memcpy((uint8*)emitParser->mSrc + idx + 2, src.c_str(), src.mLength + 1);
emitParser->mSrcIdx = idx;
emitParser->mSrcLength = idx + src.mLength + 2;
emitParser->mParserData->mSrcLength = emitParser->mSrcLength;
emitParser->mOrigSrcLength = emitParser->mSrcLength;
}
if (ceEmitSource == NULL)
{
// Ignored
}
else if (ceEmitSource->mSrcStart == -1)
{
auto parserData = refNode->GetParserData();
if (parserData != NULL)
{
// Add the warning changes occur before the start of the buffer.
// We use this conservatively now - any temporary disabling will permanently disable
for (auto& warning : parserData->mWarningEnabledChanges)
{
if (!warning.mValue.mEnable)
emitParser->mParserData->mWarningEnabledChanges[-warning.mValue.mWarningNumber] = warning.mValue;
}
}
ceEmitSource->mSrcStart = emitSrcStart;
ceEmitSource->mSrcEnd = emitParser->mSrcLength;
}
else
{
ceEmitSource->mSrcStart = BF_MIN(ceEmitSource->mSrcStart, emitSrcStart);
ceEmitSource->mSrcEnd = BF_MAX(ceEmitSource->mSrcEnd, emitParser->mSrcLength);
}
emitParser->Parse(mCompiler->mPassInstance);
emitParser->FinishSideNodes();
if (emitEmbedEntry != NULL)
{
int prevStart = emitEmbedEntry->mCharData.mSize;
emitEmbedEntry->mCharData.GrowUninitialized(emitParser->mSrcLength - emitEmbedEntry->mCharData.mSize);
auto charDataPtr = emitEmbedEntry->mCharData.mVals;
for (int i = prevStart; i < emitParser->mSrcLength; i++)
{
charDataPtr[i].mChar = emitParser->mSrc[i];
charDataPtr[i].mDisplayPassId = 0;
charDataPtr[i].mDisplayTypeId = 0;
charDataPtr[i].mDisplayFlags = 0;
}
emitEmbedEntry->mParser->mSourceClassifier->mCharData = emitEmbedEntry->mCharData.mVals;
}
if (createdParser)
{
AutoCrit crit(mSystem->mDataLock);
mSystem->mParsers.Add(emitParser);
}
return ceParseContext;
}
void BfModule::FinishCEParseContext(BfAstNode* refNode, BfTypeInstance* typeInstance, BfCEParseContext* ceParseContext)
{
if ((ceParseContext->mFailIdx != mCompiler->mPassInstance->mFailedIdx) && (refNode != NULL))
Fail("Emitted code had errors", refNode);
else if ((ceParseContext->mWarnIdx != mCompiler->mPassInstance->mWarnIdx) && (refNode != NULL))
Warn(0, "Emitted code had warnings", refNode);
else if ((ceParseContext->mFailIdx != mCompiler->mPassInstance->mFailedIdx) ||
(ceParseContext->mWarnIdx != mCompiler->mPassInstance->mWarnIdx))
{
AddFailType(typeInstance);
}
}
void BfModule::UpdateCEEmit(CeEmitContext* ceEmitContext, BfTypeInstance* typeInstance, BfTypeDef* declaringType, const StringImpl& ctxString, BfAstNode* refNode, BfCeTypeEmitSourceKind emitSourceKind)
{
for (int ifaceTypeId : ceEmitContext->mInterfaces)
typeInstance->mCeTypeInfo->mPendingInterfaces.Add(ifaceTypeId);
if (ceEmitContext->mEmitData.IsEmpty())
return;
String src;
// if (typeInstance->mTypeDef->mEmitParent != NULL)
// src += "\n\n";
// src += "// Code emission in ";
// src += ctxString;
// src += "\n\n";
src += ceEmitContext->mEmitData;
ceEmitContext->mEmitData.Clear();
BfCEParseContext ceParseContext = CEEmitParse(typeInstance, declaringType, src, refNode, emitSourceKind);
auto emitParser = typeInstance->mTypeDef->mSource->ToParser();
auto typeDeclaration = emitParser->mAlloc->Alloc<BfTypeDeclaration>();
BfReducer bfReducer;
bfReducer.mSource = emitParser;
bfReducer.mPassInstance = mCompiler->mPassInstance;
bfReducer.mAlloc = emitParser->mAlloc;
bfReducer.mSystem = mSystem;
bfReducer.mCurTypeDecl = typeDeclaration;
typeDeclaration->mDefineNode = emitParser->mRootNode;
bfReducer.HandleTypeDeclaration(typeDeclaration, NULL);
BfDefBuilder defBuilder(mSystem);
defBuilder.mCurSource = emitParser;
defBuilder.mCurTypeDef = typeInstance->mTypeDef;
defBuilder.mCurDeclaringTypeDef = typeInstance->mTypeDef;
defBuilder.mPassInstance = mCompiler->mPassInstance;
defBuilder.mIsComptime = true;
defBuilder.DoVisitChild(typeDeclaration->mDefineNode);
defBuilder.FinishTypeDef(typeInstance->mTypeDef->mTypeCode == BfTypeCode_Enum);
FinishCEParseContext(refNode, typeInstance, &ceParseContext);
if (emitParser->mSourceClassifier != NULL)
{
emitParser->mSourceClassifier->VisitChild(emitParser->mRootNode);
emitParser->mSourceClassifier->DeferNodes(emitParser->mSidechannelRootNode);
emitParser->mSourceClassifier->DeferNodes(emitParser->mErrorRootNode);
}
if (typeInstance->mTypeDef->mEmitParent != NULL)
{
// Remove generated fields like the 'underlying type' enum field
typeInstance->mFieldInstances.Resize(typeInstance->mTypeDef->mEmitParent->mFields.mSize);
}
}
void BfModule::HandleCEAttributes(CeEmitContext* ceEmitContext, BfTypeInstance* typeInstance, BfFieldInstance* fieldInstance, BfCustomAttributes* customAttributes, Dictionary<BfTypeInstance*, BfIRValue>& prevAttrInstances, bool underlyingTypeDeferred)
{
for (auto& customAttribute : customAttributes->mAttributes)
{
if ((customAttribute.mDeclaringType->IsExtension()) && (typeInstance->IsGenericTypeInstance()) && (!typeInstance->IsUnspecializedTypeVariation()))
{
if (!typeInstance->IsTypeMemberIncluded(customAttribute.mDeclaringType, typeInstance->mTypeDef, this))
continue;
}
auto attrType = customAttribute.mType;
BfMethodInstance* methodInstance = NULL;
bool isFieldApply = false;
BfIRValue irValue;
int checkDepth = 0;
auto checkAttrType = attrType;
while (checkAttrType != NULL)
{
mContext->mUnreifiedModule->PopulateType(checkAttrType, BfPopulateType_DataAndMethods);
if (checkAttrType->mDefineState < BfTypeDefineState_DefinedAndMethodsSlotted)
break;
for (auto& ifaceEntry : checkAttrType->mInterfaces)
{
isFieldApply = false;
isFieldApply = (ceEmitContext != NULL) && (fieldInstance != NULL) && (ifaceEntry.mInterfaceType->IsInstanceOf(mCompiler->mIOnFieldInitTypeDef));
if ((isFieldApply) ||
((ceEmitContext != NULL) && (ifaceEntry.mInterfaceType->IsInstanceOf(mCompiler->mIComptimeTypeApply))) ||
((ceEmitContext != NULL) && (ifaceEntry.mInterfaceType->IsInstanceOf(mCompiler->mIOnTypeInitTypeDef))) ||
((ceEmitContext == NULL) && (ifaceEntry.mInterfaceType->IsInstanceOf(mCompiler->mIOnTypeDoneTypeDef))))
{
// Passes
}
else
continue;
prevAttrInstances.TryGetValue(checkAttrType, &irValue);
methodInstance = checkAttrType->mInterfaceMethodTable[ifaceEntry.mStartInterfaceTableIdx].mMethodRef;
break;
}
if (methodInstance != NULL)
break;
checkAttrType = checkAttrType->mBaseType;
checkDepth++;
}
if (methodInstance == NULL)
continue;
SetAndRestoreValue<CeEmitContext*> prevEmitContext(mCompiler->mCeMachine->mCurEmitContext, ceEmitContext);
auto ceContext = mCompiler->mCeMachine->AllocContext();
defer({ mCompiler->mCeMachine->ReleaseContext(ceContext); });
BfIRValue attrVal =ceContext->CreateAttribute(customAttribute.mRef, this, typeInstance->mConstHolder, &customAttribute);
for (int baseIdx = 0; baseIdx < checkDepth; baseIdx++)
attrVal = mBfIRBuilder->CreateExtractValue(attrVal, 0);
SizedArray<BfIRValue, 1> args;
if (!attrType->IsValuelessType())
args.Add(attrVal);
if (isFieldApply)
{
auto fieldInfoType = ResolveTypeDef(mCompiler->mReflectFieldInfoTypeDef);
if (fieldInfoType != NULL)
{
SetAndRestoreValue<bool> prevIgnoreWrites(mBfIRBuilder->mIgnoreWrites, true);
SizedArray<BfIRValue, 9> fieldData =
{
mBfIRBuilder->CreateConstAggZero(mBfIRBuilder->MapType(fieldInfoType->ToTypeInstance()->mBaseType, BfIRPopulateType_Identity)),
mBfIRBuilder->CreateTypeOf(mCurTypeInstance), // mTypeInstance
CreateFieldData(fieldInstance, -1)
};
FixConstValueParams(fieldInfoType->ToTypeInstance(), fieldData);
auto fieldDataAgg = mBfIRBuilder->CreateConstAgg(mBfIRBuilder->MapType(fieldInfoType, BfIRPopulateType_Identity), fieldData);
args.Add(fieldDataAgg);
}
}
else
args.Add(mBfIRBuilder->CreateTypeOf(typeInstance));
if (methodInstance->GetParamCount() > 1)
{
if (irValue)
args.Add(irValue);
else
args.Add(mBfIRBuilder->CreateConstNull());
}
else
{
// Only allow a single instance
if (irValue)
continue;
}
DoPopulateType_CeCheckEnum(typeInstance, underlyingTypeDeferred);
if (fieldInstance != NULL)
mCompiler->mCeMachine->mFieldInstanceSet.Add(fieldInstance);
BfTypedValue result;
///
{
SetAndRestoreValue<bool> prevIgnoreWrites(mBfIRBuilder->mIgnoreWrites, true);
CeCallSource callSource;
callSource.mRefNode = customAttribute.mRef;
if (isFieldApply)
{
callSource.mKind = CeCallSource::Kind_FieldInit;
callSource.mFieldInstance = fieldInstance;
}
else if (ceEmitContext != NULL)
{
callSource.mKind = CeCallSource::Kind_TypeInit;
}
else
{
callSource.mKind = CeCallSource::Kind_TypeDone;
}
result = ceContext->Call(callSource, this, methodInstance, args, (CeEvalFlags)(CeEvalFlags_ForceReturnThis | CeEvalFlags_IgnoreConstEncodeFailure), NULL);
}
if (fieldInstance != NULL)
mCompiler->mCeMachine->mFieldInstanceSet.Remove(fieldInstance);
if (result.mType == methodInstance->GetOwner())
prevAttrInstances[methodInstance->GetOwner()] = result.mValue;
if (ceEmitContext == NULL)
continue;
if (typeInstance->mDefineState == BfTypeDefineState_DefinedAndMethodsSlotted)
return;
if (typeInstance->mDefineState != BfTypeDefineState_CETypeInit)
{
// We populated before we could finish
AssertErrorState();
}
else
{
auto owner = methodInstance->GetOwner();
int typeId = owner->mTypeId;
if ((!result) && (mCompiler->mFastFinish))
{
if ((typeInstance->mCeTypeInfo != NULL) && (typeInstance->mCeTypeInfo->mNext == NULL))
typeInstance->mCeTypeInfo->mNext = new BfCeTypeInfo();
if ((typeInstance->mCeTypeInfo != NULL) && (typeInstance->mCeTypeInfo->mNext != NULL))
typeInstance->mCeTypeInfo->mNext->mFastFinished = true;
if (typeInstance->mCeTypeInfo != NULL)
{
BfCeTypeEmitEntry* entry = NULL;
if (typeInstance->mCeTypeInfo->mTypeIFaceMap.TryGetValue(typeId, &entry))
{
ceEmitContext->mEmitData = entry->mEmitData;
}
}
}
else
{
if (ceEmitContext->HasEmissions())
{
if (typeInstance->mCeTypeInfo == NULL)
typeInstance->mCeTypeInfo = new BfCeTypeInfo();
if (typeInstance->mCeTypeInfo->mNext == NULL)
typeInstance->mCeTypeInfo->mNext = new BfCeTypeInfo();
BfCeTypeEmitEntry entry;
entry.mEmitData = ceEmitContext->mEmitData;
typeInstance->mCeTypeInfo->mNext->mTypeIFaceMap[typeId] = entry;
typeInstance->mCeTypeInfo->mNext->mAlign = BF_MAX(typeInstance->mCeTypeInfo->mNext->mAlign, ceEmitContext->mAlign);
}
if ((ceEmitContext->mFailed) && (typeInstance->mCeTypeInfo != NULL))
typeInstance->mCeTypeInfo->mFailed = true;
}
if ((ceEmitContext->HasEmissions()) && (!mCompiler->mFastFinish))
{
String ctxStr = "comptime ";
ctxStr += methodInstance->mMethodDef->mName;
ctxStr += " of ";
ctxStr += TypeToString(attrType);
ctxStr += " to ";
ctxStr += TypeToString(typeInstance);
ctxStr += " ";
ctxStr += customAttribute.mRef->LocationToString();
UpdateCEEmit(ceEmitContext, typeInstance, customAttribute.mDeclaringType, ctxStr, customAttribute.mRef, BfCeTypeEmitSourceKind_Type);
}
}
}
}
void BfModule::CEMixin(BfAstNode* refNode, const StringImpl& code)
{
if (code.IsEmpty())
return;
if (mCurMethodInstance == NULL)
{
Fail("Invalid code mixin", refNode);
return;
}
auto activeTypeDef = mCurMethodInstance->mMethodDef->mDeclaringType;
//auto emitParser = activeTypeDef->mEmitParser;
String src;
// if (mCurTypeInstance->mTypeDef->mEmitParent != NULL)
// src += "\n\n";
// src += "// Code emission in ";
// src += MethodToString(mCurMethodInstance);
// src += "\n";
src += code;
BfReducer bfReducer;
bfReducer.mPassInstance = mCompiler->mPassInstance;
bfReducer.mSystem = mSystem;
bfReducer.mCurTypeDecl = activeTypeDef->mTypeDeclaration;
bfReducer.mCurMethodDecl = BfNodeDynCast<BfMethodDeclaration>(mCurMethodInstance->mMethodDef->mMethodDeclaration);
SetAndRestoreValue<BfAstNode*> prevCustomAttribute(mCurMethodState->mEmitRefNode, refNode);
EmitEnsureInstructionAt();
BfCEParseContext ceParseContext = CEEmitParse(mCurTypeInstance, activeTypeDef, src, refNode, BfCeTypeEmitSourceKind_Method);
auto emitParser = mCurTypeInstance->mTypeDef->mSource->ToParser();
bfReducer.mSource = emitParser;
bfReducer.mAlloc = emitParser->mAlloc;
bfReducer.HandleBlock(emitParser->mRootNode, false);
if (emitParser->mSourceClassifier != NULL)
{
emitParser->mSourceClassifier->VisitChild(emitParser->mRootNode);
emitParser->mSourceClassifier->VisitChild(emitParser->mSidechannelRootNode);
emitParser->mSourceClassifier->VisitChild(emitParser->mErrorRootNode);
}
Visit(emitParser->mRootNode);
prevCustomAttribute.Restore();
FinishCEParseContext(refNode, mCurTypeInstance, &ceParseContext);
}
void BfModule::ExecuteCEOnCompile(CeEmitContext* ceEmitContext, BfTypeInstance* typeInstance, BfCEOnCompileKind onCompileKind, bool underlyingTypeDeferred)
{
Dictionary<BfTypeInstance*, BfIRValue> prevAttrInstances;
if (typeInstance->mCustomAttributes != NULL)
HandleCEAttributes(ceEmitContext, typeInstance, NULL, typeInstance->mCustomAttributes, prevAttrInstances, underlyingTypeDeferred);
if (ceEmitContext != NULL)
{
for (auto& fieldInstance : typeInstance->mFieldInstances)
{
if (fieldInstance.mCustomAttributes != NULL)
HandleCEAttributes(ceEmitContext, typeInstance, &fieldInstance, fieldInstance.mCustomAttributes, prevAttrInstances, underlyingTypeDeferred);
}
for (auto methodDef : typeInstance->mTypeDef->mMethods)
{
auto methodDeclaration = methodDef->GetMethodDeclaration();
auto propertyMethodDeclaration = methodDef->GetPropertyMethodDeclaration();
BfAttributeTargets attrTarget = ((methodDef->mMethodType == BfMethodType_Ctor) || (methodDef->mMethodType == BfMethodType_CtorCalcAppend)) ? BfAttributeTargets_Constructor : BfAttributeTargets_Method;
BfAttributeDirective* attributeDirective = NULL;
if (methodDeclaration != NULL)
attributeDirective = methodDeclaration->mAttributes;
else if (propertyMethodDeclaration != NULL)
{
attributeDirective = propertyMethodDeclaration->mAttributes;
if (auto exprBody = BfNodeDynCast<BfPropertyBodyExpression>(propertyMethodDeclaration->mPropertyDeclaration->mDefinitionBlock))
{
attributeDirective = propertyMethodDeclaration->mPropertyDeclaration->mAttributes;
attrTarget = (BfAttributeTargets)(BfAttributeTargets_Property | BfAttributeTargets_Method);
}
}
if (attributeDirective == NULL)
continue;
// Corlib will never need to process
if (methodDef->mDeclaringType->mProject == mContext->mBfObjectType->mTypeDef->mProject)
continue;
if (methodDef->mDeclaringType != mCurTypeInstance->mTypeDef)
{
if (typeInstance->IsUnspecializedTypeVariation())
continue;
if (!typeInstance->IsTypeMemberIncluded(methodDef->mDeclaringType, mCurTypeInstance->mTypeDef, this))
continue;
}
if (methodDef->mIdx >= typeInstance->mMethodInstanceGroups.mSize)
continue;
auto& methodInstanceGroup = typeInstance->mMethodInstanceGroups[methodDef->mIdx];
if (methodInstanceGroup.mDefaultCustomAttributes == NULL)
{
BfTypeState typeState;
typeState.mPrevState = mContext->mCurTypeState;
typeState.mForceActiveTypeDef = methodDef->mDeclaringType;
SetAndRestoreValue<BfTypeState*> prevTypeState(mContext->mCurTypeState, &typeState);
methodInstanceGroup.mDefaultCustomAttributes = GetCustomAttributes(attributeDirective, attrTarget);
}
HandleCEAttributes(ceEmitContext, typeInstance, NULL, methodInstanceGroup.mDefaultCustomAttributes, prevAttrInstances, underlyingTypeDeferred);
}
}
int methodCount = (int)typeInstance->mTypeDef->mMethods.size();
for (int methodIdx = 0; methodIdx < methodCount; methodIdx++)
{
auto methodDef = typeInstance->mTypeDef->mMethods[methodIdx];
auto methodDeclaration = BfNodeDynCast<BfMethodDeclaration>(methodDef->mMethodDeclaration);
if (methodDeclaration == NULL)
continue;
if (methodDeclaration->mAttributes == NULL)
continue;
BfTypeState typeState;
typeState.mPrevState = mContext->mCurTypeState;
typeState.mForceActiveTypeDef = methodDef->mDeclaringType;
SetAndRestoreValue<BfTypeState*> prevTypeState(mContext->mCurTypeState, &typeState);
bool wantsAttributes = false;
BfAttributeDirective* checkAttributes = methodDeclaration->mAttributes;
while (checkAttributes != NULL)
{
SetAndRestoreValue<bool> prevIgnoreErrors(mIgnoreErrors, true);
BfType* attrType = ResolveTypeRef(checkAttributes->mAttributeTypeRef, BfPopulateType_Identity, (BfResolveTypeRefFlags)(BfResolveTypeRefFlag_Attribute | BfResolveTypeRefFlag_NoReify));
if (attrType != NULL)
{
if (attrType->IsInstanceOf(mCompiler->mOnCompileAttributeTypeDef))
wantsAttributes = true;
auto attrTypeInstance = attrType->ToTypeInstance();
if ((attrTypeInstance != NULL) && (!attrTypeInstance->mInterfaces.IsEmpty()))
wantsAttributes = true;
}
checkAttributes = checkAttributes->mNextAttribute;
}
if (!wantsAttributes)
continue;
auto customAttributes = GetCustomAttributes(methodDeclaration->mAttributes, BfAttributeTargets_Method);
defer({ delete customAttributes; });
auto onCompileAttribute = customAttributes->Get(mCompiler->mOnCompileAttributeTypeDef);
if (onCompileAttribute == NULL)
continue;
HandleCEAttributes(ceEmitContext, typeInstance, NULL, customAttributes, prevAttrInstances, underlyingTypeDeferred);
if (onCompileAttribute->mCtorArgs.size() < 1)
continue;
auto constant = typeInstance->mConstHolder->GetConstant(onCompileAttribute->mCtorArgs[0]);
if (constant == NULL)
continue;
if (onCompileKind != (BfCEOnCompileKind)constant->mInt32)
continue;
if (!methodDef->mIsStatic)
{
Fail("OnCompile methods must be static", methodDeclaration);
continue;
}
if (!methodDef->mParams.IsEmpty())
{
Fail("OnCompile methods cannot declare parameters", methodDeclaration);
continue;
}
SetAndRestoreValue<CeEmitContext*> prevEmitContext(mCompiler->mCeMachine->mCurEmitContext);
if (onCompileKind == BfCEOnCompileKind_TypeInit)
{
mCompiler->mCeMachine->mCurEmitContext = ceEmitContext;
}
DoPopulateType_CeCheckEnum(typeInstance, underlyingTypeDeferred);
BfTypedValue result;
BfMethodInstance* methodInstance = NULL;
///
{
auto useTypeInstance = typeInstance;
if (useTypeInstance->IsUnspecializedTypeVariation())
useTypeInstance = GetUnspecializedTypeInstance(useTypeInstance);
BfType* prevContextTypeInstance = NULL;
if (ceEmitContext != NULL)
{
prevContextTypeInstance = ceEmitContext->mType;
ceEmitContext->mType = useTypeInstance;
}
methodInstance = GetRawMethodInstanceAtIdx(useTypeInstance, methodDef->mIdx);
result = mCompiler->mCeMachine->Call(methodDef->GetRefNode(), this, methodInstance, {}, (CeEvalFlags)(CeEvalFlags_PersistantError | CeEvalFlags_DeferIfNotOnlyError), NULL);
if (ceEmitContext != NULL)
ceEmitContext->mType = prevContextTypeInstance;
}
if ((onCompileKind == BfCEOnCompileKind_TypeDone) && (typeInstance->mDefineState > BfTypeDefineState_CETypeInit))
{
// Type done, okay
}
else if (typeInstance->mDefineState != BfTypeDefineState_CETypeInit)
{
// We populated before we could finish
AssertErrorState();
}
else
{
if ((!result) && (mCompiler->mFastFinish))
{
if ((typeInstance->mCeTypeInfo != NULL) && (typeInstance->mCeTypeInfo->mNext == NULL))
typeInstance->mCeTypeInfo->mNext = new BfCeTypeInfo();
if ((typeInstance->mCeTypeInfo != NULL) && (typeInstance->mCeTypeInfo->mNext != NULL))
typeInstance->mCeTypeInfo->mNext->mFastFinished = true;
if (typeInstance->mCeTypeInfo != NULL)
{
BfCeTypeEmitEntry* entry = NULL;
if (typeInstance->mCeTypeInfo->mOnCompileMap.TryGetValue(methodDef->mIdx, &entry))
{
ceEmitContext->mEmitData = entry->mEmitData;
}
}
}
else if (!ceEmitContext->mEmitData.IsEmpty())
{
if (typeInstance->mCeTypeInfo == NULL)
typeInstance->mCeTypeInfo = new BfCeTypeInfo();
if (typeInstance->mCeTypeInfo->mNext == NULL)
typeInstance->mCeTypeInfo->mNext = new BfCeTypeInfo();
BfCeTypeEmitEntry entry;
entry.mEmitData = ceEmitContext->mEmitData;
typeInstance->mCeTypeInfo->mNext->mOnCompileMap[methodDef->mIdx] = entry;
}
else if ((ceEmitContext->mFailed) && (typeInstance->mCeTypeInfo != NULL))
typeInstance->mCeTypeInfo->mFailed = true;
if (!ceEmitContext->mEmitData.IsEmpty())
{
String ctxStr = "OnCompile execution of ";
ctxStr += MethodToString(methodInstance);
ctxStr += " ";
ctxStr += methodInstance->mMethodDef->GetRefNode()->LocationToString();
UpdateCEEmit(ceEmitContext, typeInstance, methodDef->mDeclaringType, ctxStr, methodInstance->mMethodDef->GetRefNode(), BfCeTypeEmitSourceKind_Type);
}
}
if (mCompiler->mCanceling)
{
DeferRebuildType(typeInstance);
}
}
// if ((!typeInstance->IsInstanceOf(mCompiler->mValueTypeTypeDef)) &&
// (!typeInstance->IsInstanceOf(mCompiler->mBfObjectTypeDef)) &&
// (!typeInstance->IsBoxed()) &&
// (!typeInstance->IsDelegate()) &&
// (!typeInstance->IsTuple()))
// {
// //zTODO: TESTING, remove!
// CEEmitParse(typeInstance, "// Testing");
// }
}
void BfModule::DoCEEmit(BfTypeInstance* typeInstance, bool& hadNewMembers, bool underlyingTypeDeferred)
{
BfLogSysM("BfModule::DoCEEmit %p\n", typeInstance);
if (((typeInstance->IsInstanceOf(mCompiler->mValueTypeTypeDef))) ||
((typeInstance->IsInstanceOf(mCompiler->mEnumTypeDef))) ||
((typeInstance->IsInstanceOf(mCompiler->mAttributeTypeDef))))
{
// These are not allowed to emit
return;
}
CeEmitContext ceEmitContext;
ceEmitContext.mType = typeInstance;
ExecuteCEOnCompile(&ceEmitContext, typeInstance, BfCEOnCompileKind_TypeInit, underlyingTypeDeferred);
hadNewMembers = (typeInstance->mTypeDef->mEmitParent != NULL);
if (ceEmitContext.mFailed)
TypeFailed(typeInstance);
}
void BfModule::DoCEEmit(BfMethodInstance* methodInstance)
{
if (mCurTypeInstance->IsUnspecializedTypeVariation())
return;
auto customAttributes = methodInstance->GetCustomAttributes();
if (customAttributes == NULL)
return;
auto typeInstance = methodInstance->GetOwner();
CeEmitContext ceEmitContext;
ceEmitContext.mMethodInstance = methodInstance;
Dictionary<BfTypeInstance*, BfIRValue> prevAttrInstances;
for (auto& customAttribute : customAttributes->mAttributes)
{
auto attrType = customAttribute.mType;
BfMethodInstance* applyMethodInstance = NULL;
BfIRValue irValue;
int checkDepth = 0;
auto checkAttrType = attrType;
while (checkAttrType != NULL)
{
mContext->mUnreifiedModule->PopulateType(checkAttrType, BfPopulateType_DataAndMethods);
if (checkAttrType->mDefineState < BfTypeDefineState_DefinedAndMethodsSlotted)
break;
for (auto& ifaceEntry : checkAttrType->mInterfaces)
{
if ((!ifaceEntry.mInterfaceType->IsInstanceOf(mCompiler->mIComptimeMethodApply)) &&
(!ifaceEntry.mInterfaceType->IsInstanceOf(mCompiler->mIOnMethodInitTypeDef)))
continue;
prevAttrInstances.TryGetValue(checkAttrType, &irValue);
applyMethodInstance = checkAttrType->mInterfaceMethodTable[ifaceEntry.mStartInterfaceTableIdx].mMethodRef;
break;
}
if (applyMethodInstance != NULL)
break;
checkAttrType = checkAttrType->mBaseType;
checkDepth++;
}
if (applyMethodInstance == NULL)
continue;
SetAndRestoreValue<CeEmitContext*> prevEmitContext(mCompiler->mCeMachine->mCurEmitContext, &ceEmitContext);
auto ceContext = mCompiler->mCeMachine->AllocContext();
BfIRValue attrVal = ceContext->CreateAttribute(customAttribute.mRef, this, typeInstance->mConstHolder, &customAttribute);
for (int baseIdx = 0; baseIdx < checkDepth; baseIdx++)
attrVal = mBfIRBuilder->CreateExtractValue(attrVal, 0);
SizedArray<BfIRValue, 1> args;
if (!attrType->IsValuelessType())
args.Add(attrVal);
auto methodInfoType = ResolveTypeDef(mCompiler->mReflectMethodInfoTypeDef);
SizedArray<BfIRValue, 9> methodData =
{
mBfIRBuilder->CreateConstAggZero(mBfIRBuilder->MapType(methodInfoType->ToTypeInstance()->mBaseType, BfIRPopulateType_Identity)),
mBfIRBuilder->CreateTypeOf(mCurTypeInstance), // mTypeInstance
GetConstValue((int64)methodInstance, GetPrimitiveType(BfTypeCode_Int64)), // mNativeMethodInstance
};
FixConstValueParams(methodInfoType->ToTypeInstance(), methodData, true);
auto fieldDataAgg = mBfIRBuilder->CreateConstAgg(mBfIRBuilder->MapType(methodInfoType, BfIRPopulateType_Identity), methodData);
args.Add(fieldDataAgg);
if (applyMethodInstance->GetParamCount() > 1)
{
if (irValue)
args.Add(irValue);
else
args.Add(mBfIRBuilder->CreateConstNull());
}
else
{
// Only allow a single instance
if (irValue)
continue;
}
mCompiler->mCeMachine->mMethodInstanceSet.Add(methodInstance);
auto activeTypeDef = typeInstance->mTypeDef;
BfTypedValue result;
///
{
SetAndRestoreValue<bool> prevIgnoreWrites(mBfIRBuilder->mIgnoreWrites, true);
CeCallSource callSource;
callSource.mRefNode = customAttribute.mRef;
callSource.mKind = CeCallSource::Kind_MethodInit;
result = ceContext->Call(callSource, this, applyMethodInstance, args, CeEvalFlags_ForceReturnThis, NULL);
}
if (result.mType == methodInstance->GetOwner())
prevAttrInstances[methodInstance->GetOwner()] = result.mValue;
if ((!result) && (mCompiler->mFastFinish))
{
methodInstance->mCeCancelled = true;
}
if ((!ceEmitContext.mEmitData.IsEmpty()) || (!ceEmitContext.mExitEmitData.IsEmpty()))
{
String src;
// src += "// Code emission in comptime ApplyToMethod of ";
// src += TypeToString(attrType);
// src += " to ";
// src += MethodToString(methodInstance);
// src += " ";
// src += customAttribute.mRef->LocationToString();
// src += "\n";
//auto emitTypeDef = typeInstance->mCeTypeInfo->mNext->mTypeDef;
//auto emitParser = emitTypeDef->mSource->ToParser();
//auto emitParser = activeTypeDef->mEmitParser;
BfReducer bfReducer;
//bfReducer.mSource = emitParser;
bfReducer.mPassInstance = mCompiler->mPassInstance;
bfReducer.mSystem = mSystem;
bfReducer.mCurTypeDecl = activeTypeDef->mTypeDeclaration;
bfReducer.mCurMethodDecl = BfNodeDynCast<BfMethodDeclaration>(methodInstance->mMethodDef->mMethodDeclaration);
BfAstNode* bodyNode = NULL;
if (auto methodDecl = BfNodeDynCast<BfMethodDeclaration>(methodInstance->mMethodDef->mMethodDeclaration))
bodyNode = methodDecl->mBody;
auto _Classify = [&](BfParser* emitParser)
{
if (emitParser->mSourceClassifier == NULL)
return;
emitParser->mSourceClassifier->VisitChild(emitParser->mRootNode);
emitParser->mSourceClassifier->VisitChild(emitParser->mSidechannelRootNode);
emitParser->mSourceClassifier->VisitChild(emitParser->mErrorRootNode);
};
if (!ceEmitContext.mEmitData.IsEmpty())
{
SetAndRestoreValue<BfAstNode*> prevCustomAttribute(mCurMethodState->mEmitRefNode, customAttribute.mRef);
String entrySrc = src;
// if (mCurTypeInstance->mTypeDef->mEmitParent != NULL)
// entrySrc += "\n\n";
entrySrc += src;
entrySrc += ceEmitContext.mEmitData;
BfAstNode* refNode = customAttribute.mRef;
if (bodyNode != NULL)
{
refNode = bodyNode;
if (auto blockNode = BfNodeDynCast<BfBlock>(bodyNode))
if (blockNode->mOpenBrace != NULL)
refNode = blockNode->mOpenBrace;
}
BfCEParseContext ceParseContext = CEEmitParse(typeInstance, methodInstance->mMethodDef->mDeclaringType, entrySrc, refNode, BfCeTypeEmitSourceKind_Type);
auto emitParser = mCurTypeInstance->mTypeDef->mSource->ToParser();
bfReducer.mSource = emitParser;
bfReducer.mAlloc = emitParser->mAlloc;
bfReducer.HandleBlock(emitParser->mRootNode, false);
_Classify(emitParser);
Visit(emitParser->mRootNode);
FinishCEParseContext(customAttribute.mRef, typeInstance, &ceParseContext);
}
if (!ceEmitContext.mExitEmitData.IsEmpty())
{
String exitSrc;
if (mCurTypeInstance->mTypeDef->mEmitParent != NULL)
exitSrc += "\n\n";
exitSrc += src;
exitSrc += ceEmitContext.mExitEmitData;
BfAstNode* refNode = customAttribute.mRef;
if (bodyNode != NULL)
{
refNode = bodyNode;
if (auto blockNode = BfNodeDynCast<BfBlock>(bodyNode))
if (blockNode->mCloseBrace != NULL)
refNode = blockNode->mCloseBrace;
}
BfCEParseContext ceParseContext = CEEmitParse(typeInstance, methodInstance->mMethodDef->mDeclaringType, exitSrc, refNode, BfCeTypeEmitSourceKind_Type);
auto emitParser = mCurTypeInstance->mTypeDef->mSource->ToParser();
bfReducer.mSource = emitParser;
bfReducer.mAlloc = emitParser->mAlloc;
bfReducer.HandleBlock(emitParser->mRootNode, false);
_Classify(emitParser);
auto deferredBlock = AddDeferredBlock(emitParser->mRootNode, &mCurMethodState->mHeadScope);
deferredBlock->mEmitRefNode = customAttribute.mRef;
FinishCEParseContext(customAttribute.mRef, typeInstance, &ceParseContext);
}
}
mCompiler->mCeMachine->ReleaseContext(ceContext);
}
}
void BfModule::PopulateUsingFieldData(BfTypeInstance* typeInstance)
{
if (typeInstance->mTypeInfoEx == NULL)
typeInstance->mTypeInfoEx = new BfTypeInfoEx();
BfUsingFieldData* usingFieldData;
if (typeInstance->mTypeInfoEx->mUsingFieldData != NULL)
{
usingFieldData = typeInstance->mTypeInfoEx->mUsingFieldData;
Array<BfTypeInstance*> populatedTypes;
for (auto checkType : usingFieldData->mAwaitingPopulateSet)
{
if (checkType->mDefineState >= BfTypeDefineState_Defined)
populatedTypes.Add(checkType);
}
if (populatedTypes.IsEmpty())
return;
for (auto type : populatedTypes)
usingFieldData->mAwaitingPopulateSet.Remove(type);
usingFieldData->mEntries.Clear();
usingFieldData->mMethods.Clear();
}
else
{
usingFieldData = new BfUsingFieldData();
typeInstance->mTypeInfoEx->mUsingFieldData = usingFieldData;
}
HashSet<BfTypeInstance*> checkedTypeSet;
Array<BfUsingFieldData::MemberRef> memberRefs;
std::function<void(BfTypeInstance*, bool)> _CheckType = [&](BfTypeInstance* usingType, bool staticOnly)
{
if (!checkedTypeSet.Add(usingType))
return;
defer(
{
checkedTypeSet.Remove(usingType);
});
for (auto fieldDef : usingType->mTypeDef->mFields)
{
if ((staticOnly) && (!fieldDef->mIsStatic))
continue;
memberRefs.Add(BfUsingFieldData::MemberRef(usingType, fieldDef));
defer(
{
memberRefs.pop_back();
});
if (memberRefs.Count() > 1)
{
BfUsingFieldData::Entry* entry = NULL;
usingFieldData->mEntries.TryAdd(fieldDef->mName, NULL, &entry);
SizedArray<BfUsingFieldData::MemberRef, 1> lookup;
for (auto entry : memberRefs)
lookup.Add(entry);
entry->mLookups.Add(lookup);
}
if (fieldDef->mUsingProtection == BfProtection_Hidden)
continue;
if (usingType->mDefineState < BfTypeDefineState_Defined)
{
bool isPopulatingType = false;
auto checkTypeState = mContext->mCurTypeState;
while (checkTypeState != NULL)
{
if ((checkTypeState->mType == usingType) && (checkTypeState->mPopulateType >= BfPopulateType_Data))
{
isPopulatingType = true;
break;
}
checkTypeState = checkTypeState->mPrevState;
}
if (!isPopulatingType)
{
// We need to populate this type now
PopulateType(usingType, BfPopulateType_Data_Soft);
}
if (usingType->mDefineState < BfTypeDefineState_Defined)
typeInstance->mTypeInfoEx->mUsingFieldData->mAwaitingPopulateSet.Add(usingType);
}
auto fieldInstance = &usingType->mFieldInstances[fieldDef->mIdx];
auto fieldTypeInst = fieldInstance->mResolvedType->ToTypeInstance();
if (fieldTypeInst != NULL)
_CheckType(fieldTypeInst, fieldDef->mIsStatic);
}
for (auto propDef : usingType->mTypeDef->mProperties)
{
if ((staticOnly) && (!propDef->mIsStatic))
continue;
memberRefs.Add(BfUsingFieldData::MemberRef(usingType, propDef));
defer(
{
memberRefs.pop_back();
});
if (memberRefs.Count() > 1)
{
BfUsingFieldData::Entry* entry = NULL;
usingFieldData->mEntries.TryAdd(propDef->mName, NULL, &entry);
SizedArray<BfUsingFieldData::MemberRef, 1> lookup;
for (auto entry : memberRefs)
lookup.Add(entry);
entry->mLookups.Add(lookup);
}
if (propDef->mUsingProtection == BfProtection_Hidden)
continue;
if (usingType->mDefineState < BfTypeDefineState_Defined)
{
// We need to populate this type now
PopulateType(usingType);
}
BfType* propType = NULL;
for (auto methodDef : propDef->mMethods)
{
auto methodInstance = GetRawMethodInstance(usingType, methodDef);
if (methodInstance == NULL)
continue;
if (methodDef->mMethodType == BfMethodType_PropertyGetter)
{
propType = methodInstance->mReturnType;
break;
}
if (methodDef->mMethodType == BfMethodType_PropertySetter)
{
if (methodInstance->GetParamCount() > 0)
{
propType = methodInstance->GetParamType(0);
break;
}
}
}
if ((propType != NULL) && (propType->IsTypeInstance()))
_CheckType(propType->ToTypeInstance(), propDef->mIsStatic);
}
for (auto methodDef : usingType->mTypeDef->mMethods)
{
if ((staticOnly) && (!methodDef->mIsStatic))
continue;
//TODO: Support mixins as well
if (methodDef->mMethodType != BfMethodType_Normal)
continue;
// No auto methods
if (methodDef->mMethodDeclaration == NULL)
continue;
memberRefs.Add(BfUsingFieldData::MemberRef(usingType, methodDef));
defer(
{
memberRefs.pop_back();
});
if (memberRefs.Count() > 1)
{
BfUsingFieldData::Entry* entry = NULL;
usingFieldData->mMethods.TryAdd(methodDef->mName, NULL, &entry);
SizedArray<BfUsingFieldData::MemberRef, 1> lookup;
for (auto entry : memberRefs)
lookup.Add(entry);
entry->mLookups.Add(lookup);
}
}
};
_CheckType(typeInstance, false);
}
void BfModule::DoPopulateType_SetGenericDependencies(BfTypeInstance* genericTypeInstance)
{
SetAndRestoreValue<BfTypeInstance*> prevTypeInstance(mCurTypeInstance, genericTypeInstance);
SetAndRestoreValue<BfMethodInstance*> prevMethodInstance(mCurMethodInstance, NULL);
SetAndRestoreValue<BfMethodState*> prevMethodState(mCurMethodState, NULL);
// Add generic dependencies if needed
for (auto genericArgType : genericTypeInstance->mGenericTypeInfo->mTypeGenericArguments)
{
if (genericArgType->IsPrimitiveType())
genericArgType = GetWrappedStructType(genericArgType);
if (genericArgType != NULL)
{
AddDependency(genericArgType, genericTypeInstance, BfDependencyMap::DependencyFlag_TypeGenericArg);
BfLogSysM("Adding generic dependency of %p for type %p revision %d\n", genericArgType, genericTypeInstance, genericTypeInstance->mRevision);
#ifdef _DEBUG
// auto argDepType = genericArgType->ToDependedType();
// if (argDepType != NULL)
// {
// BfDependencyMap::DependencyEntry* depEntry = NULL;
// argDepType->mDependencyMap.mTypeSet.TryGetValue(genericTypeInstance, &depEntry);
// BF_ASSERT(depEntry != NULL);
// BF_ASSERT(depEntry->mRevision == genericTypeInstance->mRevision);
// BF_ASSERT((depEntry->mFlags & BfDependencyMap::DependencyFlag_TypeGenericArg) != 0);
// }
#endif
}
}
if ((genericTypeInstance->IsSpecializedType()) &&
(!genericTypeInstance->IsDelegateFromTypeRef()) &&
(!genericTypeInstance->IsFunctionFromTypeRef()))
{
// This ensures we rebuild the unspecialized type whenever the specialized type rebuilds. This is important
// for generic type binding
auto unspecializedTypeInstance = GetUnspecializedTypeInstance(genericTypeInstance);
BF_ASSERT(!unspecializedTypeInstance->IsUnspecializedTypeVariation());
mContext->mScratchModule->AddDependency(genericTypeInstance, unspecializedTypeInstance, BfDependencyMap::DependencyFlag_UnspecializedType);
}
}
void BfModule::DoPopulateType_TypeAlias(BfTypeAliasType* typeAlias)
{
SetAndRestoreValue<BfTypeInstance*> prevTypeInstance(mCurTypeInstance, typeAlias);
SetAndRestoreValue<BfMethodInstance*> prevMethodInstance(mCurMethodInstance, NULL);
SetAndRestoreValue<BfMethodState*> prevMethodState(mCurMethodState, NULL);
BF_ASSERT(mCurMethodInstance == NULL);
auto typeDef = typeAlias->mTypeDef;
auto typeAliasDecl = (BfTypeAliasDeclaration*)typeDef->mTypeDeclaration;
BfType* aliasToType = NULL;
if (typeAlias->mBaseType == NULL)
typeAlias->mBaseType = ResolveTypeDef(mCompiler->mValueTypeTypeDef)->ToTypeInstance();
if ((typeAlias->mGenericTypeInfo != NULL) && (!typeAlias->mGenericTypeInfo->mFinishedGenericParams))
FinishGenericParams(typeAlias);
BfTypeState typeState(mCurTypeInstance, mContext->mCurTypeState);
typeState.mPopulateType = BfPopulateType_Data;
typeState.mCurBaseTypeRef = typeAliasDecl->mAliasToType;
SetAndRestoreValue<BfTypeState*> prevTypeState(mContext->mCurTypeState, &typeState);
if (typeAlias->mDefineState < BfTypeDefineState_Declaring)
{
typeAlias->mDefineState = BfTypeDefineState_Declaring;
DoPopulateType_InitSearches(typeAlias);
}
typeAlias->mDefineState = BfTypeDefineState_ResolvingBaseType;
if (!CheckCircularDataError())
{
if (typeAliasDecl->mAliasToType != NULL)
aliasToType = ResolveTypeRef(typeAliasDecl->mAliasToType, BfPopulateType_IdentityNoRemapAlias,
(BfResolveTypeRefFlags)(BfResolveTypeRefFlag_AllowGenericParamConstValue | BfResolveTypeRefFlag_AllowImplicitConstExpr));
}
BfLogSysM("DoPopulateType_TypeAlias %p %s = %p %s\n", typeAlias, TypeToString(typeAlias).c_str(), aliasToType, (aliasToType != NULL) ? TypeToString(aliasToType).c_str() : NULL);
if (aliasToType != NULL)
{
if (aliasToType->IsConstExprValue())
{
Fail(StrFormat("Illegal alias to type '%s'", TypeToString(aliasToType).c_str()), typeAlias->mTypeDef->GetRefNode());
aliasToType = NULL;
}
}
if (aliasToType != NULL)
{
AddDependency(aliasToType, typeAlias, BfDependencyMap::DependencyFlag_DerivedFrom);
}
else
mContext->mFailTypes.TryAdd(typeAlias, BfFailKind_Normal);
if (typeAlias->mTypeFailed)
aliasToType = NULL;
if ((typeAlias->mAliasToType != NULL) && (typeAlias->mAliasToType != aliasToType) && (!typeAlias->mDependencyMap.IsEmpty()))
mContext->QueueMidCompileRebuildDependentTypes(typeAlias, "type alias remapped");
typeAlias->mAliasToType = aliasToType;
if (aliasToType != NULL)
{
typeAlias->mSize = 0;
typeAlias->mAlign = 1;
typeAlias->mInstSize = 0;
typeAlias->mInstAlign = 1;
}
typeAlias->mDefineState = BfTypeDefineState_DefinedAndMethodsSlotted;
typeAlias->mRebuildFlags = BfTypeRebuildFlag_None;
if ((typeAlias->mCustomAttributes == NULL) && (typeDef->mTypeDeclaration != NULL) && (typeDef->mTypeDeclaration->mAttributes != NULL))
typeAlias->mCustomAttributes = GetCustomAttributes(typeDef->mTypeDeclaration->mAttributes, BfAttributeTargets_Alias);
if (typeAlias->mGenericTypeInfo != NULL)
{
DoPopulateType_SetGenericDependencies(typeAlias);
}
}
void BfModule::DoPopulateType_InitSearches(BfTypeInstance* typeInstance)
{
auto typeDef = typeInstance->mTypeDef;
auto _AddStaticSearch = [&](BfTypeDef* typeDef)
{
if (!typeDef->mStaticSearch.IsEmpty())
{
BfStaticSearch* staticSearch;
if (typeInstance->mStaticSearchMap.TryAdd(typeDef, NULL, &staticSearch))
{
SetAndRestoreValue<BfTypeDef*> prevTypeDef(mContext->mCurTypeState->mCurTypeDef, typeDef);
for (auto typeRef : typeDef->mStaticSearch)
{
auto staticType = ResolveTypeRef(typeRef, NULL, BfPopulateType_Identity);
if (staticType != NULL)
{
auto staticTypeInst = staticType->ToTypeInstance();
if (staticTypeInst == NULL)
{
Fail(StrFormat("Type '%s' cannot be used in a 'using static' declaration", TypeToString(staticType).c_str()), typeRef);
}
else
{
staticSearch->mStaticTypes.Add(staticTypeInst);
AddDependency(staticTypeInst, typeInstance, BfDependencyMap::DependencyFlag_StaticValue);
}
}
}
}
}
if (!typeDef->mInternalAccessSet.IsEmpty())
{
BfInternalAccessSet* internalAccessSet;
BF_ASSERT(!typeDef->IsEmitted());
if (typeInstance->mInternalAccessMap.TryAdd(typeDef, NULL, &internalAccessSet))
{
for (auto typeRef : typeDef->mInternalAccessSet)
{
if ((typeRef->IsA<BfNamedTypeReference>()) ||
(typeRef->IsA<BfQualifiedTypeReference>()))
{
String checkNamespaceStr;
typeRef->ToString(checkNamespaceStr);
BfAtomCompositeT<16> checkNamespace;
if (mSystem->ParseAtomComposite(checkNamespaceStr, checkNamespace))
{
if (mSystem->ContainsNamespace(checkNamespace, typeDef->mProject))
{
mSystem->RefAtomComposite(checkNamespace);
internalAccessSet->mNamespaces.Add(checkNamespace);
continue;
}
}
}
BfType* internalType = NULL;
if (auto genericTypeRef = BfNodeDynCast<BfGenericInstanceTypeRef>(typeRef))
internalType = mContext->mScratchModule->ResolveTypeRefAllowUnboundGenerics(typeRef, BfPopulateType_Identity);
else
internalType = ResolveTypeRef(typeRef, NULL, BfPopulateType_Identity);
if (internalType != NULL)
{
auto internalTypeInst = internalType->ToTypeInstance();
if (internalTypeInst == NULL)
{
Fail(StrFormat("Type '%s' cannot be used in a 'using internal' declaration", TypeToString(internalType).c_str()), typeRef);
}
else
{
internalAccessSet->mTypes.Add(internalTypeInst);
AddDependency(internalTypeInst, typeInstance, BfDependencyMap::DependencyFlag_StaticValue);
}
}
}
}
}
};
if (typeDef->mIsCombinedPartial)
{
for (auto partialTypeDef : typeDef->mPartials)
_AddStaticSearch(partialTypeDef);
}
else
_AddStaticSearch(typeDef);
}
void BfModule::DoPopulateType_FinishEnum(BfTypeInstance* typeInstance, bool underlyingTypeDeferred, HashContext* dataMemberHashCtx, BfType* unionInnerType)
{
if (typeInstance->IsEnum())
{
int64 min = 0;
int64 max = 0;
bool isFirst = true;
if (typeInstance->mTypeInfoEx == NULL)
typeInstance->mTypeInfoEx = new BfTypeInfoEx();
bool isAllInt64 = true;
for (auto& fieldInstanceRef : typeInstance->mFieldInstances)
{
auto fieldInstance = &fieldInstanceRef;
auto fieldDef = fieldInstance->GetFieldDef();
if (fieldDef != NULL)
{
if ((fieldInstance->mConstIdx == -1) || (fieldInstance->mResolvedType != typeInstance))
continue;
auto constant = typeInstance->mConstHolder->GetConstantById(fieldInstance->mConstIdx);
if (constant->mTypeCode != BfTypeCode_Int64)
isAllInt64 = false;
if (isFirst)
{
min = constant->mInt64;
max = constant->mInt64;
isFirst = false;
}
else
{
min = BF_MIN(constant->mInt64, min);
max = BF_MAX(constant->mInt64, max);
}
}
}
typeInstance->mTypeInfoEx->mMinValue = min;
typeInstance->mTypeInfoEx->mMaxValue = max;
if (underlyingTypeDeferred)
{
BfTypeCode typeCode;
if ((min >= -0x80) && (max <= 0x7F))
typeCode = BfTypeCode_Int8;
else if ((min >= 0) && (max <= 0xFF))
typeCode = BfTypeCode_UInt8;
else if ((min >= -0x8000) && (max <= 0x7FFF))
typeCode = BfTypeCode_Int16;
else if ((min >= 0) && (max <= 0xFFFF))
typeCode = BfTypeCode_UInt16;
else if ((min >= -0x80000000LL) && (max <= 0x7FFFFFFF))
typeCode = BfTypeCode_Int32;
else if ((min >= 0) && (max <= 0xFFFFFFFFLL))
typeCode = BfTypeCode_UInt32;
else
typeCode = BfTypeCode_Int64;
if (typeInstance->mIsCRepr)
typeCode = BfTypeCode_Int32;
if ((typeCode != BfTypeCode_Int64) || (!isAllInt64))
{
for (auto& fieldInstanceRef : typeInstance->mFieldInstances)
{
auto fieldInstance = &fieldInstanceRef;
if ((fieldInstance->mConstIdx == -1) || (fieldInstance->mResolvedType != typeInstance))
continue;
auto constant = typeInstance->mConstHolder->GetConstantById(fieldInstance->mConstIdx);
if (constant->mTypeCode == typeCode)
continue;
BfIRValue newConstant = typeInstance->mConstHolder->CreateConst(typeCode, constant->mUInt64);
fieldInstance->mConstIdx = newConstant.mId;
}
}
BfType* underlyingType = GetPrimitiveType(typeCode);
auto fieldInstance = &typeInstance->mFieldInstances.back();
fieldInstance->mResolvedType = underlyingType;
fieldInstance->mDataSize = underlyingType->mSize;
typeInstance->mTypeInfoEx->mUnderlyingType = underlyingType;
typeInstance->mSize = underlyingType->mSize;
typeInstance->mAlign = underlyingType->mAlign;
typeInstance->mInstSize = underlyingType->mSize;
typeInstance->mInstAlign = underlyingType->mAlign;
typeInstance->mRebuildFlags = (BfTypeRebuildFlags)(typeInstance->mRebuildFlags & ~BfTypeRebuildFlag_UnderlyingTypeDeferred);
}
}
else
{
BF_ASSERT(!underlyingTypeDeferred);
}
if ((typeInstance->IsPayloadEnum()) && (!typeInstance->IsBoxed()))
{
typeInstance->mAlign = unionInnerType->mAlign;
int lastTagId = -1;
for (auto& fieldInstanceRef : typeInstance->mFieldInstances)
{
auto fieldInstance = &fieldInstanceRef;
auto fieldDef = fieldInstance->GetFieldDef();
if ((fieldDef != NULL) && (fieldInstance->mDataIdx < 0))
{
BF_ASSERT(fieldInstance->mResolvedType->mAlign >= 1);
typeInstance->mAlign = BF_MAX(typeInstance->mAlign, fieldInstance->mResolvedType->mAlign);
lastTagId = -fieldInstance->mDataIdx - 1;
}
}
auto fieldInstance = &typeInstance->mFieldInstances.back();
//BF_ASSERT(fieldInstance->mResolvedType == NULL);
BfPrimitiveType* discriminatorType;
if (lastTagId > 0x7FFFFFFF) // HOW?
discriminatorType = GetPrimitiveType(BfTypeCode_Int64);
else if (lastTagId > 0x7FFF)
discriminatorType = GetPrimitiveType(BfTypeCode_Int32);
else if (lastTagId > 0x7F)
discriminatorType = GetPrimitiveType(BfTypeCode_Int16);
else
discriminatorType = GetPrimitiveType(BfTypeCode_Int8);
fieldInstance->mResolvedType = discriminatorType;
fieldInstance->mDataOffset = unionInnerType->mSize;
fieldInstance->mDataIdx = 2; // 0 = base, 1 = payload, 2 = discriminator
if (typeInstance->mPacking == 0)
{
if ((fieldInstance->mDataOffset % discriminatorType->mAlign) != 0)
{
fieldInstance->mDataOffset = BF_ALIGN(fieldInstance->mDataOffset, discriminatorType->mAlign);
fieldInstance->mDataIdx++; // Add room for explicit padding
}
}
typeInstance->mAlign = BF_MAX(typeInstance->mAlign, discriminatorType->mAlign);
typeInstance->mSize = fieldInstance->mDataOffset + discriminatorType->mSize;
typeInstance->mInstSize = typeInstance->mSize;
typeInstance->mInstAlign = typeInstance->mAlign;
if (dataMemberHashCtx != NULL)
{
dataMemberHashCtx->Mixin(unionInnerType->mTypeId);
dataMemberHashCtx->Mixin(discriminatorType->mTypeId);
}
typeInstance->mMergedFieldDataCount = 1; // Track it as a single entry
}
}
void BfModule::DoPopulateType_CeCheckEnum(BfTypeInstance* typeInstance, bool underlyingTypeDeferred)
{
if (!typeInstance->IsEnum())
return;
if (!typeInstance->IsPayloadEnum())
return;
if ((typeInstance->mCeTypeInfo != NULL) && (typeInstance->mCeTypeInfo->mNext != NULL))
return;
BfType* unionInnerType = NULL;
if (typeInstance->mIsUnion)
{
SetAndRestoreValue<BfTypeState::ResolveKind> prevResolveKind(mContext->mCurTypeState->mResolveKind, BfTypeState::ResolveKind_UnionInnerType);
unionInnerType = typeInstance->GetUnionInnerType();
}
DoPopulateType_FinishEnum(typeInstance, underlyingTypeDeferred, NULL, unionInnerType);
}
void BfModule::DoPopulateType(BfType* resolvedTypeRef, BfPopulateType populateType)
{
if (populateType == BfPopulateType_Identity)
return;
if ((populateType <= BfPopulateType_Data) && (resolvedTypeRef->mDefineState >= BfTypeDefineState_Defined))
return;
auto typeInstance = resolvedTypeRef->ToTypeInstance();
BfTypeInstance* boxedUnderlyingTypeInstance = NULL;
if (typeInstance->IsBoxed())
{
auto underlyingType = typeInstance->GetUnderlyingType();
if (underlyingType->IsPrimitiveType())
boxedUnderlyingTypeInstance = GetPrimitiveStructType(((BfPrimitiveType*)underlyingType)->mTypeDef->mTypeCode);
else
boxedUnderlyingTypeInstance = underlyingType->ToTypeInstance();
typeInstance->mTypeDef = boxedUnderlyingTypeInstance->mTypeDef;
}
auto typeDef = typeInstance->mTypeDef;
BF_ASSERT((typeInstance->mTypeDef->mNextRevision == NULL) || (mCompiler->IsAutocomplete()));
// This is a special case where our base type has been rebuilt but we haven't
if ((typeInstance->mBaseTypeMayBeIncomplete) && (!typeInstance->mTypeIncomplete))
{
BfLogSysM("BaseTypeMayBeIncomplete processing. Type:%p -> Base:%p\n", typeInstance, typeInstance->mBaseType);
PopulateType(typeInstance->mBaseType, populateType);
if (!typeInstance->mBaseType->IsIncomplete())
typeInstance->mBaseTypeMayBeIncomplete = false;
if (!typeInstance->mTypeIncomplete)
return;
}
typeInstance->mBaseTypeMayBeIncomplete = false;
BF_ASSERT(mIsModuleMutable);
// Don't do type instance method processing for an autocomplete pass - this will get handled later on during
// the PopulateType worklist pass in the full resolver. We do need to handle the methods for delegates, though,
// since those can affect method declarations of other methods
// TODO: Investigate this "Delegate" claim
bool canDoMethodProcessing = ((mCompiler->mResolvePassData == NULL) || (mCompiler->mResolvePassData->mAutoComplete == NULL) /*|| (typeInstance->IsDelegate())*/);
if (populateType == BfPopulateType_Full_Force)
canDoMethodProcessing = true;
if (typeInstance->mResolvingConstField)
return;
// Partial population break out point
if ((populateType >= BfPopulateType_Identity) && (populateType <= BfPopulateType_IdentityNoRemapAlias))
return;
if ((populateType <= BfPopulateType_AllowStaticMethods) && (typeInstance->mDefineState >= BfTypeDefineState_HasInterfaces_Direct))
return;
// During CE init we need to avoid interface checking loops, so we only allow show direct interface declarations
if ((populateType == BfPopulateType_Interfaces_All) && (typeInstance->mDefineState >= Beefy::BfTypeDefineState_CETypeInit))
{
if ((typeInstance->mDefineState == Beefy::BfTypeDefineState_CEPostTypeInit) && (typeInstance->mCeTypeInfo != NULL) &&
(!typeInstance->mCeTypeInfo->mPendingInterfaces.IsEmpty()))
{
// We have finished CETypeInit and we have pending interfaces we need to apply
}
else
return;
}
if (!mCompiler->EnsureCeUnpaused(resolvedTypeRef))
{
// We need to avoid comptime reentry when the ceDebugger is paused
BfLogSysM("DoPopulateType %p bailing due to IsCePaused\n", resolvedTypeRef);
return;
}
auto _CheckTypeDone = [&]()
{
if (typeInstance->mNeedsMethodProcessing)
{
BF_ASSERT(typeInstance->mDefineState >= BfTypeDefineState_Defined);
if ((canDoMethodProcessing) && (populateType >= BfPopulateType_DataAndMethods))
DoTypeInstanceMethodProcessing(typeInstance);
return true;
}
if (typeInstance->mDefineState == BfTypeDefineState_DefinedAndMethodsSlotted)
return true;
return false;
};
if (_CheckTypeDone())
return;
if (!resolvedTypeRef->IsValueType())
{
resolvedTypeRef->mSize = typeInstance->mAlign = mSystem->mPtrSize;
}
BF_ASSERT((typeInstance->mMethodInstanceGroups.size() == 0) || (typeInstance->mMethodInstanceGroups.size() == typeDef->mMethods.size()) || (typeInstance->mCeTypeInfo != NULL) || (typeInstance->IsBoxed()));
typeInstance->mMethodInstanceGroups.Resize(typeDef->mMethods.size());
for (int i = 0; i < (int)typeInstance->mMethodInstanceGroups.size(); i++)
{
typeInstance->mMethodInstanceGroups[i].mOwner = typeInstance;
typeInstance->mMethodInstanceGroups[i].mMethodIdx = i;
}
AutoDisallowYield disableYield(mSystem);
SetAndRestoreValue<BfTypeInstance*> prevTypeInstance(mCurTypeInstance, typeInstance);
SetAndRestoreValue<BfMethodInstance*> prevMethodInstance(mCurMethodInstance, NULL);
SetAndRestoreValue<BfMethodState*> prevMethodState(mCurMethodState, NULL);
// WHY were we clearing these values?
//SetAndRestoreValue<bool> prevHadError(mHadBuildError, false);
//SetAndRestoreValue<bool> prevHadWarning(mHadBuildWarning, false);
BfTypeState typeState(mCurTypeInstance, mContext->mCurTypeState);
typeState.mPopulateType = populateType;
SetAndRestoreValue<BfTypeState*> prevTypeState(mContext->mCurTypeState, &typeState);
if (typeInstance->IsGenericTypeInstance())
{
auto genericTypeInst = (BfTypeInstance*)typeInstance;
if (!genericTypeInst->mGenericTypeInfo->mInitializedGenericParams)
InitGenericParams(resolvedTypeRef);
}
if (resolvedTypeRef->IsTypeAlias())
{
prevTypeState.Restore();
DoPopulateType_TypeAlias((BfTypeAliasType*)typeInstance);
typeInstance->mTypeIncomplete = false;
resolvedTypeRef->mRebuildFlags = BfTypeRebuildFlag_None;
resolvedTypeRef->mDefineState = BfTypeDefineState_DefinedAndMethodsSlotted;
return;
}
if (_CheckTypeDone())
return;
// Don't do TypeToString until down here. Otherwise we can infinitely loop on BuildGenericParams
bool isStruct = resolvedTypeRef->IsStruct();
bool reportErrors = true;
if ((mCompiler->mResolvePassData != NULL) && (mCompiler->mResolvePassData->mAutoComplete != NULL))
reportErrors = true;
// If we're not the defining context then we don't report errors for this type, but errors will still put the system
// into an errored state
SetAndRestoreValue<bool> prevReportErrors(mReportErrors, reportErrors);
if (typeInstance->mIsFinishingType)
{
if (typeInstance->mTypeFailed)
return;
}
if (!typeInstance->mTypeFailed)
{
if (populateType == BfPopulateType_Data_Soft)
{
if (CheckCircularDataError(false))
return;
}
CheckCircularDataError();
}
if (typeInstance->mDefineState < BfTypeDefineState_Declaring)
{
typeInstance->mDefineState = BfTypeDefineState_Declaring;
DoPopulateType_InitSearches(typeInstance);
}
//
{
BP_ZONE("DoPopulateType:CheckStack");
StackHelper stackHelper;
if (!stackHelper.CanStackExpand(128 * 1024))
{
if (!stackHelper.Execute([&]()
{
DoPopulateType(resolvedTypeRef, populateType);
}))
{
Fail("Stack exhausted in DoPopulateType", typeDef->GetRefNode());
}
return;
}
}
bool underlyingTypeDeferred = false;
BfType* underlyingType = NULL;
if (typeInstance->mBaseType != NULL)
{
if (typeInstance->IsTypedPrimitive())
underlyingType = typeInstance->GetUnderlyingType();
if ((typeInstance->mRebuildFlags & BfTypeRebuildFlag_UnderlyingTypeDeferred) != 0)
underlyingTypeDeferred = true;
}
if ((typeInstance->IsEnum()) && (underlyingType == NULL) && (!underlyingTypeDeferred))
{
bool hasPayloads = false;
for (auto fieldDef : typeDef->mFields)
{
if ((fieldDef->IsEnumCaseEntry()) && (fieldDef->mTypeRef != NULL))
{
hasPayloads = true;
break;
}
}
if (!hasPayloads)
{
bool hadType = false;
BfAstNode* deferredErrorNode = NULL;
const char* deferredError = NULL;
for (auto baseTypeRef : typeDef->mBaseTypes)
{
SetAndRestoreValue<BfTypeReference*> prevTypeRef(mContext->mCurTypeState->mCurBaseTypeRef, baseTypeRef);
SetAndRestoreValue<BfTypeDefineState> prevDefineState(typeInstance->mDefineState, BfTypeDefineState_ResolvingBaseType);
SetAndRestoreValue<bool> prevIgnoreError(mIgnoreErrors, true);
SetAndRestoreValue<bool> prevSkipTypeProtectionChecks(typeInstance->mSkipTypeProtectionChecks, true);
auto baseType = ResolveTypeRef(baseTypeRef, BfPopulateType_Declaration);
if (baseType != NULL)
{
if (baseType->IsIntegral())
{
if (!hadType)
{
hadType = true;
underlyingType = baseType;
}
else
{
deferredError = "Underlying enum type already specified";
deferredErrorNode = baseTypeRef;
}
}
else if (!baseType->IsInterface())
{
deferredError = "Invalid underlying enum type";
deferredErrorNode = baseTypeRef;
}
}
else
{
AssertErrorState();
TypeFailed(typeInstance);
}
}
if (deferredError != NULL)
Fail(deferredError, deferredErrorNode, true);
if (underlyingType == NULL)
{
underlyingType = GetPrimitiveType(BfTypeCode_Int64);
underlyingTypeDeferred = true;
}
}
}
// else if (typeInstance->IsFunction())
// {
// underlyingType = GetPrimitiveType(BfTypeCode_NullPtr);
// }
else if (((typeInstance->IsStruct()) || (typeInstance->IsTypedPrimitive())) &&
(!typeInstance->mTypeFailed))
{
for (auto baseTypeRef : typeDef->mBaseTypes)
{
auto declTypeDef = typeDef;
if (typeDef->mIsCombinedPartial)
declTypeDef = typeDef->mPartials.front();
SetAndRestoreValue<BfTypeDef*> prevTypeDef(mContext->mCurTypeState->mCurTypeDef, declTypeDef);
SetAndRestoreValue<BfTypeDefineState> prevDefineState(typeInstance->mDefineState, BfTypeDefineState_ResolvingBaseType);
SetAndRestoreValue<BfTypeReference*> prevTypeRef(mContext->mCurTypeState->mCurBaseTypeRef, baseTypeRef);
// We ignore errors here to avoid double-errors for type lookups, but this is where data cycles are detected
// but that type of error supersedes the mIgnoreErrors setting
SetAndRestoreValue<bool> prevIgnoreError(mIgnoreErrors, true);
// Temporarily allow us to derive from private classes, to avoid infinite loop from TypeIsSubTypeOf
SetAndRestoreValue<bool> prevSkipTypeProtectionChecks(typeInstance->mSkipTypeProtectionChecks, true);
auto baseType = ResolveTypeRef(baseTypeRef, BfPopulateType_Declaration);
if (baseType != NULL)
{
if (baseType->IsVar())
{
// Ignore
}
else if (baseType->IsPrimitiveType())
{
underlyingType = baseType;
}
else if (baseType->IsTypedPrimitive())
{
//PopulateType(baseType, true);
underlyingType = baseType->GetUnderlyingType();
BF_ASSERT(underlyingType != NULL);
}
}
else
{
AssertErrorState();
TypeFailed(typeInstance);
}
if (_CheckTypeDone())
{
prevDefineState.CancelRestore();
return;
}
}
// Incase we had re-entry, work this through ourselves again here
typeInstance->mIsTypedPrimitive = false;
}
if (underlyingTypeDeferred)
typeInstance->mRebuildFlags = (BfTypeRebuildFlags)(typeInstance->mRebuildFlags | BfTypeRebuildFlag_UnderlyingTypeDeferred);
typeInstance->mIsTypedPrimitive = underlyingType != NULL;
int wantFieldCount = (int)typeDef->mFields.size() + (((underlyingType != NULL) || (typeInstance->IsPayloadEnum())) ? 1 : 0);
if ((int)typeInstance->mFieldInstances.size() < wantFieldCount)
{
// Closures don't include the enclosed fields on their first pass through PopulateType, and they have no typeDef of their own
// so we need to take care not to truncate their fieldInstance vector here (thus the 'wantFieldCount' check above)
typeInstance->mFieldInstances.Resize(wantFieldCount);
}
if (underlyingType != NULL)
{
auto fieldInstance = &typeInstance->mFieldInstances.back();
fieldInstance->mDataOffset = 0;
fieldInstance->mDataSize = underlyingType->mSize;
fieldInstance->mOwner = typeInstance;
fieldInstance->mResolvedType = underlyingType;
typeInstance->mSize = underlyingType->mSize;
typeInstance->mAlign = underlyingType->mAlign;
typeInstance->mInstSize = underlyingType->mSize;
typeInstance->mInstAlign = underlyingType->mAlign;
typeInstance->mHasPackingHoles = underlyingType->HasPackingHoles();
}
// Partial population break out point
if (typeInstance->mDefineState < BfTypeDefineState_Declared)
typeInstance->mDefineState = BfTypeDefineState_Declared;
if (populateType == BfPopulateType_Declaration)
{
return;
}
if ((!mCompiler->mIsResolveOnly) && (!typeInstance->HasBeenInstantiated()))
{
for (auto& dep : typeInstance->mDependencyMap)
{
auto& depEntry = dep.mValue;
if ((depEntry.mFlags & BfDependencyMap::DependencyFlag_Allocates) != 0)
{
auto depType = dep.mKey;
if (depType->mRevision == depEntry.mRevision)
{
BfLogSysM("Setting mHasBeenInstantiated for %p instantiated from %p\n", typeInstance, depType);
typeInstance->mHasBeenInstantiated = true;
}
}
}
}
//BfLogSysM("Setting revision. Type: %p Revision: %d\n", typeInstance, mRevision);
//typeInstance->mRevision = mRevision;
// Temporarily allow us to derive from private classes, to avoid infinite loop from TypeIsSubTypeOf
SetAndRestoreValue<bool> prevSkipTypeProtectionChecks(typeInstance->mSkipTypeProtectionChecks, true);
if ((typeDef->mOuterType != NULL) && (typeDef->mOuterType->IsGlobalsContainer()))
{
if ((typeDef->mTypeDeclaration != NULL) && (typeDef->mTypeDeclaration->mTypeNode != NULL))
Fail("Global blocks cannot contain type declarations", typeDef->mTypeDeclaration->mTypeNode);
}
/// Create DI data
SizedArray<BfIRType, 8> llvmFieldTypes;
int curFieldDataIdx = 0;
typeInstance->mBaseType = NULL;
BfTypeInstance* defaultBaseTypeInst = NULL;
// Find base type
BfType* baseType = NULL;
struct BfInterfaceDecl
{
BfTypeInstance* mIFaceTypeInst;
BfTypeReference* mTypeRef;
BfTypeDef* mDeclaringType;
};
SizedArray<BfInterfaceDecl, 8> interfaces;
HashSet<BfTypeInstance*> ifaceSet;
typeInstance->mRebuildFlags = (BfTypeRebuildFlags)(typeInstance->mRebuildFlags | BfTypeRebuildFlag_ResolvingBase);
if (resolvedTypeRef == mContext->mBfObjectType)
{
baseType = NULL;
}
else if (typeInstance->IsEnum())
{
if (mCompiler->mEnumTypeDef == NULL)
{
Fail("Enum type required");
TypeFailed(typeInstance);
}
else
baseType = ResolveTypeDef(mCompiler->mEnumTypeDef)->ToTypeInstance();
}
else if (resolvedTypeRef->IsObject())
baseType = mContext->mBfObjectType;
else if (resolvedTypeRef->IsPointer())
{
baseType = ResolveTypeDef(mCompiler->mPointerTTypeDef, BfPopulateType_Data);
}
else if ((resolvedTypeRef->IsValueType()) && (typeDef != mCompiler->mValueTypeTypeDef))
{
baseType = ResolveTypeDef(mCompiler->mValueTypeTypeDef, BfPopulateType_Data)->ToTypeInstance();
}
if (baseType != NULL)
defaultBaseTypeInst = baseType->ToTypeInstance();
struct _DeferredValidate
{
BfTypeReference* mTypeRef;
BfTypeInstance* mGenericType;
bool mIgnoreErrors;
};
Array<_DeferredValidate> deferredTypeValidateList;
bool wantPopulateInterfaces = false;
BfTypeReference* baseTypeRef = NULL;
if ((typeDef->mIsDelegate) && (!typeInstance->IsClosure()))
{
if (mCompiler->mDelegateTypeDef == NULL)
{
Fail("Delegate type required");
TypeFailed(typeInstance);
}
else
baseType = ResolveTypeDef(mCompiler->mDelegateTypeDef)->ToTypeInstance();
}
else if (typeDef->mIsFunction)
{
if (mCompiler->mFunctionTypeDef == NULL)
{
Fail("Function type required");
TypeFailed(typeInstance);
}
else
baseType = ResolveTypeDef(mCompiler->mFunctionTypeDef)->ToTypeInstance();
}
else
{
for (auto checkTypeRef : typeDef->mBaseTypes)
{
if ((typeInstance->mDefineState == BfTypeDefineState_ResolvingBaseType) && (typeInstance->mTypeFailed))
break;
auto declTypeDef = typeDef;
if (typeDef->mIsCombinedPartial)
declTypeDef = typeDef->mPartials.front();
SetAndRestoreValue<BfTypeDef*> prevTypeDef(mContext->mCurTypeState->mCurTypeDef, declTypeDef);
SetAndRestoreValue<BfTypeReference*> prevTypeRef(mContext->mCurTypeState->mCurBaseTypeRef, checkTypeRef);
SetAndRestoreValue<BfTypeDefineState> prevDefineState(typeInstance->mDefineState, BfTypeDefineState_ResolvingBaseType);
bool populateBase = !typeInstance->mTypeFailed;
BfType* checkType = checkType = ResolveTypeRef(checkTypeRef, BfPopulateType_Declaration);
if ((checkType != NULL) && (!checkType->IsInterface()) && (populateBase))
{
SetAndRestoreValue<BfTypeInstance*> prevBaseType(mContext->mCurTypeState->mCurBaseType, checkType->ToTypeInstance());
PopulateType(checkType, (populateType <= BfPopulateType_BaseType) ? BfPopulateType_BaseType : BfPopulateType_Data);
}
if (typeInstance->mDefineState >= BfTypeDefineState_Defined)
{
prevDefineState.CancelRestore();
return;
}
if (checkType != NULL)
{
if (auto genericTypeInst = checkType->ToGenericTypeInstance())
{
// Specialized type variations don't need to validate their constraints
if (!typeInstance->IsUnspecializedTypeVariation())
deferredTypeValidateList.Add({ checkTypeRef, genericTypeInst, false });
}
auto checkTypeInst = checkType->ToTypeInstance();
bool canDeriveFrom = checkTypeInst != NULL;
if ((typeInstance->IsStruct()) || (typeInstance->IsTypedPrimitive()) || (typeInstance->IsBoxed()))
canDeriveFrom |= checkType->IsPrimitiveType();
if ((typeInstance->IsEnum()) && (!checkType->IsInterface()))
{
if (typeInstance->IsTypedPrimitive())
continue;
if (checkType->IsPrimitiveType())
Fail(StrFormat("Enum '%s' cannot be specified as '%s' because it has a payload",
TypeToString(typeInstance).c_str(), TypeToString(checkType).c_str()),
checkTypeRef, true);
else
Fail("Enums cannot derive from other types", checkTypeRef);
continue;
}
if ((checkTypeInst != NULL) && (checkTypeInst->mTypeFailed))
{
// To keep circular references from breaking type invariants (ie: base type loops)
continue;
}
if (!canDeriveFrom)
{
Fail("Cannot derive from this type", checkTypeRef);
continue;
}
if (checkType->IsVar())
{
// This can't explicitly be specified, but can occur from comptime
continue;
}
if (checkType->IsInterface())
{
auto ifaceInst = checkType->ToTypeInstance();
if (ifaceSet.Add(ifaceInst))
{
// Not base type
BfInterfaceDecl ifaceDecl;
ifaceDecl.mIFaceTypeInst = ifaceInst;
ifaceDecl.mTypeRef = checkTypeRef;
ifaceDecl.mDeclaringType = typeDef->GetDefinition();
interfaces.push_back(ifaceDecl);
}
else
{
Fail(StrFormat("Interface '%s' is already specified", TypeToString(checkType).c_str()), checkTypeRef);
}
}
else if (resolvedTypeRef == mContext->mBfObjectType)
{
Fail(StrFormat("Type '%s' cannot define a base type", TypeToString(baseType).c_str()), checkTypeRef);
}
else
{
if (baseTypeRef != NULL)
{
Fail(StrFormat("Base type '%s' already declared", TypeToString(baseType).c_str()), checkTypeRef);
}
else
{
baseTypeRef = checkTypeRef;
if (checkTypeInst != NULL)
{
auto checkOuter = checkTypeInst;
while (checkOuter != NULL)
{
if (checkOuter == typeInstance)
{
Fail(StrFormat("Type '%s' cannot be declare inner type '%s' as a base type",
TypeToString(typeInstance).c_str(),
TypeToString(checkTypeInst).c_str()), checkTypeRef, true);
checkTypeInst = NULL;
break;
}
checkOuter = GetOuterType(checkOuter);
}
}
if (checkTypeInst != NULL)
{
baseType = checkTypeInst;
}
}
}
if (_CheckTypeDone())
{
prevDefineState.CancelRestore();
return;
}
}
else
{
AssertErrorState();
// Why did we go around setting mTypeFailed on all these things?
//typeInstance->mTypeFailed = true;
}
}
wantPopulateInterfaces = true;
}
// Handle CE interfaces
{
auto checkTypeInst = typeInstance;
if (boxedUnderlyingTypeInstance != NULL)
checkTypeInst = boxedUnderlyingTypeInstance;
if ((checkTypeInst->mCeTypeInfo != NULL) && (!checkTypeInst->mCeTypeInfo->mPendingInterfaces.IsEmpty()))
{
for (auto ifaceTypeId : checkTypeInst->mCeTypeInfo->mPendingInterfaces)
{
auto ifaceType = mContext->mTypes[ifaceTypeId];
if ((ifaceType == NULL) || (!ifaceType->IsInterface()))
continue;
auto ifaceInst = ifaceType->ToTypeInstance();
if (ifaceSet.Add(ifaceInst))
{
// Not base type
BfInterfaceDecl ifaceDecl;
ifaceDecl.mIFaceTypeInst = ifaceInst;
ifaceDecl.mTypeRef = NULL;
ifaceDecl.mDeclaringType = typeDef->GetDefinition();
interfaces.Add(ifaceDecl);
}
}
}
}
if (_CheckTypeDone())
return;
if (resolvedTypeRef->IsBoxed())
{
BfBoxedType* boxedType = (BfBoxedType*)resolvedTypeRef;
if ((baseType != NULL) && (baseType->IsStruct()))
{
BfType* modifiedBaseType = baseType;
if (boxedType->IsBoxedStructPtr())
modifiedBaseType = CreatePointerType(modifiedBaseType);
boxedType->mBoxedBaseType = CreateBoxedType(modifiedBaseType);
PopulateType(boxedType->mBoxedBaseType);
// Use derivedFrom for both the boxed base type and the unboxed type
AddDependency(boxedType->mBoxedBaseType, typeInstance, BfDependencyMap::DependencyFlag_DerivedFrom);
}
AddDependency(boxedType->mElementType, typeInstance, BfDependencyMap::DependencyFlag_ValueTypeMemberData);
baseType = mContext->mBfObjectType;
}
BfTypeInstance* baseTypeInst = NULL;
if (baseType != NULL)
{
baseTypeInst = baseType->ToTypeInstance();
}
if (typeInstance->mBaseType != NULL)
{
BF_ASSERT(typeInstance->mBaseType == baseTypeInst);
}
if (auto genericTypeInst = typeInstance->ToGenericTypeInstance())
{
if ((genericTypeInst->IsSpecializedType()) && (!genericTypeInst->mGenericTypeInfo->mValidatedGenericConstraints) && (!typeInstance->IsBoxed()))
{
deferredTypeValidateList.Add({ NULL, genericTypeInst, true });
}
}
if (!typeInstance->IsBoxed())
{
BfType* outerType = GetOuterType(typeInstance);
if (outerType != NULL)
{
PopulateType(outerType, BfPopulateType_Identity);
AddDependency(outerType, typeInstance, BfDependencyMap::DependencyFlag_OuterType);
}
}
if ((typeInstance->IsInterface()) && (baseTypeInst != NULL))
{
Fail("Interfaces cannot declare base types", baseTypeRef, true);
baseTypeInst = NULL;
}
if ((baseTypeInst != NULL) && (typeInstance->mBaseType == NULL))
{
if (typeInstance->mTypeFailed)
{
if (baseTypeInst->IsDataIncomplete())
{
if (baseTypeInst->IsStruct())
baseTypeInst = ResolveTypeDef(mCompiler->mValueTypeTypeDef)->ToTypeInstance();
else if (baseTypeInst->IsObject())
baseTypeInst = ResolveTypeDef(mCompiler->mBfObjectTypeDef)->ToTypeInstance();
}
}
PopulateType(baseTypeInst, BfPopulateType_Data);
typeInstance->mBaseTypeMayBeIncomplete = false;
typeInstance->mMergedFieldDataCount = baseTypeInst->mMergedFieldDataCount;
if ((resolvedTypeRef->IsObject()) && (!baseTypeInst->IsObject()))
{
Fail("Class can only derive from another class", baseTypeRef, true);
baseTypeInst = defaultBaseTypeInst;
typeInstance->mBaseType = baseTypeInst;
}
else if ((resolvedTypeRef->IsStruct()) && (!baseTypeInst->IsValueType()))
{
Fail("Struct can only derive from another struct", baseTypeRef, true);
baseTypeInst = defaultBaseTypeInst;
typeInstance->mBaseType = baseTypeInst;
}
if (!typeInstance->IsIncomplete())
{
// Re-entry may cause this type to be completed already
return;
}
//BfLogSysM("Adding DerivedFrom dependency. Used:%p Using:%p\n", baseType, typeInstance);
auto checkBaseType = baseTypeInst;
while (checkBaseType != NULL)
{
// Add 'DerivedFrom' dependency all the way up the inheritance chain
AddDependency(checkBaseType, typeInstance, BfDependencyMap::DependencyFlag_DerivedFrom);
checkBaseType = checkBaseType->mBaseType;
}
typeInstance->mBaseType = baseTypeInst;
typeInstance->mWantsGCMarking = baseTypeInst->mWantsGCMarking;
typeInstance->mInheritDepth = baseTypeInst->mInheritDepth + 1;
typeInstance->mHasParameterizedBase = baseTypeInst->mHasParameterizedBase;
if ((baseTypeInst->IsArray()) || (baseTypeInst->IsSizedArray()) || (baseTypeInst->IsGenericTypeInstance()))
typeInstance->mHasParameterizedBase = true;
if (underlyingType == NULL)
{
typeInstance->mInstSize = baseTypeInst->mInstSize;
typeInstance->mInstAlign = baseTypeInst->mInstAlign;
typeInstance->mAlign = baseTypeInst->mAlign;
typeInstance->mSize = baseTypeInst->mSize;
typeInstance->mHasPackingHoles = baseTypeInst->mHasPackingHoles;
if (baseTypeInst->mIsTypedPrimitive)
typeInstance->mIsTypedPrimitive = true;
}
}
typeInstance->mRebuildFlags = (BfTypeRebuildFlags)(typeInstance->mRebuildFlags & ~BfTypeRebuildFlag_ResolvingBase);
if (populateType <= BfPopulateType_BaseType)
return;
if (typeInstance->IsGenericTypeInstance())
{
auto genericTypeInst = (BfTypeInstance*)typeInstance;
// if (!genericTypeInst->mGenericTypeInfo->mInitializedGenericParams)
// InitGenericParams(resolvedTypeRef);
if (!genericTypeInst->mGenericTypeInfo->mFinishedGenericParams)
FinishGenericParams(resolvedTypeRef);
}
if (wantPopulateInterfaces)
{
for (auto partialTypeDef : typeDef->mPartials)
{
if (!typeInstance->IsTypeMemberIncluded(partialTypeDef))
continue;
if (partialTypeDef->mTypeDeclaration == typeInstance->mTypeDef->mTypeDeclaration)
continue;
for (auto checkTypeRef : partialTypeDef->mBaseTypes)
{
SetAndRestoreValue<BfTypeReference*> prevTypeRef(mContext->mCurTypeState->mCurBaseTypeRef, checkTypeRef);
SetAndRestoreValue<BfTypeDef*> prevTypeDef(mContext->mCurTypeState->mCurTypeDef, partialTypeDef);
bool populateBase = !typeInstance->mTypeFailed;
auto checkType = ResolveTypeRef(checkTypeRef, BfPopulateType_Declaration);
if (checkType != NULL)
{
if (checkType->IsInterface())
{
BfInterfaceDecl ifaceDecl;
ifaceDecl.mIFaceTypeInst = checkType->ToTypeInstance();
ifaceDecl.mTypeRef = checkTypeRef;
ifaceDecl.mDeclaringType = partialTypeDef;
interfaces.push_back(ifaceDecl);
}
else
{
Fail(StrFormat("Extensions can only specify new interfaces, type '%s' is not a valid ", TypeToString(checkType).c_str()), checkTypeRef);
}
}
}
}
}
if ((typeInstance->mBaseType != NULL) && (!typeInstance->IsTypedPrimitive()))
{
curFieldDataIdx++;
}
if (!interfaces.empty())
{
for (int iFaceIdx = 0; iFaceIdx < (int)interfaces.size(); iFaceIdx++)
{
auto checkInterface = interfaces[iFaceIdx].mIFaceTypeInst;
SetAndRestoreValue<BfTypeDef*> prevTypeDef(mContext->mCurTypeState->mCurTypeDef, interfaces[iFaceIdx].mDeclaringType);
SetAndRestoreValue<BfTypeReference*> prevTypeRef(mContext->mCurTypeState->mCurBaseTypeRef, interfaces[iFaceIdx].mTypeRef);
PopulateType(checkInterface, BfPopulateType_Data);
BfTypeInterfaceEntry* found = NULL;
bool foundExact = false;
for (auto& typeInterfaceInst : typeInstance->mInterfaces)
{
if (typeInterfaceInst.mInterfaceType == checkInterface)
{
if (typeInterfaceInst.mDeclaringType == interfaces[iFaceIdx].mDeclaringType)
{
foundExact = true;
break;
}
found = &typeInterfaceInst;
}
}
if (foundExact)
continue;
BfTypeInterfaceEntry typeInterfaceInst;
typeInterfaceInst.mDeclaringType = interfaces[iFaceIdx].mDeclaringType;
typeInterfaceInst.mInterfaceType = checkInterface;
typeInterfaceInst.mStartInterfaceTableIdx = -1;
typeInterfaceInst.mStartVirtualIdx = -1;
typeInterfaceInst.mIsRedeclared = false;
typeInstance->mInterfaces.push_back(typeInterfaceInst);
AddDependency(checkInterface, typeInstance, BfDependencyMap::DependencyFlag_ImplementsInterface);
// Interfaces can list other interfaces in their declaration, so pull those in too
for (auto depIFace : checkInterface->mInterfaces)
{
auto depIFaceEntry = interfaces[iFaceIdx];
depIFaceEntry.mIFaceTypeInst = depIFace.mInterfaceType;
interfaces.push_back(depIFaceEntry);
}
}
if (typeInstance->mTypeFailed)
{
// Circular references in interfaces - just clear them all out
typeInstance->mInterfaces.Clear();
interfaces.Clear();
}
if (_CheckTypeDone())
return;
}
if (mCompiler->mOptions.mAllowHotSwapping)
{
if (typeInstance->mDefineState < BfTypeDefineState_HasInterfaces_Direct)
{
if (typeInstance->mHotTypeData == NULL)
{
typeInstance->mHotTypeData = new BfHotTypeData();
BfLogSysM("Created HotTypeData %p created for type %p in DoPopulateType\n", typeInstance->mHotTypeData, typeInstance);
}
// Clear any unused versions (if we have errors, etc)
if (mCompiler->mHotState != NULL)
typeInstance->mHotTypeData->ClearVersionsAfter(mCompiler->mHotState->mCommittedHotCompileIdx);
else
BF_ASSERT(typeInstance->mHotTypeData->mTypeVersions.IsEmpty()); // We should have created a new HotTypeData when rebuilding the type
BfHotTypeVersion* hotTypeVersion = new BfHotTypeVersion();
hotTypeVersion->mTypeId = typeInstance->mTypeId;
hotTypeVersion->mDeclHotCompileIdx = mCompiler->mOptions.mHotCompileIdx;
if (mCompiler->IsHotCompile())
hotTypeVersion->mCommittedHotCompileIdx = -1;
else
hotTypeVersion->mCommittedHotCompileIdx = 0;
hotTypeVersion->mRefCount++;
typeInstance->mHotTypeData->mTypeVersions.Add(hotTypeVersion);
BfLogSysM("BfHotTypeVersion %p created for type %p\n", hotTypeVersion, typeInstance);
}
auto hotTypeVersion = typeInstance->mHotTypeData->mTypeVersions.back();
if (typeInstance->mBaseType != NULL)
{
if (typeInstance->mBaseType->mHotTypeData != NULL)
hotTypeVersion->mBaseType = typeInstance->mBaseType->mHotTypeData->GetLatestVersion();
else if (populateType >= BfPopulateType_Interfaces_All)
{
AssertErrorState();
}
}
}
BF_ASSERT(!typeInstance->mNeedsMethodProcessing);
if (typeInstance->mDefineState < BfTypeDefineState_HasInterfaces_Direct)
typeInstance->mDefineState = BfTypeDefineState_HasInterfaces_Direct;
for (auto& validateEntry : deferredTypeValidateList)
{
SetAndRestoreValue<BfTypeReference*> prevAttributeTypeRef(typeState.mCurAttributeTypeRef, validateEntry.mTypeRef);
SetAndRestoreValue<bool> ignoreErrors(mIgnoreErrors, mIgnoreErrors | validateEntry.mIgnoreErrors);
ValidateGenericConstraints(validateEntry.mTypeRef, validateEntry.mGenericType, false);
}
bool isRootSystemType = typeInstance->IsInstanceOf(mCompiler->mValueTypeTypeDef) ||
typeInstance->IsInstanceOf(mCompiler->mAttributeTypeDef) ||
typeInstance->IsInstanceOf(mCompiler->mEnumTypeDef);
if (!typeInstance->IsBoxed())
{
if ((typeInstance->mCustomAttributes == NULL) && (typeDef->mTypeDeclaration != NULL) && (typeDef->HasCustomAttributes()))
{
BfAttributeTargets attrTarget;
if ((typeDef->mIsDelegate) || (typeDef->mIsFunction))
attrTarget = BfAttributeTargets_Delegate;
else if (typeInstance->IsEnum())
attrTarget = BfAttributeTargets_Enum;
else if (typeInstance->IsInterface())
attrTarget = BfAttributeTargets_Interface;
else if ((typeInstance->IsStruct()) || (typeInstance->IsTypedPrimitive()))
attrTarget = BfAttributeTargets_Struct;
else
attrTarget = BfAttributeTargets_Class;
if (!typeInstance->mTypeFailed)
{
BfTypeState typeState;
typeState.mPrevState = mContext->mCurTypeState;
typeState.mResolveKind = BfTypeState::ResolveKind_Attributes;
typeState.mType = typeInstance;
SetAndRestoreValue<BfTypeState*> prevTypeState(mContext->mCurTypeState, &typeState);
// This allows us to avoid reentrancy when checking for inner types
SetAndRestoreValue<bool> prevSkipTypeProtectionChecks(typeInstance->mSkipTypeProtectionChecks, true);
if (typeDef->mIsCombinedPartial)
{
auto customAttributes = new BfCustomAttributes();
for (auto partialTypeDef : typeDef->mPartials)
{
if (partialTypeDef->mTypeDeclaration->mAttributes == NULL)
continue;
if (!typeInstance->IsTypeMemberIncluded(partialTypeDef))
continue;
typeState.mCurTypeDef = partialTypeDef;
GetCustomAttributes(customAttributes, partialTypeDef->mTypeDeclaration->mAttributes, attrTarget);
}
if (typeInstance->mCustomAttributes == NULL)
typeInstance->mCustomAttributes = customAttributes;
else
delete customAttributes;
}
else
{
auto customAttributes = new BfCustomAttributes();
GetCustomAttributes(customAttributes, typeDef->mTypeDeclaration->mAttributes, attrTarget);
if (typeInstance->mCustomAttributes == NULL)
typeInstance->mCustomAttributes = customAttributes;
else
delete customAttributes;
}
}
}
}
if (typeInstance->mTypeOptionsIdx == -2)
{
SetTypeOptions(typeInstance);
}
if (populateType <= BfPopulateType_AllowStaticMethods)
return;
prevSkipTypeProtectionChecks.Restore();
typeInstance->mInstSize = std::max(0, typeInstance->mInstSize);
typeInstance->mInstAlign = std::max(0, typeInstance->mInstAlign);
ProcessCustomAttributeData();
int packing = 0;
bool isUnion = false;
bool isCRepr = false;
bool isOrdered = false;
int alignOverride = 0;
BfType* underlyingArrayType = NULL;
int underlyingArraySize = -1;
ProcessTypeInstCustomAttributes(packing, isUnion, isCRepr, isOrdered, alignOverride, underlyingArrayType, underlyingArraySize);
if (underlyingArraySize > 0)
{
typeInstance->mHasUnderlyingArray = true;
curFieldDataIdx = 0;
}
if (packing > 0) // Packed infers ordered
isOrdered = true;
typeInstance->mIsUnion = isUnion;
if ((typeInstance->IsEnum()) && (typeInstance->IsStruct()))
typeInstance->mIsUnion = true;
typeInstance->mPacking = (uint8)packing;
typeInstance->mIsCRepr = isCRepr;
if (typeInstance->mTypeOptionsIdx >= 0)
{
auto typeOptions = mSystem->GetTypeOptions(typeInstance->mTypeOptionsIdx);
if (typeOptions != NULL)
{
typeInstance->mHasBeenInstantiated = typeOptions->Apply(typeInstance->HasBeenInstantiated(), BfOptionFlags_ReflectAssumeInstantiated);
bool alwaysInclude = typeInstance->mAlwaysIncludeFlags != 0;
if ((typeOptions->Apply(alwaysInclude, BfOptionFlags_ReflectAlwaysIncludeType)) ||
(typeOptions->Apply(alwaysInclude, BfOptionFlags_ReflectAlwaysIncludeAll)))
{
typeInstance->mAlwaysIncludeFlags = (BfAlwaysIncludeFlags)(typeInstance->mAlwaysIncludeFlags | BfAlwaysIncludeFlag_Type);
}
else
{
typeInstance->mAlwaysIncludeFlags = BfAlwaysIncludeFlag_None;
}
}
}
BfType* unionInnerType = NULL;
bool hadDeferredVars = false;
int dataPos;
if (resolvedTypeRef->IsBoxed())
{
BfBoxedType* boxedType = (BfBoxedType*)resolvedTypeRef;
BfType* innerType = boxedType->mElementType;
if (boxedType->IsBoxedStructPtr())
innerType = CreatePointerType(innerType);
if (innerType->IsIncomplete())
PopulateType(innerType, BfPopulateType_Data);
auto innerTypeInst = innerType->ToTypeInstance();
if (innerTypeInst != NULL)
{
if (typeInstance->mTypeDef != innerTypeInst->mTypeDef)
{
// Rebuild with proper typedef (generally from inner type comptime emission)
BfLogSysM("Boxed type %p overriding typeDef to %p from inner type %p\n", typeInstance, innerTypeInst->mTypeDef, innerType);
typeInstance->mTypeDef = innerTypeInst->mTypeDef;
DoPopulateType(resolvedTypeRef, populateType);
return;
}
while (typeInstance->mInterfaces.mSize < innerTypeInst->mInterfaces.mSize)
{
auto ifaceEntry = innerTypeInst->mInterfaces[typeInstance->mInterfaces.mSize];
typeInstance->mInterfaces.Add(ifaceEntry);
AddDependency(ifaceEntry.mInterfaceType, typeInstance, BfDependencyMap::DependencyFlag_ImplementsInterface);
}
}
auto baseType = typeInstance->mBaseType;
dataPos = baseType->mInstSize;
int alignSize = BF_MAX(innerType->mAlign, baseType->mInstAlign);
if (alignSize > 1)
dataPos = (dataPos + (alignSize - 1)) & ~(alignSize - 1);
int dataSize = innerType->mSize;
typeInstance->mFieldInstances.push_back(BfFieldInstance());
BfFieldInstance* fieldInstance = &typeInstance->mFieldInstances.back();
fieldInstance->mDataOffset = dataPos;
fieldInstance->mDataSize = innerType->mSize;
fieldInstance->mOwner = typeInstance;
fieldInstance->mResolvedType = innerType;
if (!innerType->IsValuelessType())
{
curFieldDataIdx++;
}
dataPos += dataSize;
typeInstance->mInstAlign = std::max(baseType->mInstAlign, alignSize);
int instAlign = typeInstance->mInstAlign;
if (instAlign != 0)
{
int instSize = (dataPos + (instAlign - 1)) & ~(instAlign - 1);
if (instSize != typeInstance->mInstSize)
{
typeInstance->mInstSize = instSize;
typeInstance->mHasPackingHoles = true;
}
}
typeInstance->mInstSize = std::max(1, typeInstance->mInstSize);
}
else
{
dataPos = typeInstance->mInstSize;
if (underlyingType != NULL)
{
if (!underlyingType->IsValuelessType())
{
curFieldDataIdx++;
}
}
struct DeferredResolveEntry
{
BfFieldDef* mFieldDef;
int mTypeArrayIdx;
};
BfSizedVector<DeferredResolveEntry, 8> deferredVarResolves;
for (auto field : typeDef->mFields)
{
auto fieldInstance = &typeInstance->mFieldInstances[field->mIdx];
if (fieldInstance->mResolvedType != NULL)
continue;
if (!typeInstance->IsTypeMemberIncluded(field->mDeclaringType))
{
fieldInstance->mFieldIncluded = false;
continue;
}
fieldInstance->mOwner = typeInstance;
fieldInstance->mFieldIdx = field->mIdx;
if (typeInstance->IsInterface())
Fail("Interfaces cannot include fields. Consider making this a property", field->GetRefNode());
}
for (int pass = 0; pass < 2; pass++)
{
for (auto field : typeDef->mFields)
{
// Do consts then non-consts. Somewhat of a hack for using consts as sized array size
if (field->mIsConst != (pass == 0))
continue;
auto fieldInstance = &typeInstance->mFieldInstances[field->mIdx];
if ((fieldInstance->mResolvedType != NULL) || (!fieldInstance->mFieldIncluded))
continue;
SetAndRestoreValue<BfFieldDef*> prevTypeRef(mContext->mCurTypeState->mCurFieldDef, field);
SetAndRestoreValue<BfTypeState::ResolveKind> prevResolveKind(mContext->mCurTypeState->mResolveKind, BfTypeState::ResolveKind_FieldType);
BfType* resolvedFieldType = NULL;
auto initializer = field->GetInitializer();
if ((field->mIsAppend) && (!resolvedTypeRef->IsObject()))
Fail("Appended objects can only be declared in class types", field->GetFieldDeclaration()->mExternSpecifier, true);
if ((field->mIsAppend) && (isUnion))
Fail("Appended objects cannot be declared in unions", field->GetFieldDeclaration()->mExternSpecifier, true);
if (field->IsEnumCaseEntry())
{
if (typeInstance->IsEnum())
{
resolvedFieldType = typeInstance;
BfType* payloadType = NULL;
if (field->mTypeRef != NULL)
payloadType = ResolveTypeRef(field->mTypeRef, BfPopulateType_Data, BfResolveTypeRefFlag_NoResolveGenericParam);
if (payloadType == NULL)
{
if (!typeInstance->IsTypedPrimitive())
payloadType = CreateTupleType(BfTypeVector(), Array<String>());
}
if (payloadType != NULL)
{
AddDependency(payloadType, typeInstance, BfDependencyMap::DependencyFlag_ValueTypeMemberData);
BF_ASSERT(payloadType->IsTuple());
resolvedFieldType = payloadType;
fieldInstance->mIsEnumPayloadCase = true;
}
}
else
{
Fail("Enum cases can only be declared within enum types", field->GetRefNode(), true);
resolvedFieldType = typeInstance;
}
}
else if ((field->mTypeRef != NULL) && ((field->mTypeRef->IsExact<BfVarTypeReference>()) || (field->mTypeRef->IsExact<BfLetTypeReference>()) || (field->mTypeRef->IsExact<BfExprModTypeRef>())))
{
resolvedFieldType = GetPrimitiveType(BfTypeCode_Var);
DeferredResolveEntry resolveEntry;
resolveEntry.mFieldDef = field;
resolveEntry.mTypeArrayIdx = (int)llvmFieldTypes.size();
deferredVarResolves.push_back(resolveEntry);
fieldInstance->mIsInferredType = true;
// For 'let', make read-only
}
else
{
BfResolveTypeRefFlags resolveFlags = BfResolveTypeRefFlag_NoResolveGenericParam;
if (initializer != NULL)
resolveFlags = (BfResolveTypeRefFlags)(resolveFlags | BfResolveTypeRefFlag_AllowInferredSizedArray);
resolvedFieldType = ResolveTypeRef(field->mTypeRef, BfPopulateType_Declaration, resolveFlags);
if (resolvedFieldType == NULL)
{
// Failed, just put in placeholder 'var'
AssertErrorState();
resolvedFieldType = GetPrimitiveType(BfTypeCode_Var);
}
}
if (resolvedFieldType->IsUndefSizedArray())
{
if (auto arrayTypeRef = BfNodeDynCast<BfArrayTypeRef>(field->mTypeRef))
{
if (arrayTypeRef->IsInferredSize())
{
if (initializer != NULL)
{
DeferredResolveEntry resolveEntry;
resolveEntry.mFieldDef = field;
resolveEntry.mTypeArrayIdx = (int)llvmFieldTypes.size();
deferredVarResolves.push_back(resolveEntry);
fieldInstance->mIsInferredType = true;
}
else
{
AssertErrorState();
}
}
}
}
if (resolvedFieldType->IsMethodRef())
{
auto methodRefType = (BfMethodRefType*)resolvedFieldType;
}
if (fieldInstance->mResolvedType == NULL)
fieldInstance->mResolvedType = resolvedFieldType;
if (field->mIsConst)
{
// Resolve in ResolveConstField after we finish populating entire FieldInstance list
}
else if (field->mIsStatic)
{
// Don't allocate this until after we're finished populating entire FieldInstance list,
// because we may have re-entry and create multiple instances of this static field
}
}
}
// Assign enum indices
int enumCaseEntryIdx = 0;
for (auto field : typeDef->mFields)
{
auto fieldInstance = &typeInstance->mFieldInstances[field->mIdx];
if (!fieldInstance->mFieldIncluded)
continue;
if (field->IsEnumCaseEntry())
{
if (typeInstance->IsEnum())
{
fieldInstance->mDataIdx = -(enumCaseEntryIdx++) - 1;
}
}
}
if (!resolvedTypeRef->IsIncomplete())
{
// We finished resolving ourselves through a re-entry, so we're actually done here
return;
}
for (auto& resolveEntry : deferredVarResolves)
{
hadDeferredVars = true;
auto fieldType = ResolveVarFieldType(typeInstance, &typeInstance->mFieldInstances[resolveEntry.mFieldDef->mIdx], resolveEntry.mFieldDef);
if (fieldType == NULL)
{
fieldType = mContext->mBfObjectType;
// We used to set mTypeFailed, but mHasBuildError is enough to cause a type rebuild properly
mHadBuildError = true;
//typeInstance->mTypeFailed = true;
}
auto fieldInstance = &typeInstance->mFieldInstances[resolveEntry.mFieldDef->mIdx];
fieldInstance->SetResolvedType(fieldType);
}
if (typeInstance->mResolvingConstField)
return;
bool hadSoftFail = false;
for (auto& fieldInstanceRef : typeInstance->mFieldInstances)
{
auto fieldInstance = &fieldInstanceRef;
auto fieldDef = fieldInstance->GetFieldDef();
auto resolvedFieldType = fieldInstance->GetResolvedType();
if (!fieldInstance->mFieldIncluded)
continue;
if (fieldInstance->mCustomAttributes != NULL)
{
// Already handled
}
else if ((fieldDef != NULL) && (fieldDef->GetFieldDeclaration() != NULL) && (fieldDef->GetFieldDeclaration()->mAttributes != NULL) && (!typeInstance->mTypeFailed) && (!isRootSystemType))
{
if (auto propDecl = BfNodeDynCast<BfPropertyDeclaration>(fieldDef->mFieldDeclaration))
{
// Handled elsewhere
}
else
{
SetAndRestoreValue<BfFieldDef*> prevTypeRef(mContext->mCurTypeState->mCurFieldDef, fieldDef);
fieldInstance->mCustomAttributes = GetCustomAttributes(fieldDef->GetFieldDeclaration()->mAttributes, fieldDef->mIsStatic ? BfAttributeTargets_StaticField : BfAttributeTargets_Field);
for (auto customAttr : fieldInstance->mCustomAttributes->mAttributes)
{
if (TypeToString(customAttr.mType) == "System.ThreadStaticAttribute")
{
if ((!fieldDef->mIsStatic) || (fieldDef->mIsConst))
{
Fail("ThreadStatic attribute can only be used on static fields", fieldDef->GetFieldDeclaration()->mAttributes);
}
}
}
}
}
if (resolvedFieldType == NULL)
{
if ((underlyingType != NULL) || (typeInstance->IsPayloadEnum()))
continue;
}
if (fieldDef == NULL)
continue;
if ((!fieldDef->mIsStatic) && (resolvedFieldType->IsValueType()))
{
// We need that type finished up for alignment and data size
// But if the type has failed then we need to avoid stack overflow so we don't finish it
SetAndRestoreValue<BfFieldDef*> prevTypeRef(mContext->mCurTypeState->mCurFieldDef, fieldDef);
bool populateChildType = !typeInstance->mTypeFailed;
//bool populateChildType = true;
PopulateType(resolvedFieldType, populateChildType ? ((populateType == BfPopulateType_Data_Soft) ? BfPopulateType_Data_Soft : BfPopulateType_Data) : BfPopulateType_Declaration);
if (populateType == BfPopulateType_Data_Soft)
{
if (resolvedFieldType->IsDataIncomplete())
hadSoftFail = true;
}
else if (populateChildType)
{
if (resolvedFieldType->IsFinishingType())
{
AssertErrorState();
}
else
BF_ASSERT(!resolvedFieldType->IsDataIncomplete());
}
else
{
if (resolvedFieldType->IsDataIncomplete())
{
AssertErrorState();
resolvedFieldType = mContext->mBfObjectType;
fieldInstance->SetResolvedType(resolvedFieldType);
// We used to set mTypeFailed, but mHasBuildError is enough to cause a type rebuild properly
mHadBuildError = true;
}
}
}
}
if (hadSoftFail)
return;
bool tryCE = true;
if (typeInstance->mDefineState == BfTypeDefineState_CETypeInit)
{
if (populateType <= BfPopulateType_AllowStaticMethods)
return;
int foundTypeCount = 0;
auto typeState = mContext->mCurTypeState;
while (typeState != NULL)
{
if (typeState->mType == typeInstance)
{
foundTypeCount++;
if (foundTypeCount == 2)
break;
}
typeState = typeState->mPrevState;
}
if ((foundTypeCount >= 2) || (typeInstance->mTypeDef->IsEmitted()))
{
String error = "OnCompile const evaluation creates a data dependency during TypeInit";
if (mCompiler->mCeMachine->mCurBuilder != NULL)
{
error += StrFormat(" during const-eval generation of '%s'", MethodToString(mCompiler->mCeMachine->mCurBuilder->mCeFunction->mMethodInstance).c_str());
}
auto refNode = typeDef->GetRefNode();
Fail(error, refNode);
if ((mCompiler->mCeMachine->mCurContext != NULL) && (mCompiler->mCeMachine->mCurContext->mCurFrame != NULL))
mCompiler->mCeMachine->mCurContext->Fail(*mCompiler->mCeMachine->mCurContext->mCurFrame, error);
else if (mCompiler->mCeMachine->mCurContext != NULL)
mCompiler->mCeMachine->mCurContext->Fail(error);
tryCE = false;
}
}
if ((typeInstance->mDefineState < BfTypeDefineState_CEPostTypeInit) && (tryCE))
{
BF_ASSERT(!typeInstance->mTypeDef->IsEmitted());
if (typeInstance->mCeTypeInfo != NULL)
typeInstance->mCeTypeInfo->mPendingInterfaces.Clear();
typeInstance->mDefineState = BfTypeDefineState_CETypeInit;
bool hadNewMembers = false;
DoCEEmit(typeInstance, hadNewMembers, underlyingTypeDeferred);
if (typeInstance->mDefineState < BfTypeDefineState_CEPostTypeInit)
typeInstance->mDefineState = BfTypeDefineState_CEPostTypeInit;
if (typeInstance->mCeTypeInfo != NULL)
{
bool prevHadEmissions = !typeInstance->mCeTypeInfo->mEmitSourceMap.IsEmpty();
if (typeInstance->mCeTypeInfo->mNext != NULL)
{
BfLogSysM("Type %p injecting next ceTypeInfo %p into ceTypeInfo %p\n", typeInstance, typeInstance->mCeTypeInfo->mNext, typeInstance->mCeTypeInfo);
auto ceInfo = typeInstance->mCeTypeInfo->mNext;
HashContext hashCtx;
hashCtx.Mixin(ceInfo->mEmitSourceMap.mCount);
for (auto& kv : ceInfo->mEmitSourceMap)
{
hashCtx.Mixin(kv.mKey);
hashCtx.Mixin(kv.mValue.mKind);
hashCtx.Mixin(kv.mValue.mSrcStart);
hashCtx.Mixin(kv.mValue.mSrcEnd);
}
hashCtx.Mixin(ceInfo->mOnCompileMap.mCount);
for (auto& kv : ceInfo->mOnCompileMap)
{
hashCtx.Mixin(kv.mKey);
hashCtx.MixinStr(kv.mValue.mEmitData);
}
hashCtx.Mixin(ceInfo->mTypeIFaceMap.mCount);
for (auto& kv : ceInfo->mTypeIFaceMap)
{
hashCtx.Mixin(kv.mKey);
hashCtx.MixinStr(kv.mValue.mEmitData);
}
typeInstance->mCeTypeInfo->mNext->mHash = hashCtx.Finish128();
if (!typeInstance->mCeTypeInfo->mNext->mFastFinished)
{
if ((typeInstance->mCeTypeInfo->mHash != typeInstance->mCeTypeInfo->mNext->mHash) && (!typeInstance->mCeTypeInfo->mHash.IsZero()))
mContext->QueueMidCompileRebuildDependentTypes(typeInstance, "comptime hash changed");
typeInstance->mCeTypeInfo->mEmitSourceMap = typeInstance->mCeTypeInfo->mNext->mEmitSourceMap;
typeInstance->mCeTypeInfo->mOnCompileMap = typeInstance->mCeTypeInfo->mNext->mOnCompileMap;
typeInstance->mCeTypeInfo->mTypeIFaceMap = typeInstance->mCeTypeInfo->mNext->mTypeIFaceMap;
typeInstance->mCeTypeInfo->mHash = typeInstance->mCeTypeInfo->mNext->mHash;
typeInstance->mCeTypeInfo->mAlign = typeInstance->mCeTypeInfo->mNext->mAlign;
}
else
{
// This greatly increases dependent type rebuilds, which triggers other issues
/*if ((typeInstance->mCeTypeInfo->mHash != typeInstance->mCeTypeInfo->mNext->mHash) && (!typeInstance->mCeTypeInfo->mHash.IsZero()))
mContext->QueueMidCompileRebuildDependentTypes(typeInstance, "canceled comptime hash changed");*/
}
delete typeInstance->mCeTypeInfo->mNext;
typeInstance->mCeTypeInfo->mNext = NULL;
}
else
{
// Removed emissions
if (!typeInstance->mCeTypeInfo->mHash.IsZero())
mContext->QueueMidCompileRebuildDependentTypes(typeInstance, "removed comptime hash changed");
typeInstance->mCeTypeInfo->mEmitSourceMap.Clear();
typeInstance->mCeTypeInfo->mOnCompileMap.Clear();
typeInstance->mCeTypeInfo->mTypeIFaceMap.Clear();
typeInstance->mCeTypeInfo->mHash = Val128();
}
if (((typeInstance->mCeTypeInfo->mFailed) || (typeInstance->mTypeDef->HasParsingFailed())) &&
(prevHadEmissions))
{
// Just add a marker to retain the previous open emits
typeInstance->mCeTypeInfo->mEmitSourceMap[-1] = BfCeTypeEmitSource();
}
typeInstance->mCeTypeInfo->mFailed = false;
}
if (typeInstance->mCeTypeInfo != NULL)
{
if (!typeInstance->mCeTypeInfo->mPendingInterfaces.IsEmpty())
hadNewMembers = true;
}
if ((typeInstance->mTypeDef->IsEmitted()) && (typeInstance->mCeTypeInfo == NULL))
{
BF_ASSERT(mCompiler->mCanceling);
if (mCompiler->mCanceling)
{
TypeFailed(typeInstance);
auto prevTypeDef = typeInstance->mTypeDef->mEmitParent;
delete typeInstance->mTypeDef;
typeInstance->mTypeDef = prevTypeDef;
hadNewMembers = false;
}
}
if (hadNewMembers)
{
// Avoid getting stale cached comptime reflection info
mCompiler->mCeMachine->mCeModule->mTypeDataRefs.Remove(resolvedTypeRef);
// We need to avoid passing in BfPopulateType_Interfaces_All because it could cause us to miss out on new member processing,
// including resizing the method group table
DoPopulateType(resolvedTypeRef, BF_MAX(populateType, BfPopulateType_Data));
return;
}
if (_CheckTypeDone())
return;
}
}
// Type now has interfaces added from CEInit
if (typeInstance->mDefineState < BfTypeDefineState_HasInterfaces_All)
typeInstance->mDefineState = BfTypeDefineState_HasInterfaces_All;
if (_CheckTypeDone())
return;
BF_ASSERT(mContext->mCurTypeState == &typeState);
//BF_ASSERT(!typeInstance->mIsFinishingType);
typeInstance->mIsFinishingType = true;
// No re-entry is allowed below here -- we will run all the way to the end at this point
BfSizedVector<BfIRMDNode, 8> diFieldTypes;
HashContext dataMemberHashCtx;
if (!resolvedTypeRef->IsBoxed())
{
for (auto propDef : typeDef->mProperties)
{
if (!typeInstance->IsTypeMemberIncluded(propDef->mDeclaringType))
continue;
if (propDef->mFieldDeclaration != NULL)
{
SetAndRestoreValue<BfFieldDef*> prevTypeRef(mContext->mCurTypeState->mCurFieldDef, propDef);
BfAttributeTargets target = BfAttributeTargets_Property;
if (propDef->IsExpressionBodied())
target = (BfAttributeTargets)(target | BfAttributeTargets_Method);
if ((propDef->GetFieldDeclaration()->mAttributes != NULL) && (!typeInstance->mTypeFailed) && (!isRootSystemType))
{
auto customAttrs = GetCustomAttributes(propDef->GetFieldDeclaration()->mAttributes, target);
delete customAttrs;
}
auto propDecl = (BfPropertyDeclaration*)propDef->mFieldDeclaration;
if (propDecl->mExplicitInterface != NULL)
{
if ((mCompiler->mResolvePassData != NULL) && (mCompiler->mResolvePassData->mAutoComplete != NULL))
mCompiler->mResolvePassData->mAutoComplete->CheckTypeRef(propDecl->mExplicitInterface, false);
auto explicitInterface = ResolveTypeRef(propDecl->mExplicitInterface, BfPopulateType_Declaration);
if (explicitInterface != NULL)
{
bool interfaceFound = false;
for (auto ifaceInst : typeInstance->mInterfaces)
interfaceFound |= ifaceInst.mInterfaceType == explicitInterface;
if ((!interfaceFound) && (!typeInstance->mTypeFailed))
{
Fail("Containing class has not declared to implement this interface", propDecl->mExplicitInterface, true);
}
}
}
}
if (propDef->mMethods.IsEmpty())
{
auto nameNode = ((BfPropertyDeclaration*)propDef->mFieldDeclaration)->mNameNode;
if (nameNode != NULL)
{
Fail(StrFormat("Property or indexer '%s.%s' must have at least one accessor", TypeToString(typeInstance).c_str(), propDef->mName.c_str()),
nameNode, true); // CS0548
}
}
}
bool isGlobalContainer = typeDef->IsGlobalsContainer();
if (typeInstance->mBaseType != NULL)
{
dataMemberHashCtx.Mixin(typeInstance->mBaseType->mTypeId);
if (typeInstance->mBaseType->mHotTypeData != NULL)
{
BfHotTypeVersion* ver = typeInstance->mBaseType->mHotTypeData->GetLatestVersion();
dataMemberHashCtx.Mixin(ver->mDataHash);
}
}
dataMemberHashCtx.Mixin(typeInstance->mPacking);
dataMemberHashCtx.Mixin(typeInstance->mIsCRepr);
dataMemberHashCtx.Mixin(typeInstance->mIsUnion);
int startDataPos = dataPos;
int maxDataPos = dataPos;
BfSizedVector<BfFieldInstance*, 16> dataFieldVec;
bool allowInstanceFields = (underlyingType == NULL);
if (typeInstance->IsTypedPrimitive())
allowInstanceFields = false;
// We've resolved all the 'var' entries, so now build the actual composite type
for (auto& fieldInstanceRef : typeInstance->mFieldInstances)
{
auto fieldInstance = &fieldInstanceRef;
if (!fieldInstance->mFieldIncluded)
continue;
auto resolvedFieldType = fieldInstance->GetResolvedType();
if (fieldInstance->mResolvedType == NULL)
{
if ((underlyingType == NULL) && (!typeInstance->IsPayloadEnum()))
BF_ASSERT(typeInstance->mTypeFailed);
continue;
}
if ((fieldInstance->GetFieldDef() != NULL) && (fieldInstance->GetFieldDef()->mIsConst))
{
// Resolve later
AddDependency(resolvedFieldType, typeInstance, BfDependencyMap::DependencyFlag_ConstValue);
}
else if (fieldInstance->GetFieldDef() != NULL)
{
if (!fieldInstance->GetFieldDef()->mIsStatic)
AddFieldDependency(typeInstance, fieldInstance, resolvedFieldType);
else
AddDependency(resolvedFieldType, typeInstance, BfDependencyMap::DependencyFlag_StaticValue);
}
auto fieldDef = fieldInstance->GetFieldDef();
if (fieldInstance->mResolvedType != NULL)
{
auto resolvedFieldType = fieldInstance->GetResolvedType();
if ((!typeInstance->IsBoxed()) && (fieldDef != NULL))
{
if ((fieldDef->mUsingProtection != BfProtection_Hidden) && (!resolvedFieldType->IsGenericParam()) && (!resolvedFieldType->IsObject()) && (!resolvedFieldType->IsStruct()))
Warn(0, StrFormat("Field type '%s' is not applicable for 'using'", TypeToString(resolvedFieldType).c_str()), fieldDef->GetFieldDeclaration()->mConstSpecifier);
if (fieldInstance->mIsEnumPayloadCase)
{
PopulateType(resolvedFieldType, BfPopulateType_Data);
if (resolvedFieldType->WantsGCMarking())
typeInstance->mWantsGCMarking = true;
}
if ((!fieldDef->mIsConst) && (!fieldDef->mIsStatic))
{
PopulateType(resolvedFieldType, resolvedFieldType->IsValueType() ? BfPopulateType_Data : BfPopulateType_Declaration);
if (resolvedFieldType->WantsGCMarking())
typeInstance->mWantsGCMarking = true;
fieldInstance->mMergedDataIdx = typeInstance->mMergedFieldDataCount;
if (resolvedFieldType->IsStruct())
{
auto resolvedFieldTypeInstance = resolvedFieldType->ToTypeInstance();
typeInstance->mMergedFieldDataCount += resolvedFieldTypeInstance->mMergedFieldDataCount;
}
else if (!resolvedFieldType->IsValuelessType())
typeInstance->mMergedFieldDataCount++;
if (fieldDef->mIsExtern)
{
Fail("Cannot declare instance member as 'extern'", fieldDef->GetFieldDeclaration()->mExternSpecifier, true);
}
BfAstNode* nameRefNode = NULL;
if (auto fieldDecl = fieldDef->GetFieldDeclaration())
nameRefNode = fieldDecl->mNameNode;
else if (auto paramDecl = fieldDef->GetParamDeclaration())
nameRefNode = paramDecl->mNameNode;
if (nameRefNode == NULL)
nameRefNode = fieldDef->mTypeRef;
if (!allowInstanceFields)
{
if (typeInstance->IsEnum())
Fail("Cannot declare instance members in an enum", nameRefNode, true);
else if (typeInstance->IsFunction())
Fail("Cannot declare instance members in a function", nameRefNode, true);
else
Fail("Cannot declare instance members in a typed primitive struct", nameRefNode, true);
TypeFailed(typeInstance);
fieldInstance->mDataIdx = -1;
continue;
}
if (typeDef->mIsStatic)
{
//CS0708
Fail("Cannot declare instance members in a static class", nameRefNode, true);
}
if (resolvedFieldType->IsValueType())
{
BF_ASSERT((!resolvedFieldType->IsDataIncomplete()) || (resolvedFieldType->HasTypeFailed()));
}
if (!mCompiler->mIsResolveOnly)
{
dataMemberHashCtx.MixinStr(fieldDef->mName);
dataMemberHashCtx.Mixin(resolvedFieldType->mTypeId);
}
int dataSize = resolvedFieldType->mSize;
int alignSize = resolvedFieldType->mAlign;
if (fieldInstance->IsAppendedObject())
{
SetAndRestoreValue<BfFieldDef*> prevTypeRef(mContext->mCurTypeState->mCurFieldDef, fieldDef);
SetAndRestoreValue<BfTypeState::ResolveKind> prevResolveKind(mContext->mCurTypeState->mResolveKind, BfTypeState::ResolveKind_FieldType);
PopulateType(resolvedFieldType, BfPopulateType_Data);
auto fieldTypeInst = resolvedFieldType->ToTypeInstance();
dataSize = BF_MAX(fieldTypeInst->mInstSize, 0);
alignSize = BF_MAX(fieldTypeInst->mInstAlign, 1);
if (fieldTypeInst->mTypeFailed)
{
TypeFailed(fieldTypeInst);
fieldInstance->mResolvedType = GetPrimitiveType(BfTypeCode_Var);
continue;
}
if ((typeInstance != NULL) && (fieldTypeInst->mTypeDef->mIsAbstract))
{
Fail("Cannot create an instance of an abstract class", nameRefNode);
}
SetAndRestoreValue<bool> prevIgnoreWrites(mBfIRBuilder->mIgnoreWrites, true);
BfMethodState methodState;
SetAndRestoreValue<BfMethodState*> prevMethodState(mCurMethodState, &methodState);
methodState.mTempKind = BfMethodState::TempKind_NonStatic;
BfTypedValue appendIndexValue;
BfExprEvaluator exprEvaluator(this);
BfResolvedArgs resolvedArgs;
auto fieldDecl = fieldDef->GetFieldDeclaration();
if (auto invocationExpr = BfNodeDynCast<BfInvocationExpression>(fieldDecl->mInitializer))
{
resolvedArgs.Init(invocationExpr->mOpenParen, &invocationExpr->mArguments, &invocationExpr->mCommas, invocationExpr->mCloseParen);
exprEvaluator.ResolveArgValues(resolvedArgs, BfResolveArgsFlag_DeferParamEval);
}
BfFunctionBindResult bindResult;
bindResult.mSkipThis = true;
bindResult.mWantsArgs = true;
SetAndRestoreValue<BfFunctionBindResult*> prevBindResult(exprEvaluator.mFunctionBindResult, &bindResult);
BfTypedValue emptyThis(mBfIRBuilder->GetFakeVal(), resolvedTypeRef, resolvedTypeRef->IsStruct());
exprEvaluator.mBfEvalExprFlags = BfEvalExprFlags_Comptime;
auto ctorResult = exprEvaluator.MatchConstructor(nameRefNode, NULL, emptyThis, fieldTypeInst, resolvedArgs, false, true);
if ((bindResult.mMethodInstance != NULL) && (bindResult.mMethodInstance->mMethodDef->mHasAppend))
{
auto calcAppendMethodModule = GetMethodInstanceAtIdx(bindResult.mMethodInstance->GetOwner(), bindResult.mMethodInstance->mMethodDef->mIdx + 1, BF_METHODNAME_CALCAPPEND);
SizedArray<BfIRValue, 2> irArgs;
if (bindResult.mIRArgs.size() > 1)
irArgs.Insert(0, &bindResult.mIRArgs[1], bindResult.mIRArgs.size() - 1);
BfTypedValue appendSizeTypedValue = TryConstCalcAppend(calcAppendMethodModule.mMethodInstance, irArgs, true);
if (appendSizeTypedValue)
{
int appendAlign = calcAppendMethodModule.mMethodInstance->mAppendAllocAlign;
dataSize = BF_ALIGN(dataSize, appendAlign);
alignSize = BF_MAX(alignSize, appendAlign);
auto constant = mBfIRBuilder->GetConstant(appendSizeTypedValue.mValue);
if (constant != NULL)
{
dataSize += constant->mInt32;
}
}
else
{
Fail(StrFormat("Append constructor '%s' does not result in a constant size", MethodToString(bindResult.mMethodInstance).c_str()), nameRefNode);
}
}
}
else if (fieldDef->mIsAppend)
{
if (!typeInstance->IsObject())
Fail("Append fields can only be declared in classes", nameRefNode, true);
else if (resolvedFieldType->IsGenericParam())
{
SetAndRestoreValue<BfFieldDef*> prevTypeRef(mContext->mCurTypeState->mCurFieldDef, fieldDef);
auto genericParamInstance = GetGenericParamInstance((BfGenericParamType*)resolvedFieldType, false, BfFailHandleKind_Soft);
if (genericParamInstance != NULL)
{
if (((genericParamInstance->mGenericParamFlags & BfGenericParamFlag_Class) == 0) &&
((genericParamInstance->mTypeConstraint == NULL) || (!genericParamInstance->mTypeConstraint->IsObject())))
{
Fail(StrFormat("Append fields must be classes. Consider adding a 'where %s : class' constraint.", genericParamInstance->GetName().c_str()), nameRefNode, true);
}
}
}
else if (!resolvedFieldType->IsObject())
Fail("Append fields must be classes", nameRefNode, true);
}
BF_ASSERT(dataSize >= 0);
fieldInstance->mDataSize = dataSize;
if (!isUnion)
{
if (!resolvedFieldType->IsValuelessType())
{
dataFieldVec.push_back(fieldInstance);
}
}
else
{
BF_ASSERT(resolvedFieldType->mSize >= 0);
// if (alignSize > 1)
// dataPos = (dataPos + (alignSize - 1)) & ~(alignSize - 1);
fieldInstance->mDataOffset = dataPos;
typeInstance->mInstAlign = std::max(typeInstance->mInstAlign, alignSize);
dataPos += dataSize;
if (dataPos > maxDataPos)
{
maxDataPos = dataPos;
}
dataPos = startDataPos;
}
auto fieldTypeInst = resolvedFieldType->ToTypeInstance();
if (fieldTypeInst != NULL)
{
if ((fieldTypeInst->mRebuildFlags & BfTypeRebuildFlag_UnderlyingTypeDeferred) != 0)
{
if (populateType < BfPopulateType_Data)
{
// We don't actually need the data - bail out
return;
}
BfAstNode* refNode = fieldDef->mFieldDeclaration;
String failStr;
failStr = StrFormat("Circular data reference detected between '%s' and '%s'", TypeToString(mCurTypeInstance).c_str(), TypeToString(fieldTypeInst).c_str());
if (!mContext->mFieldResolveReentrys.IsEmpty())
{
failStr += StrFormat(" with the following fields:", TypeToString(mCurTypeInstance).c_str());
for (int i = 0; i < (int)mContext->mFieldResolveReentrys.size(); i++)
{
auto checkField = mContext->mFieldResolveReentrys[i];
if (i > 0)
failStr += ",";
failStr += "\n '" + TypeToString(typeInstance) + "." + checkField->GetFieldDef()->mName + "'";
if (checkField->mOwner == fieldTypeInst)
refNode = checkField->GetFieldDef()->mFieldDeclaration;
}
}
BfError* err = Fail(failStr, refNode);
if (err)
err->mIsPersistent = true;
}
}
}
bool useForUnion = false;
if (fieldInstance->mIsEnumPayloadCase)
{
if (!typeInstance->IsEnum())
{
Fail("Cases can only be used in enum types", fieldDef->mFieldDeclaration);
}
else
{
BF_ASSERT(typeInstance->mIsUnion);
}
}
if ((!fieldDef->mIsStatic) && (!resolvedFieldType->IsValuelessType()))
{
if (isUnion)
{
fieldInstance->mDataIdx = curFieldDataIdx;
}
}
}
if ((!typeInstance->IsSpecializedType()) && (!typeInstance->IsOnDemand()) && (fieldDef != NULL) && (!CheckDefineMemberProtection(fieldDef->mProtection, resolvedFieldType)))
{
//CS0052
Fail(StrFormat("Inconsistent accessibility: field type '%s' is less accessible than field '%s.%s'",
TypeToString(resolvedFieldType).c_str(), TypeToString(mCurTypeInstance).c_str(), fieldDef->mName.c_str()),
fieldDef->mTypeRef, true);
}
}
}
if (typeInstance->mIsUnion)
{
SetAndRestoreValue<BfTypeState::ResolveKind> prevResolveKind(typeState.mResolveKind, BfTypeState::ResolveKind_UnionInnerType);
unionInnerType = typeInstance->GetUnionInnerType();
}
if (!isOrdered)
{
int dataFieldCount = (int)dataFieldVec.size();
Array<Deque<BfFieldInstance*>> alignBuckets;
for (auto fieldInst : dataFieldVec)
{
int alignBits = GetHighestBitSet(fieldInst->GetAlign(packing));
while (alignBits >= alignBuckets.size())
alignBuckets.Add({});
alignBuckets[alignBits].Add(fieldInst);
}
dataFieldVec.clear();
int curSize = dataPos;
while (dataFieldVec.size() != dataFieldCount)
{
// Clear out completed buckets
while (alignBuckets[alignBuckets.size() - 1].IsEmpty())
{
alignBuckets.pop_back();
}
int alignBits = GetNumLowZeroBits(curSize) + 1;
alignBits = BF_MIN(alignBits, (int)alignBuckets.size() - 1);
bool foundEntry = false;
while (alignBits >= 0)
{
if (alignBuckets[alignBits].IsEmpty())
{
alignBits--;
continue;
}
bool isHighestBucket = alignBits == alignBuckets.size() - 1;
auto fieldInst = alignBuckets[alignBits][0];
alignBuckets[alignBits].RemoveAt(0);
dataFieldVec.push_back(fieldInst);
curSize = BF_ALIGN(curSize, fieldInst->GetAlign(packing));
curSize += fieldInst->mDataSize;
foundEntry = true;
if (!isHighestBucket)
{
// We may have a larger type that can fit now...
break;
}
}
if (!foundEntry)
{
// If no entries will fit, then force an entry of the smallest alignment
for (int alignBits = 0; alignBits < alignBuckets.size(); alignBits++)
{
if (!alignBuckets[alignBits].IsEmpty())
{
auto fieldInst = alignBuckets[alignBits][0];
alignBuckets[alignBits].RemoveAt(0);
dataFieldVec.push_back(fieldInst);
curSize = BF_ALIGN(curSize, fieldInst->GetAlign(packing));
curSize += fieldInst->mDataSize;
break;
}
}
}
}
}
bool needsExplicitAlignment = true;
if (typeInstance->mCeTypeInfo != NULL)
{
typeInstance->mInstAlign = BF_MAX(typeInstance->mInstAlign, typeInstance->mCeTypeInfo->mAlign);
}
for (int fieldIdx = 0; fieldIdx < (int)dataFieldVec.size(); fieldIdx++)
{
auto fieldInstance = dataFieldVec[fieldIdx];
auto resolvedFieldType = fieldInstance->GetResolvedType();
BF_ASSERT(resolvedFieldType->mSize >= 0);
if (fieldInstance->mDataSize == 0)
fieldInstance->mDataSize = resolvedFieldType->mSize;
int dataSize = fieldInstance->mDataSize;
int alignSize = fieldInstance->GetAlign(packing);
int nextDataPos = dataPos;
nextDataPos = (dataPos + (alignSize - 1)) & ~(alignSize - 1);
int padding = nextDataPos - dataPos;
if ((alignSize > 1) && (needsExplicitAlignment) && (padding > 0))
{
curFieldDataIdx++;
}
dataPos = nextDataPos;
fieldInstance->mDataOffset = dataPos;
fieldInstance->mDataIdx = curFieldDataIdx++;
typeInstance->mInstAlign = std::max(typeInstance->mInstAlign, alignSize);
dataPos += dataSize;
}
if (unionInnerType != NULL)
{
dataPos = startDataPos + unionInnerType->mSize;
typeInstance->mInstAlign = BF_MAX(unionInnerType->mAlign, typeInstance->mInstAlign);
}
// Old dataMemberHash location
CheckMemberNames(typeInstance);
if (alignOverride > 0)
typeInstance->mInstAlign = alignOverride;
else
typeInstance->mInstAlign = std::max(1, typeInstance->mInstAlign);
int alignSize = typeInstance->mInstAlign;
if (isCRepr)
{
// Align size to alignment
if (alignSize >= 1)
typeInstance->mInstSize = (dataPos + (alignSize - 1)) & ~(alignSize - 1);
typeInstance->mIsCRepr = true;
}
else
{
typeInstance->mInstSize = dataPos;
typeInstance->mIsCRepr = false;
}
if ((mCompiler->mResolvePassData != NULL) && (mCompiler->mResolvePassData->mAutoComplete != NULL))
{
for (auto propDef : typeInstance->mTypeDef->mProperties)
if (propDef->mFieldDeclaration != NULL)
mCompiler->mResolvePassData->mAutoComplete->CheckProperty(BfNodeDynCast<BfPropertyDeclaration>(propDef->mFieldDeclaration));
}
}
if (typeInstance->IsObjectOrInterface())
typeInstance->mWantsGCMarking = true;
if ((mCompiler->mOptions.mEnableRealtimeLeakCheck) && (!typeInstance->mWantsGCMarking))
{
typeInstance->mTypeDef->PopulateMemberSets();
BfMemberSetEntry* entry = NULL;
BfMethodDef* methodDef = NULL;
if (typeInstance->mTypeDef->mMethodSet.TryGetWith(String(BF_METHODNAME_MARKMEMBERS), &entry))
{
methodDef = (BfMethodDef*)entry->mMemberDef;
if (methodDef->HasBody())
typeInstance->mWantsGCMarking = true;
}
}
if (typeInstance->IsValueType())
{
typeInstance->mSize = typeInstance->mInstSize;
typeInstance->mAlign = typeInstance->mInstAlign;
}
if ((mCompiler->mOptions.mAllowHotSwapping) && (typeInstance->mDefineState < BfTypeDefineState_Defined))
{
if (typeInstance->mHotTypeData == NULL)
{
BF_ASSERT(typeInstance->mTypeFailed);
}
else
{
auto hotTypeVersion = typeInstance->mHotTypeData->mTypeVersions.back();
if ((typeInstance->mBaseType != NULL) && (typeInstance->mBaseType->mHotTypeData != NULL))
{
hotTypeVersion->mMembers.Add(typeInstance->mBaseType->mHotTypeData->GetLatestVersion());
}
for (auto& fieldInst : typeInstance->mFieldInstances)
{
auto fieldDef = fieldInst.GetFieldDef();
if ((fieldDef == NULL) || (fieldDef->mIsStatic))
continue;
auto depType = fieldInst.mResolvedType;
while (depType->IsSizedArray())
depType = ((BfSizedArrayType*)depType)->mElementType;
if (depType->IsStruct())
{
PopulateType(depType);
auto depTypeInst = depType->ToTypeInstance();
BF_ASSERT(depTypeInst->mHotTypeData != NULL);
if (depTypeInst->mHotTypeData != NULL)
hotTypeVersion->mMembers.Add(depTypeInst->mHotTypeData->GetLatestVersion());
}
}
for (auto member : hotTypeVersion->mMembers)
member->mRefCount++;
}
}
if (_CheckTypeDone())
return;
if (typeInstance->mDefineState < BfTypeDefineState_Defined)
{
typeInstance->mDefineState = BfTypeDefineState_Defined;
if (!typeInstance->IsBoxed())
{
ExecuteCEOnCompile(NULL, typeInstance, BfCEOnCompileKind_TypeDone, underlyingTypeDeferred);
if (typeInstance->mDefineState == BfTypeDefineState_DefinedAndMethodsSlotted)
return;
}
}
if (typeInstance->mTypeFailed)
mHadBuildError = true;
CheckAddFailType();
BF_ASSERT_REL(typeInstance->mDefineState != BfTypeDefineState_DefinedAndMethodsSlotting);
BF_ASSERT_REL(typeInstance->mDefineState != BfTypeDefineState_DefinedAndMethodsSlotted);
BfLogSysM("Setting mNeedsMethodProcessing=true on %p\n", typeInstance);
typeInstance->mNeedsMethodProcessing = true;
typeInstance->mIsFinishingType = false;
///
// 'Splattable' means that we can be passed via 3 or fewer primitive/pointer values
if (typeInstance->mHasUnderlyingArray)
{
// Never splat
}
else if (typeInstance->IsStruct())
{
bool hadNonSplattable = false;
if (typeInstance->mBaseType != NULL)
PopulateType(typeInstance->mBaseType, BfPopulateType_Data);
if ((typeInstance->mBaseType == NULL) || (typeInstance->mBaseType->IsSplattable()))
{
int dataCount = 0;
std::function<void(BfType*)> splatIterate;
splatIterate = [&](BfType* checkType)
{
if (checkType->IsValueType())
PopulateType(checkType, BfPopulateType_Data);
if (checkType->IsMethodRef())
{
// For simplicity, any methodRef inside a struct makes the struct non-splattable. This reduces cases of needing to
// handle embedded methodRefs
hadNonSplattable = true;
}
else if (checkType->IsOpaque())
{
hadNonSplattable = true;
}
else if (checkType->IsStruct())
{
auto checkTypeInstance = checkType->ToTypeInstance();
if (checkTypeInstance->mBaseType != NULL)
splatIterate(checkTypeInstance->mBaseType);
if (checkTypeInstance->mIsUnion)
{
bool wantSplat = false;
auto unionInnerType = checkTypeInstance->GetUnionInnerType(&wantSplat);
if (!wantSplat)
hadNonSplattable = true;
splatIterate(unionInnerType);
if (checkTypeInstance->IsEnum())
dataCount++; // Discriminator
}
else
{
for (int fieldIdx = 0; fieldIdx < (int)checkTypeInstance->mFieldInstances.size(); fieldIdx++)
{
auto fieldInstance = (BfFieldInstance*)&checkTypeInstance->mFieldInstances[fieldIdx];
if (fieldInstance->mDataIdx >= 0)
splatIterate(fieldInstance->GetResolvedType());
}
}
}
else if (!checkType->IsValuelessType())
{
if (checkType->IsSizedArray())
hadNonSplattable = true;
dataCount += checkType->GetSplatCount();
}
};
splatIterate(typeInstance);
if (isCRepr)
{
if ((mCompiler->mOptions.mMachineType == BfMachineType_x86) && (mCompiler->mOptions.mPlatformType == BfPlatformType_Windows))
{
typeInstance->mIsSplattable = (dataCount <= 4) && (!hadNonSplattable) && (dataPos > 4);
}
else
typeInstance->mIsSplattable = false;
}
else
typeInstance->mIsSplattable = (dataCount <= 3) && (!hadNonSplattable);
}
}
if (typeInstance->IsTypedPrimitive())
typeInstance->mIsSplattable = true;
if (typeInstance->mTypeDef->mIsOpaque)
typeInstance->mIsSplattable = false;
BF_ASSERT(mContext->mCurTypeState == &typeState);
// This is only required for autocomplete and finding type references
if (!typeInstance->IsSpecializedType())
{
for (auto propDef : typeDef->mProperties)
{
if (propDef->mTypeRef == NULL)
continue;
BfTypeState typeState;
typeState.mPrevState = mContext->mCurTypeState;
typeState.mCurTypeDef = propDef->mDeclaringType;
typeState.mType = typeInstance;
SetAndRestoreValue<BfTypeState*> prevTypeState(mContext->mCurTypeState, &typeState);
if (BfNodeIsA<BfVarTypeReference>(propDef->mTypeRef))
{
// This is only valid for ConstEval properties
}
else
ResolveTypeRef(propDef->mTypeRef, BfPopulateType_Identity, BfResolveTypeRefFlag_AllowRef);
}
}
// Const handling
{
Dictionary<int64, BfFieldDef*> valueMap;
for (auto& fieldInstanceRef : typeInstance->mFieldInstances)
{
auto fieldInstance = &fieldInstanceRef;
if (!fieldInstance->mFieldIncluded)
continue;
auto fieldDef = fieldInstance->GetFieldDef();
if (fieldDef == NULL)
continue;
if ((fieldInstance->mConstIdx == -1) && (fieldDef->mIsConst))
{
SetAndRestoreValue<BfFieldDef*> prevTypeRef(mContext->mCurTypeState->mCurFieldDef, fieldDef);
typeInstance->mModule->ResolveConstField(typeInstance, fieldInstance, fieldDef);
// Check enum cases for duplicates
if (mCurTypeInstance->IsEnum())
{
auto underlyingType = fieldInstance->mResolvedType->GetUnderlyingType();
if ((fieldDef->IsEnumCaseEntry()) && (fieldInstance->mConstIdx != -1) && (underlyingType->IsIntegral()))
{
auto foreignConst = typeInstance->mConstHolder->GetConstantById(fieldInstance->mConstIdx);
BfFieldDef** fieldDefPtr;
if (valueMap.TryAdd(foreignConst->mInt64, NULL, &fieldDefPtr))
{
*fieldDefPtr = fieldDef;
}
else if ((typeInstance->mCustomAttributes == NULL) || (typeInstance->mCustomAttributes->Get(mCompiler->mAllowDuplicatesAttributeTypeDef) == NULL))
{
auto error = Warn(0, StrFormat("Enum value '%lld' for field '%s' is not unique. Considering adding [AllowDuplicates] to the type declaration.", foreignConst->mInt64, fieldDef->mName.c_str()), fieldDef->GetRefNode(), true);
if (error != NULL)
mCompiler->mPassInstance->MoreInfo(StrFormat("This value was previously used for field '%s'", (*fieldDefPtr)->mName.c_str()), (*fieldDefPtr)->GetRefNode());
}
}
}
}
}
}
if ((typeInstance->IsEnum()) && (!typeInstance->IsPayloadEnum()))
{
BfLogSysM("Setting underlying type %p %d\n", typeInstance, underlyingTypeDeferred);
}
DoPopulateType_FinishEnum(typeInstance, underlyingTypeDeferred, &dataMemberHashCtx, unionInnerType);
if (!typeInstance->IsBoxed())
{
if (typeInstance->IsTypedPrimitive())
{
auto underlyingType = typeInstance->GetUnderlyingType();
dataMemberHashCtx.Mixin(underlyingType->mTypeId);
}
Val128 dataMemberHash = dataMemberHashCtx.Finish128();
if (typeInstance->mHotTypeData != NULL)
{
auto newHotTypeVersion = typeInstance->mHotTypeData->GetLatestVersion();
newHotTypeVersion->mDataHash = dataMemberHash;
if (mCompiler->mHotState != NULL)
{
auto committedHotTypeVersion = typeInstance->mHotTypeData->GetTypeVersion(mCompiler->mHotState->mCommittedHotCompileIdx);
if (committedHotTypeVersion != NULL)
{
if ((newHotTypeVersion->mDataHash != committedHotTypeVersion->mDataHash) && (typeInstance->mIsReified))
{
BfLogSysM("Hot compile detected data changes in %p '%s'\n", resolvedTypeRef, TypeToString(typeInstance).c_str());
if (!typeInstance->mHotTypeData->mPendingDataChange)
{
mCompiler->mHotState->mPendingDataChanges.Add(typeInstance->mTypeId);
typeInstance->mHotTypeData->mPendingDataChange = true;
}
else
{
BF_ASSERT(mCompiler->mHotState->mPendingDataChanges.Contains(typeInstance->mTypeId));
}
bool baseHadChanges = (typeInstance->mBaseType != NULL) && (typeInstance->mBaseType->mHotTypeData != NULL) && (typeInstance->mBaseType->mHotTypeData->mPendingDataChange);
if (!baseHadChanges)
Warn(0, StrFormat("Hot compile detected data changes in '%s'", TypeToString(typeInstance).c_str()), typeDef->GetRefNode());
}
else if (typeInstance->mHotTypeData->mPendingDataChange)
{
BfLogSysM("Hot compile removed pending data change for %p '%s'\n", resolvedTypeRef, TypeToString(typeInstance).c_str());
mCompiler->mHotState->RemovePendingChanges(typeInstance);
}
}
}
}
}
if (typeInstance == mContext->mBfObjectType)
typeInstance->mHasBeenInstantiated = true;
auto _HandleTypeDeclaration = [&](BfTypeDeclaration* typeDeclaration)
{
if ((typeDeclaration != NULL) && (typeDeclaration->mNameNode != NULL))
{
auto typeRefSource = typeDeclaration->mNameNode->GetParserData();
if ((mCompiler->mResolvePassData != NULL) && (mCompiler->mResolvePassData->mIsClassifying) && (typeRefSource != NULL))
{
if (auto sourceClassifier = mCompiler->mResolvePassData->GetSourceClassifier(typeDeclaration->mNameNode))
{
BfSourceElementType elemType = BfSourceElementType_Type;
if (typeInstance->IsInterface())
elemType = BfSourceElementType_Interface;
else if (typeInstance->IsObject())
elemType = BfSourceElementType_RefType;
else if (typeInstance->IsStruct() || (typeInstance->IsTypedPrimitive() && !typeInstance->IsEnum()))
elemType = BfSourceElementType_Struct;
sourceClassifier->SetElementType(typeDeclaration->mNameNode, elemType);
}
}
}
};
if (!typeInstance->IsBoxed())
{
_HandleTypeDeclaration(typeDef->mTypeDeclaration);
for (auto partial : typeDef->mPartials)
_HandleTypeDeclaration(partial->mTypeDeclaration);
}
if (typeInstance->IsGenericTypeInstance())
{
auto genericTypeInst = (BfTypeInstance*)typeInstance;
if (!genericTypeInst->mGenericTypeInfo->mFinishedGenericParams)
FinishGenericParams(resolvedTypeRef);
}
if (populateType <= BfPopulateType_Data)
return;
disableYield.Release();
prevTypeState.Restore();
if (canDoMethodProcessing)
{
if (typeInstance->mNeedsMethodProcessing) // May have been handled by GetRawMethodInstanceAtIdx above
DoTypeInstanceMethodProcessing(typeInstance);
}
}
void BfModule::DoTypeInstanceMethodProcessing(BfTypeInstance* typeInstance)
{
if (typeInstance->IsDeleting())
{
BF_ASSERT(typeInstance->IsOnDemand());
return;
}
if (typeInstance->IsSpecializedByAutoCompleteMethod())
return;
if (typeInstance->mDefineState == BfTypeDefineState_DefinedAndMethodsSlotting)
{
BfLogSysM("DoTypeInstanceMethodProcessing %p re-entrancy exit\n", typeInstance);
return;
}
//
{
BP_ZONE("DoTypeInstanceMethodProcessing:CheckStack");
StackHelper stackHelper;
if (!stackHelper.CanStackExpand(128 * 1024))
{
if (!stackHelper.Execute([&]()
{
DoTypeInstanceMethodProcessing(typeInstance);
}))
{
Fail("Stack exhausted in DoPopulateType", typeInstance->mTypeDef->GetRefNode());
}
return;
}
}
BF_ASSERT_REL(typeInstance->mNeedsMethodProcessing);
BF_ASSERT_REL(typeInstance->mDefineState == BfTypeDefineState_Defined);
typeInstance->mDefineState = BfTypeDefineState_DefinedAndMethodsSlotting;
BF_ASSERT(typeInstance->mModule == this);
//TODO: This is new, make sure this is in the right place
/*if (mAwaitingInitFinish)
FinishInit();*/
AutoDisallowYield disableYield(mSystem);
SetAndRestoreValue<BfTypeInstance*> prevTypeInstance(mCurTypeInstance, typeInstance);
SetAndRestoreValue<BfMethodInstance*> prevMethodInstance(mCurMethodInstance, NULL);
BfLogSysM("DoTypeInstanceMethodProcessing: %p %s Revision:%d DefineState:%d\n", typeInstance, TypeToString(typeInstance).c_str(), typeInstance->mRevision, typeInstance->mDefineState);
auto typeDef = typeInstance->mTypeDef;
BfTypeOptions* typeOptions = NULL;
if (typeInstance->mTypeOptionsIdx >= 0)
typeOptions = mSystem->GetTypeOptions(typeInstance->mTypeOptionsIdx);
// Generate all methods. Pass 0
for (auto methodDef : typeDef->mMethods)
{
auto methodInstanceGroup = &typeInstance->mMethodInstanceGroups[methodDef->mIdx];
// Don't set these pointers during resolve pass because they may become invalid if it's just a temporary autocomplete method
if (mCompiler->mResolvePassData == NULL)
{
if ((methodDef->mMethodType == BfMethodType_Ctor) && (methodDef->mIsStatic))
{
typeInstance->mHasStaticInitMethod = true;
}
if ((methodDef->mMethodType == BfMethodType_Dtor) && (methodDef->mIsStatic))
{
typeInstance->mHasStaticDtorMethod = true;
}
if ((methodDef->mMethodType == BfMethodType_Normal) && (methodDef->mIsStatic) && (methodDef->mName == BF_METHODNAME_MARKMEMBERS_STATIC))
{
typeInstance->mHasStaticMarkMethod = true;
}
if ((methodDef->mMethodType == BfMethodType_Normal) && (methodDef->mIsStatic) && (methodDef->mName == BF_METHODNAME_FIND_TLS_MEMBERS))
{
typeInstance->mHasTLSFindMethod = true;
}
}
// Thsi MAY be generated already
// This should still be set to the default value
//BF_ASSERT((methodInstanceGroup->mOnDemandKind == BfMethodOnDemandKind_NotSet) || (methodInstanceGroup->mOnDemandKind == BfMethodOnDemandKind_AlwaysInclude));
}
if (typeInstance == mContext->mBfObjectType)
{
BF_ASSERT(typeInstance->mInterfaceMethodTable.size() == 0);
}
int newIntefaceStartIdx = 0;
auto implBaseType = typeInstance->GetImplBaseType();
if (implBaseType != NULL)
{
auto baseTypeInst = implBaseType->ToTypeInstance();
if (implBaseType->IsIncomplete())
PopulateType(implBaseType, BfPopulateType_Full_Force);
typeInstance->mInterfaceMethodTable = baseTypeInst->mInterfaceMethodTable;
typeInstance->mVirtualMethodTable = implBaseType->mVirtualMethodTable;
typeInstance->mVirtualMethodTableSize = implBaseType->mVirtualMethodTableSize;
if ((!mCompiler->IsHotCompile()) && (!mCompiler->mPassInstance->HasFailed()) && ((mCompiler->mResolvePassData == NULL) || (mCompiler->mResolvePassData->mAutoComplete == NULL)))
{
BF_ASSERT(typeInstance->mVirtualMethodTable.size() == typeInstance->mVirtualMethodTableSize);
}
else
{
BF_ASSERT(typeInstance->mVirtualMethodTableSize >= (int)typeInstance->mVirtualMethodTable.size());
}
}
// Add new interfaces
for (int iFaceIdx = 0; iFaceIdx < (int)typeInstance->mInterfaces.size(); iFaceIdx++)
{
BfTypeInterfaceEntry& typeInterfaceInst = typeInstance->mInterfaces[iFaceIdx];
auto checkInterface = typeInterfaceInst.mInterfaceType;
if (checkInterface->IsIncomplete())
PopulateType(checkInterface, BfPopulateType_Full_Force);
typeInterfaceInst.mStartInterfaceTableIdx = (int)typeInstance->mInterfaceMethodTable.size();
// We don't add to the vtable for interface declarations, we just reference the listed interfaces
if (!typeInstance->IsInterface())
{
auto interfaceTypeDef = checkInterface->mTypeDef;
BF_ASSERT((interfaceTypeDef->mMethods.size() == checkInterface->mMethodInstanceGroups.size()) || (checkInterface->IsDeleting()));
// Reserve empty entries
for (int methodIdx = 0; methodIdx < (int)interfaceTypeDef->mMethods.size(); methodIdx++)
typeInstance->mInterfaceMethodTable.push_back(BfTypeInterfaceMethodEntry());
}
}
auto checkTypeInstance = typeInstance;
while (checkTypeInstance != NULL)
{
// These may have been already added
for (auto&& interfaceEntry : checkTypeInstance->mInterfaces)
AddDependency(interfaceEntry.mInterfaceType, typeInstance, BfDependencyMap::DependencyFlag_ImplementsInterface);
checkTypeInstance = checkTypeInstance->GetImplBaseType();
}
//for (auto& intefaceInst : typeInstance->mInterfaces)
if (typeInstance == mContext->mBfObjectType)
{
BF_ASSERT(typeInstance->mInterfaceMethodTable.size() == 1);
}
// Slot interfaces method blocks in vtable
{
int ifaceVirtIdx = 0;
std::unordered_map<BfTypeInstance*, BfTypeInterfaceEntry*> interfaceMap;
BfTypeInstance* checkType = typeInstance->GetImplBaseType();
while (checkType != NULL)
{
for (auto&& ifaceEntry : checkType->mInterfaces)
{
interfaceMap[ifaceEntry.mInterfaceType] = &ifaceEntry;
ifaceVirtIdx = std::max(ifaceVirtIdx, ifaceEntry.mStartVirtualIdx + ifaceEntry.mInterfaceType->mVirtualMethodTableSize);
}
checkType = checkType->GetImplBaseType();
}
for (int iFaceIdx = 0; iFaceIdx < (int)typeInstance->mInterfaces.size(); iFaceIdx++)
{
BfTypeInterfaceEntry& typeInterfaceInst = typeInstance->mInterfaces[iFaceIdx];
auto itr = interfaceMap.find(typeInterfaceInst.mInterfaceType);
if (itr != interfaceMap.end())
{
auto prevEntry = itr->second;
typeInterfaceInst.mStartVirtualIdx = prevEntry->mStartVirtualIdx;
}
else
{
typeInterfaceInst.mStartVirtualIdx = ifaceVirtIdx;
ifaceVirtIdx += typeInterfaceInst.mInterfaceType->mVirtualMethodTableSize;
interfaceMap[typeInterfaceInst.mInterfaceType] = &typeInterfaceInst;
}
}
}
auto isBoxed = typeInstance->IsBoxed();
BfLogSysM("Setting mTypeIncomplete = false on %p\n", typeInstance);
typeInstance->mNeedsMethodProcessing = false;
typeInstance->mTypeIncomplete = false;
auto checkBaseType = typeInstance->GetImplBaseType();
while (checkBaseType != NULL)
{
PopulateType(checkBaseType, BfPopulateType_Full_Force);
BF_ASSERT((!checkBaseType->IsIncomplete()) || (checkBaseType->mTypeFailed));
checkBaseType = checkBaseType->GetImplBaseType();
}
if ((mCompiler->mOptions.mHasVDataExtender) && (!typeInstance->IsInterface()))
{
// This is the vExt entry for this type instance
BfVirtualMethodEntry entry;
entry.mDeclaringMethod.mMethodNum = -1;
entry.mDeclaringMethod.mTypeInstance = typeInstance;
typeInstance->mVirtualMethodTable.push_back(entry);
typeInstance->mVirtualMethodTableSize++;
}
// Fill out to correct size
if (typeInstance->mHotTypeData != NULL)
{
//auto hotLatestVersionHead = typeInstance->mHotTypeData->GetLatestVersionHead();
int wantVTableSize = typeInstance->GetImplBaseVTableSize() + (int)typeInstance->mHotTypeData->mVTableEntries.size();
while ((int)typeInstance->mVirtualMethodTable.size() < wantVTableSize)
{
typeInstance->mVirtualMethodTable.push_back(BfVirtualMethodEntry());
typeInstance->mVirtualMethodTableSize++;
}
}
BfAmbiguityContext ambiguityContext;
ambiguityContext.mTypeInstance = typeInstance;
ambiguityContext.mModule = this;
ambiguityContext.mIsProjectSpecific = false;
bool wantsOnDemandMethods = false;
//TODO: Testing having interface methods be "on demand"...
//if (!typeInstance->IsInterface())
//
{
if ((typeInstance->IsSpecializedType()) || (typeInstance->IsUnspecializedTypeVariation()))
wantsOnDemandMethods = true;
else if ((mCompiler->mOptions.mCompileOnDemandKind != BfCompileOnDemandKind_AlwaysInclude) &&
(!typeInstance->IsUnspecializedTypeVariation()))
{
//if (typeDef->mName->ToString() != "AttributeUsageAttribute")
auto attributeDef = mCompiler->mAttributeTypeDef;
auto attributeType = mContext->mUnreifiedModule->ResolveTypeDef(attributeDef, BfPopulateType_Identity)->ToTypeInstance();
if (!TypeIsSubTypeOf(mCurTypeInstance, attributeType, false))
{
wantsOnDemandMethods = true;
}
}
}
if (TypeIsSubTypeOf(typeInstance, mCompiler->mAttributeTypeDef))
wantsOnDemandMethods = false;
if ((mCompiler->mResolvePassData != NULL) && (!mCompiler->mResolvePassData->mEmitEmbedEntries.IsEmpty()) && (typeInstance->IsSpecializedType()))
{
bool isCurrentEntry = false;
auto _CheckEntry = [&](BfTypeDef* typeDef)
{
auto parser = typeDef->mTypeDeclaration->GetParser();
if (parser != NULL)
if (mCompiler->mResolvePassData->GetSourceClassifier(parser) != NULL)
isCurrentEntry = true;
};
_CheckEntry(typeInstance->mTypeDef);
for (auto& partial : typeInstance->mTypeDef->mPartials)
_CheckEntry(partial);
if (isCurrentEntry)
{
String typeName = TypeToString(typeInstance, BfTypeNameFlag_AddProjectName);
if (mCompiler->mResolvePassData->mEmitEmbedEntries.ContainsKey(typeName))
{
wantsOnDemandMethods = false;
}
}
}
//bool allDeclsRequired = (mIsReified) && (mCompiler->mOptions.mEmitDebugInfo) && ();
bool allDeclsRequired = false;
//if ((mIsReified) && (mCompiler->mOptions.mEmitDebugInfo) && (!mCompiler->mWantsDeferMethodDecls))
// if ((mIsReified) && (mCompiler->mOptions.mEmitDebugInfo))
// {
// allDeclsRequired = true;
// }
HashSet<String> ifaceMethodNameSet;
if (wantsOnDemandMethods)
{
for (int iFaceIdx = newIntefaceStartIdx; iFaceIdx < (int)typeInstance->mInterfaces.size(); iFaceIdx++)
{
BfTypeInterfaceEntry& typeInterfaceInst = typeInstance->mInterfaces[iFaceIdx];
for (auto checkMethodDef : typeInterfaceInst.mInterfaceType->mTypeDef->mMethods)
{
ifaceMethodNameSet.Add(checkMethodDef->mName);
}
}
}
bool isFailedType = mCurTypeInstance->mTypeFailed;
if (auto genericTypeInst = mCurTypeInstance->ToGenericTypeInstance())
{
if (genericTypeInst->mGenericTypeInfo->mHadValidateErrors)
isFailedType = true;
}
bool typeOptionsIncludeAll = false;
bool typeOptionsIncludeFiltered = false;
if (typeOptions != NULL)
{
typeOptionsIncludeAll = typeOptions->Apply(typeOptionsIncludeAll, BfOptionFlags_ReflectAlwaysIncludeAll);
typeOptionsIncludeFiltered = typeOptions->Apply(typeOptionsIncludeAll, BfOptionFlags_ReflectAlwaysIncludeFiltered);
}
// Generate all methods. Pass 1
for (auto methodDef : typeDef->mMethods)
{
auto methodInstanceGroup = &typeInstance->mMethodInstanceGroups[methodDef->mIdx];
if (typeOptions != NULL)
{
BfOptionFlags optionFlags = BfOptionFlags_ReflectNonStaticMethods;
if (methodDef->mMethodType == BfMethodType_Ctor)
optionFlags = BfOptionFlags_ReflectConstructors;
else if (methodDef->mIsStatic)
optionFlags = BfOptionFlags_ReflectStaticMethods;
methodInstanceGroup->mExplicitlyReflected = typeOptions->Apply(false, optionFlags);
methodInstanceGroup->mExplicitlyReflected = ApplyTypeOptionMethodFilters(methodInstanceGroup->mExplicitlyReflected, methodDef, typeOptions);
}
if ((typeInstance->mCustomAttributes != NULL) && (typeInstance->mCustomAttributes->Contains(mCompiler->mReflectAttributeTypeDef)))
methodInstanceGroup->mExplicitlyReflected = true;
if (methodInstanceGroup->mOnDemandKind == BfMethodOnDemandKind_AlwaysInclude)
continue;
if (methodInstanceGroup->mOnDemandKind == BfMethodOnDemandKind_InWorkList)
continue;
if (methodInstanceGroup->mOnDemandKind == BfMethodOnDemandKind_Referenced)
continue;
if (isFailedType)
{
// We don't want method decls from failed generic types to clog up our type system
continue;
}
BF_ASSERT((methodInstanceGroup->mOnDemandKind == BfMethodOnDemandKind_NotSet) ||
(methodInstanceGroup->mOnDemandKind == BfMethodOnDemandKind_Decl_AwaitingDecl) ||
(methodInstanceGroup->mOnDemandKind == BfMethodOnDemandKind_Decl_AwaitingReference));
if ((isBoxed) && (!methodDef->mIsVirtual))
{
if (methodDef->mIsStatic)
continue;
bool boxedRequired = false;
if (((methodDef->mMethodType == BfMethodType_Ctor) && (methodDef->mParams.size() == 0)) ||
(methodDef->mMethodType == BfMethodType_Dtor) ||
((methodDef->mName == BF_METHODNAME_MARKMEMBERS) || (methodDef->mName == BF_METHODNAME_MARKMEMBERS_STATIC) || (methodDef->mName == BF_METHODNAME_INVOKE) || (methodDef->mName == BF_METHODNAME_DYNAMICCAST)) ||
(methodDef->mGenericParams.size() != 0))
boxedRequired = true;
if (!boxedRequired)
{
if (wantsOnDemandMethods)
{
methodInstanceGroup->mOnDemandKind = BfMethodOnDemandKind_NoDecl_AwaitingReference;
mOnDemandMethodCount++;
}
continue;
}
}
if (methodDef->mMethodType == BfMethodType_Ignore)
continue;
if ((methodDef->mName == BF_METHODNAME_DYNAMICCAST) && (typeInstance->IsValueType()))
continue; // This is just a placeholder for boxed types
bool doAlwaysInclude = false;
if (wantsOnDemandMethods)
{
bool implRequired = false;
bool declRequired = false;
if ((!typeInstance->IsGenericTypeInstance()) && (methodDef->mGenericParams.IsEmpty()))
{
// For non-generic methods, declare all methods. This is useful for debug info.
declRequired = true;
}
if (methodDef->mMethodType == BfMethodType_CtorNoBody)
declRequired = true;
if ((methodDef->mIsStatic) &&
((methodDef->mMethodType == BfMethodType_Dtor) || (methodDef->mMethodType == BfMethodType_Ctor)))
{
implRequired = true;
}
if (mCompiler->mOptions.mEnableRealtimeLeakCheck)
{
if ((methodDef->mName == BF_METHODNAME_MARKMEMBERS_STATIC) ||
(methodDef->mName == BF_METHODNAME_FIND_TLS_MEMBERS) ||
((methodDef->mName == BF_METHODNAME_MARKMEMBERS) && (typeInstance->IsObject())))
implRequired = true;
}
BfAttributeDirective* attributes = NULL;
if (auto methodDeclaration = methodDef->GetMethodDeclaration())
attributes = methodDeclaration->mAttributes;
if (auto propertyDeclaration = methodDef->GetPropertyDeclaration())
attributes = propertyDeclaration->mAttributes;
while (attributes != NULL)
{
if (attributes->mAttributeTypeRef != NULL)
{
auto typeRefName = attributes->mAttributeTypeRef->ToCleanAttributeString();
if (typeRefName == "AlwaysInclude")
implRequired = true;
else if (typeRefName == "Export")
implRequired = true;
else if (typeRefName == "Test")
implRequired = true;
else
declRequired = true; // We need to create so we can check for AlwaysInclude in included attributes
}
attributes = attributes->mNextAttribute;
}
if ((mProject != NULL) && (mProject->mAlwaysIncludeAll) && (methodDef->mBody != NULL))
{
implRequired = true;
declRequired = true;
}
if (typeInstance->IncludeAllMethods())
implRequired = true;
// "AssumeInstantiated" also forces default ctor
if (((typeInstance->mAlwaysIncludeFlags & BfAlwaysIncludeFlag_AssumeInstantiated) != 0) &&
(methodDef->IsDefaultCtor()))
implRequired = true;
if ((typeOptionsIncludeAll || typeOptionsIncludeFiltered) && (ApplyTypeOptionMethodFilters(typeOptionsIncludeAll, methodDef, typeOptions)))
implRequired = true;
// if ((typeOptions != NULL) && (CheckTypeOptionMethodFilters(typeOptions, methodDef)))
// implRequired = true;
if (typeInstance->IsInterface())
declRequired = true;
if (methodDef->mIsVirtual)
declRequired = true;
if (!implRequired)
{
// Any interface with the same name causes us to not be on-demand
if (ifaceMethodNameSet.Contains(methodDef->mName))
declRequired = true;
}
// Is this strictly necessary? It will reduce our compilation speed in order to ensure methods are available for debug info
if (allDeclsRequired)
declRequired = true;
if (methodDef->mMethodDeclaration == NULL)
{
// Internal methods don't need decls
if ((methodDef->mName == BF_METHODNAME_DEFAULT_EQUALS) ||
(methodDef->mName == BF_METHODNAME_DEFAULT_STRICT_EQUALS))
declRequired = false;
}
if (methodDef->mMethodType == BfMethodType_Init)
{
declRequired = false;
implRequired = false;
}
if (!implRequired)
{
if (methodInstanceGroup->mOnDemandKind == BfMethodOnDemandKind_NotSet)
{
if (!mIsScratchModule)
mOnDemandMethodCount++;
}
if (!declRequired)
{
if (methodInstanceGroup->mOnDemandKind == BfMethodOnDemandKind_NotSet)
methodInstanceGroup->mOnDemandKind = BfMethodOnDemandKind_NoDecl_AwaitingReference;
continue;
}
else
{
if (methodInstanceGroup->mOnDemandKind == BfMethodOnDemandKind_NotSet)
methodInstanceGroup->mOnDemandKind = BfMethodOnDemandKind_Decl_AwaitingDecl;
}
VerifyOnDemandMethods();
}
else
{
doAlwaysInclude = true;
}
}
else
doAlwaysInclude = true;
if (doAlwaysInclude)
{
bool wasDeclared = (methodInstanceGroup->mOnDemandKind == BfMethodOnDemandKind_Decl_AwaitingDecl) ||
(methodInstanceGroup->mOnDemandKind == BfMethodOnDemandKind_Decl_AwaitingReference);
methodInstanceGroup->mOnDemandKind = BfMethodOnDemandKind_AlwaysInclude;
if (wasDeclared)
{
if (!mIsScratchModule)
mOnDemandMethodCount--;
if ((methodInstanceGroup->mDefault != NULL) && (!methodInstanceGroup->mDefault->mMethodDef->mIsAbstract))
AddMethodToWorkList(methodInstanceGroup->mDefault);
}
}
}
BF_ASSERT_REL(typeInstance->mDefineState < BfTypeDefineState_DefinedAndMethodsSlotted);
BfLogSysM("Starting DoTypeInstanceMethodProcessing %p GetMethodInstance pass. OnDemandMethods: %d\n", typeInstance, mOnDemandMethodCount);
// Def passes. First non-overrides then overrides (for in-place overrides in methods)
for (int pass = 0; pass < 2; pass++)
{
for (auto methodDef : typeDef->mMethods)
{
if ((pass == 1) != (methodDef->mIsOverride))
continue;
bool doGetMethodInstance = true;
auto methodInstanceGroup = &typeInstance->mMethodInstanceGroups[methodDef->mIdx];
if ((methodInstanceGroup->mOnDemandKind != BfMethodOnDemandKind_AlwaysInclude) &&
(methodInstanceGroup->mOnDemandKind != BfMethodOnDemandKind_Decl_AwaitingDecl))
{
BfLogSysM("Skipping GetMethodInstance on MethodDef: %p OnDemandKind: %d\n", methodDef, methodInstanceGroup->mOnDemandKind);
doGetMethodInstance = false;
}
if (methodDef->mMethodType == BfMethodType_Init)
doGetMethodInstance = false;
BfMethodInstance* methodInstance = NULL;
if (doGetMethodInstance)
{
int prevWorklistSize = (int)mContext->mMethodWorkList.size();
auto flags = ((methodDef->mGenericParams.size() != 0) || (typeInstance->IsUnspecializedType())) ? BfGetMethodInstanceFlag_UnspecializedPass : BfGetMethodInstanceFlag_None;
if (methodInstanceGroup->mOnDemandKind != BfMethodOnDemandKind_AlwaysInclude)
flags = (BfGetMethodInstanceFlags)(flags | BfGetMethodInstanceFlag_MethodInstanceOnly);
auto moduleMethodInstance = GetMethodInstance(typeInstance, methodDef, BfTypeVector(), flags);
methodInstance = moduleMethodInstance.mMethodInstance;
if (methodInstance == NULL)
{
BF_ASSERT(typeInstance->IsGenericTypeInstance() && (typeInstance->mTypeDef->mIsCombinedPartial));
continue;
}
if ((!mCompiler->mIsResolveOnly) &&
((methodInstanceGroup->mOnDemandKind == BfMethodOnDemandKind_Decl_AwaitingReference) || (!typeInstance->IsReified())))
{
bool forceMethodImpl = false;
BfCustomAttributes* customAttributes = methodInstance->GetCustomAttributes();
if ((customAttributes != NULL) && (typeInstance->IsReified()))
{
for (auto& attr : customAttributes->mAttributes)
{
auto attrTypeInst = attr.mType->ToTypeInstance();
auto attrCustomAttributes = attrTypeInst->mCustomAttributes;
if (attrCustomAttributes == NULL)
continue;
for (auto& attrAttr : attrCustomAttributes->mAttributes)
{
if (attrAttr.mType->ToTypeInstance()->IsInstanceOf(mCompiler->mAttributeUsageAttributeTypeDef))
{
// Check for Flags arg
if (attrAttr.mCtorArgs.size() < 2)
continue;
auto constant = attrTypeInst->mConstHolder->GetConstant(attrAttr.mCtorArgs[1]);
if (constant == NULL)
continue;
if (constant->mTypeCode == BfTypeCode_Boolean)
continue;
if ((constant->mInt8 & BfCustomAttributeFlags_AlwaysIncludeTarget) != 0)
forceMethodImpl = true;
if (attrTypeInst->mAttributeData == NULL)
PopulateType(attrTypeInst);
BF_ASSERT(attrTypeInst->mAttributeData != NULL);
if (attrTypeInst->mAttributeData != NULL)
{
if ((attrTypeInst->mAttributeData->mAlwaysIncludeUser & BfAlwaysIncludeFlag_IncludeAllMethods) != 0)
forceMethodImpl = true;
// "AssumeInstantiated" also forces default ctor
if (((attrTypeInst->mAttributeData->mAlwaysIncludeUser & BfAlwaysIncludeFlag_AssumeInstantiated) != 0) &&
(methodDef->mMethodType == BfMethodType_Ctor) && (methodDef->mParams.IsEmpty()))
forceMethodImpl = true;
}
}
}
}
}
if (methodInstance->mMethodDef->mDeclaringType->mProject->mTargetType == BfTargetType_BeefTest)
{
if ((customAttributes != NULL) && (customAttributes->Contains(mCompiler->mTestAttributeTypeDef)))
{
forceMethodImpl = true;
}
}
if (forceMethodImpl)
{
if (!typeInstance->IsReified())
mContext->mScratchModule->PopulateType(typeInstance, BfPopulateType_Data);
// Reify method
mContext->mScratchModule->GetMethodInstance(typeInstance, methodDef, BfTypeVector());
BF_ASSERT(methodInstanceGroup->mOnDemandKind != BfMethodOnDemandKind_Decl_AwaitingReference);
}
}
}
else
{
methodInstance = methodInstanceGroup->mDefault;
if (methodInstance == NULL)
continue;
}
bool methodUsedVirtually = false;
if (typeInstance->IsInterface())
{
if ((!methodDef->mIsConcrete) && (!methodDef->mIsStatic) && (!methodInstance->HasSelf()))
SlotInterfaceMethod(methodInstance);
}
else if (!methodDef->IsEmptyPartial())
{
methodUsedVirtually = SlotVirtualMethod(methodInstance, &ambiguityContext);
}
// This is important for reducing latency of autocomplete popup, but it's important we don't allow the autocomplete
// thread to cause any reentry issues by re-populating a type at an "inopportune time". We do allow certain
// reentries in PopulateType, but not when we're resolving fields (for example)
if ((mContext->mFieldResolveReentrys.size() == 0) && (!mContext->mResolvingVarField))
{
disableYield.Release();
mContext->CheckLockYield();
disableYield.Acquire();
}
}
}
BF_ASSERT(typeInstance->mVirtualMethodTable.size() == typeInstance->mVirtualMethodTableSize);
if ((isBoxed) && (!typeInstance->IsUnspecializedTypeVariation()))
{
// Any interface method that can be called virtually via an interface pointer needs to go into the boxed type
auto underlyingType = typeInstance->GetUnderlyingType();
BfTypeInstance* underlyingTypeInstance;
if (underlyingType->IsPrimitiveType())
underlyingTypeInstance = GetPrimitiveStructType(((BfPrimitiveType*)underlyingType)->mTypeDef->mTypeCode);
else
underlyingTypeInstance = underlyingType->ToTypeInstance();
if (underlyingTypeInstance != NULL)
{
PopulateType(underlyingTypeInstance, BfPopulateType_Full_Force);
for (int ifaceIdx = 0; ifaceIdx < (int)underlyingTypeInstance->mInterfaces.size(); ifaceIdx++)
{
auto& underlyingIFaceTypeInst = underlyingTypeInstance->mInterfaces[ifaceIdx];
auto& boxedIFaceTypeInst = typeInstance->mInterfaces[ifaceIdx];
BF_ASSERT(underlyingIFaceTypeInst.mInterfaceType == boxedIFaceTypeInst.mInterfaceType);
auto ifaceInst = underlyingIFaceTypeInst.mInterfaceType;
int startIdx = underlyingIFaceTypeInst.mStartInterfaceTableIdx;
int boxedStartIdx = boxedIFaceTypeInst.mStartInterfaceTableIdx;
int iMethodCount = (int)ifaceInst->mMethodInstanceGroups.size();
for (int iMethodIdx = 0; iMethodIdx < iMethodCount; iMethodIdx++)
{
auto matchedMethodRef = &underlyingTypeInstance->mInterfaceMethodTable[iMethodIdx + startIdx].mMethodRef;
auto boxedMatchedMethodRef = &typeInstance->mInterfaceMethodTable[iMethodIdx + boxedStartIdx].mMethodRef;
BfMethodInstance* matchedMethod = *matchedMethodRef;
auto ifaceMethodInst = ifaceInst->mMethodInstanceGroups[iMethodIdx].mDefault;
if (ifaceMethodInst->mVirtualTableIdx != -1)
{
if (matchedMethod == NULL)
{
// Assert on base type?
//AssertErrorState();
}
else
{
auto matchedMethodDef = matchedMethod->mMethodDef;
if (!matchedMethod->mIsForeignMethodDef)
{
BfMethodInstanceGroup* boxedMethodInstanceGroup = &typeInstance->mMethodInstanceGroups[matchedMethod->mMethodDef->mIdx];
if (boxedMethodInstanceGroup->mOnDemandKind == BfMethodOnDemandKind_NoDecl_AwaitingReference)
{
boxedMethodInstanceGroup->mOnDemandKind = BfMethodOnDemandKind_Decl_AwaitingDecl;
VerifyOnDemandMethods();
}
}
auto methodFlags = matchedMethod->mIsForeignMethodDef ? BfGetMethodInstanceFlag_ForeignMethodDef : BfGetMethodInstanceFlag_None;
methodFlags = (BfGetMethodInstanceFlags)(methodFlags | BfGetMethodInstanceFlag_MethodInstanceOnly);
auto moduleMethodInstance = GetMethodInstance(typeInstance, matchedMethodDef, BfTypeVector(),
methodFlags,
matchedMethod->GetForeignType());
auto methodInstance = moduleMethodInstance.mMethodInstance;
UniqueSlotVirtualMethod(methodInstance);
*boxedMatchedMethodRef = methodInstance;
}
}
}
}
}
}
if (typeInstance->mHotTypeData != NULL)
{
auto latestVersion = typeInstance->mHotTypeData->GetLatestVersion();
auto latestVersionHead = typeInstance->mHotTypeData->GetLatestVersionHead();
if (typeInstance->mHotTypeData->mVTableOrigLength != -1)
{
bool hasSlotError = false;
BF_ASSERT(mCompiler->IsHotCompile());
//typeInstance->mHotTypeData->mDirty = true;
//Val128 vtHash;
Array<int> ifaceMapping;
ifaceMapping.Resize(latestVersionHead->mInterfaceMapping.size());
typeInstance->CalcHotVirtualData(&ifaceMapping);
// Hot swapping allows for interfaces to be added to types or removed from types, but it doesn't allow
// interfaces to be added when the slot number has already been used -- even if the interface using
// that slot has been removed.
for (int slotIdx = 0; slotIdx < (int)ifaceMapping.size(); slotIdx++)
{
int newId = ifaceMapping[slotIdx];
int oldId = 0;
if (slotIdx < (int)latestVersionHead->mInterfaceMapping.size())
oldId = latestVersionHead->mInterfaceMapping[slotIdx];
if ((newId != oldId) && (newId != 0) && (oldId != 0))
{
String interfaceName;
for (auto iface : typeInstance->mInterfaces)
{
if (iface.mInterfaceType->mTypeId == newId)
interfaceName = TypeToString(iface.mInterfaceType);
}
Warn(0, StrFormat("Hot swap detected resolvable interface slot collision with '%s'.", interfaceName.c_str()), typeDef->mTypeDeclaration);
BF_ASSERT(latestVersion != latestVersionHead);
if (!hasSlotError)
{
latestVersion->mInterfaceMapping = ifaceMapping;
}
hasSlotError = true;
}
else if (hasSlotError)
{
if (oldId != 0)
latestVersion->mInterfaceMapping[slotIdx] = oldId;
}
if (oldId != 0)
ifaceMapping[slotIdx] = oldId;
}
latestVersionHead->mInterfaceMapping = ifaceMapping;
if (hasSlotError)
mCompiler->mHotState->mPendingFailedSlottings.Add(typeInstance->mTypeId);
else
mCompiler->mHotState->mPendingFailedSlottings.Remove(typeInstance->mTypeId);
}
}
if ((typeInstance->IsInterface()) && (!typeInstance->IsUnspecializedType()) && (typeInstance->mIsReified) && (typeInstance->mSlotNum == -1) && (mCompiler->IsHotCompile()))
{
mCompiler->mHotState->mHasNewInterfaceTypes = true;
}
if ((!typeInstance->IsInterface()) && (!typeInstance->IsUnspecializedTypeVariation()) && (!isBoxed) && (!isFailedType))
{
if (!typeInstance->mTypeDef->mIsAbstract)
{
for (int methodIdx = 0; methodIdx < (int) typeInstance->mVirtualMethodTable.size(); methodIdx++)
{
auto& methodRef = typeInstance->mVirtualMethodTable[methodIdx].mImplementingMethod;
if (methodRef.mMethodNum == -1)
{
BF_ASSERT(mCompiler->mOptions.mHasVDataExtender);
if (methodRef.mTypeInstance == typeInstance)
{
if (typeInstance->GetImplBaseType() != NULL)
BF_ASSERT(methodIdx == (int)typeInstance->GetImplBaseType()->mVirtualMethodTableSize);
}
continue;
}
auto methodInstance = (BfMethodInstance*)methodRef;
if ((methodInstance != NULL) && (methodInstance->mMethodDef->mIsAbstract))
{
if (methodInstance->mMethodDef->mIsAbstract)
{
if (typeInstance->mVirtualMethodTable[methodIdx].mDeclaringMethod.mTypeInstance == typeInstance)
{
Fail("Method is abstract but it is declared in non-abstract class", methodInstance->mMethodDef->GetRefNode());
}
else if (!typeInstance->IsUnspecializedTypeVariation())
{
if (Fail(StrFormat("'%s' does not implement inherited abstract method '%s'", TypeToString(typeInstance).c_str(), MethodToString(methodInstance).c_str()), typeDef->mTypeDeclaration->mNameNode, true) != NULL)
mCompiler->mPassInstance->MoreInfo("Abstract method declared", methodInstance->mMethodDef->GetRefNode());
}
}
else
{
if (!typeInstance->IsUnspecializedType())
AssertErrorState();
}
}
}
}
std::unordered_set<String> missingIFaceMethodNames;
for (auto& ifaceTypeInst : typeInstance->mInterfaces)
{
auto ifaceInst = ifaceTypeInst.mInterfaceType;
int startIdx = ifaceTypeInst.mStartInterfaceTableIdx;
int iMethodCount = (int)ifaceInst->mMethodInstanceGroups.size();
auto declTypeDef = ifaceTypeInst.mDeclaringType;
for (int iMethodIdx = 0; iMethodIdx < iMethodCount; iMethodIdx++)
{
auto matchedMethodRef = &typeInstance->mInterfaceMethodTable[iMethodIdx + startIdx].mMethodRef;
BfMethodInstance* matchedMethod = *matchedMethodRef;
auto ifaceMethodInst = ifaceInst->mMethodInstanceGroups[iMethodIdx].mDefault;
if ((matchedMethod == NULL) && (ifaceMethodInst != NULL))
{
missingIFaceMethodNames.insert(ifaceMethodInst->mMethodDef->mName);
}
}
}
if (!missingIFaceMethodNames.empty())
{
// Attempt to find matching entries in base types
ambiguityContext.mIsReslotting = true;
auto checkType = typeInstance->GetImplBaseType();
while (checkType != NULL)
{
for (auto& methodGroup : checkType->mMethodInstanceGroups)
{
auto methodInstance = methodGroup.mDefault;
if (methodInstance != NULL)
{
if ((methodInstance->mMethodDef->mProtection != BfProtection_Private) &&
(!methodInstance->mMethodDef->mIsOverride) &&
(missingIFaceMethodNames.find(methodInstance->mMethodDef->mName) != missingIFaceMethodNames.end()))
{
SlotVirtualMethod(methodInstance, &ambiguityContext);
}
}
}
checkType = checkType->GetImplBaseType();
}
}
for (auto& ifaceTypeInst : typeInstance->mInterfaces)
{
auto ifaceInst = ifaceTypeInst.mInterfaceType;
int startIdx = ifaceTypeInst.mStartInterfaceTableIdx;
int iMethodCount = (int)ifaceInst->mMethodInstanceGroups.size();
auto declTypeDef = ifaceTypeInst.mDeclaringType;
for (int iMethodIdx = 0; iMethodIdx < iMethodCount; iMethodIdx++)
{
auto matchedMethodRef = &typeInstance->mInterfaceMethodTable[iMethodIdx + startIdx].mMethodRef;
BfMethodInstance* matchedMethod = *matchedMethodRef;
auto ifaceMethodInst = ifaceInst->mMethodInstanceGroups[iMethodIdx].mDefault;
if (ifaceMethodInst == NULL)
continue;
auto iReturnType = ifaceMethodInst->mReturnType;
if (iReturnType->IsUnspecializedTypeVariation())
{
BfType* resolvedType = ResolveGenericType(iReturnType, NULL, NULL, mCurTypeInstance);
if (resolvedType != NULL)
iReturnType = resolvedType;
else
iReturnType = typeInstance;
}
if (ifaceMethodInst->mMethodDef->mIsOverride)
continue; // Don't consider overrides here
// If we have "ProjA depends on LibBase", "ProjB depends on LibBase", then a type ClassC in LibBase implementing IFaceD,
// where IFaceD gets extended with MethodE in ProjA, an implementing MethodE is still required to exist on ClassC --
// the visibility is bidirectional. A type ClassF implementing IFaceD inside ProjB will not be required to implement
// MethodE, however
if ((!ifaceInst->IsTypeMemberAccessible(ifaceMethodInst->mMethodDef->mDeclaringType, ifaceTypeInst.mDeclaringType)) &&
(!ifaceInst->IsTypeMemberAccessible(ifaceTypeInst.mDeclaringType, ifaceMethodInst->mMethodDef->mDeclaringType)))
continue;
if (!ifaceInst->IsTypeMemberIncluded(ifaceMethodInst->mMethodDef->mDeclaringType, ifaceTypeInst.mDeclaringType))
continue;
bool hadMatch = matchedMethod != NULL;
bool hadPubFailure = false;
bool hadStaticFailure = false;
bool hadMutFailure = false;
if (hadMatch)
{
if ((matchedMethod->GetExplicitInterface() == NULL) && (matchedMethod->mMethodDef->mProtection != BfProtection_Public))
{
hadMatch = false;
hadPubFailure = true;
}
if (matchedMethod->mMethodDef->mIsStatic != ifaceMethodInst->mMethodDef->mIsStatic)
{
hadMatch = false;
hadStaticFailure = true;
}
if (ifaceMethodInst->mVirtualTableIdx != -1)
{
if (matchedMethod->mReturnType != iReturnType)
hadMatch = false;
}
else
{
// Concrete/generic
if (!CanCast(GetFakeTypedValue(matchedMethod->mReturnType), iReturnType))
hadMatch = false;
}
// If we have mExplicitInterface set then we already gave a mut error (if needed)
if ((typeInstance->IsValueType()) && (matchedMethod->GetExplicitInterface() == NULL) &&
(matchedMethod->mMethodDef->mIsMutating) && (!ifaceMethodInst->mMethodDef->mIsMutating))
{
hadMutFailure = true;
hadMatch = false;
}
}
if (!hadMatch)
{
if (!typeInstance->IsUnspecializedTypeVariation())
{
auto bestMethodInst = ifaceMethodInst;
auto bestInterface = ifaceInst;
if (matchedMethod == NULL)
{
bool searchFailed = false;
for (auto& checkIFaceTypeInst : typeInstance->mInterfaces)
{
auto checkIFaceInst = checkIFaceTypeInst.mInterfaceType;
int checkStartIdx = checkIFaceTypeInst.mStartInterfaceTableIdx;
int checkIMethodCount = (int)checkIFaceInst->mMethodInstanceGroups.size();
for (int checkIMethodIdx = 0; checkIMethodIdx < checkIMethodCount; checkIMethodIdx++)
{
auto checkIFaceMethodInst = checkIFaceInst->mMethodInstanceGroups[checkIMethodIdx].mDefault;
if ((checkIFaceMethodInst != NULL) && (checkIFaceMethodInst->mMethodDef->mIsOverride))
{
bool cmpResult = CompareMethodSignatures(checkIFaceMethodInst, ifaceMethodInst);
if (cmpResult)
{
bool isBetter = TypeIsSubTypeOf(checkIFaceInst, bestInterface);
bool isWorse = TypeIsSubTypeOf(bestInterface, checkIFaceInst);
if (isBetter == isWorse)
{
CompareDeclTypes(NULL, checkIFaceMethodInst->mMethodDef->mDeclaringType, bestMethodInst->mMethodDef->mDeclaringType, isBetter, isWorse);
}
if ((isBetter) && (!isWorse))
{
bestInterface = checkIFaceInst;
bestMethodInst = checkIFaceMethodInst;
}
else if (isBetter == isWorse)
{
if (!searchFailed)
{
searchFailed = true;
auto error = Fail(StrFormat("There is no most-specific default implementation of '%s'", MethodToString(ifaceMethodInst).c_str()), declTypeDef->mTypeDeclaration->mNameNode);
if (error != NULL)
{
mCompiler->mPassInstance->MoreInfo(StrFormat("'%s' is a candidate",
MethodToString(bestMethodInst).c_str()), bestMethodInst->mMethodDef->GetRefNode());
mCompiler->mPassInstance->MoreInfo(StrFormat("'%s' is a candidate",
MethodToString(checkIFaceMethodInst).c_str()), checkIFaceMethodInst->mMethodDef->GetRefNode());
}
//candidate implementations include '%s' and '%s'",
//TypeToString(checkIFaceInst).c_str(), TypeToString(bestInterface).c_str()), );
}
}
}
}
}
}
if (bestMethodInst->mReturnType != ifaceMethodInst->mReturnType)
{
auto error = Fail(StrFormat("Default interface method '%s' cannot be used because it doesn't have the return type '%s'",
MethodToString(bestMethodInst).c_str(), TypeToString(ifaceMethodInst->mReturnType).c_str()), declTypeDef->mTypeDeclaration->mNameNode);
if (error != NULL)
{
mCompiler->mPassInstance->MoreInfo("See original method declaration", ifaceMethodInst->mMethodDef->GetRefNode());
mCompiler->mPassInstance->MoreInfo("See override method declaration", bestMethodInst->mMethodDef->GetRefNode());
}
}
}
bool hasDefaultImpl = bestMethodInst->mMethodDef->HasBody() || bestMethodInst->mMethodDef->mIsAbstract;
if ((hasDefaultImpl) && (matchedMethod == NULL))
{
auto methodDef = bestMethodInst->mMethodDef;
BfGetMethodInstanceFlags flags = (BfGetMethodInstanceFlags)(BfGetMethodInstanceFlag_ForeignMethodDef | BfGetMethodInstanceFlag_MethodInstanceOnly);
if ((methodDef->mGenericParams.size() != 0) || (typeInstance->IsUnspecializedType()))
flags = (BfGetMethodInstanceFlags)(flags | BfGetMethodInstanceFlag_UnspecializedPass);
auto methodInst = GetMethodInstance(typeInstance, methodDef, BfTypeVector(), flags, ifaceInst);
if (methodInst)
{
*matchedMethodRef = methodInst.mMethodInstance;
BfMethodInstance* newMethodInstance = methodInst.mMethodInstance;
BF_ASSERT(newMethodInstance->mIsForeignMethodDef);
if (newMethodInstance->mMethodInstanceGroup->mOnDemandKind == BfMethodOnDemandKind_Decl_AwaitingReference)
{
if (!mIsScratchModule)
mOnDemandMethodCount++;
}
continue;
}
}
if (typeInstance->IsBoxed())
{
if (ifaceMethodInst->mMethodDef->mIsStatic)
{
// Skip the statics, those can't be invoked
}
else
{
// The unboxed version should have had the same error
if (!typeInstance->GetUnderlyingType()->IsIncomplete())
AssertErrorState();
}
}
else if ((typeInstance->mRebuildFlags & BfTypeRebuildFlag_ConstEvalCancelled) != 0)
{
// It's possible const eval was supposed to generate this method. We're rebuilding the type anyway.
}
else
{
String ifaceMethodString;
///
{
BfTypeState typeState;
typeState.mPrevState = mContext->mCurTypeState;
typeState.mForceActiveTypeDef = declTypeDef;
SetAndRestoreValue<BfTypeState*> prevTypeState(mContext->mCurTypeState, &typeState);
SetAndRestoreValue<BfMethodInstance*> prevMethodInstance(mCurMethodInstance, ifaceMethodInst);
ifaceMethodString = MethodToString(ifaceMethodInst, (BfMethodNameFlags)(BfMethodNameFlag_ResolveGenericParamNames | BfMethodNameFlag_IncludeReturnType));
}
BfTypeDeclaration* typeDecl = declTypeDef->mTypeDeclaration;
BfError* error = Fail(StrFormat("'%s' does not implement interface member '%s'", TypeToString(typeInstance).c_str(), ifaceMethodString.c_str()), typeDecl->mNameNode, true);
if ((matchedMethod != NULL) && (error != NULL))
{
String matchedMethodString = MethodToString(matchedMethod, (BfMethodNameFlags)(BfMethodNameFlag_ResolveGenericParamNames | BfMethodNameFlag_IncludeReturnType));
if (hadStaticFailure)
{
auto staticNodeRef = matchedMethod->mMethodDef->GetRefNode();
if (auto methodDecl = BfNodeDynCast<BfMethodDeclaration>(matchedMethod->mMethodDef->mMethodDeclaration))
if (methodDecl->mStaticSpecifier != NULL)
staticNodeRef = methodDecl->mStaticSpecifier;
if (matchedMethod->mMethodDef->mIsStatic)
mCompiler->mPassInstance->MoreInfo(StrFormat("'%s' cannot match because it's static",
matchedMethodString.c_str()), staticNodeRef);
else
mCompiler->mPassInstance->MoreInfo(StrFormat("'%s' cannot match because it's not static",
matchedMethodString.c_str()), staticNodeRef);
}
else if (hadPubFailure)
{
mCompiler->mPassInstance->MoreInfo(StrFormat("'%s' cannot match because it's not public",
matchedMethodString.c_str()), matchedMethod->mMethodDef->mReturnTypeRef);
}
else if (ifaceMethodInst->mReturnType->IsConcreteInterfaceType())
{
mCompiler->mPassInstance->MoreInfo(StrFormat("'%s' cannot match because it does not have a concrete return type that implements '%s'",
matchedMethodString.c_str(), TypeToString(ifaceMethodInst->mReturnType).c_str()), matchedMethod->mMethodDef->mReturnTypeRef);
}
else if (hadMutFailure)
{
mCompiler->mPassInstance->MoreInfo(StrFormat("'%s' cannot match because it's market as 'mut' but interface method does not allow it",
matchedMethodString.c_str()), matchedMethod->mMethodDef->GetMutNode());
mCompiler->mPassInstance->MoreInfo(StrFormat("Declare the interface method as 'mut' to allow matching 'mut' implementations"), ifaceMethodInst->mMethodDef->mMethodDeclaration);
}
else
{
mCompiler->mPassInstance->MoreInfo(StrFormat("'%s' cannot match because it does not have the return type '%s'",
matchedMethodString.c_str(), TypeToString(ifaceMethodInst->mReturnType).c_str()), matchedMethod->mMethodDef->mReturnTypeRef);
if ((ifaceMethodInst->mVirtualTableIdx != -1) && (ifaceMethodInst->mReturnType->IsInterface()))
mCompiler->mPassInstance->MoreInfo("Declare the interface method as 'concrete' to allow matching concrete return values", ifaceMethodInst->mMethodDef->GetMethodDeclaration()->mVirtualSpecifier);
}
}
}
}
// Clear out the entry
*matchedMethodRef = BfMethodRef();
}
}
}
}
VerifyOnDemandMethods();
ambiguityContext.Finish();
CheckAddFailType();
typeInstance->mDefineState = BfTypeDefineState_DefinedAndMethodsSlotted;
mCompiler->mStats.mTypesPopulated++;
mCompiler->UpdateCompletion();
BF_ASSERT_REL(!typeInstance->mNeedsMethodProcessing);
BfLogSysM("Finished DoTypeInstanceMethodProcessing %p. OnDemandMethods: %d Virtual Size: %d InterfaceMethodTableSize: %d\n", typeInstance, mOnDemandMethodCount, typeInstance->mVirtualMethodTable.size(), typeInstance->mInterfaceMethodTable.size());
}
void BfModule::RebuildMethods(BfTypeInstance* typeInstance)
{
if (typeInstance->IsIncomplete())
return;
BfLogSysM("RebuildMethods setting mNeedsMethodProcessing=true on %p\n", typeInstance);
BF_ASSERT_REL(typeInstance->mDefineState != BfTypeDefineState_DefinedAndMethodsSlotting);
typeInstance->mNeedsMethodProcessing = true;
typeInstance->mDefineState = BfTypeDefineState_Defined;
typeInstance->mTypeIncomplete = true;
for (auto& methodInstanceGroup : typeInstance->mMethodInstanceGroups)
{
delete methodInstanceGroup.mDefault;
methodInstanceGroup.mDefault = NULL;
delete methodInstanceGroup.mMethodSpecializationMap;
methodInstanceGroup.mMethodSpecializationMap = NULL;
methodInstanceGroup.mOnDemandKind = BfMethodOnDemandKind_NotSet;
}
BfTypeProcessRequest* typeProcessRequest = mContext->mPopulateTypeWorkList.Alloc();
typeProcessRequest->mType = typeInstance;
BF_ASSERT(typeInstance->mContext == mContext);
mCompiler->mStats.mTypesQueued++;
mCompiler->UpdateCompletion();
}
BfModule* BfModule::GetModuleFor(BfType* type)
{
auto typeInst = type->ToTypeInstance();
if (typeInst == NULL)
return NULL;
return typeInst->mModule;
}
void BfModule::AddMethodToWorkList(BfMethodInstance* methodInstance)
{
BF_ASSERT(!methodInstance->mMethodDef->mIsAbstract);
if (methodInstance->IsSpecializedByAutoCompleteMethod())
return;
BF_ASSERT(mCompiler->mCompileState != BfCompiler::CompileState_VData);
if ((methodInstance->mIsReified) && (!methodInstance->mIsUnspecialized))
{
BF_ASSERT(mCompiler->mCompileState != BfCompiler::CompileState_Unreified);
}
if (methodInstance->IsOrInUnspecializedVariation())
{
return;
}
BF_ASSERT(!methodInstance->GetOwner()->IsUnspecializedTypeVariation());
BF_ASSERT(methodInstance->mMethodProcessRequest == NULL);
auto defaultMethod = methodInstance->mMethodInstanceGroup->mDefault;
if (defaultMethod != methodInstance)
{
BF_ASSERT(defaultMethod != NULL);
if (methodInstance->mMethodInstanceGroup->mOnDemandKind == BfMethodOnDemandKind_Decl_AwaitingReference)
{
if ((defaultMethod->mIsReified) && (!defaultMethod->mDeclModule->mIsModuleMutable))
{
defaultMethod->mDeclModule->PrepareForIRWriting(methodInstance->GetOwner());
}
AddMethodToWorkList(defaultMethod);
// This should put all the specialized methods in the worklist, including us
return;
}
}
if (methodInstance->mDeclModule != NULL)
{
if (methodInstance->mDeclModule != this)
{
methodInstance->mDeclModule->AddMethodToWorkList(methodInstance);
return;
}
}
else
{
auto module = GetOrCreateMethodModule(methodInstance);
methodInstance->mDeclModule = module;
BfIRValue func = CreateFunctionFrom(methodInstance, false, methodInstance->mAlwaysInline);
methodInstance->mIRFunction = func;
module->mFuncReferences[methodInstance] = func;
module->AddMethodToWorkList(methodInstance);
return;
}
if ((!methodInstance->mIRFunction) && (methodInstance->mIsReified) && (!methodInstance->mIsUnspecialized) &&
(methodInstance->GetImportCallKind() == BfImportCallKind_None))
{
if (!mIsModuleMutable)
PrepareForIRWriting(methodInstance->GetOwner());
SetAndRestoreValue<bool> prevIgnoreWrites(mBfIRBuilder->mIgnoreWrites, mWantsIRIgnoreWrites);
BfIRValue func = CreateFunctionFrom(methodInstance, false, methodInstance->mAlwaysInline);
if (func)
{
methodInstance->mIRFunction = func;
mFuncReferences[methodInstance] = func;
}
}
BF_ASSERT(methodInstance->mDeclModule == this);
if (defaultMethod == methodInstance)
{
if (methodInstance->mMethodInstanceGroup->mOnDemandKind != BfMethodOnDemandKind_AlwaysInclude)
{
auto owningModule = methodInstance->GetOwner()->GetModule();
BF_ASSERT(methodInstance->mMethodInstanceGroup->mOnDemandKind != BfMethodOnDemandKind_Referenced);
if (!mIsScratchModule)
{
auto onDemandModule = owningModule;
if (owningModule->mParentModule != NULL)
onDemandModule = owningModule->mParentModule;
owningModule->VerifyOnDemandMethods();
if (methodInstance->mMethodInstanceGroup->mOnDemandKind == BfMethodOnDemandKind_NotSet)
owningModule->mOnDemandMethodCount++;
BF_ASSERT(onDemandModule->mOnDemandMethodCount > 0);
VerifyOnDemandMethods();
}
methodInstance->mMethodInstanceGroup->mOnDemandKind = BfMethodOnDemandKind_InWorkList;
if (methodInstance->mMethodInstanceGroup->mMethodSpecializationMap != NULL)
{
for (auto& kv : *methodInstance->mMethodInstanceGroup->mMethodSpecializationMap)
{
auto specMethodInstance = kv.mValue;
if ((!specMethodInstance->mDeclModule->mIsModuleMutable) && (!specMethodInstance->mDeclModule->mReifyQueued))
{
specMethodInstance->mDeclModule->PrepareForIRWriting(specMethodInstance->GetOwner());
}
specMethodInstance->mDeclModule->AddMethodToWorkList(specMethodInstance);
}
}
}
}
else
{
BF_ASSERT(defaultMethod->mMethodInstanceGroup->IsImplemented());
}
BF_ASSERT(methodInstance->mDeclModule != NULL);
auto typeInstance = methodInstance->GetOwner();
BfMethodProcessRequest* methodProcessRequest = mContext->mMethodWorkList.Alloc();
if (mCompiler->mCompileState == BfCompiler::CompileState_Unreified)
{
if (methodInstance->mIsReified)
{
BfLogSysM("Marking method %d as unreified due to CompileState_Unreified\n", methodInstance);
methodInstance->mIsReified = false;
}
}
//BF_ASSERT(!methodInstance->mIsReified);
methodProcessRequest->mType = typeInstance;
methodProcessRequest->mMethodInstance = methodInstance;
methodProcessRequest->mRevision = typeInstance->mRevision;
methodProcessRequest->mFromModuleRebuildIdx = mRebuildIdx;
methodProcessRequest->mFromModule = this;
if ((!mCompiler->mIsResolveOnly) && (methodInstance->mIsReified))
{
if ((!mIsModuleMutable) && (!mIsScratchModule))
{
BF_ASSERT(!mGeneratesCode);
StartNewRevision(BfModule::RebuildKind_None);
}
BF_ASSERT(mIsModuleMutable || mReifyQueued);
}
BF_ASSERT((mBfIRBuilder != NULL) || (!methodInstance->mIsReified));
BfLogSysM("Adding to mMethodWorkList Module: %p IncompleteMethodCount: %d Type %p MethodInstance: %p Name:%s TypeRevision: %d ModuleRevision: %d ReqId:%d\n", this, mIncompleteMethodCount, typeInstance, methodInstance, methodInstance->mMethodDef->mName.c_str(), methodProcessRequest->mRevision, methodProcessRequest->mFromModuleRevision, methodProcessRequest->mReqId);
if (mAwaitingFinish)
{
BfLogSysM("Module: %p No longer awaiting finish\n", this);
mAwaitingFinish = false;
}
mCompiler->mStats.mMethodsQueued++;
mCompiler->UpdateCompletion();
mIncompleteMethodCount++;
if (methodInstance->GetNumGenericArguments() != 0)
mHasGenericMethods = true;
methodInstance->mMethodProcessRequest = methodProcessRequest;
}
BfArrayType* BfModule::CreateArrayType(BfType* resolvedType, int dimensions)
{
BF_ASSERT(!resolvedType->IsVar());
BF_ASSERT(!resolvedType->IsIntUnknown());
auto arrayTypeDef = mCompiler->GetArrayTypeDef(dimensions);
if (arrayTypeDef == NULL)
return NULL;
auto arrayType = mContext->mArrayTypePool.Get();
delete arrayType->mGenericTypeInfo;
arrayType->mGenericTypeInfo = new BfGenericTypeInfo();
arrayType->mContext = mContext;
arrayType->mTypeDef = arrayTypeDef;
arrayType->mDimensions = dimensions;
arrayType->mGenericTypeInfo->mTypeGenericArguments.clear();
arrayType->mGenericTypeInfo->mTypeGenericArguments.push_back(resolvedType);
auto resolvedArrayType = ResolveType(arrayType);
if (resolvedArrayType != arrayType)
{
arrayType->Dispose();
mContext->mArrayTypePool.GiveBack(arrayType);
}
return (BfArrayType*)resolvedArrayType;
}
BfSizedArrayType* BfModule::CreateSizedArrayType(BfType * resolvedType, int size)
{
BF_ASSERT(!resolvedType->IsVar());
auto arrayType = mContext->mSizedArrayTypePool.Get();
arrayType->mContext = mContext;
arrayType->mElementType = resolvedType;
arrayType->mElementCount = size;
auto resolvedArrayType = ResolveType(arrayType);
if (resolvedArrayType != arrayType)
mContext->mSizedArrayTypePool.GiveBack(arrayType);
return (BfSizedArrayType*)resolvedArrayType;
}
BfUnknownSizedArrayType* BfModule::CreateUnknownSizedArrayType(BfType* resolvedType, BfType* sizeParam)
{
BF_ASSERT(!resolvedType->IsVar());
BF_ASSERT(sizeParam->IsGenericParam());
auto arrayType = mContext->mUnknownSizedArrayTypePool.Get();
arrayType->mContext = mContext;
arrayType->mElementType = resolvedType;
arrayType->mElementCount = -1;
arrayType->mElementCountSource = sizeParam;
auto resolvedArrayType = ResolveType(arrayType);
if (resolvedArrayType != arrayType)
mContext->mUnknownSizedArrayTypePool.GiveBack(arrayType);
return (BfUnknownSizedArrayType*)resolvedArrayType;
}
BfPointerType* BfModule::CreatePointerType(BfType* resolvedType)
{
BF_ASSERT(!resolvedType->IsVar());
BF_ASSERT_REL(!resolvedType->IsDeleting());
auto pointerType = mContext->mPointerTypePool.Get();
pointerType->mContext = mContext;
pointerType->mElementType = resolvedType;
auto resolvedPointerType = (BfPointerType*)ResolveType(pointerType);
if (resolvedPointerType != pointerType)
mContext->mPointerTypePool.GiveBack(pointerType);
BF_ASSERT(resolvedPointerType->mElementType == resolvedType);
return resolvedPointerType;
}
BfConstExprValueType* BfModule::CreateConstExprValueType(const BfTypedValue& typedValue, bool allowCreate)
{
BfPopulateType populateType = allowCreate ? BfPopulateType_Data : BfPopulateType_Identity;
BfResolveTypeRefFlags resolveFlags = allowCreate ? BfResolveTypeRefFlag_None : BfResolveTypeRefFlag_NoCreate;
auto variant = TypedValueToVariant(NULL, typedValue);
if (variant.mTypeCode == BfTypeCode_None)
{
if (auto constant = mBfIRBuilder->GetConstant(typedValue.mValue))
{
if (constant->mConstType == BfConstType_Undef)
{
variant.mTypeCode = BfTypeCode_Let;
}
}
}
if (variant.mTypeCode == BfTypeCode_None)
return NULL;
auto constExprValueType = mContext->mConstExprValueTypePool.Get();
constExprValueType->mContext = mContext;
constExprValueType->mType = typedValue.mType;
constExprValueType->mValue = variant;
auto resolvedConstExprValueType = (BfConstExprValueType*)ResolveType(constExprValueType, populateType, resolveFlags);
if (resolvedConstExprValueType != constExprValueType)
mContext->mConstExprValueTypePool.GiveBack(constExprValueType);
if (resolvedConstExprValueType != NULL)
BF_ASSERT(resolvedConstExprValueType->mValue == constExprValueType->mValue);
return resolvedConstExprValueType;
}
BfConstExprValueType* BfModule::CreateConstExprValueType(const BfVariant& variant, BfType* type, bool allowCreate)
{
BfPopulateType populateType = allowCreate ? BfPopulateType_Data : BfPopulateType_Identity;
BfResolveTypeRefFlags resolveFlags = allowCreate ? BfResolveTypeRefFlag_None : BfResolveTypeRefFlag_NoCreate;
if (variant.mTypeCode == BfTypeCode_None)
return NULL;
auto constExprValueType = mContext->mConstExprValueTypePool.Get();
constExprValueType->mContext = mContext;
constExprValueType->mType = type;
constExprValueType->mValue = variant;
auto resolvedConstExprValueType = (BfConstExprValueType*)ResolveType(constExprValueType, populateType, resolveFlags);
if (resolvedConstExprValueType != constExprValueType)
mContext->mConstExprValueTypePool.GiveBack(constExprValueType);
if (resolvedConstExprValueType != NULL)
BF_ASSERT(resolvedConstExprValueType->mValue == constExprValueType->mValue);
return resolvedConstExprValueType;
}
BfTypeInstance* BfModule::GetWrappedStructType(BfType* type, bool allowSpecialized)
{
if (type->IsPointer())
{
if (allowSpecialized)
{
BfPointerType* pointerType = (BfPointerType*)type;
BfTypeVector typeVector;
typeVector.Add(pointerType->mElementType);
return ResolveTypeDef(mCompiler->mPointerTTypeDef, typeVector, BfPopulateType_Data)->ToTypeInstance();
}
else
return ResolveTypeDef(mCompiler->mPointerTTypeDef, BfPopulateType_Data)->ToTypeInstance();
}
else if (type->IsMethodRef())
{
if (allowSpecialized)
{
BfMethodRefType* methodRefType = (BfMethodRefType*)type;
BfTypeVector typeVector;
typeVector.Add(methodRefType);
return ResolveTypeDef(mCompiler->mMethodRefTypeDef, typeVector, BfPopulateType_Data)->ToTypeInstance();
}
else
return ResolveTypeDef(mCompiler->mMethodRefTypeDef, BfPopulateType_Data)->ToTypeInstance();
}
else if (type->IsSizedArray())
{
if (allowSpecialized)
{
if (type->IsUnknownSizedArrayType())
{
BfUnknownSizedArrayType* sizedArrayType = (BfUnknownSizedArrayType*)type;
BfTypeVector typeVector;
typeVector.Add(sizedArrayType->mElementType);
typeVector.Add(sizedArrayType->mElementCountSource);
return ResolveTypeDef(mCompiler->mSizedArrayTypeDef, typeVector, BfPopulateType_Data)->ToTypeInstance();
}
BfSizedArrayType* sizedArrayType = (BfSizedArrayType*)type;
BfTypeVector typeVector;
typeVector.Add(sizedArrayType->mElementType);
auto sizeValue = BfTypedValue(GetConstValue(BF_MAX(sizedArrayType->mElementCount, 0)), GetPrimitiveType(BfTypeCode_IntPtr));
typeVector.Add(CreateConstExprValueType(sizeValue));
return ResolveTypeDef(mCompiler->mSizedArrayTypeDef, typeVector, BfPopulateType_Data)->ToTypeInstance();
}
else
return ResolveTypeDef(mCompiler->mSizedArrayTypeDef, BfPopulateType_Data)->ToTypeInstance();
}
BF_ASSERT(type->IsPrimitiveType());
return GetPrimitiveStructType(((BfPrimitiveType*)type)->mTypeDef->mTypeCode);
}
BfPrimitiveType* BfModule::GetPrimitiveType(BfTypeCode typeCode)
{
BfPrimitiveType* primType = mContext->mPrimitiveTypes[typeCode];
if (primType == NULL)
{
switch (typeCode)
{
case BfTypeCode_NullPtr:
primType = (BfPrimitiveType*)ResolveTypeDef(mSystem->mTypeNullPtr);
break;
case BfTypeCode_Self:
primType = (BfPrimitiveType*)ResolveTypeDef(mSystem->mTypeSelf);
break;
case BfTypeCode_Dot:
primType = (BfPrimitiveType*)ResolveTypeDef(mSystem->mTypeDot);
break;
case BfTypeCode_Var:
primType = (BfPrimitiveType*)ResolveTypeDef(mSystem->mTypeVar);
break;
case BfTypeCode_Let:
primType = (BfPrimitiveType*)ResolveTypeDef(mSystem->mTypeLet);
break;
case BfTypeCode_None:
primType = (BfPrimitiveType*)ResolveTypeDef(mSystem->mTypeVoid);
break;
case BfTypeCode_Boolean:
primType = (BfPrimitiveType*)ResolveTypeDef(mSystem->mTypeBool);
break;
case BfTypeCode_Int8:
primType = (BfPrimitiveType*)ResolveTypeDef(mSystem->mTypeInt8);
break;
case BfTypeCode_UInt8:
primType = (BfPrimitiveType*)ResolveTypeDef(mSystem->mTypeUInt8);
break;
case BfTypeCode_Int16:
primType = (BfPrimitiveType*)ResolveTypeDef(mSystem->mTypeInt16);
break;
case BfTypeCode_UInt16:
primType = (BfPrimitiveType*)ResolveTypeDef(mSystem->mTypeUInt16);
break;
case BfTypeCode_Int32:
primType = (BfPrimitiveType*)ResolveTypeDef(mSystem->mTypeInt32);
break;
case BfTypeCode_UInt32:
primType = (BfPrimitiveType*)ResolveTypeDef(mSystem->mTypeUInt32);
break;
case BfTypeCode_Int64:
primType = (BfPrimitiveType*)ResolveTypeDef(mSystem->mTypeInt64);
break;
case BfTypeCode_UInt64:
primType = (BfPrimitiveType*)ResolveTypeDef(mSystem->mTypeUInt64);
break;
case BfTypeCode_Char8:
primType = (BfPrimitiveType*)ResolveTypeDef(mSystem->mTypeChar8);
break;
case BfTypeCode_Char16:
primType = (BfPrimitiveType*)ResolveTypeDef(mSystem->mTypeChar16);
break;
case BfTypeCode_Char32:
primType = (BfPrimitiveType*)ResolveTypeDef(mSystem->mTypeChar32);
break;
case BfTypeCode_Float:
primType = (BfPrimitiveType*)ResolveTypeDef(mSystem->mTypeSingle);
break;
case BfTypeCode_Double:
primType = (BfPrimitiveType*)ResolveTypeDef(mSystem->mTypeDouble);
break;
case BfTypeCode_IntPtr:
primType = (BfPrimitiveType*)ResolveTypeDef(mSystem->mTypeIntPtr);
break;
case BfTypeCode_UIntPtr:
primType = (BfPrimitiveType*)ResolveTypeDef(mSystem->mTypeUIntPtr);
break;
case BfTypeCode_IntUnknown:
primType = (BfPrimitiveType*)ResolveTypeDef(mSystem->mTypeIntUnknown);
break;
case BfTypeCode_UIntUnknown:
primType = (BfPrimitiveType*)ResolveTypeDef(mSystem->mTypeUIntUnknown);
break;
case BfTypeCode_StringId:
BFMODULE_FATAL(this, "Invalid use of StringId");
break;
default:
BF_DBG_FATAL("Invalid type");
break;
}
mContext->mPrimitiveTypes[typeCode] = primType;
}
return primType;
}
BfIRType BfModule::GetIRLoweredType(BfTypeCode loweredTypeCode, BfTypeCode loweredTypeCode2)
{
BF_ASSERT(!mIsComptimeModule);
BF_ASSERT(loweredTypeCode != BfTypeCode_None);
if (loweredTypeCode2 == BfTypeCode_None)
return mBfIRBuilder->GetPrimitiveType(loweredTypeCode);
SizedArray<BfIRType, 2> types;
types.push_back(mBfIRBuilder->GetPrimitiveType(loweredTypeCode));
types.push_back(mBfIRBuilder->GetPrimitiveType(loweredTypeCode2));
return mBfIRBuilder->CreateStructType(types);
}
BfMethodRefType* BfModule::CreateMethodRefType(BfMethodInstance* methodInstance, bool mustAlreadyExist)
{
// Make sure we don't have a partially-formed local method or lambda coming in, because those may be replaced
// after the capture phase
BF_ASSERT(!methodInstance->mDisallowCalling);
auto methodRefType = new BfMethodRefType();
methodRefType->mContext = mContext;
//methodRefType->mCaptureType = NULL;
methodRefType->mMethodRef = methodInstance;
methodRefType->mOwner = methodInstance->GetOwner();
methodRefType->mOwnerRevision = methodRefType->mOwner->mRevision;
//methodRefType->mMangledName = BfMangler::Mangle(mCompiler->GetMangleKind(), methodInstance);
methodRefType->mIsAutoCompleteMethod = methodInstance->mIsAutocompleteMethod;
methodRefType->mIsUnspecialized = methodInstance->mIsUnspecialized;
methodRefType->mIsUnspecializedVariation = methodInstance->mIsUnspecializedVariation;
methodRefType->mSize = 0;
BfResolvedTypeSet::LookupContext lookupCtx;
lookupCtx.mModule = this;
BfResolvedTypeSet::EntryRef typeEntry;
auto inserted = mContext->mResolvedTypes.Insert(methodRefType, &lookupCtx, &typeEntry);
if (typeEntry->mValue == NULL)
{
BF_ASSERT(!mustAlreadyExist);
BF_ASSERT(!methodInstance->mHasMethodRefType);
InitType(methodRefType, BfPopulateType_Identity);
methodRefType->mDefineState = BfTypeDefineState_DefinedAndMethodsSlotted;
methodInstance->mHasMethodRefType = true;
methodInstance->mMethodInstanceGroup->mRefCount++;
typeEntry->mValue = methodRefType;
BfLogSysM("Create MethodRefType %p MethodInstance: %p\n", methodRefType, methodInstance);
methodRefType->mRevision = 0;
AddDependency(methodInstance->GetOwner(), methodRefType, BfDependencyMap::DependencyFlag_Calls);
BfTypeVector tupleTypes;
Array<String> tupleNames;
int offset = 0;
methodRefType->mAlign = 1;
int dataIdx = 0;
// CRepr, just because we're lazy (for now)
int implicitParamCount = methodInstance->GetImplicitParamCount();
for (int implicitParamIdx = methodInstance->HasThis() ? -1 : 0; implicitParamIdx < implicitParamCount; implicitParamIdx++)
{
auto paramType = methodInstance->GetParamType(implicitParamIdx);
if (!paramType->IsValuelessType())
{
methodRefType->mDataToParamIdx.Add(implicitParamIdx);
if (implicitParamIdx >= 0)
methodRefType->mParamToDataIdx.Add(dataIdx);
offset = BF_ALIGN(offset, paramType->mAlign);
offset += paramType->mSize;
methodRefType->mAlign = std::max(methodRefType->mAlign, paramType->mAlign);
dataIdx++;
}
else
{
methodRefType->mParamToDataIdx.Add(-1);
}
}
offset = BF_ALIGN(offset, methodRefType->mAlign);
methodRefType->mSize = offset;
// if (!tupleTypes.empty())
// {
// methodRefType->mCaptureType = CreateTupleType(tupleTypes, tupleNames);
// AddDependency(methodRefType->mCaptureType, methodRefType, BfDependencyMap::DependencyFlag_ReadFields);
//
// methodRefType->mSize = methodRefType->mCaptureType->mSize;
// methodRefType->mAlign = methodRefType->mCaptureType->mAlign;
// }
// else
// {
// methodRefType->mSize = 0;
// methodRefType->mAlign = 0;
// }
}
else
{
methodRefType->mMethodRef = NULL;
delete methodRefType;
methodRefType = (BfMethodRefType*)typeEntry->mValue;
}
return methodRefType;
}
BfType* BfModule::FixIntUnknown(BfType* type)
{
if ((type != NULL) && (type->IsPrimitiveType()))
{
auto primType = (BfPrimitiveType*)type;
if (primType->mTypeDef->mTypeCode == BfTypeCode_IntUnknown)
return GetPrimitiveType(BfTypeCode_IntPtr);
if (primType->mTypeDef->mTypeCode == BfTypeCode_UIntUnknown)
return GetPrimitiveType(BfTypeCode_UIntPtr);
}
return type;
}
void BfModule::FixIntUnknown(BfTypedValue& typedVal, BfType* matchType)
{
if (!typedVal.mValue.IsConst())
{
if ((typedVal.mType != NULL) && (typedVal.mType->IsPrimitiveType()))
{
auto primType = (BfPrimitiveType*)typedVal.mType;
BF_ASSERT((primType->mTypeDef->mTypeCode != BfTypeCode_IntUnknown) && (primType->mTypeDef->mTypeCode != BfTypeCode_UIntUnknown));
}
return;
}
if (!typedVal.mType->IsPrimitiveType())
return;
BfTypeCode wantTypeCode;
auto primType = (BfPrimitiveType*)typedVal.mType;
if (primType->mTypeDef->mTypeCode == BfTypeCode_IntUnknown)
wantTypeCode = BfTypeCode_IntPtr;
else if (primType->mTypeDef->mTypeCode == BfTypeCode_UIntUnknown)
wantTypeCode = BfTypeCode_UIntPtr;
else
return;
auto constant = mBfIRBuilder->GetConstant(typedVal.mValue);
if ((matchType != NULL) && (matchType->IsPrimitiveType()) && (mBfIRBuilder->IsInt(matchType->ToPrimitiveType()->mTypeDef->mTypeCode)))
{
auto wantTypeCode = matchType->ToPrimitiveType()->mTypeDef->mTypeCode;
if (matchType->mSize < 8)
{
int64 minVal = -(1LL << (8 * matchType->mSize - 1));
int64 maxVal = (1LL << (8 * matchType->mSize - 1)) - 1;
if ((constant->mInt64 >= minVal) && (constant->mInt64 <= maxVal))
{
typedVal.mValue = mBfIRBuilder->CreateNumericCast(typedVal.mValue, mBfIRBuilder->IsSigned(wantTypeCode), wantTypeCode);
typedVal.mType = GetPrimitiveType(wantTypeCode);
return;
}
}
}
if (mSystem->mPtrSize == 4)
{
if (primType->mTypeDef->mTypeCode == BfTypeCode_IntUnknown)
{
if ((constant->mInt64 >= -0x80000000LL) && (constant->mInt64 <= 0x7FFFFFFFLL))
{
typedVal.mValue = mBfIRBuilder->CreateNumericCast(typedVal.mValue, true, BfTypeCode_IntPtr);
typedVal.mType = GetPrimitiveType(BfTypeCode_IntPtr);
}
else
typedVal.mType = GetPrimitiveType(BfTypeCode_Int64);
return;
}
else
{
if ((constant->mInt64 >= 0) && (constant->mInt64 <= 0xFFFFFFFF))
{
typedVal.mValue = mBfIRBuilder->CreateNumericCast(typedVal.mValue, false, BfTypeCode_IntPtr);
typedVal.mType = GetPrimitiveType(BfTypeCode_UIntPtr);
}
else
typedVal.mType = GetPrimitiveType(BfTypeCode_UInt64);
return;
}
}
typedVal.mType = GetPrimitiveType(wantTypeCode);
}
void BfModule::FixIntUnknown(BfTypedValue& lhs, BfTypedValue& rhs)
{
if ((lhs.mType != NULL) && (lhs.mType->IsIntUnknown()) && (rhs.mType != NULL) &&
(rhs.mType->IsInteger()) && (!rhs.mType->IsIntUnknown()))
{
if (CanCast(lhs, rhs.mType))
{
lhs = Cast(NULL, lhs, rhs.mType, BfCastFlags_SilentFail);
if (!lhs)
lhs = GetDefaultTypedValue(GetPrimitiveType(BfTypeCode_IntPtr));
return;
}
}
if ((rhs.mType != NULL) && (rhs.mType->IsIntUnknown()) && (lhs.mType != NULL) &&
(lhs.mType->IsInteger()) && (!lhs.mType->IsIntUnknown()))
{
if (CanCast(rhs, lhs.mType))
{
rhs = Cast(NULL, rhs, lhs.mType, BfCastFlags_SilentFail);
if (!rhs)
rhs = GetDefaultTypedValue(GetPrimitiveType(BfTypeCode_IntPtr));
return;
}
}
FixIntUnknown(lhs);
FixIntUnknown(rhs);
}
void BfModule::FixValueActualization(BfTypedValue& typedVal, bool force)
{
if (!typedVal.mValue.IsConst())
return;
if ((mBfIRBuilder->mIgnoreWrites) && (!force))
return;
auto constant = mBfIRBuilder->GetConstant(typedVal.mValue);
if (!HasUnactializedConstant(constant, mBfIRBuilder))
return;
typedVal.mValue = ConstantToCurrent(constant, mBfIRBuilder, typedVal.mType, false);
}
BfTypeInstance* BfModule::GetPrimitiveStructType(BfTypeCode typeCode)
{
BfTypeInstance* typeInst = NULL;
switch (typeCode)
{
case BfTypeCode_None:
typeInst = ResolveTypeDef(mSystem->FindTypeDef("System.Void"), BfPopulateType_Identity)->ToTypeInstance(); break;
case BfTypeCode_Boolean:
typeInst = ResolveTypeDef(mSystem->FindTypeDef("System.Boolean"), BfPopulateType_Identity)->ToTypeInstance(); break;
case BfTypeCode_Int8:
typeInst = ResolveTypeDef(mSystem->FindTypeDef("System.Int8"), BfPopulateType_Identity)->ToTypeInstance(); break;
case BfTypeCode_UInt8:
typeInst = ResolveTypeDef(mSystem->FindTypeDef("System.UInt8"), BfPopulateType_Identity)->ToTypeInstance(); break;
case BfTypeCode_Int16:
typeInst = ResolveTypeDef(mSystem->FindTypeDef("System.Int16"), BfPopulateType_Identity)->ToTypeInstance(); break;
case BfTypeCode_UInt16:
typeInst = ResolveTypeDef(mSystem->FindTypeDef("System.UInt16"), BfPopulateType_Identity)->ToTypeInstance(); break;
case BfTypeCode_Int32:
typeInst = ResolveTypeDef(mSystem->FindTypeDef("System.Int32"), BfPopulateType_Identity)->ToTypeInstance(); break;
case BfTypeCode_UInt32:
typeInst = ResolveTypeDef(mSystem->FindTypeDef("System.UInt32"), BfPopulateType_Identity)->ToTypeInstance(); break;
case BfTypeCode_Int64:
typeInst = ResolveTypeDef(mSystem->FindTypeDef("System.Int64"), BfPopulateType_Identity)->ToTypeInstance(); break;
case BfTypeCode_UInt64:
typeInst = ResolveTypeDef(mSystem->FindTypeDef("System.UInt64"), BfPopulateType_Identity)->ToTypeInstance(); break;
case BfTypeCode_IntPtr:
case BfTypeCode_IntUnknown:
typeInst = ResolveTypeDef(mSystem->FindTypeDef("System.Int"), BfPopulateType_Identity)->ToTypeInstance(); break;
case BfTypeCode_UIntPtr:
case BfTypeCode_UIntUnknown:
typeInst = ResolveTypeDef(mSystem->FindTypeDef("System.UInt"), BfPopulateType_Identity)->ToTypeInstance(); break;
case BfTypeCode_Char8:
typeInst = ResolveTypeDef(mSystem->FindTypeDef("System.Char8"), BfPopulateType_Identity)->ToTypeInstance(); break;
case BfTypeCode_Char16:
typeInst = ResolveTypeDef(mSystem->FindTypeDef("System.Char16"), BfPopulateType_Identity)->ToTypeInstance(); break;
case BfTypeCode_Char32:
typeInst = ResolveTypeDef(mSystem->FindTypeDef("System.Char32"), BfPopulateType_Identity)->ToTypeInstance(); break;
case BfTypeCode_Float:
typeInst = ResolveTypeDef(mSystem->FindTypeDef("System.Float"), BfPopulateType_Identity)->ToTypeInstance(); break;
case BfTypeCode_Double:
typeInst = ResolveTypeDef(mSystem->FindTypeDef("System.Double"), BfPopulateType_Identity)->ToTypeInstance(); break;
default:
//BF_FATAL("not implemented");
break;
}
return typeInst;
}
BfBoxedType* BfModule::CreateBoxedType(BfType* resolvedTypeRef, bool allowCreate)
{
bool isStructPtr = false;
BfPopulateType populateType = allowCreate ? BfPopulateType_Data : BfPopulateType_Identity;
BfResolveTypeRefFlags resolveFlags = allowCreate ? BfResolveTypeRefFlag_None : BfResolveTypeRefFlag_NoCreate;
if (resolvedTypeRef->IsPrimitiveType())
{
auto primType = (BfPrimitiveType*)resolvedTypeRef;
resolvedTypeRef = GetPrimitiveStructType(primType->mTypeDef->mTypeCode);
if (resolvedTypeRef == NULL)
return NULL;
}
else if (resolvedTypeRef->IsPointer())
{
BfPointerType* pointerType = (BfPointerType*)resolvedTypeRef;
if (pointerType->mElementType->IsStruct())
{
resolvedTypeRef = pointerType->mElementType;
isStructPtr = true;
}
else
{
BfTypeVector typeVector;
typeVector.Add(pointerType->mElementType);
resolvedTypeRef = ResolveTypeDef(mCompiler->mPointerTTypeDef, typeVector, populateType, resolveFlags);
if (resolvedTypeRef == NULL)
return NULL;
}
}
else if (resolvedTypeRef->IsMethodRef())
{
BfMethodRefType* methodRefType = (BfMethodRefType*)resolvedTypeRef;
BfTypeVector typeVector;
typeVector.Add(methodRefType);
resolvedTypeRef = ResolveTypeDef(mCompiler->mMethodRefTypeDef, typeVector, populateType, resolveFlags);
if (resolvedTypeRef == NULL)
return NULL;
}
else if (resolvedTypeRef->IsSizedArray())
{
BfSizedArrayType* sizedArrayType = (BfSizedArrayType*)resolvedTypeRef;
BfTypeVector typeVector;
typeVector.Add(sizedArrayType->mElementType);
auto sizeValue = BfTypedValue(GetConstValue(sizedArrayType->mElementCount), GetPrimitiveType(BfTypeCode_IntPtr));
auto sizeValueType = CreateConstExprValueType(sizeValue, allowCreate);
if (sizeValueType == NULL)
return NULL;
typeVector.Add(sizeValueType);
resolvedTypeRef = ResolveTypeDef(mCompiler->mSizedArrayTypeDef, typeVector, populateType, resolveFlags);
if (resolvedTypeRef == NULL)
return NULL;
}
BfTypeInstance* typeInst = resolvedTypeRef->ToTypeInstance();
if ((typeInst == NULL) && (!resolvedTypeRef->IsGenericParam()))
return NULL;
auto boxedType = mContext->mBoxedTypePool.Get();
boxedType->mContext = mContext;
boxedType->mElementType = resolvedTypeRef;
if (typeInst != NULL)
boxedType->mTypeDef = typeInst->mTypeDef->GetDefinition();
else
boxedType->mTypeDef = mCompiler->mValueTypeTypeDef;
boxedType->mBoxedFlags = isStructPtr ? BfBoxedType::BoxedFlags_StructPtr : BfBoxedType::BoxedFlags_None;
auto resolvedBoxedType = ResolveType(boxedType, populateType, resolveFlags);
if (resolvedBoxedType != boxedType)
{
boxedType->Dispose();
mContext->mBoxedTypePool.GiveBack(boxedType);
}
return (BfBoxedType*)resolvedBoxedType;
}
BfTypeInstance* BfModule::CreateTupleType(const BfTypeVector& fieldTypes, const Array<String>& fieldNames, bool allowVar)
{
auto baseType = (BfTypeInstance*)ResolveTypeDef(mContext->mCompiler->mValueTypeTypeDef);
BfTupleType* tupleType = NULL;
auto actualTupleType = mContext->mTupleTypePool.Get();
actualTupleType->Init(baseType->mTypeDef->mProject, baseType);
bool isUnspecialzied = false;
for (int fieldIdx = 0; fieldIdx < (int)fieldTypes.size(); fieldIdx++)
{
String fieldName;
if (fieldIdx < (int)fieldNames.size())
fieldName = fieldNames[fieldIdx];
if (fieldName.empty())
fieldName = StrFormat("%d", fieldIdx);
BfFieldDef* fieldDef = actualTupleType->AddField(fieldName);
auto fieldType = fieldTypes[fieldIdx];
if ((fieldType->IsUnspecializedType()) || (fieldType->IsVar()))
isUnspecialzied = true;
}
tupleType = actualTupleType;
tupleType->mContext = mContext;
tupleType->mFieldInstances.Resize(fieldTypes.size());
for (int fieldIdx = 0; fieldIdx < (int)fieldTypes.size(); fieldIdx++)
{
BfFieldInstance* fieldInstance = (BfFieldInstance*)&tupleType->mFieldInstances[fieldIdx];
fieldInstance->mFieldIdx = fieldIdx;
BfType* fieldType = fieldTypes[fieldIdx];
if ((fieldType->IsVar()) && (!allowVar))
fieldType = mContext->mBfObjectType;
fieldInstance->SetResolvedType(fieldType);
fieldInstance->mOwner = tupleType;
}
tupleType->mIsUnspecializedType = false;
tupleType->mIsUnspecializedTypeVariation = false;
if (isUnspecialzied)
{
tupleType->mIsUnspecializedType = true;
tupleType->mIsUnspecializedTypeVariation = true;
}
auto resolvedTupleType = ResolveType(tupleType);
if (resolvedTupleType != tupleType)
{
BF_ASSERT(tupleType->mContext != NULL);
tupleType->Dispose();
mContext->mTupleTypePool.GiveBack((BfTupleType*)tupleType);
}
return (BfTupleType*)resolvedTupleType;
}
BfTypeInstance* BfModule::SantizeTupleType(BfTypeInstance* tupleType)
{
bool needsSanitize = false;
for (int fieldIdx = 0; fieldIdx < (int)tupleType->mFieldInstances.size(); fieldIdx++)
{
BfFieldInstance* fieldInstance = (BfFieldInstance*)&tupleType->mFieldInstances[fieldIdx];
if ((fieldInstance->mResolvedType->IsVar()) || (fieldInstance->mResolvedType->IsLet()))
{
needsSanitize = true;
break;
}
}
if (!needsSanitize)
return tupleType;
BfTypeVector fieldTypes;
Array<String> fieldNames;
for (int fieldIdx = 0; fieldIdx < (int)tupleType->mFieldInstances.size(); fieldIdx++)
{
BfFieldInstance* fieldInstance = (BfFieldInstance*)&tupleType->mFieldInstances[fieldIdx];
auto fieldDef = fieldInstance->GetFieldDef();
if ((fieldInstance->mResolvedType->IsVar()) || (fieldInstance->mResolvedType->IsLet()))
fieldTypes.Add(mContext->mBfObjectType);
else
fieldTypes.Add(fieldInstance->mResolvedType);
if (!fieldDef->IsUnnamedTupleField())
{
for (int i = 0; i < fieldIdx; i++)
fieldNames.Add(String());
fieldNames.Add(fieldDef->mName);
}
}
return CreateTupleType(fieldTypes, fieldNames);
}
BfRefType* BfModule::CreateRefType(BfType* resolvedTypeRef, BfRefType::RefKind refKind)
{
auto refType = mContext->mRefTypePool.Get();
refType->mContext = mContext;
refType->mElementType = resolvedTypeRef;
refType->mRefKind = refKind;
auto resolvedRefType = ResolveType(refType);
if (resolvedRefType != refType)
mContext->mRefTypePool.GiveBack(refType);
return (BfRefType*)resolvedRefType;
}
BfModifiedTypeType* BfModule::CreateModifiedTypeType(BfType* resolvedTypeRef, BfToken modifiedKind)
{
auto retTypeType = mContext->mModifiedTypeTypePool.Get();
retTypeType->mContext = mContext;
retTypeType->mModifiedKind = modifiedKind;
retTypeType->mElementType = resolvedTypeRef;
auto resolvedRetTypeType = ResolveType(retTypeType);
if (resolvedRetTypeType != retTypeType)
mContext->mModifiedTypeTypePool.GiveBack(retTypeType);
return (BfModifiedTypeType*)resolvedRetTypeType;
}
BfConcreteInterfaceType* BfModule::CreateConcreteInterfaceType(BfTypeInstance* interfaceType)
{
auto concreteInterfaceType = mContext->mConcreteInterfaceTypePool.Get();
concreteInterfaceType->mContext = mContext;
concreteInterfaceType->mInterface = interfaceType;
auto resolvedConcreteInterfaceType = ResolveType(concreteInterfaceType);
if (resolvedConcreteInterfaceType != concreteInterfaceType)
mContext->mConcreteInterfaceTypePool.GiveBack(concreteInterfaceType);
return (BfConcreteInterfaceType*)resolvedConcreteInterfaceType;
}
BfPointerType* BfModule::CreatePointerType(BfTypeReference* typeRef)
{
auto resolvedTypeRef = ResolveTypeRef(typeRef);
if (resolvedTypeRef == NULL)
return NULL;
return CreatePointerType(resolvedTypeRef);
}
BfType* BfModule::ResolveTypeDef(BfTypeDef* typeDef, BfPopulateType populateType, BfResolveTypeRefFlags resolveFlags)
{
BF_ASSERT(typeDef->mDefState != BfTypeDef::DefState_Emitted);
if (typeDef->mTypeDeclaration == NULL)
{
BF_ASSERT(!typeDef->mIsDelegate && !typeDef->mIsFunction);
}
//BF_ASSERT(typeDef->mTypeCode != BfTypeCode_Extension);
BF_ASSERT(!typeDef->mIsPartial || typeDef->mIsCombinedPartial);
BF_ASSERT(typeDef->mDefState != BfTypeDef::DefState_Deleted);
BF_ASSERT((typeDef->mOuterType == NULL) || (typeDef->mOuterType->mDefState != BfTypeDef::DefState_Deleted));
if (typeDef->mGenericParamDefs.size() != 0)
return ResolveTypeDef(typeDef, BfTypeVector(), populateType, resolveFlags);
auto typeDefTypeRef = mContext->mTypeDefTypeRefPool.Get();
typeDefTypeRef->mTypeDef = typeDef;
auto resolvedtypeDefType = ResolveTypeRef(typeDefTypeRef, populateType, resolveFlags);
if (resolvedtypeDefType == NULL)
{
mContext->mTypeDefTypeRefPool.GiveBack(typeDefTypeRef);
return NULL;
}
mContext->mTypeDefTypeRefPool.GiveBack(typeDefTypeRef);
//BF_ASSERT(resolvedtypeDefType->IsTypeInstance() || resolvedtypeDefType->IsPrimitiveType());
return resolvedtypeDefType;
}
// Get BaseClass even when we haven't populated the type yet
BfTypeInstance* BfModule::GetBaseType(BfTypeInstance* typeInst)
{
if (typeInst->mBaseType == NULL)
{
auto checkTypeState = mContext->mCurTypeState;
while (checkTypeState != NULL)
{
if (checkTypeState->mType == typeInst)
return NULL;
checkTypeState = checkTypeState->mPrevState;
}
}
if ((typeInst->mBaseType == NULL) && (typeInst != mContext->mBfObjectType))
PopulateType(typeInst, BfPopulateType_BaseType);
return typeInst->mBaseType;
}
void BfModule::HandleTypeGenericParamRef(BfAstNode* refNode, BfTypeDef* typeDef, int typeGenericParamIdx)
{
if (mCompiler->IsAutocomplete())
{
BfAutoComplete* autoComplete = mCompiler->mResolvePassData->mAutoComplete;
if ((autoComplete != NULL) && (autoComplete->mIsGetDefinition) && (autoComplete->IsAutocompleteNode(refNode)))
{
if ((autoComplete->mDefMethod == NULL) && (autoComplete->mDefField == NULL) &&
(autoComplete->mDefProp == NULL))
{
autoComplete->mDefType = typeDef;
autoComplete->mDefTypeGenericParamIdx = typeGenericParamIdx;
autoComplete->SetDefinitionLocation(refNode);
}
}
}
if (mCompiler->mResolvePassData != NULL)
mCompiler->mResolvePassData->HandleTypeGenericParam(refNode, typeDef, typeGenericParamIdx);
}
void BfModule::HandleMethodGenericParamRef(BfAstNode* refNode, BfTypeDef* typeDef, BfMethodDef* methodDef, int methodGenericParamIdx)
{
if (mCompiler->IsAutocomplete())
{
BfAutoComplete* autoComplete = mCompiler->mResolvePassData->mAutoComplete;
if ((autoComplete != NULL) && (autoComplete->mIsGetDefinition) && (autoComplete->IsAutocompleteNode(refNode)))
{
if ((autoComplete->mDefMethod == NULL) && (autoComplete->mDefField == NULL) &&
(autoComplete->mDefProp == NULL))
{
autoComplete->mDefType = typeDef;
autoComplete->mDefMethod = methodDef;
autoComplete->mDefMethodGenericParamIdx = methodGenericParamIdx;
autoComplete->SetDefinitionLocation(refNode);
}
}
}
if (mCompiler->mResolvePassData != NULL)
mCompiler->mResolvePassData->HandleMethodGenericParam(refNode, typeDef, methodDef, methodGenericParamIdx);
}
BfType* BfModule::ResolveInnerType(BfType* outerType, BfAstNode* typeRef, BfPopulateType populateType, bool ignoreErrors, int numGenericArgs, BfResolveTypeRefFlags resolveFlags)
{
BfTypeDef* nestedTypeDef = NULL;
if (outerType->IsBoxed())
outerType = outerType->GetUnderlyingType();
BfNamedTypeReference* namedTypeRef = NULL;
BfGenericInstanceTypeRef* genericTypeRef = NULL;
BfDirectStrTypeReference* directStrTypeRef = NULL;
BfIdentifierNode* identifierNode = NULL;
if ((namedTypeRef = BfNodeDynCast<BfNamedTypeReference>(typeRef)))
{
//TYPEDEF nestedTypeDef = namedTypeRef->mTypeDef;
}
else if ((genericTypeRef = BfNodeDynCast<BfGenericInstanceTypeRef>(typeRef)))
{
namedTypeRef = BfNodeDynCast<BfNamedTypeReference>(genericTypeRef->mElementType);
//TYPEDEF nestedTypeDef = namedTypeRef->mTypeDef;
}
else if ((identifierNode = BfNodeDynCast<BfIdentifierNode>(typeRef)))
{
//TYPEDEF nestedTypeDef = namedTypeRef->mTypeDef;
}
else if ((directStrTypeRef = BfNodeDynCast<BfDirectStrTypeReference>(typeRef)))
{
//
}
BF_ASSERT((identifierNode != NULL) || (namedTypeRef != NULL) || (directStrTypeRef != NULL));
auto usedOuterType = outerType;
if (nestedTypeDef == NULL)
{
StringView findName;
if (namedTypeRef != NULL)
findName = namedTypeRef->mNameNode->ToStringView();
else if (identifierNode != NULL)
findName = identifierNode->ToStringView();
else
findName = directStrTypeRef->mTypeName;
if (!findName.Contains('.'))
{
if (outerType->IsTypeInstance())
{
auto outerTypeInstance = outerType->ToTypeInstance();
for (int pass = 0; pass < 2; pass++)
{
bool isFailurePass = pass == 1;
bool allowPrivate = (mCurTypeInstance != NULL) &&
((mCurTypeInstance == outerTypeInstance) || TypeHasParentOrEquals(mCurTypeInstance->mTypeDef, outerTypeInstance->mTypeDef));
bool allowProtected = allowPrivate;/*(mCurTypeInstance != NULL) &&
(allowPrivate || (mCurTypeInstance->mSkipTypeProtectionChecks) || TypeIsSubTypeOf(mCurTypeInstance, outerTypeInstance));*/
auto checkOuterType = outerTypeInstance;
while (checkOuterType != NULL)
{
for (auto checkType : checkOuterType->mTypeDef->mNestedTypes)
{
auto latestCheckType = checkType->GetLatest();
if ((!isFailurePass) && ((resolveFlags & BfResolveTypeRefFlag_IgnoreProtection) == 0) &&
(!CheckProtection(latestCheckType->mProtection, latestCheckType, allowProtected, allowPrivate)))
continue;
if (checkType->mProject != checkOuterType->mTypeDef->mProject)
{
auto visibleProjectSet = GetVisibleProjectSet();
if ((visibleProjectSet == NULL) || (!visibleProjectSet->Contains(checkType->mProject)))
continue;
}
if ((checkType->mName->mString == findName) && (checkType->GetSelfGenericParamCount() == numGenericArgs))
{
if (isFailurePass)
{
// This is the one error we don't ignore when ignoreErrors is set
Fail(StrFormat("'%s.%s' is inaccessible due to its protection level", TypeToString(checkOuterType).c_str(), BfTypeUtils::TypeToString(typeRef).c_str()), typeRef); // CS0122
}
usedOuterType = checkOuterType;
nestedTypeDef = checkType;
break;
}
}
if (nestedTypeDef != NULL)
break;
allowPrivate = false;
checkOuterType = GetBaseType(checkOuterType);
}
if (nestedTypeDef != NULL)
break;
if ((outerTypeInstance->IsEnum()) && (findName == "UnderlyingType"))
{
if (outerTypeInstance->IsDataIncomplete())
PopulateType(outerTypeInstance);
auto underlyingType = outerTypeInstance->GetUnderlyingType();
if (underlyingType != NULL)
return underlyingType;
}
}
}
}
if (nestedTypeDef == NULL)
{
if ((!mIgnoreErrors) && (!ignoreErrors) && ((resolveFlags & BfResolveTypeRefFlag_IgnoreLookupError) == 0))
{
StringT<64> name;
name.Append(findName);
Fail(StrFormat("'%s' does not contain a definition for '%s'", TypeToString(outerType).c_str(), name.c_str()), typeRef);
}
return NULL;
}
}
SetAndRestoreValue<bool> prevIgnoreErrors(mIgnoreErrors, ignoreErrors || mIgnoreErrors);
if ((genericTypeRef != NULL) || (usedOuterType->IsGenericTypeInstance()))
{
BfTypeVector genericArgs;
if (usedOuterType->IsGenericTypeInstance())
{
auto genericTypeInst = (BfTypeInstance*)usedOuterType;
genericArgs = genericTypeInst->mGenericTypeInfo->mTypeGenericArguments;
}
if (genericTypeRef != NULL)
{
for (auto genericArgTypeRef : genericTypeRef->mGenericArguments)
{
auto genericArgType = ResolveTypeRef(genericArgTypeRef, NULL, BfPopulateType_IdentityNoRemapAlias);
if (genericArgType == NULL)
return NULL;
genericArgs.push_back(genericArgType);
}
}
if (genericArgs.size() != nestedTypeDef->mGenericParamDefs.size())
{
if (populateType == BfPopulateType_TypeDef)
{
// Probably from inside ResolveGenericInstanceDef, just return unresolved typedef
genericArgs.clear();
}
else
{
ShowGenericArgCountError(typeRef, (int)nestedTypeDef->mGenericParamDefs.size() - (int)nestedTypeDef->mOuterType->mGenericParamDefs.size());
return NULL;
}
}
if (nestedTypeDef->mIsPartial)
{
nestedTypeDef = GetCombinedPartialTypeDef(nestedTypeDef);
if (nestedTypeDef == NULL)
return NULL;
}
return ResolveTypeDef(nestedTypeDef, genericArgs, BfPopulateType_IdentityNoRemapAlias);
}
else
{
if (nestedTypeDef->mIsPartial)
{
nestedTypeDef = GetCombinedPartialTypeDef(nestedTypeDef);
if (nestedTypeDef == NULL)
return NULL;
}
return ResolveTypeDef(nestedTypeDef, BfPopulateType_IdentityNoRemapAlias);
}
return NULL;
}
BfTypeDef* BfModule::GetCombinedPartialTypeDef(BfTypeDef* typeDef)
{
BF_ASSERT(!typeDef->mIsExplicitPartial);
if (!typeDef->mIsPartial)
return typeDef;
auto result = mSystem->FindTypeDef(typeDef->mFullName, (int)typeDef->mGenericParamDefs.size(), NULL, {}, NULL, BfFindTypeDefFlag_None);
return result;
}
BfTypeInstance* BfModule::GetOuterType(BfType* type)
{
if (type == NULL)
return NULL;
if (type->IsBoxed())
return GetOuterType(((BfBoxedType*)type)->mElementType);
auto typeInst = type->ToTypeInstance();
if ((typeInst == NULL) || (typeInst->mTypeDef->mOuterType == NULL))
return NULL;
auto outerTypeDef = typeInst->mTypeDef->mOuterType;
if (outerTypeDef->mIsPartial)
{
outerTypeDef = GetCombinedPartialTypeDef(outerTypeDef);
if (outerTypeDef == NULL)
return NULL;
}
BfTypeVector typeGenericArguments;
if (type->IsGenericTypeInstance())
{
auto genericType = (BfTypeInstance*)type;
typeGenericArguments = genericType->mGenericTypeInfo->mTypeGenericArguments;
}
BF_ASSERT((intptr)typeGenericArguments.size() >= (intptr)outerTypeDef->mGenericParamDefs.size());
typeGenericArguments.resize(outerTypeDef->mGenericParamDefs.size());
//auto outerType = ResolveTypeDef(outerTypeDef, typeGenericArguments, BfPopulateType_Declaration);
auto outerType = ResolveTypeDef(outerTypeDef, typeGenericArguments, BfPopulateType_Identity);
if (outerType == NULL)
return NULL;
return outerType->ToTypeInstance();
}
bool BfModule::IsInnerType(BfType* checkInnerType, BfType* checkOuterType)
{
BfType* outerType = GetOuterType(checkInnerType);
if (outerType == NULL)
return false;
if (outerType == checkOuterType)
return true;
return IsInnerType(outerType, checkOuterType);
}
bool BfModule::IsInnerType(BfTypeDef* checkInnerType, BfTypeDef* checkOuterType)
{
BF_ASSERT(!checkOuterType->mIsPartial);
if (checkInnerType->mNestDepth <= checkOuterType->mNestDepth)
return false;
while (true)
{
BfTypeDef* outerType = checkInnerType->mOuterType;
if (outerType == NULL)
return false;
if (outerType->mIsPartial)
outerType = mSystem->GetCombinedPartial(outerType);
if (outerType->GetDefinition() == checkOuterType->GetDefinition())
return true;
checkInnerType = checkInnerType->mOuterType;
}
}
BfType* BfModule::ResolveTypeDef(BfTypeDef* typeDef, const BfTypeVector& genericArgs, BfPopulateType populateType, BfResolveTypeRefFlags resolveFlags)
{
BF_ASSERT(typeDef->mDefState != BfTypeDef::DefState_Emitted);
if (typeDef->mGenericParamDefs.size() == 0)
return ResolveTypeDef(typeDef, populateType, resolveFlags);
if ((typeDef == mCompiler->mArray1TypeDef) || (typeDef == mCompiler->mArray2TypeDef))
{
auto arrayInstType = mContext->mArrayTypeInstancePool.Get();
arrayInstType->mContext = mContext;
if (typeDef == mCompiler->mArray1TypeDef)
arrayInstType->mDimensions = 1;
else
arrayInstType->mDimensions = 2;
auto typeRef = mContext->mTypeDefTypeRefPool.Get();
typeRef->mTypeDef = typeDef;
delete arrayInstType->mGenericTypeInfo;
arrayInstType->mGenericTypeInfo = new BfGenericTypeInfo();
arrayInstType->mTypeDef = typeDef;
arrayInstType->mGenericTypeInfo->mIsUnspecialized = false;
arrayInstType->mGenericTypeInfo->mTypeGenericArguments.clear();
for (auto genericArg : genericArgs)
{
arrayInstType->mGenericTypeInfo->mIsUnspecialized |= genericArg->IsGenericParam();
arrayInstType->mGenericTypeInfo->mTypeGenericArguments.push_back(genericArg);
}
if (genericArgs.size() == 0)
{
for (int i = 0; i < (int)typeDef->mGenericParamDefs.size(); i++)
{
auto genericParamTypeRef = GetGenericParamType(BfGenericParamKind_Type, i);
arrayInstType->mGenericTypeInfo->mTypeGenericArguments.push_back(genericParamTypeRef);
arrayInstType->mGenericTypeInfo->mIsUnspecialized = true;
}
}
auto resolvedType = ResolveType(arrayInstType, populateType, resolveFlags);
if (resolvedType != arrayInstType)
{
delete arrayInstType->mGenericTypeInfo;
arrayInstType->mGenericTypeInfo = NULL;
arrayInstType->Dispose();
mContext->mArrayTypeInstancePool.GiveBack(arrayInstType);
mContext->mTypeDefTypeRefPool.GiveBack(typeRef);
}
BF_ASSERT((resolvedType == NULL) || resolvedType->IsTypeInstance() || resolvedType->IsPrimitiveType());
return resolvedType;
}
BfTypeInstance* genericInstType;
if (typeDef->mTypeCode == BfTypeCode_TypeAlias)
genericInstType = mContext->mAliasTypePool.Get();
else
genericInstType = mContext->mGenericTypeInstancePool.Get();
delete genericInstType->mGenericTypeInfo;
genericInstType->mGenericTypeInfo = new BfGenericTypeInfo();
BF_ASSERT(genericInstType->mGenericTypeInfo->mGenericParams.size() == 0);
BF_ASSERT((genericInstType->mRebuildFlags & BfTypeRebuildFlag_AddedToWorkList) == 0);
genericInstType->mRebuildFlags = (BfTypeRebuildFlags)(genericInstType->mRebuildFlags & ~BfTypeRebuildFlag_InTempPool);
genericInstType->mContext = mContext;
auto typeRef = mContext->mTypeDefTypeRefPool.Get();
typeRef->mTypeDef = typeDef;
genericInstType->mTypeDef = typeDef;
genericInstType->mGenericTypeInfo->mIsUnspecialized = false;
genericInstType->mGenericTypeInfo->mTypeGenericArguments.clear();
genericInstType->mTypeFailed = false;
for (auto genericArg : genericArgs)
{
genericInstType->mGenericTypeInfo->mIsUnspecialized |= genericArg->IsGenericParam();
genericInstType->mGenericTypeInfo->mTypeGenericArguments.push_back(genericArg);
}
if (genericArgs.size() == 0)
{
for (int i = 0; i < (int)typeDef->mGenericParamDefs.size(); i++)
{
auto genericParamTypeRef = GetGenericParamType(BfGenericParamKind_Type, i);
genericInstType->mGenericTypeInfo->mTypeGenericArguments.push_back(genericParamTypeRef);
genericInstType->mGenericTypeInfo->mIsUnspecialized = true;
}
}
BfType* resolvedType = NULL;
bool failed = false;
resolvedType = ResolveType(genericInstType, populateType, resolveFlags);
if (resolvedType != genericInstType)
{
BF_ASSERT(genericInstType->mGenericTypeInfo->mGenericParams.size() == 0);
BF_ASSERT((genericInstType->mRebuildFlags & BfTypeRebuildFlag_AddedToWorkList) == 0);
genericInstType->mRebuildFlags = (BfTypeRebuildFlags)(genericInstType->mRebuildFlags | BfTypeRebuildFlag_InTempPool);
delete genericInstType->mGenericTypeInfo;
genericInstType->mGenericTypeInfo = NULL;
if (typeDef->mTypeCode == BfTypeCode_TypeAlias)
mContext->mAliasTypePool.GiveBack((BfTypeAliasType*)genericInstType);
else
{
genericInstType->Dispose();
mContext->mGenericTypeInstancePool.GiveBack(genericInstType);
}
mContext->mTypeDefTypeRefPool.GiveBack(typeRef);
}
BF_ASSERT((resolvedType == NULL) || resolvedType->IsTypeInstance() || resolvedType->IsPrimitiveType());
return resolvedType;
}
int checkIdx = 0;
BfTypeDef* BfModule::ResolveGenericInstanceDef(BfGenericInstanceTypeRef* genericTypeRef, BfType** outType, BfResolveTypeRefFlags resolveFlags)
{
if (outType != NULL)
*outType = NULL;
BfTypeReference* typeRef = genericTypeRef->mElementType;
int numGenericParams = genericTypeRef->GetGenericArgCount();
BfTypeDef* curTypeDef = NULL;
if (mCurTypeInstance != NULL)
curTypeDef = mCurTypeInstance->mTypeDef->GetDefinition();
if (auto directTypeDef = BfNodeDynCast<BfDirectTypeReference>(typeRef))
{
auto typeInst = directTypeDef->mType->ToTypeInstance();
return typeInst->mTypeDef->GetDefinition();
}
auto namedTypeRef = BfNodeDynCast<BfNamedTypeReference>(typeRef);
auto directStrTypeDef = BfNodeDynCastExact<BfDirectStrTypeReference>(typeRef);
if ((namedTypeRef != NULL) || (directStrTypeDef != NULL))
{
BfTypeLookupError error;
error.mRefNode = typeRef;
BfTypeDef* typeDef = FindTypeDef(typeRef, NULL, &error, numGenericParams, resolveFlags);
if (typeDef != NULL)
{
BfAutoComplete* autoComplete = NULL;
if (mCompiler->IsAutocomplete())
autoComplete = mCompiler->mResolvePassData->mAutoComplete;
if ((autoComplete != NULL) && (autoComplete->mIsGetDefinition) && (autoComplete->IsAutocompleteNode(typeRef)))
{
if ((autoComplete->mDefMethod == NULL) && (autoComplete->mDefField == NULL) &&
(autoComplete->mDefProp == NULL) && (typeDef->mTypeDeclaration != NULL))
{
autoComplete->mDefType = typeDef;
autoComplete->SetDefinitionLocation(typeDef->mTypeDeclaration->mNameNode);
}
}
if (mCompiler->mResolvePassData != NULL)
mCompiler->mResolvePassData->HandleTypeReference(typeRef, typeDef);
return typeDef;
}
if (mCurTypeInstance != NULL)
{
bool wasGenericParam = false;
// Check generics first
if (typeRef->IsA<BfNamedTypeReference>())
{
String findName = typeRef->ToString();
if ((resolveFlags & BfResolveTypeRefFlag_Attribute) != 0)
findName += "Attribute";
if ((mCurTypeInstance != NULL) && (mCurTypeInstance->IsGenericTypeInstance()))
{
auto genericTypeInst = (BfTypeInstance*)mCurTypeInstance;
for (int genericParamIdx = 0; genericParamIdx < (int)curTypeDef->mGenericParamDefs.size(); genericParamIdx++)
{
String genericName = curTypeDef->mGenericParamDefs[genericParamIdx]->mName;
if (genericName == findName)
wasGenericParam = true;
}
}
if (mCurMethodInstance != NULL)
{
for (int genericParamIdx = 0; genericParamIdx < (int)mCurMethodInstance->mMethodDef->mGenericParams.size(); genericParamIdx++)
{
String genericName = mCurMethodInstance->mMethodDef->mGenericParams[genericParamIdx]->mName;
if (genericName == findName)
wasGenericParam = true;
}
}
}
if ((wasGenericParam) && ((resolveFlags & BfResolveTypeRefFlag_IgnoreLookupError) == 0))
Fail("Cannot use generic param as generic instance type", typeRef);
}
if (typeDef == NULL)
{
if ((resolveFlags & BfResolveTypeRefFlag_IgnoreLookupError) == 0)
TypeRefNotFound(typeRef);
return NULL;
}
}
if (auto qualifiedTypeRef = BfNodeDynCast<BfQualifiedTypeReference>(typeRef))
{
BfAutoParentNodeEntry autoParentNodeEntry(this, genericTypeRef);
auto type = ResolveTypeRef(qualifiedTypeRef, BfPopulateType_TypeDef, resolveFlags, numGenericParams);
if (type == NULL)
return NULL;
if (outType != NULL)
*outType = type;
auto typeInst = type->ToTypeInstance();
if (typeInst != NULL)
return typeInst->mTypeDef->GetDefinition();
}
if ((resolveFlags & BfResolveTypeRefFlag_IgnoreLookupError) == 0)
Fail("Invalid generic type", typeRef);
return NULL;
}
BfType* BfModule::ResolveGenericType(BfType* unspecializedType, BfTypeVector* typeGenericArguments, BfTypeVector* methodGenericArguments, BfType* selfType, bool allowFail)
{
if (unspecializedType->IsGenericParam())
{
auto genericParam = (BfGenericParamType*)unspecializedType;
if ((genericParam->mGenericParamKind == BfGenericParamKind_Type) && (typeGenericArguments != NULL))
{
if (genericParam->mGenericParamIdx < (int)typeGenericArguments->size())
return FixIntUnknown((*typeGenericArguments)[genericParam->mGenericParamIdx]);
BF_ASSERT(allowFail);
}
if ((genericParam->mGenericParamKind == BfGenericParamKind_Method) && (methodGenericArguments != NULL))
{
if (genericParam->mGenericParamIdx < (int)methodGenericArguments->size())
{
auto resolvedType = FixIntUnknown((*methodGenericArguments)[genericParam->mGenericParamIdx]);
if ((resolvedType != NULL) && (resolvedType->IsGenericParam()))
{
auto genericParamType = (BfGenericParamType*)resolvedType;
//BF_ASSERT(genericParamType->mGenericParamKind != BfGenericParamKind_Method);
}
return resolvedType;
}
BF_ASSERT(allowFail);
}
return unspecializedType;
}
if ((unspecializedType->IsSelf()) && (selfType != NULL))
return selfType;
if (!unspecializedType->IsUnspecializedType())
{
return unspecializedType;
}
if (unspecializedType->IsUnknownSizedArrayType())
{
auto* arrayType = (BfUnknownSizedArrayType*)unspecializedType;
auto elementType = ResolveGenericType(arrayType->mElementType, typeGenericArguments, methodGenericArguments, selfType, allowFail);
if (elementType == NULL)
return NULL;
if (elementType->IsVar())
return elementType;
auto sizeType = ResolveGenericType(arrayType->mElementCountSource, typeGenericArguments, methodGenericArguments, selfType, allowFail);
if (sizeType == NULL)
return NULL;
if (sizeType->IsConstExprValue())
{
return CreateSizedArrayType(elementType, ((BfConstExprValueType*)sizeType)->mValue.mInt32);
}
return CreateUnknownSizedArrayType(elementType, sizeType);
}
if (unspecializedType->IsSizedArray())
{
auto* arrayType = (BfSizedArrayType*)unspecializedType;
auto elementType = ResolveGenericType(arrayType->mElementType, typeGenericArguments, methodGenericArguments, selfType, allowFail);
if (elementType == NULL)
return NULL;
if (elementType->IsVar())
return elementType;
elementType = FixIntUnknown(elementType);
return CreateSizedArrayType(elementType, (int)arrayType->mElementCount);
}
if (unspecializedType->IsRef())
{
auto refType = (BfRefType*)unspecializedType;
auto elementType = ResolveGenericType(refType->GetUnderlyingType(), typeGenericArguments, methodGenericArguments, selfType, allowFail);
if (elementType == NULL)
return NULL;
if (elementType->IsVar())
return elementType;
elementType = FixIntUnknown(elementType);
return CreateRefType(elementType, refType->mRefKind);
}
if (unspecializedType->IsPointer())
{
auto ptrType = (BfPointerType*)unspecializedType;
auto elementType = ResolveGenericType(ptrType->GetUnderlyingType(), typeGenericArguments, methodGenericArguments, selfType, allowFail);
if (elementType == NULL)
return NULL;
if (elementType->IsVar())
return elementType;
elementType = FixIntUnknown(elementType);
return CreatePointerType(elementType);
}
if (unspecializedType->IsConcreteInterfaceType())
{
auto concreteType = (BfConcreteInterfaceType*)unspecializedType;
auto elementType = ResolveGenericType(concreteType->GetUnderlyingType(), typeGenericArguments, methodGenericArguments, selfType, allowFail);
if (elementType == NULL)
return NULL;
auto elementTypeInstance = elementType->ToTypeInstance();
if (elementTypeInstance == NULL)
return unspecializedType;
return CreateConcreteInterfaceType(elementTypeInstance);
}
if (unspecializedType->IsArray())
{
auto arrayType = (BfArrayType*)unspecializedType;
auto elementType = ResolveGenericType(arrayType->GetUnderlyingType(), typeGenericArguments, methodGenericArguments, selfType, allowFail);
if (elementType == NULL)
return NULL;
if (elementType->IsVar())
return elementType;
elementType = FixIntUnknown(elementType);
return CreateArrayType(elementType, arrayType->mDimensions);
}
if (unspecializedType->IsTuple())
{
bool wantGeneric = false;
bool isUnspecialized = false;
auto unspecializedTupleType = (BfTypeInstance*)unspecializedType;
auto unspecializedGenericTupleType = unspecializedTupleType->ToGenericTypeInstance();
Array<String> fieldNames;
BfTypeVector fieldTypes;
bool hadChange = false;
for (auto& fieldInstance : unspecializedTupleType->mFieldInstances)
{
fieldNames.push_back(fieldInstance.GetFieldDef()->mName);
auto origGenericArg = fieldInstance.mResolvedType;
auto newGenericArg = ResolveGenericType(origGenericArg, typeGenericArguments, methodGenericArguments, selfType, allowFail);
if (newGenericArg == NULL)
return NULL;
if (newGenericArg->IsVar())
return newGenericArg;
if (newGenericArg->IsTypeGenericParam())
wantGeneric = true;
if (newGenericArg->IsUnspecializedType())
isUnspecialized = true;
if (newGenericArg->IsVar())
wantGeneric = mContext->mBfObjectType;
//wantGeneric = true;
if (newGenericArg != origGenericArg)
hadChange = true;
fieldTypes.push_back(newGenericArg);
}
if (!hadChange)
return unspecializedType;
if (unspecializedGenericTupleType == NULL)
wantGeneric = false;
//TODO:
wantGeneric = false;
auto baseType = (BfTypeInstance*)ResolveTypeDef(mContext->mCompiler->mValueTypeTypeDef);
BfTupleType* tupleType = NULL;
if (wantGeneric)
{
Array<BfType*> genericArgs;
for (int genericArgIdx = 0; genericArgIdx < (int)unspecializedGenericTupleType->mGenericTypeInfo->mTypeGenericArguments.size(); genericArgIdx++)
{
BfType* resolvedArg = unspecializedGenericTupleType->mGenericTypeInfo->mTypeGenericArguments[genericArgIdx];
if (resolvedArg->IsUnspecializedType())
{
resolvedArg = ResolveGenericType(resolvedArg, typeGenericArguments, methodGenericArguments, selfType, allowFail);
if (resolvedArg == NULL)
return NULL;
if (resolvedArg->IsVar())
return resolvedArg;
}
genericArgs.push_back(resolvedArg);
}
auto actualTupleType = mContext->mTupleTypePool.Get();
delete actualTupleType->mGenericTypeInfo;
actualTupleType->mGenericDepth = 0;
actualTupleType->mGenericTypeInfo = new BfGenericTypeInfo();
actualTupleType->mGenericTypeInfo->mIsUnspecialized = false;
actualTupleType->mGenericTypeInfo->mIsUnspecializedVariation = false;
actualTupleType->mGenericTypeInfo->mTypeGenericArguments = genericArgs;
for (int genericArgIdx = 0; genericArgIdx < (int)unspecializedGenericTupleType->mGenericTypeInfo->mTypeGenericArguments.size(); genericArgIdx++)
{
auto typeGenericArg = genericArgs[genericArgIdx];
if ((typeGenericArg->IsGenericParam()) || (typeGenericArg->IsUnspecializedType()))
actualTupleType->mGenericTypeInfo->mIsUnspecialized = true;
actualTupleType->mGenericTypeInfo->mGenericParams.push_back(unspecializedGenericTupleType->mGenericTypeInfo->mGenericParams[genericArgIdx]->AddRef());
}
CheckUnspecializedGenericType(actualTupleType, BfPopulateType_Identity);
if (isUnspecialized)
{
actualTupleType->mGenericTypeInfo->mIsUnspecialized = true;
actualTupleType->mGenericTypeInfo->mIsUnspecializedVariation = true;
}
actualTupleType->mIsUnspecializedType = actualTupleType->mGenericTypeInfo->mIsUnspecialized;
actualTupleType->mIsUnspecializedTypeVariation = actualTupleType->mGenericTypeInfo->mIsUnspecializedVariation;
actualTupleType->Init(baseType->mTypeDef->mProject, baseType);
for (int fieldIdx = 0; fieldIdx < (int)fieldTypes.size(); fieldIdx++)
{
String fieldName = fieldNames[fieldIdx];
BfFieldDef* fieldDef = actualTupleType->AddField(fieldName);
}
tupleType = actualTupleType;
}
else
{
auto actualTupleType = new BfTupleType();
actualTupleType->mIsUnspecializedType = isUnspecialized;
actualTupleType->mIsUnspecializedTypeVariation = isUnspecialized;
actualTupleType->Init(baseType->mTypeDef->mProject, baseType);
for (int fieldIdx = 0; fieldIdx < (int)fieldTypes.size(); fieldIdx++)
{
String fieldName = fieldNames[fieldIdx];
BfFieldDef* fieldDef = actualTupleType->AddField(fieldName);
}
tupleType = actualTupleType;
}
tupleType->mContext = mContext;
tupleType->mFieldInstances.Resize(fieldTypes.size());
for (int fieldIdx = 0; fieldIdx < (int)fieldTypes.size(); fieldIdx++)
{
BfFieldInstance* fieldInstance = (BfFieldInstance*)&tupleType->mFieldInstances[fieldIdx];
fieldInstance->mFieldIdx = fieldIdx;
fieldInstance->SetResolvedType(fieldTypes[fieldIdx]);
fieldInstance->mOwner = tupleType;
tupleType->mGenericDepth = BF_MAX(tupleType->mGenericDepth, fieldInstance->mResolvedType->GetGenericDepth() + 1);
}
bool failed = false;
BfType* resolvedType = NULL;
if (!failed)
resolvedType = ResolveType(tupleType, BfPopulateType_Identity);
if (resolvedType != tupleType)
{
delete tupleType->mGenericTypeInfo;
tupleType->mGenericTypeInfo = NULL;
tupleType->Dispose();
mContext->mTupleTypePool.GiveBack((BfTupleType*)tupleType);
}
BF_ASSERT((resolvedType == NULL) || resolvedType->IsTypeInstance() || resolvedType->IsPrimitiveType());
return resolvedType;
}
if ((unspecializedType->IsDelegateFromTypeRef()) || (unspecializedType->IsFunctionFromTypeRef()))
{
BfTypeInstance* unspecializedDelegateType = (BfTypeInstance*)unspecializedType;
BfTypeInstance* unspecializedGenericDelegateType = unspecializedType->ToGenericTypeInstance();
BfDelegateInfo* unspecializedDelegateInfo = unspecializedType->GetDelegateInfo();
bool wantGeneric = false;
bool isUnspecialized = false;
auto _CheckType = [&](BfType* type)
{
if (type->IsTypeGenericParam())
wantGeneric = true;
if (type->IsUnspecializedType())
isUnspecialized = true;
};
bool failed = false;
bool hasTypeGenerics = false;
auto returnType = ResolveGenericType(unspecializedDelegateInfo->mReturnType, typeGenericArguments, methodGenericArguments, selfType, allowFail);
if (returnType == NULL)
return NULL;
if (returnType->IsVar())
return returnType;
_CheckType(returnType);
if (returnType->IsGenericParam())
hasTypeGenerics |= ((BfGenericParamType*)returnType)->mGenericParamKind == BfGenericParamKind_Type;
Array<BfType*> paramTypes;
for (auto param : unspecializedDelegateInfo->mParams)
{
auto paramType = ResolveGenericType(param, typeGenericArguments, methodGenericArguments, selfType, allowFail);
if (paramType == NULL)
return NULL;
if (paramType->IsVar())
return paramType;
paramTypes.Add(paramType);
_CheckType(paramType);
}
if (unspecializedGenericDelegateType == NULL)
wantGeneric = false;
//TODO:
wantGeneric = false;
BfTypeInstance* delegateType = NULL;
auto baseDelegateType = ResolveTypeDef(mCompiler->mDelegateTypeDef)->ToTypeInstance();
if (wantGeneric)
{
Array<BfType*> genericArgs;
for (int genericArgIdx = 0; genericArgIdx < (int)unspecializedGenericDelegateType->mGenericTypeInfo->mTypeGenericArguments.size(); genericArgIdx++)
{
BfType* resolvedArg = unspecializedGenericDelegateType->mGenericTypeInfo->mTypeGenericArguments[genericArgIdx];
if (resolvedArg->IsUnspecializedType())
{
resolvedArg = ResolveGenericType(resolvedArg, typeGenericArguments, methodGenericArguments, selfType, allowFail);
if (resolvedArg == NULL)
return NULL;
if (resolvedArg->IsVar())
return resolvedArg;
}
genericArgs.push_back(resolvedArg);
}
auto dlgType = mContext->mDelegateTypePool.Get();
delete dlgType->mGenericTypeInfo;
dlgType->mGenericTypeInfo = new BfGenericTypeInfo();
dlgType->mGenericTypeInfo->mFinishedGenericParams = true;
dlgType->mGenericTypeInfo->mIsUnspecialized = false;
dlgType->mGenericTypeInfo->mIsUnspecializedVariation = false;
dlgType->mGenericTypeInfo->mTypeGenericArguments = genericArgs;
for (int genericArgIdx = 0; genericArgIdx < (int)unspecializedGenericDelegateType->mGenericTypeInfo->mTypeGenericArguments.size(); genericArgIdx++)
{
auto typeGenericArg = genericArgs[genericArgIdx];
if ((typeGenericArg->IsGenericParam()) || (typeGenericArg->IsUnspecializedType()))
dlgType->mGenericTypeInfo->mIsUnspecialized = true;
dlgType->mGenericTypeInfo->mGenericParams.push_back(unspecializedGenericDelegateType->mGenericTypeInfo->mGenericParams[genericArgIdx]->AddRef());
}
CheckUnspecializedGenericType(dlgType, BfPopulateType_Identity);
if (isUnspecialized)
{
dlgType->mGenericTypeInfo->mIsUnspecialized = true;
dlgType->mGenericTypeInfo->mIsUnspecializedVariation = true;
}
dlgType->mIsUnspecializedType = dlgType->mGenericTypeInfo->mIsUnspecialized;
dlgType->mIsUnspecializedTypeVariation = dlgType->mGenericTypeInfo->mIsUnspecializedVariation;
delegateType = dlgType;
}
else
{
auto dlgType = mContext->mDelegateTypePool.Get();
dlgType->mIsUnspecializedType = isUnspecialized;
dlgType->mIsUnspecializedTypeVariation = isUnspecialized;
delegateType = dlgType;
}
delete delegateType->mTypeDef;
delegateType->mTypeDef = NULL;
BfDelegateInfo* delegateInfo = delegateType->GetDelegateInfo();
delegateInfo->mParams.Clear();
BfTypeDef* typeDef = new BfTypeDef();
typeDef->mProject = baseDelegateType->mTypeDef->mProject;
typeDef->mSystem = mCompiler->mSystem;
typeDef->mName = mSystem->mEmptyAtom;
typeDef->mTypeCode = unspecializedDelegateType->mTypeDef->mTypeCode;
typeDef->mIsDelegate = unspecializedDelegateType->mTypeDef->mIsDelegate;
typeDef->mIsFunction = unspecializedDelegateType->mTypeDef->mIsFunction;
BfMethodDef* unspecializedInvokeMethodDef = unspecializedDelegateType->mTypeDef->GetMethodByName("Invoke");
BfMethodDef* methodDef = new BfMethodDef();
methodDef->mDeclaringType = typeDef;
methodDef->mName = "Invoke";
methodDef->mProtection = BfProtection_Public;
methodDef->mIdx = 0;
methodDef->mIsStatic = !typeDef->mIsDelegate && !unspecializedDelegateInfo->mHasExplicitThis;
methodDef->mHasExplicitThis = unspecializedDelegateInfo->mHasExplicitThis;
auto directTypeRef = BfAstNode::ZeroedAlloc<BfDirectTypeReference>();
delegateInfo->mDirectAllocNodes.push_back(directTypeRef);
if (typeDef->mIsDelegate)
directTypeRef->Init(delegateType);
else
directTypeRef->Init(ResolveTypeDef(mCompiler->mFunctionTypeDef));
typeDef->mBaseTypes.push_back(directTypeRef);
directTypeRef = BfAstNode::ZeroedAlloc<BfDirectTypeReference>();
delegateInfo->mDirectAllocNodes.push_back(directTypeRef);
directTypeRef->Init(returnType);
methodDef->mReturnTypeRef = directTypeRef;
delegateInfo->mReturnType = returnType;
delegateInfo->mHasExplicitThis = unspecializedDelegateInfo->mHasExplicitThis;
delegateInfo->mHasVarArgs = unspecializedDelegateInfo->mHasVarArgs;
int paramIdx = 0;
for (int paramIdx = 0; paramIdx < (int)paramTypes.size(); paramIdx++)
{
auto paramType = paramTypes[paramIdx];
BfParameterDef* unspecializedParamDef = unspecializedInvokeMethodDef->mParams[paramIdx];
if (!paramType->IsReified())
delegateType->mIsReified = false;
auto directTypeRef = BfAstNode::ZeroedAlloc<BfDirectTypeReference>();
delegateInfo->mDirectAllocNodes.push_back(directTypeRef);
directTypeRef->Init(paramType);
BfParameterDef* paramDef = new BfParameterDef();
paramDef->mParamKind = unspecializedParamDef->mParamKind;
paramDef->mTypeRef = directTypeRef;
paramDef->mName = unspecializedParamDef->mName;
methodDef->mParams.push_back(paramDef);
delegateInfo->mParams.Add(paramType);
}
typeDef->mMethods.push_back(methodDef);
if (unspecializedInvokeMethodDef->mIsMutating)
{
if ((delegateInfo->mParams[0]->IsValueType()) || (delegateInfo->mParams[0]->IsGenericParam()))
methodDef->mIsMutating = unspecializedInvokeMethodDef->mIsMutating;
}
//
if (typeDef->mIsDelegate)
{
BfDefBuilder::AddMethod(typeDef, BfMethodType_Ctor, BfProtection_Public, false, "");
BfDefBuilder::AddDynamicCastMethods(typeDef);
}
delegateType->mContext = mContext;
delegateType->mTypeDef = typeDef;
BfType* resolvedType = NULL;
if (!failed)
resolvedType = ResolveType(delegateType, BfPopulateType_Identity);
if (resolvedType == delegateType)
{
AddDependency(directTypeRef->mType, delegateType, BfDependencyMap::DependencyFlag_ParamOrReturnValue);
for (auto paramType : paramTypes)
AddDependency(paramType, delegateType, BfDependencyMap::DependencyFlag_ParamOrReturnValue);
}
else
{
delegateType->Dispose();
mContext->mDelegateTypePool.GiveBack((BfDelegateType*)delegateType);
}
BF_ASSERT((resolvedType == NULL) || resolvedType->IsTypeInstance() || resolvedType->IsPrimitiveType());
return resolvedType;
}
if (unspecializedType->IsGenericTypeInstance())
{
auto genericTypeInst = (BfTypeInstance*)unspecializedType;
BfTypeVector genericArgs;
for (auto genericArg : genericTypeInst->mGenericTypeInfo->mTypeGenericArguments)
{
if (genericArg->IsUnspecializedType())
{
auto resolvedArg = ResolveGenericType(genericArg, typeGenericArguments, methodGenericArguments, selfType, allowFail);
if (resolvedArg == NULL)
return NULL;
if (resolvedArg->IsVar())
return resolvedArg;
genericArgs.push_back(resolvedArg);
}
else
genericArgs.push_back(genericArg);
}
auto resolvedType = ResolveTypeDef(genericTypeInst->mTypeDef->GetDefinition(), genericArgs, BfPopulateType_BaseType);
BfTypeInstance* specializedType = NULL;
if (resolvedType != NULL)
specializedType = resolvedType->ToGenericTypeInstance();
if (specializedType != NULL)
{
if (specializedType->mGenericTypeInfo->mHadValidateErrors)
return NULL;
}
return specializedType;
}
return unspecializedType;
}
BfType* BfModule::ResolveSelfType(BfType* type, BfType* selfType)
{
if (!type->IsUnspecializedTypeVariation())
return type;
return ResolveGenericType(type, NULL, NULL, selfType);
}
BfType* BfModule::ResolveType(BfType* lookupType, BfPopulateType populateType, BfResolveTypeRefFlags resolveFlags)
{
BfResolvedTypeSet::LookupContext lookupCtx;
lookupCtx.mModule = this;
lookupCtx.mResolveFlags = resolveFlags;
BfResolvedTypeSet::EntryRef resolvedEntry;
bool inserted = mContext->mResolvedTypes.Insert(lookupType, &lookupCtx, &resolvedEntry);
if (!resolvedEntry)
return NULL;
if (!inserted)
{
auto resolvedTypeRef = resolvedEntry->mValue;
PopulateType(resolvedTypeRef, populateType);
return resolvedTypeRef;
}
if (lookupType->IsGenericTypeInstance())
CheckUnspecializedGenericType((BfTypeInstance*)lookupType, populateType);
if (lookupType->IsTuple())
{
auto tupleType = (BfTupleType*)lookupType;
tupleType->Finish();
}
resolvedEntry->mValue = lookupType;
InitType(lookupType, populateType);
return lookupType;
}
bool BfModule::IsUnboundGeneric(BfType* type)
{
if (type->IsVar())
return true;
if (!type->IsGenericParam())
return false;
auto genericParamInst = GetGenericParamInstance((BfGenericParamType*)type);
return (genericParamInst->mGenericParamFlags & BfGenericParamFlag_Var) != 0;
}
BfGenericParamInstance* BfModule::GetGenericTypeParamInstance(int genericParamIdx)
{
// When we're evaluating a method, make sure the params refer back to that method context
auto curTypeInstance = mCurTypeInstance;
//TODO: This caused MethodToString issues with interface "implementation method not found" errors
// if (mCurMethodInstance != NULL)
// curTypeInstance = mCurMethodInstance->mMethodInstanceGroup->mOwner;
BfTypeInstance* genericTypeInst = curTypeInstance->ToGenericTypeInstance();
if ((genericTypeInst->IsIncomplete()) && (genericTypeInst->mGenericTypeInfo->mGenericParams.size() == 0))
{
// Set this to NULL so we don't recurse infinitely
SetAndRestoreValue<BfTypeInstance*> prevTypeInst(mCurTypeInstance, NULL);
PopulateType(genericTypeInst, BfPopulateType_Declaration);
}
if (genericParamIdx >= (int)genericTypeInst->mGenericTypeInfo->mTypeGenericArguments.size())
{
if (genericParamIdx >= genericTypeInst->mGenericTypeInfo->mGenericParams.mSize)
FatalError("Invalid GetGenericTypeParamInstance");
// Extern constraints should always be directly used - they don't get extended
return genericTypeInst->mGenericTypeInfo->mGenericParams[genericParamIdx];
}
if (genericTypeInst->mGenericTypeInfo->mGenericExtensionInfo != NULL)
{
bool isAutocomplete = (mCompiler->mResolvePassData != NULL) && (mCompiler->mResolvePassData->mAutoComplete != NULL);
auto activeTypeDef = GetActiveTypeDef(NULL, true);
if ((activeTypeDef->mTypeDeclaration != genericTypeInst->mTypeDef->mTypeDeclaration) && (activeTypeDef->IsExtension()) &&
((genericTypeInst->mTypeDef->ContainsPartial(activeTypeDef)) || (isAutocomplete)))
{
BfTypeDef* lookupTypeDef = activeTypeDef;
while (lookupTypeDef->mNestDepth > genericTypeInst->mTypeDef->mNestDepth)
lookupTypeDef = lookupTypeDef->mOuterType;
BfGenericExtensionEntry* genericExEntry;
if (genericTypeInst->mGenericTypeInfo->mGenericExtensionInfo->mExtensionMap.TryGetValue(lookupTypeDef, &genericExEntry))
{
return genericExEntry->mGenericParams[genericParamIdx];
}
else
{
if (!isAutocomplete)
{
FatalError("Invalid GetGenericParamInstance with extension");
}
}
}
}
BF_ASSERT(genericTypeInst != NULL);
return genericTypeInst->mGenericTypeInfo->mGenericParams[genericParamIdx];
}
void BfModule::GetActiveTypeGenericParamInstances(SizedArray<BfGenericParamInstance*, 4>& genericParamInstances)
{
// When we're evaluating a method, make sure the params refer back to that method context
auto curTypeInstance = mCurTypeInstance;
if (mCurMethodInstance != NULL)
curTypeInstance = mCurMethodInstance->mMethodInstanceGroup->mOwner;
BfTypeInstance* genericTypeInst = curTypeInstance->ToGenericTypeInstance();
if ((genericTypeInst->IsIncomplete()) && (genericTypeInst->mGenericTypeInfo->mGenericParams.size() == 0))
{
// Set this to NULL so we don't recurse infinitely
SetAndRestoreValue<BfTypeInstance*> prevTypeInst(mCurTypeInstance, NULL);
PopulateType(genericTypeInst, BfPopulateType_Declaration);
}
if (genericTypeInst->mGenericTypeInfo->mGenericExtensionInfo != NULL)
{
auto activeTypeDef = GetActiveTypeDef(NULL, true);
if ((activeTypeDef->mTypeDeclaration != genericTypeInst->mTypeDef->mTypeDeclaration) && (activeTypeDef->IsExtension()))
{
BfTypeDef* lookupTypeDef = activeTypeDef;
while (lookupTypeDef->mNestDepth > genericTypeInst->mTypeDef->mNestDepth)
lookupTypeDef = lookupTypeDef->mOuterType;
BfGenericExtensionEntry* genericExEntry;
if (genericTypeInst->mGenericTypeInfo->mGenericExtensionInfo->mExtensionMap.TryGetValue(lookupTypeDef, &genericExEntry))
{
for (auto entry : genericExEntry->mGenericParams)
genericParamInstances.Add(entry);
auto genericTypeInfo = genericTypeInst->mGenericTypeInfo;
// Add root extern constraints - they don't get extended
for (int genericParamIdx = (int)genericTypeInst->mGenericTypeInfo->mTypeGenericArguments.size(); genericParamIdx < genericTypeInst->mGenericTypeInfo->mGenericParams.size(); genericParamIdx++)
genericParamInstances.Add(genericTypeInst->mGenericTypeInfo->mGenericParams[genericParamIdx]);
return;
}
else
{
if ((mCompiler->mResolvePassData == NULL) || (mCompiler->mResolvePassData->mAutoComplete == NULL))
{
BFMODULE_FATAL(this, "Invalid GetGenericParamInstance with extension");
}
}
}
}
BF_ASSERT(genericTypeInst != NULL);
for (auto entry : genericTypeInst->mGenericTypeInfo->mGenericParams)
genericParamInstances.Add(entry);
}
BfGenericParamInstance* BfModule::GetMergedGenericParamData(BfGenericParamType* type, BfGenericParamFlags& outFlags, BfType*& outTypeConstraint)
{
BfGenericParamInstance* genericParam = GetGenericParamInstance(type);
outFlags = genericParam->mGenericParamFlags;
outTypeConstraint = genericParam->mTypeConstraint;
// Check method generic constraints
if ((mCurMethodInstance != NULL) && (mCurMethodInstance->mIsUnspecialized) && (mCurMethodInstance->mMethodInfoEx != NULL))
{
for (int genericParamIdx = (int)mCurMethodInstance->mMethodInfoEx->mMethodGenericArguments.size();
genericParamIdx < mCurMethodInstance->mMethodInfoEx->mGenericParams.size(); genericParamIdx++)
{
auto genericParam = mCurMethodInstance->mMethodInfoEx->mGenericParams[genericParamIdx];
if (genericParam->mExternType == type)
{
outFlags = (BfGenericParamFlags)(outFlags | genericParam->mGenericParamFlags);
if (genericParam->mTypeConstraint != NULL)
outTypeConstraint = genericParam->mTypeConstraint;
}
}
}
return genericParam;
}
BfGenericParamInstance* BfModule::GetGenericParamInstance(BfGenericParamType* type, bool checkMixinBind, BfFailHandleKind failHandleKind)
{
if (type->mGenericParamKind == BfGenericParamKind_Method)
{
auto curGenericMethodInstance = mCurMethodInstance;
if ((mCurMethodState != NULL) && (mCurMethodState->mMixinState != NULL))
{
if ((checkMixinBind) || (mCurMethodState->mMixinState->mUseMixinGenerics))
curGenericMethodInstance = mCurMethodState->mMixinState->mMixinMethodInstance;
}
if ((curGenericMethodInstance == NULL) || (curGenericMethodInstance->mMethodInfoEx == NULL) || (type->mGenericParamIdx >= curGenericMethodInstance->mMethodInfoEx->mGenericParams.mSize))
{
if (failHandleKind == Beefy::BfFailHandleKind_Normal)
FatalError("Invalid GetGenericParamInstance method generic param");
else if (failHandleKind == Beefy::BfFailHandleKind_Soft)
InternalError("Invalid GetGenericParamInstance method generic param");
return NULL;
}
return curGenericMethodInstance->mMethodInfoEx->mGenericParams[type->mGenericParamIdx];
}
return GetGenericTypeParamInstance(type->mGenericParamIdx);
}
bool BfModule::ResolveTypeResult_Validate(BfAstNode* typeRef, BfType* resolvedTypeRef)
{
if ((typeRef == NULL) || (resolvedTypeRef == NULL))
return true;
BfTypeInstance* genericTypeInstance = resolvedTypeRef->ToGenericTypeInstance();
if ((genericTypeInstance != NULL) && (genericTypeInstance != mCurTypeInstance))
{
bool doValidate = (genericTypeInstance->mGenericTypeInfo->mHadValidateErrors) ||
(!genericTypeInstance->mGenericTypeInfo->mValidatedGenericConstraints) ||
(genericTypeInstance->mGenericTypeInfo->mIsUnspecializedVariation);
if ((mCurMethodInstance != NULL) && (mCurMethodInstance->IsOrInUnspecializedVariation()))
doValidate = false;
if (mCurTypeInstance != NULL)
{
if (mCurTypeInstance->IsUnspecializedTypeVariation())
doValidate = false;
if (auto curGenericTypeInstance = mCurTypeInstance->ToGenericTypeInstance())
{
if ((curGenericTypeInstance->mDependencyMap.mMinDependDepth > 32) &&
(genericTypeInstance->mDependencyMap.mMinDependDepth > 32))
{
Fail(StrFormat("Generic type dependency depth exceeded for type '%s'", TypeToString(genericTypeInstance).c_str()), typeRef);
return false;
}
if (curGenericTypeInstance->mGenericTypeInfo->mHadValidateErrors)
doValidate = false;
}
if ((mContext->mCurTypeState != NULL) && (mContext->mCurTypeState->mCurBaseTypeRef != NULL) && (!mContext->mCurTypeState->mType->IsTypeAlias())) // We validate constraints for base types later
doValidate = false;
}
if (doValidate)
ValidateGenericConstraints(typeRef, genericTypeInstance, false);
}
if (auto genericInstanceTypeRef = BfNodeDynCastExact<BfGenericInstanceTypeRef>(typeRef))
{
if (genericTypeInstance != NULL)
{
auto genericTypeInfo = genericTypeInstance->GetGenericTypeInfo();
for (int argIdx = 0; argIdx < (int)genericInstanceTypeRef->mGenericArguments.size(); argIdx++)
{
ResolveTypeResult_Validate(genericInstanceTypeRef->mGenericArguments[argIdx], genericTypeInfo->mTypeGenericArguments[argIdx]);
}
}
}
else if (auto elementedTypeRef = BfNodeDynCast<BfElementedTypeRef>(typeRef))
{
return ResolveTypeResult_Validate(elementedTypeRef, resolvedTypeRef->GetUnderlyingType());
}
return true;
}
BfType* BfModule::SafeResolveAliasType(BfTypeAliasType* aliasType)
{
int aliasDepth = 0;
HashSet<BfType*> seenAliases;
BfType* type = aliasType;
while (type->IsTypeAlias())
{
aliasDepth++;
if (aliasDepth > 8)
{
if (!seenAliases.Add(type))
return NULL;
}
type = type->GetUnderlyingType();
if (type == NULL)
return NULL;
}
return type;
}
BfType* BfModule::ResolveTypeResult(BfTypeReference* typeRef, BfType* resolvedTypeRef, BfPopulateType populateType, BfResolveTypeRefFlags resolveFlags)
{
if ((mCompiler->mIsResolveOnly) && (!IsInSpecializedSection()))
{
bool isGetDefinition = false;
BfAutoComplete* autoComplete = NULL;
if (mCompiler->IsAutocomplete())
{
autoComplete = mCompiler->mResolvePassData->mAutoComplete;
isGetDefinition = autoComplete->mIsGetDefinition || (autoComplete->mResolveType == BfResolveType_GetResultString);
}
BfSourceData* typeRefSource = NULL;
if (typeRef->IsTemporary())
{
BfTypeReference* checkTypeRef = typeRef;
if (auto genericTypeRef = BfNodeDynCast<BfGenericInstanceTypeRef>(checkTypeRef))
checkTypeRef = genericTypeRef->mElementType;
if (auto namedTypeRef = BfNodeDynCast<BfNamedTypeReference>(checkTypeRef))
typeRefSource = namedTypeRef->mNameNode->GetSourceData();
}
else
typeRefSource = typeRef->GetSourceData();
BfSourceClassifier* sourceClassifier = NULL;
if ((mCompiler->mResolvePassData->mIsClassifying) && (typeRefSource != NULL))
{
auto parser = typeRefSource->ToParser();
if (parser != NULL)
sourceClassifier = mCompiler->mResolvePassData->GetSourceClassifier(parser);
}
bool wantsFileNamespaceInfo = ((sourceClassifier != NULL) || (isGetDefinition) || (mCompiler->mResolvePassData->mGetSymbolReferenceKind == BfGetSymbolReferenceKind_Namespace));
bool wantsAllNamespaceInfo = (mCompiler->mResolvePassData->mGetSymbolReferenceKind == BfGetSymbolReferenceKind_Namespace) && (mCompiler->mResolvePassData->mParsers.IsEmpty());
if (wantsFileNamespaceInfo || wantsAllNamespaceInfo)
{
//TODO: By only breaking out for "mIgnoreErrors", we classified elements (below) even when a resolvedTypeRef was not found!
//Why did we have this mIgnoreErrors check in there?
// if ((resolvedTypeRef == NULL) && (mIgnoreErrors))
if (resolvedTypeRef == NULL)
{
return NULL;
}
BfTypeInstance* resolvedTypeInstance = NULL;
if (resolvedTypeRef != NULL)
resolvedTypeInstance = resolvedTypeRef->ToTypeInstance();
bool isNamespace = false;
auto checkTypeRef = typeRef;
if (auto genericTypeRef = BfNodeDynCast<BfGenericInstanceTypeRef>(checkTypeRef))
checkTypeRef = genericTypeRef->mElementType;
auto headTypeRef = checkTypeRef;
if (auto elementedTypeRef = BfNodeDynCast<BfElementedTypeRef>(checkTypeRef))
checkTypeRef = elementedTypeRef->mElementType;
if (!mIsInsideAutoComplete)
{
if ((resolvedTypeInstance != NULL) && (resolvedTypeInstance->mTypeDef->IsGlobalsContainer()))
{
isNamespace = true;
}
else
{
//TODO: This broke colorizing of inner expressions for things like "T2[T3]"
//mCompiler->mResolvePassData->mSourceClassifier->VisitChildNoRef(typeRef);
}
}
BfSourceElementType elemType = BfSourceElementType_Type;
{
auto type = resolvedTypeRef;
if (type->IsTypeAlias())
{
type = SafeResolveAliasType((BfTypeAliasType*)type);
if (type == NULL)
type = resolvedTypeRef;
}
if (type->IsInterface())
elemType = BfSourceElementType_Interface;
else if (type->IsObject())
elemType = BfSourceElementType_RefType;
else if (type->IsGenericParam())
elemType = BfSourceElementType_GenericParam;
else if (type->IsPrimitiveType())
elemType = BfSourceElementType_PrimitiveType;
else if (type->IsStruct() || (type->IsTypedPrimitive() && !type->IsEnum()))
elemType = BfSourceElementType_Struct;
}
while (auto qualifiedTypeRef = BfNodeDynCast<BfQualifiedTypeReference>(checkTypeRef))
{
if ((sourceClassifier != NULL) && (checkTypeRef == headTypeRef) && (elemType != BfSourceElementType_Type))
sourceClassifier->SetElementType(qualifiedTypeRef->mRight, elemType);
StringView leftString = qualifiedTypeRef->mLeft->ToStringView();
BfSizedAtomComposite leftComposite;
bool isValid = mSystem->ParseAtomComposite(leftString, leftComposite);
if (sourceClassifier != NULL)
sourceClassifier->SetHighestElementType(qualifiedTypeRef->mRight, isNamespace ? BfSourceElementType_Namespace : BfSourceElementType_Type);
if (resolvedTypeInstance == NULL)
{
if ((isValid) && (mCompiler->mSystem->ContainsNamespace(leftComposite, mCurTypeInstance->mTypeDef->mProject)))
isNamespace = true;
}
else if ((isValid) && (resolvedTypeInstance->mTypeDef->mNamespace.EndsWith(leftComposite)) && (resolvedTypeInstance->mTypeDef->mOuterType == NULL))
{
if (autoComplete != NULL)
{
if (autoComplete->CheckFixit(typeRef))
autoComplete->FixitCheckNamespace(GetActiveTypeDef(), qualifiedTypeRef->mLeft, qualifiedTypeRef->mDot);
autoComplete->CheckNamespace(qualifiedTypeRef->mLeft, resolvedTypeInstance->mTypeDef->mNamespace);
}
mCompiler->mResolvePassData->HandleNamespaceReference(qualifiedTypeRef->mLeft, resolvedTypeInstance->mTypeDef->mNamespace);
isNamespace = true;
}
checkTypeRef = qualifiedTypeRef->mLeft;
}
if (auto namedTypeRef = BfNodeDynCast<BfNamedTypeReference>(checkTypeRef))
{
auto checkNameNode = namedTypeRef->mNameNode;
bool setType = false;
if ((sourceClassifier != NULL) && (checkTypeRef == headTypeRef) && (elemType != BfSourceElementType_Type))
{
if (auto qualifiedNameNode = BfNodeDynCast<BfQualifiedNameNode>(checkNameNode))
{
sourceClassifier->SetElementType(qualifiedNameNode->mRight, elemType);
}
else
{
setType = true;
sourceClassifier->SetElementType(checkNameNode, elemType);
}
}
while (auto qualifiedNameNode = BfNodeDynCast<BfQualifiedNameNode>(checkNameNode))
{
StringView leftString = qualifiedNameNode->mLeft->ToStringView();
BfSizedAtomComposite leftComposite;
bool isValid = mSystem->ParseAtomComposite(leftString, leftComposite);
if (sourceClassifier != NULL)
sourceClassifier->SetHighestElementType(qualifiedNameNode->mRight, isNamespace ? BfSourceElementType_Namespace : BfSourceElementType_Type);
if (resolvedTypeInstance == NULL)
{
if ((isValid) && (mCompiler->mSystem->ContainsNamespace(leftComposite, mCurTypeInstance->mTypeDef->mProject)))
isNamespace = true;
}
else if ((isValid) && (resolvedTypeInstance->mTypeDef->mOuterType == NULL) && (resolvedTypeInstance->mTypeDef->mNamespace.EndsWith(leftComposite)))
{
if (autoComplete != NULL)
{
if (autoComplete->CheckFixit(typeRef))
autoComplete->FixitCheckNamespace(GetActiveTypeDef(), qualifiedNameNode->mLeft, qualifiedNameNode->mDot);
autoComplete->CheckNamespace(qualifiedNameNode->mLeft, resolvedTypeInstance->mTypeDef->mNamespace);
}
mCompiler->mResolvePassData->HandleNamespaceReference(qualifiedNameNode->mLeft, resolvedTypeInstance->mTypeDef->mNamespace);
isNamespace = true;
}
checkNameNode = qualifiedNameNode->mLeft;
}
if ((sourceClassifier != NULL) &&
((!setType) || (checkNameNode != namedTypeRef->mNameNode)))
sourceClassifier->SetHighestElementType(checkNameNode, isNamespace ? BfSourceElementType_Namespace : BfSourceElementType_Type);
}
}
if (((mCompiler->mResolvePassData->mGetSymbolReferenceKind == BfGetSymbolReferenceKind_Type) || (isGetDefinition)) &&
((resolveFlags & BfResolveTypeRefFlag_FromIndirectSource) == 0) && (resolvedTypeRef != NULL) && (typeRefSource != NULL))
{
BfAstNode* elementTypeRef = typeRef;
if (auto namedTypeRef = BfNodeDynCast<BfNamedTypeReference>(elementTypeRef))
elementTypeRef = namedTypeRef->mNameNode;
if (elementTypeRef != NULL)
{
BfType* elementType = resolvedTypeRef;
if (BfTypeInstance* elementTypeInst = elementType->ToTypeInstance())
{
mCompiler->mResolvePassData->HandleTypeReference(elementTypeRef, elementTypeInst->mTypeDef);
if (mCompiler->IsAutocomplete())
{
BfAutoComplete* autoComplete = mCompiler->mResolvePassData->mAutoComplete;
if ((isGetDefinition) && (autoComplete->IsAutocompleteNode(elementTypeRef)))
{
BfAstNode* baseNode = elementTypeRef;
while (true)
{
if (auto qualifiedTypeRef = BfNodeDynCast<BfQualifiedTypeReference>(baseNode))
{
baseNode = qualifiedTypeRef->mRight;
}
else if (auto elementedTypeRef = BfNodeDynCast<BfElementedTypeRef>(baseNode))
{
baseNode = elementedTypeRef->mElementType;
}
else if (auto namedTypeRef = BfNodeDynCast<BfNamedTypeReference>(baseNode))
{
baseNode = namedTypeRef->mNameNode;
}
else if (auto qualifiedNameNode = BfNodeDynCast<BfQualifiedNameNode>(baseNode))
{
baseNode = qualifiedNameNode->mRight;
}
else if (auto declTypeRef = BfNodeDynCast<BfExprModTypeRef>(baseNode))
{
baseNode = NULL;
break;
}
else
break;
}
if ((baseNode != NULL) && (autoComplete->IsAutocompleteNode(baseNode)))
{
// We didn't have this mDefType check before - why? We always want to catch the FIRST definition,
// so 'Type?' will catch on 'Type' and not 'Type?'
if ((autoComplete->mDefType == NULL) &&
(autoComplete->mDefMethod == NULL) && (autoComplete->mDefField == NULL) &&
(autoComplete->mDefProp == NULL) && (elementTypeInst->mTypeDef->mTypeDeclaration != NULL))
{
autoComplete->mDefType = elementTypeInst->mTypeDef;
autoComplete->SetDefinitionLocation(elementTypeInst->mTypeDef->mTypeDeclaration->mNameNode);
}
if ((autoComplete->mResolveType == BfResolveType_GetResultString) && (resolvedTypeRef != NULL))
{
autoComplete->SetResultStringType(resolvedTypeRef);
}
}
}
}
}
}
}
}
if (resolvedTypeRef == NULL)
return NULL;
if (mCurTypeInstance == NULL)
{
// No deps
}
else if (resolvedTypeRef->IsTuple())
{
// Add the fields from the tuple as references since those inner fields types would have been explicitly stated, so we need
// to make sure to record the current type instance as a referring type. This mostly matters for symbol renaming.
BfTypeInstance* payloadTupleType = (BfTypeInstance*)resolvedTypeRef;
for (auto& payloadFieldInst : payloadTupleType->mFieldInstances)
{
auto payloadFieldType = payloadFieldInst.mResolvedType;
AddDependency(payloadFieldType, mCurTypeInstance, BfDependencyMap::DependencyFlag_TypeReference);
}
}
else if (resolvedTypeRef->IsDelegateFromTypeRef() || resolvedTypeRef->IsFunctionFromTypeRef())
{
auto delegateInfo = resolvedTypeRef->GetDelegateInfo();
// if (delegateInfo->mFunctionThisType != NULL)
// AddDependency(delegateInfo->mFunctionThisType, mCurTypeInstance, BfDependencyMap::DependencyFlag_TypeReference);
AddDependency(delegateInfo->mReturnType, mCurTypeInstance, BfDependencyMap::DependencyFlag_TypeReference);
for (auto& param : delegateInfo->mParams)
AddDependency(param, mCurTypeInstance, BfDependencyMap::DependencyFlag_TypeReference);
}
BfTypeInstance* typeInstance = resolvedTypeRef->ToTypeInstance();
BfTypeInstance* genericTypeInstance = resolvedTypeRef->ToGenericTypeInstance();
auto populateModule = this;
if ((resolveFlags & BfResolveTypeRefFlag_NoReify) != 0)
populateModule = mContext->mUnreifiedModule;
populateModule->PopulateType(resolvedTypeRef, populateType);
if ((typeInstance != NULL) && (typeInstance->mTypeDef != NULL) && (typeInstance->mTypeDef->mProtection == BfProtection_Internal) &&
(typeInstance != mCurTypeInstance) && (typeInstance->mTypeDef->mOuterType == NULL) && (!typeRef->IsTemporary()))
{
if (!CheckProtection(typeInstance->mTypeDef->mProtection, typeInstance->mTypeDef, false, false))
Fail(StrFormat("'%s' is inaccessible due to its protection level", TypeToString(typeInstance).c_str()), typeRef); // CS0122
}
// If the inner type is definted in an extension then we need to make sure the constraints are good
if ((typeInstance != NULL) && (typeInstance->mTypeDef != NULL) && (typeInstance->mTypeDef->mOuterType != NULL) &&
(typeInstance->mTypeDef->mOuterType->mTypeCode == BfTypeCode_Extension))
{
auto outerType = GetOuterType(typeInstance);
if ((outerType->mGenericTypeInfo != NULL) && (outerType->mGenericTypeInfo->mGenericExtensionInfo != NULL))
{
if (!outerType->mGenericTypeInfo->mGenericExtensionInfo->mConstraintsPassedSet.IsSet(typeInstance->mTypeDef->mOuterType->mPartialIdx))
{
Fail(StrFormat("'%s' is declared inside a type extension whose constraints were not met", TypeToString(typeInstance).c_str()), typeRef);
}
}
}
if (populateType > BfPopulateType_IdentityNoRemapAlias)
{
if (!ResolveTypeResult_Validate(typeRef, resolvedTypeRef))
return NULL;
}
if ((populateType != BfPopulateType_TypeDef) && (populateType != BfPopulateType_IdentityNoRemapAlias))
{
int aliasDepth = 0;
HashSet<BfType*> seenAliases;
while ((resolvedTypeRef != NULL) && (resolvedTypeRef->IsTypeAlias()))
{
aliasDepth++;
if (aliasDepth > 8)
{
if (!seenAliases.Add(resolvedTypeRef))
{
if ((typeRef != NULL) && (!typeRef->IsTemporary()))
Fail(StrFormat("Type alias '%s' has a recursive definition", TypeToString(resolvedTypeRef).c_str()), typeRef);
break;
}
}
if (mCurTypeInstance != NULL)
AddDependency(resolvedTypeRef, mCurTypeInstance, BfDependencyMap::DependencyFlag_NameReference);
if (resolvedTypeRef->mDefineState == BfTypeDefineState_Undefined)
PopulateType(resolvedTypeRef);
if ((typeInstance->mCustomAttributes != NULL) && (!typeRef->IsTemporary()))
CheckErrorAttributes(typeInstance, NULL, NULL, typeInstance->mCustomAttributes, typeRef);
resolvedTypeRef = resolvedTypeRef->GetUnderlyingType();
if (resolvedTypeRef != NULL)
typeInstance = resolvedTypeRef->ToTypeInstance();
else
typeInstance = NULL;
}
}
if (typeInstance != NULL)
{
if ((!typeRef->IsTemporary()) && ((resolveFlags & BfResolveTypeRefFlag_FromIndirectSource) == 0))
{
if (typeInstance->mCustomAttributes != NULL)
CheckErrorAttributes(typeInstance, NULL, NULL, typeInstance->mCustomAttributes, typeRef);
else if ((typeInstance->mTypeDef->mTypeDeclaration != NULL) && (typeInstance->mTypeDef->mTypeDeclaration->mAttributes != NULL))
{
auto typeRefVerifyRequest = mContext->mTypeRefVerifyWorkList.Alloc();
typeRefVerifyRequest->mCurTypeInstance = mCurTypeInstance;
typeRefVerifyRequest->mRefNode = typeRef;
typeRefVerifyRequest->mType = typeInstance;
typeRefVerifyRequest->mFromModule = this;
typeRefVerifyRequest->mFromModuleRevision = mRevision;
}
}
if (typeInstance->IsTuple())
{
//TODO: This can cause circular reference issues. Is there a case this is needed?
//if (typeInstance->mDefineState < BfTypeDefineState_Defined)
// PopulateType(typeInstance);
if (typeInstance->mHasDeclError)
{
if (auto tupleTypeRef = BfNodeDynCast<BfTupleTypeRef>(typeRef))
{
HashSet<String> names;
for (auto nameIdentifier : tupleTypeRef->mFieldNames)
{
if (nameIdentifier == NULL)
continue;
StringT<64> fieldName;
nameIdentifier->ToString(fieldName);
if (!names.Add(fieldName))
{
Fail(StrFormat("A field named '%s' has already been declared", fieldName.c_str()), nameIdentifier);
}
}
}
}
}
}
return resolvedTypeRef;
}
void BfModule::ShowAmbiguousTypeError(BfAstNode* refNode, BfTypeDef* typeDef, BfTypeDef* otherTypeDef)
{
BfType* type = ResolveTypeDef(typeDef, BfPopulateType_Identity);
if (type == NULL)
return;
BfType* otherType = ResolveTypeDef(otherTypeDef, BfPopulateType_Identity);
if (otherType == NULL)
return;
auto error = Fail(StrFormat("'%s' is an ambiguous reference between '%s' and '%s'",
refNode->ToString().c_str(), TypeToString(type, BfTypeNameFlags_None).c_str(), TypeToString(otherType, BfTypeNameFlags_None).c_str()), refNode); // CS0104
if (error != NULL)
{
mCompiler->mPassInstance->MoreInfo("See first definition", typeDef->mTypeDeclaration->mNameNode);
mCompiler->mPassInstance->MoreInfo("See second definition", otherTypeDef->mTypeDeclaration->mNameNode);
}
}
void BfModule::ShowGenericArgCountError(BfAstNode* typeRef, int wantedGenericParams)
{
BfGenericInstanceTypeRef* genericTypeInstRef = BfNodeDynCast<BfGenericInstanceTypeRef>(typeRef);
BfAstNode* lastNode = typeRef;
int genericArgDiffCount;
if (genericTypeInstRef != NULL)
{
genericArgDiffCount = (int)genericTypeInstRef->mGenericArguments.size() - wantedGenericParams;
lastNode = genericTypeInstRef->mOpenChevron;
if (genericTypeInstRef->mCloseChevron != NULL)
lastNode = genericTypeInstRef->mCloseChevron;
if (genericTypeInstRef->mGenericArguments.size() > wantedGenericParams)
{
lastNode = genericTypeInstRef->mGenericArguments[wantedGenericParams];
if (genericArgDiffCount == 1)
Fail("Too many generic parameters, expected one fewer", lastNode);
else
Fail(StrFormat("Too many generic parameters, expected %d fewer", genericArgDiffCount), lastNode);
return;
}
}
else
genericArgDiffCount = -wantedGenericParams;
if (wantedGenericParams == 1)
Fail("Too few generic parameters, expected one more", lastNode);
else
Fail(StrFormat("Too few generic parameters, expected %d more", -genericArgDiffCount), lastNode);
}
BfTypeDef* BfModule::GetActiveTypeDef(BfTypeInstance* typeInstanceOverride, bool useMixinDecl, bool useForeignImpl)
{
BfTypeDef* useTypeDef = NULL;
BfTypeInstance* typeInstance = (typeInstanceOverride != NULL) ? typeInstanceOverride : mCurTypeInstance;
if ((mContext->mCurTypeState != NULL) && (mContext->mCurTypeState->mForceActiveTypeDef != NULL))
return mContext->mCurTypeState->mForceActiveTypeDef;
if (typeInstance != NULL)
useTypeDef = typeInstance->mTypeDef->GetDefinition();
if ((mCurMethodState != NULL) && (mCurMethodState->mMixinState != NULL) && (useMixinDecl))
useTypeDef = mCurMethodState->mMixinState->mMixinMethodInstance->mMethodDef->mDeclaringType->GetDefinition();
else if ((mCurMethodInstance != NULL) && (mCurMethodInstance->mMethodDef->mDeclaringType != NULL))
{
if ((mCurMethodInstance->mIsForeignMethodDef) && (useForeignImpl))
{
// Use the concrete impl typeDef, not the foreign method typedecl (the interface)
}
else
{
auto declTypeDef = mCurMethodInstance->mMethodDef->mDeclaringType;
useTypeDef = declTypeDef->GetDefinition(true);
if ((declTypeDef->IsEmitted()) && (useTypeDef->mIsCombinedPartial))
{
// Always consider methods to belong to the primary type declaration
useTypeDef = useTypeDef->mPartials[0];
}
}
}
else if (mContext->mCurTypeState != NULL)
{
if ((mContext->mCurTypeState->mCurFieldDef != NULL) && (mContext->mCurTypeState->mCurFieldDef->mDeclaringType != NULL))
useTypeDef = mContext->mCurTypeState->mCurFieldDef->mDeclaringType->GetDefinition(true);
else if (mContext->mCurTypeState->mCurTypeDef != NULL)
useTypeDef = mContext->mCurTypeState->mCurTypeDef->GetDefinition(true);
}
return useTypeDef;
}
BfTypeDef* BfModule::FindTypeDefRaw(const BfAtomComposite& findName, int numGenericArgs, BfTypeInstance* typeInstance, BfTypeDef* useTypeDef, BfTypeLookupError* error, BfTypeLookupResultCtx* lookupResultCtx, BfResolveTypeRefFlags resolveFlags)
{
if ((findName.mSize == 1) && (findName.mParts[0]->mIsSystemType))
{
//BP_ZONE("BfModule::FindTypeDefRaw_1");
return mSystem->FindTypeDef(findName, 0, useTypeDef->mProject);
}
BfTypeInstance* skipCheckBaseType = NULL;
if (mContext->mCurTypeState != NULL)
{
if (mContext->mCurTypeState->mCurBaseTypeRef != NULL)
skipCheckBaseType = mContext->mCurTypeState->mType->ToTypeInstance();
if (mContext->mCurTypeState->mResolveKind == BfTypeState::ResolveKind_BuildingGenericParams)
skipCheckBaseType = mContext->mCurTypeState->mType->ToTypeInstance();
}
BfProject* useProject = useTypeDef->mProject;
BfTypeDefLookupContext lookupCtx;
bool allowPrivate = true;
int curPri = 1000;
auto checkTypeInst = typeInstance;
BfTypeDef* protErrorTypeDef = NULL;
BfTypeInstance* protErrorOuterType = NULL;
BfTypeDef* foundInnerType = NULL;
if ((resolveFlags & BfResolveTypeRefFlag_SpecializedProject) != 0)
{
if (typeInstance->mGenericTypeInfo->mProjectsReferenced.empty())
typeInstance->GenerateProjectsReferenced();
lookupCtx.mCheckProjects = &typeInstance->mGenericTypeInfo->mProjectsReferenced;
}
if ((lookupResultCtx != NULL) && (lookupResultCtx->mIsVerify))
{
if (lookupResultCtx->mResult->mFoundInnerType)
return lookupCtx.mBestTypeDef;
}
else
{
if ((!lookupCtx.HasValidMatch()) && (typeInstance != NULL))
{
std::function<bool(BfTypeInstance*)> _CheckType = [&](BfTypeInstance* typeInstance)
{
auto checkTypeInst = typeInstance;
allowPrivate = true;
while (checkTypeInst != NULL)
{
if (!checkTypeInst->mTypeDef->mNestedTypes.IsEmpty())
{
if (mSystem->FindTypeDef(findName, numGenericArgs, useProject, checkTypeInst->mTypeDef->mFullNameEx, allowPrivate, &lookupCtx))
{
foundInnerType = lookupCtx.mBestTypeDef;
if (lookupCtx.HasValidMatch())
return true;
if ((lookupCtx.mBestTypeDef->mProtection == BfProtection_Private) && (!allowPrivate))
{
protErrorTypeDef = lookupCtx.mBestTypeDef;
protErrorOuterType = checkTypeInst;
}
}
}
if (checkTypeInst == skipCheckBaseType)
break;
checkTypeInst = GetBaseType(checkTypeInst);
allowPrivate = false;
}
checkTypeInst = typeInstance;
allowPrivate = true;
while (checkTypeInst != NULL)
{
auto outerTypeInst = GetOuterType(checkTypeInst);
if (outerTypeInst != NULL)
{
if (_CheckType(outerTypeInst))
return true;
}
if (checkTypeInst == skipCheckBaseType)
break;
checkTypeInst = GetBaseType(checkTypeInst);
allowPrivate = false;
}
return false;
};
_CheckType(typeInstance);
}
}
if (!lookupCtx.HasValidMatch())
{
if (mSystem->mTypeDefs.TryGet(findName, NULL))
mSystem->FindTypeDef(findName, numGenericArgs, useProject, BfAtomComposite(), allowPrivate, &lookupCtx);
for (auto& checkNamespace : useTypeDef->mNamespaceSearch)
{
BfAtom* atom = findName.mParts[0];
BfAtom* prevAtom = checkNamespace.mParts[checkNamespace.mSize - 1];
if (atom->mPrevNamesMap.ContainsKey(prevAtom))
mSystem->FindTypeDef(findName, numGenericArgs, useProject, checkNamespace, allowPrivate, &lookupCtx);
}
}
if (!lookupCtx.HasValidMatch())
{
auto staticSearch = GetStaticSearch();
if (staticSearch != NULL)
{
for (auto staticTypeInstance : staticSearch->mStaticTypes)
{
if (mSystem->FindTypeDef(findName, numGenericArgs, useProject, staticTypeInstance->mTypeDef->mFullNameEx, false, &lookupCtx))
{
if (lookupCtx.HasValidMatch())
break;
if (lookupCtx.mBestTypeDef->mProtection < BfProtection_Public)
{
protErrorTypeDef = lookupCtx.mBestTypeDef;
protErrorOuterType = staticTypeInstance;
}
}
}
}
}
if ((!lookupCtx.HasValidMatch()) && (typeInstance == NULL))
{
if (useTypeDef->mOuterType != NULL)
return FindTypeDefRaw(findName, numGenericArgs, typeInstance, useTypeDef->mOuterType, error);
}
if ((error != NULL) && (lookupCtx.mAmbiguousTypeDef != NULL))
{
if (error->mErrorKind == BfTypeLookupError::BfErrorKind_None)
error->mErrorKind = BfTypeLookupError::BfErrorKind_Ambiguous;
error->mAmbiguousTypeDef = lookupCtx.mAmbiguousTypeDef;
if (error->mRefNode != NULL)
ShowAmbiguousTypeError(error->mRefNode, lookupCtx.mBestTypeDef, lookupCtx.mAmbiguousTypeDef);
}
if ((protErrorTypeDef != NULL) && (lookupCtx.mBestTypeDef == protErrorTypeDef) && (error != NULL) && (error->mRefNode != NULL))
Fail(StrFormat("'%s.%s' is inaccessible due to its protection level", TypeToString(protErrorOuterType).c_str(), findName.ToString().c_str()), error->mRefNode); // CS0122
if ((lookupResultCtx != NULL) && (lookupResultCtx->mResult != NULL) && (!lookupResultCtx->mIsVerify) && (foundInnerType != NULL) && (foundInnerType == lookupCtx.mBestTypeDef))
lookupResultCtx->mResult->mFoundInnerType = true;
if (((resolveFlags & BfResolveTypeRefFlag_AllowGlobalContainer) == 0) && (lookupCtx.mBestTypeDef != NULL) && (lookupCtx.mBestTypeDef->IsGlobalsContainer()))
return NULL;
return lookupCtx.mBestTypeDef;
}
BfTypeDef* BfModule::FindTypeDef(const BfAtomComposite& findName, int numGenericArgs, BfTypeInstance* typeInstanceOverride, BfTypeLookupError* error, BfResolveTypeRefFlags resolveFlags)
{
//BP_ZONE("BfModule::FindTypeDef_1");
BfTypeInstance* typeInstance = (typeInstanceOverride != NULL) ? typeInstanceOverride : mCurTypeInstance;
auto useTypeDef = GetActiveTypeDef(typeInstanceOverride, true);
if ((mCurMethodState != NULL) && (mCurMethodState->mMixinState != NULL))
typeInstance = mCurMethodState->mMixinState->mMixinMethodInstance->GetOwner();
if (useTypeDef != NULL)
useTypeDef = useTypeDef->GetDefinition();
if ((typeInstance == NULL) && (useTypeDef == NULL))
{
BfProject* project = NULL;
if ((mContext->mCurTypeState != NULL) && (mContext->mCurTypeState->mActiveProject != NULL))
project = mContext->mCurTypeState->mActiveProject;
else if ((mCompiler->mResolvePassData != NULL) && (!mCompiler->mResolvePassData->mParsers.IsEmpty()))
project = mCompiler->mResolvePassData->mParsers[0]->mProject;
//BP_ZONE("System.FindTypeDef_2");
Array<BfAtomComposite> namespaceSearch;
if (mContext->mCurNamespaceNodes != NULL)
{
String checkNamespace;
for (auto namespaceNode : *mContext->mCurNamespaceNodes)
{
if (namespaceNode->mNameNode != NULL)
{
if (!checkNamespace.IsEmpty())
checkNamespace += ".";
namespaceNode->mNameNode->ToString(checkNamespace);
}
}
if (!checkNamespace.IsEmpty())
{
BfAtomCompositeT<16> atomComposite;
if (mSystem->ParseAtomComposite(checkNamespace, atomComposite))
namespaceSearch.Add(atomComposite);
}
}
BfFindTypeDefFlags findDefFlags = BfFindTypeDefFlag_None;
if ((resolveFlags & BfResolveTypeRefFlag_AllowGlobalContainer) != 0)
findDefFlags = (BfFindTypeDefFlags)(findDefFlags | BfFindTypeDefFlag_AllowGlobal);
BfTypeDef* ambiguousTypeDef = NULL;
BfTypeDef *result = mSystem->FindTypeDef(findName, numGenericArgs, project, namespaceSearch, &ambiguousTypeDef, findDefFlags);
if ((ambiguousTypeDef != NULL) && (error != NULL))
{
error->mErrorKind = BfTypeLookupError::BfErrorKind_Ambiguous;
error->mAmbiguousTypeDef = ambiguousTypeDef;
if (error->mRefNode != NULL)
ShowAmbiguousTypeError(error->mRefNode, result, ambiguousTypeDef);
}
return result;
}
if ((mCompiler->mResolvePassData != NULL) && (typeInstance != NULL))
{
if (mCompiler->mResolvePassData->mAutoCompleteTempTypes.Contains(useTypeDef))
return FindTypeDefRaw(findName, numGenericArgs, typeInstance, useTypeDef, error, NULL, resolveFlags);
}
BfTypeLookupEntry typeLookupEntry;
typeLookupEntry.mName.Reference(findName);
typeLookupEntry.mNumGenericParams = numGenericArgs;
typeLookupEntry.mFlags = ((resolveFlags & BfResolveTypeRefFlag_SpecializedProject) != 0) ? BfTypeLookupEntry::Flags_SpecializedProject : BfTypeLookupEntry::Flags_None;
typeLookupEntry.mUseTypeDef = useTypeDef;
BfTypeLookupEntry* typeLookupEntryPtr = NULL;
BfTypeLookupResult* resultPtr = NULL;
if ((typeInstance != NULL) && (typeInstance->mLookupResults.TryAdd(typeLookupEntry, &typeLookupEntryPtr, &resultPtr)))
{
BF_ASSERT(!useTypeDef->IsEmitted());
bool isValid;
if (useTypeDef->mIsPartial)
isValid = typeInstance->mTypeDef->GetDefinition()->ContainsPartial(useTypeDef);
else
isValid = typeInstance->mTypeDef->GetDefinition() == useTypeDef;
if ((!isValid) && (mCurMethodInstance != NULL) && (mCurMethodInstance->mIsForeignMethodDef))
{
BF_ASSERT(mCurMethodInstance->mIsForeignMethodDef);
isValid = mCurMethodInstance->mMethodDef->mDeclaringType == useTypeDef;
}
BF_ASSERT(isValid);
typeLookupEntryPtr->mAtomUpdateIdx = typeLookupEntry.mName.GetAtomUpdateIdx();
// FindTypeDefRaw may re-enter when finding base types, so we need to expect that resultPtr can change
resultPtr->mForceLookup = true;
resultPtr->mTypeDef = NULL;
int prevAllocSize = (int)typeInstance->mLookupResults.size();
BfTypeLookupError localError;
BfTypeLookupError* errorPtr = (error != NULL) ? error : &localError;
BfTypeLookupResultCtx lookupResultCtx;
lookupResultCtx.mResult = resultPtr;
auto typeDef = FindTypeDefRaw(findName, numGenericArgs, typeInstance, useTypeDef, errorPtr, &lookupResultCtx, resolveFlags);
if (prevAllocSize != typeInstance->mLookupResults.size())
{
bool found = typeInstance->mLookupResults.TryGetValue(typeLookupEntry, &resultPtr);
BF_ASSERT(found);
}
resultPtr->mTypeDef = typeDef;
resultPtr->mForceLookup = errorPtr->mErrorKind != BfTypeLookupError::BfErrorKind_None;
return typeDef;
}
else
{
if ((resultPtr == NULL) || (resultPtr->mForceLookup))
return FindTypeDefRaw(findName, numGenericArgs, typeInstance, useTypeDef, error, NULL, resolveFlags);
else
return resultPtr->mTypeDef;
}
}
BfTypeDef* BfModule::FindTypeDef(const StringImpl& typeName, int numGenericArgs, BfTypeInstance* typeInstanceOverride, BfTypeLookupError* error, BfResolveTypeRefFlags resolveFlags)
{
//BP_ZONE("BfModule::FindTypeDef_4");
BfSizedAtomComposite findName;
if (!mSystem->ParseAtomComposite(typeName, findName))
return NULL;
auto result = FindTypeDef(findName, numGenericArgs, typeInstanceOverride, error, resolveFlags);
// Don't allow just finding extensions here. This can happen in some 'using static' cases but generally shouldn't happen
if ((result != NULL) && (result->mTypeCode == BfTypeCode_Extension))
return NULL;
return result;
}
BfTypeDef* BfModule::FindTypeDef(BfTypeReference* typeRef, BfTypeInstance* typeInstanceOverride, BfTypeLookupError* error, int numGenericParams, BfResolveTypeRefFlags resolveFlags)
{
//BP_ZONE("BfModule::FindTypeDef_5");
if (auto typeDefTypeRef = BfNodeDynCast<BfDirectTypeDefReference>(typeRef))
{
if (typeDefTypeRef->mTypeDef != NULL)
return mSystem->FilterDeletedTypeDef(typeDefTypeRef->mTypeDef);
}
//TODO: When does this get called?
if (auto elementedType = BfNodeDynCast<BfElementedTypeRef>(typeRef))
return FindTypeDef(elementedType->mElementType, typeInstanceOverride, error);
BF_ASSERT(typeRef->IsA<BfNamedTypeReference>() || typeRef->IsA<BfQualifiedTypeReference>() || typeRef->IsA<BfDirectStrTypeReference>());
auto namedTypeRef = BfNodeDynCast<BfNamedTypeReference>(typeRef);
StringView findNameStr;
if (namedTypeRef != NULL)
findNameStr = namedTypeRef->mNameNode->ToStringView();
else
{
auto directStrTypeDef = BfNodeDynCastExact<BfDirectStrTypeReference>(typeRef);
if (directStrTypeDef != NULL)
findNameStr = directStrTypeDef->mTypeName;
else
BFMODULE_FATAL(this, "Error?");
}
if (findNameStr.mLength == 6)
{
if (findNameStr == "object")
{
findNameStr = "System.Object";
Fail("'object' alias not supported, use 'Object'", typeRef);
}
else if (findNameStr == "string")
{
findNameStr = "System.String";
Fail("'string' alias not supported, use 'String'", typeRef);
}
}
BfSizedAtomComposite findName;
if ((resolveFlags & BfResolveTypeRefFlag_Attribute) != 0)
{
String attributeName;
attributeName += findNameStr;
attributeName += "Attribute";
if (!mSystem->ParseAtomComposite(attributeName, findName))
return NULL;
}
else
{
if (!mSystem->ParseAtomComposite(findNameStr, findName))
return NULL;
}
#ifdef BF_AST_HAS_PARENT_MEMBER
if (auto parentGenericTypeRef = BfNodeDynCast<BfGenericInstanceTypeRef>(typeRef->mParent))
{
if (parentGenericTypeRef->mElementType == typeRef)
BF_ASSERT(numGenericParams == parentGenericTypeRef->GetGenericArgCount());
}
#endif
auto typeDef = FindTypeDef(findName, numGenericParams, typeInstanceOverride, error, resolveFlags);
//TYPEDEF if (namedTypeRef != NULL)
// namedTypeRef->mTypeDef = typeDef;
return typeDef;
}
void BfModule::CheckTypeRefFixit(BfAstNode* typeRef, const char* appendName)
{
if ((mCompiler->IsAutocomplete()) && (mCompiler->mResolvePassData->mAutoComplete->CheckFixit((typeRef))))
{
String typeName = typeRef->ToString();
if (appendName != NULL)
typeName += appendName;
std::set<String> fixitNamespaces;
//TODO: Do proper value for numGenericArgs
mSystem->FindFixitNamespaces(typeName, -1, mCompiler->mResolvePassData->mParsers[0]->mProject, fixitNamespaces);
int insertLoc = 0;
BfUsingFinder usingFinder;
usingFinder.mFromIdx = typeRef->mSrcStart;
usingFinder.VisitMembers(typeRef->GetSourceData()->mRootNode);
for (auto& namespaceStr : fixitNamespaces)
{
BfParserData* parser = typeRef->GetSourceData()->ToParserData();
if (parser != NULL)
mCompiler->mResolvePassData->mAutoComplete->AddEntry(AutoCompleteEntry("fixit", StrFormat("using %s;\t.using|%s|%d||using %s;", namespaceStr.c_str(), parser->mFileName.c_str(), usingFinder.mLastIdx, namespaceStr.c_str()).c_str()));
}
}
}
void BfModule::CheckIdentifierFixit(BfAstNode* node)
{
//TODO: Check globals, possibly spelling mistakes?
}
void BfModule::TypeRefNotFound(BfTypeReference* typeRef, const char* appendName)
{
if (typeRef->IsTemporary())
return;
if (PreFail())
Fail("Type could not be found (are you missing a using directive or library reference?)", typeRef);
if (!mIgnoreErrors)
{
while (auto elementedType = BfNodeDynCast<BfElementedTypeRef>(typeRef))
typeRef = elementedType->mElementType;
if (auto namedTypeRef = BfNodeDynCast<BfNamedTypeReference>(typeRef))
{
String findNameStr = namedTypeRef->mNameNode->ToString();
if (appendName != NULL)
findNameStr += appendName;
BfSizedAtomComposite findName;
if ((!mSystem->ParseAtomComposite(findNameStr, findName)) && (mCurTypeInstance != NULL))
{
//BfTypeInstance* typeInstance = (typeInstanceOverride != NULL) ? typeInstanceOverride : mCurTypeInstance;
// We don't need a typeInstanceOverride because that is used to lookup references
// from mixins, but it's the type using the mixin (mCurTypeInstance) that needs
// rebuilding if the lookup fails
BfTypeInstance* typeInstance = mCurTypeInstance;
BfTypeLookupEntry typeLookupEntry;
typeLookupEntry.mNumGenericParams = 0;
typeLookupEntry.mAtomUpdateIdx = mSystem->mAtomUpdateIdx;
typeInstance->mLookupResults.TryAdd(typeLookupEntry, BfTypeLookupResult());
}
}
}
CheckTypeRefFixit(typeRef, appendName);
}
bool BfModule::ValidateTypeWildcard(BfAstNode* typeRef, bool isAttributeRef)
{
if (typeRef == NULL)
return false;
if (auto wildcardTypeRef = BfNodeDynCast<BfWildcardTypeReference>(typeRef))
return true;
StringT<128> nameStr;
typeRef->ToString(nameStr);
if (isAttributeRef)
nameStr.Append("Attribute");
auto typeDef = mSystem->FindTypeDef(nameStr, (BfProject*)NULL);
if ((typeDef != NULL) && (typeDef->mGenericParamDefs.IsEmpty()))
return true;
if (auto qualifiedTypeRef = BfNodeDynCast<BfQualifiedTypeReference>(typeRef))
{
if (qualifiedTypeRef->mLeft == NULL)
return false;
if (auto wildcardTypeRef = BfNodeDynCast<BfWildcardTypeReference>(qualifiedTypeRef->mRight))
{
StringT<128> leftNameStr;
BfType* leftType = NULL;
BfAtomCompositeT<16> leftComposite;
qualifiedTypeRef->mLeft->ToString(leftNameStr);
if (!mSystem->ParseAtomComposite(leftNameStr, leftComposite))
return false;
if (mSystem->ContainsNamespace(leftComposite, NULL))
return true;
return ValidateTypeWildcard(qualifiedTypeRef->mLeft, false);
}
}
if (!BfNodeIsA<BfGenericInstanceTypeRef>(typeRef))
{
if (auto elementedTypeRef = BfNodeDynCast<BfElementedTypeRef>(typeRef))
{
return ValidateTypeWildcard(elementedTypeRef->mElementType, false);
}
}
BfAstNode* origTypeRef = typeRef;
String name;
String nameEx;
int genericCount = 0;
std::function<bool(BfAstNode*, bool)> _ToString = [&](BfAstNode* typeRef, bool isLast)
{
if (auto qualifiedTypeRef = BfNodeDynCast<BfQualifiedTypeReference>(typeRef))
{
_ToString(qualifiedTypeRef->mLeft, false);
name.Append(".");
nameEx.Append(".");
_ToString(qualifiedTypeRef->mRight, typeRef == origTypeRef);
return true;
}
if (auto genericTypeRef = BfNodeDynCast<BfGenericInstanceTypeRef>(typeRef))
{
_ToString(genericTypeRef->mElementType, false);
genericCount += genericTypeRef->mCommas.mSize + 1;
for (auto genericArg : genericTypeRef->mGenericArguments)
if (!ValidateTypeWildcard(genericArg, false))
return false;
}
else
{
typeRef->ToString(name);
typeRef->ToString(nameEx);
}
if (genericCount > 0)
{
if (!isLast)
name += StrFormat("`%d", genericCount);
nameEx += StrFormat("`%d", genericCount);
}
return true;
};
if (!_ToString(typeRef, true))
return false;
BfAtomCompositeT<16> composite;
if (!mSystem->ParseAtomComposite(name, composite))
return false;
BfAtomCompositeT<16> compositeEx;
if (!mSystem->ParseAtomComposite(nameEx, compositeEx))
return false;
auto itr = mSystem->mTypeDefs.TryGet(composite);
while (itr != mSystem->mTypeDefs.end())
{
auto typeDef = *itr;
if (typeDef->mFullName != composite)
break;
if (typeDef->mFullNameEx == compositeEx)
return true;
++itr;
}
return false;
}
//int sResolveTypeRefIdx = 0;
BfTypedValue BfModule::TryLookupGenericConstVaue(BfIdentifierNode* identifierNode, BfType* expectingType)
{
BfTypeInstance* contextTypeInstance = mCurTypeInstance;
BfMethodInstance* contextMethodInstance = mCurMethodInstance;
if ((mCurMethodState != NULL) && (mCurMethodState->mMixinState != NULL))
{
contextTypeInstance = mCurMethodState->mMixinState->mMixinMethodInstance->GetOwner();
contextMethodInstance = mCurMethodState->mMixinState->mMixinMethodInstance;
}
BfTypeDef* curTypeDef = NULL;
if (contextTypeInstance != NULL)
{
curTypeDef = contextTypeInstance->mTypeDef;
StringT<128> findName;
identifierNode->ToString(findName);
auto genericCheckTypeInstance = contextTypeInstance;
if (contextTypeInstance->IsBoxed())
genericCheckTypeInstance = contextTypeInstance->GetUnderlyingType()->ToTypeInstance();
bool doUndefVal = false;
if (genericCheckTypeInstance->IsUnspecializedTypeVariation())
{
genericCheckTypeInstance = GetUnspecializedTypeInstance(genericCheckTypeInstance);
doUndefVal = true;
}
BfGenericParamDef* genericParamDef = NULL;
BfGenericParamDef* origGenericParamDef = NULL;
BfType* genericParamResult = NULL;
BfType* genericTypeConstraint = NULL;
bool disallowConstExprValue = false;
if ((genericCheckTypeInstance != NULL) && (genericCheckTypeInstance->IsGenericTypeInstance()))
{
auto genericTypeInst = (BfTypeInstance*)genericCheckTypeInstance;
auto* genericParams = &curTypeDef->mGenericParamDefs;
auto* origGenericParams = &curTypeDef->mGenericParamDefs;
if (genericTypeInst->mGenericTypeInfo->mGenericExtensionInfo != NULL)
{
auto activeTypeDef = GetActiveTypeDef(NULL, true);
genericParams = &activeTypeDef->mGenericParamDefs;
}
for (int genericParamIdx = (int)genericParams->size() - 1; genericParamIdx >= 0; genericParamIdx--)
{
auto checkGenericParamDef = (*genericParams)[genericParamIdx];
String genericName = checkGenericParamDef->mName;
if (genericName == findName)
{
genericParamDef = checkGenericParamDef;
origGenericParamDef = (*origGenericParams)[genericParamIdx];
genericParamResult = genericTypeInst->mGenericTypeInfo->mTypeGenericArguments[genericParamIdx];
genericTypeConstraint = genericTypeInst->mGenericTypeInfo->mGenericParams[genericParamIdx]->mTypeConstraint;
if (contextTypeInstance != genericCheckTypeInstance)
{
// Don't allow an 'unspecialized variation' generic param
auto checkResult = contextTypeInstance->mGenericTypeInfo->mTypeGenericArguments[genericParamIdx];
if (!checkResult->IsGenericParam())
genericParamResult = checkResult;
}
HandleTypeGenericParamRef(identifierNode, genericTypeInst->mTypeDef, genericParamIdx);
}
}
}
if ((contextMethodInstance != NULL) && (genericParamResult == NULL))
{
auto checkMethodInstance = contextMethodInstance;
if (checkMethodInstance->mIsUnspecializedVariation)
checkMethodInstance = GetUnspecializedMethodInstance(checkMethodInstance);
for (int genericParamIdx = (int)checkMethodInstance->mMethodDef->mGenericParams.size() - 1; genericParamIdx >= 0; genericParamIdx--)
{
auto checkGenericParamDef = checkMethodInstance->mMethodDef->mGenericParams[genericParamIdx];
String genericName = checkGenericParamDef->mName;
if (genericName == findName)
{
genericParamDef = checkGenericParamDef;
origGenericParamDef = checkGenericParamDef;
genericParamResult = checkMethodInstance->mMethodInfoEx->mMethodGenericArguments[genericParamIdx];
genericTypeConstraint = checkMethodInstance->mMethodInfoEx->mGenericParams[genericParamIdx]->mTypeConstraint;
if (contextMethodInstance != checkMethodInstance)
{
// Don't allow an 'unspecialized variation' generic param
auto checkResult = contextMethodInstance->mMethodInfoEx->mMethodGenericArguments[genericParamIdx];
if (!checkResult->IsGenericParam())
genericParamResult = checkResult;
}
HandleMethodGenericParamRef(identifierNode, contextMethodInstance->GetOwner()->mTypeDef, checkMethodInstance->mMethodDef, genericParamIdx);
}
}
}
if (genericParamResult != NULL)
{
auto typeRefSource = identifierNode->GetSourceData();
if ((mCompiler->mResolvePassData != NULL) && (mCompiler->mResolvePassData->mIsClassifying) && (typeRefSource != NULL))
{
if (auto sourceClassifier = mCompiler->mResolvePassData->GetSourceClassifier(identifierNode))
sourceClassifier->SetElementType(identifierNode, BfSourceElementType_GenericParam);
}
if (genericParamResult->IsConstExprValue())
{
BfConstExprValueType* constExprValueType = (BfConstExprValueType*)genericParamResult;
auto constType = genericTypeConstraint;
if (constType == NULL)
constType = GetPrimitiveType(BfTypeCode_IntPtr);
if (constType->IsVar())
{
BfExprEvaluator exprEvaluator(this);
exprEvaluator.GetLiteral(identifierNode, constExprValueType->mValue, constExprValueType->mType);
return exprEvaluator.mResult;
}
else
{
BfExprEvaluator exprEvaluator(this);
exprEvaluator.mExpectingType = constType;
exprEvaluator.GetLiteral(identifierNode, constExprValueType->mValue, constExprValueType->mType);
if (exprEvaluator.mResult)
{
auto castedVal = CastToValue(identifierNode, exprEvaluator.mResult, constType, (BfCastFlags)(BfCastFlags_Explicit | BfCastFlags_SilentFail));
if (castedVal)
return BfTypedValue(castedVal, constType);
}
return exprEvaluator.mResult;
}
}
else if (genericParamResult->IsGenericParam())
{
if ((doUndefVal) && (genericTypeConstraint != NULL))
{
return GetDefaultTypedValue(genericTypeConstraint, false, BfDefaultValueKind_Undef);
}
if (((genericParamDef->mGenericParamFlags | origGenericParamDef->mGenericParamFlags) & BfGenericParamFlag_Const) != 0)
{
BfTypedValue result;
result.mType = genericParamResult;
result.mKind = BfTypedValueKind_GenericConstValue;
return result;
}
}
}
}
return BfTypedValue();
}
void BfModule::GetDelegateTypeRefAttributes(BfDelegateTypeRef* delegateTypeRef, BfCallingConvention& callingConvention)
{
if (delegateTypeRef->mAttributes == NULL)
return;
BfCaptureInfo captureInfo;
auto customAttributes = GetCustomAttributes(delegateTypeRef->mAttributes, (BfAttributeTargets)(BfAttributeTargets_DelegateTypeRef | BfAttributeTargets_FunctionTypeRef), BfGetCustomAttributesFlags_KeepConstsInModule);
if (customAttributes != NULL)
{
auto linkNameAttr = customAttributes->Get(mCompiler->mCallingConventionAttributeTypeDef);
if (linkNameAttr != NULL)
{
if (linkNameAttr->mCtorArgs.size() == 1)
{
auto constant = mBfIRBuilder->GetConstant(linkNameAttr->mCtorArgs[0]);
if (constant != NULL)
callingConvention = (BfCallingConvention)constant->mInt32;
}
}
delete customAttributes;
}
}
BfType* BfModule::ResolveTypeRef(BfTypeReference* typeRef, BfPopulateType populateType, BfResolveTypeRefFlags resolveFlags, int numGenericArgs)
{
//BP_ZONE("BfModule::ResolveTypeRef");
if (typeRef == NULL)
{
AssertErrorState();
return NULL;
}
if (resolveFlags & BfResolveTypeRefFlag_AutoComplete)
{
resolveFlags = (BfResolveTypeRefFlags)(resolveFlags & ~BfResolveTypeRefFlag_AutoComplete);
auto autoComplete = mCompiler->GetAutoComplete();
if (autoComplete != NULL)
autoComplete->CheckTypeRef(typeRef, false);
}
if ((resolveFlags & BfResolveTypeRefFlag_AllowRef) == 0)
{
if (auto refTypeRef = BfNodeDynCast<BfRefTypeRef>(typeRef))
{
const char* refTypeStr = BfTokenToString(refTypeRef->mRefToken->mToken);
Fail(StrFormat("Invalid use of '%s'. Only method parameters, return types, and local variables can be declared as %s types", refTypeStr, refTypeStr), refTypeRef->mRefToken);
return ResolveTypeRef(refTypeRef->mElementType, populateType, resolveFlags, numGenericArgs);
}
}
if (auto directTypeRef = BfNodeDynCastExact<BfDirectTypeReference>(typeRef))
{
return directTypeRef->mType;
}
if (auto dotType = BfNodeDynCastExact<BfDotTypeReference>(typeRef))
{
Fail(StrFormat("Invalid use of '%s'", BfTokenToString(dotType->mDotToken->mToken)), typeRef);
return NULL;
}
if (auto varRefType = BfNodeDynCastExact<BfVarRefTypeReference>(typeRef))
{
Fail("Invalid use of 'var ref'. Generally references are generated with a 'var' declaration with 'ref' applied to the initializer", typeRef);
return NULL;
}
if (mNoResolveGenericParams)
resolveFlags = (BfResolveTypeRefFlags)(resolveFlags | BfResolveTypeRefFlag_NoResolveGenericParam);
SetAndRestoreValue<bool> prevNoResolveGenericParams(mNoResolveGenericParams, (resolveFlags & BfResolveTypeRefFlag_NoResolveGenericParam) != 0);
//
resolveFlags = (BfResolveTypeRefFlags)(resolveFlags & ~BfResolveTypeRefFlag_NoResolveGenericParam);
BfTypeInstance* contextTypeInstance = mCurTypeInstance;
BfMethodInstance* contextMethodInstance = mCurMethodInstance;
if ((mCurMethodInstance != NULL) && (mCurMethodInstance->mIsForeignMethodDef))
contextTypeInstance = mCurMethodInstance->mMethodInfoEx->mForeignType;
if ((mCurMethodState != NULL) && (mCurMethodState->mMixinState != NULL))
{
contextTypeInstance = mCurMethodState->mMixinState->mMixinMethodInstance->GetOwner();
contextMethodInstance = mCurMethodState->mMixinState->mMixinMethodInstance;
}
BfTypeDef* curTypeDef = NULL;
Array<BfProject*>* checkProjects = NULL;
if (contextTypeInstance != NULL)
{
curTypeDef = contextTypeInstance->mTypeDef;
if ((curTypeDef->IsEmitted()) && (!typeRef->IsTemporary()))
{
auto parser = typeRef->GetParser();
if ((parser != NULL) && (parser->mIsEmitted))
{
if (contextTypeInstance->IsGenericTypeInstance())
{
resolveFlags = (BfResolveTypeRefFlags)(resolveFlags | BfResolveTypeRefFlag_SpecializedProject);
if (contextTypeInstance->mGenericTypeInfo->mProjectsReferenced.empty())
contextTypeInstance->GenerateProjectsReferenced();
checkProjects = &contextTypeInstance->mGenericTypeInfo->mProjectsReferenced;
}
}
}
// Check generics first
auto namedTypeRef = BfNodeDynCastExact<BfNamedTypeReference>(typeRef);
auto directStrTypeRef = BfNodeDynCastExact<BfDirectStrTypeReference>(typeRef);
if (((namedTypeRef != NULL) && (namedTypeRef->mNameNode != NULL)) || (directStrTypeRef != NULL))
{
StringView findName;
if (namedTypeRef != NULL)
findName = namedTypeRef->mNameNode->ToStringView();
else
findName = directStrTypeRef->mTypeName;
if (findName == "Self")
{
BfType* selfType = mCurTypeInstance;
if (selfType->IsTypeAlias())
selfType = GetOuterType(selfType);
if (selfType != NULL)
{
if (selfType->IsInterface()) // For interfaces, 'Self' refers to the identity of the implementing type, so we use a placeholder
return GetPrimitiveType(BfTypeCode_Self);
else
resolveFlags = (BfResolveTypeRefFlags)(resolveFlags | BfResolveTypeRefFlag_FromIndirectSource);
if (selfType->IsBoxed())
selfType = selfType->GetUnderlyingType();
if ((resolveFlags & BfResolveTypeRefFlag_NoResolveGenericParam) != 0)
{
if ((selfType->IsSpecializedType()) || (selfType->IsUnspecializedTypeVariation()))
selfType = ResolveTypeDef(selfType->ToTypeInstance()->mTypeDef, populateType);
}
}
if (selfType != NULL)
{
auto selfTypeInst = selfType->ToTypeInstance();
if ((selfTypeInst != NULL) && (selfTypeInst->mTypeDef->IsGlobalsContainer()) && ((resolveFlags & BfResolveTypeRefFlag_AllowGlobalsSelf) == 0))
selfType = NULL;
}
if (selfType == NULL)
{
Fail("'Self' type is not usable here", typeRef);
}
return ResolveTypeResult(typeRef, selfType, populateType, resolveFlags);
}
else if (findName == "SelfBase")
{
BfType* selfType = mCurTypeInstance;
if (selfType->IsTypeAlias())
selfType = GetOuterType(selfType);
if (selfType != NULL)
{
resolveFlags = (BfResolveTypeRefFlags)(resolveFlags | BfResolveTypeRefFlag_FromIndirectSource);
if (selfType->IsBoxed())
selfType = selfType->GetUnderlyingType();
if ((resolveFlags & BfResolveTypeRefFlag_NoResolveGenericParam) != 0)
{
if ((selfType->IsSpecializedType()) || (selfType->IsUnspecializedTypeVariation()))
selfType = ResolveTypeDef(selfType->ToTypeInstance()->mTypeDef, populateType);
}
}
BfType* baseType = NULL;
if (selfType != NULL)
{
if (selfType->IsTypedPrimitive())
baseType = selfType->GetUnderlyingType();
else
{
auto selfTypeInst = selfType->ToTypeInstance();
if (selfTypeInst != NULL)
{
baseType = selfTypeInst->mBaseType;
}
}
}
if (baseType == NULL)
{
Fail("'SelfBase' type is not usable here", typeRef);
}
return ResolveTypeResult(typeRef, baseType, populateType, resolveFlags);
}
else if (findName == "SelfOuter")
{
BfType* selfType = mCurTypeInstance;
if (selfType->IsTypeAlias())
selfType = GetOuterType(selfType);
if (selfType != NULL)
{
resolveFlags = (BfResolveTypeRefFlags)(resolveFlags | BfResolveTypeRefFlag_FromIndirectSource);
if (selfType->IsBoxed())
selfType = selfType->GetUnderlyingType();
if ((resolveFlags & BfResolveTypeRefFlag_NoResolveGenericParam) != 0)
{
if ((selfType->IsSpecializedType()) || (selfType->IsUnspecializedTypeVariation()))
selfType = ResolveTypeDef(selfType->ToTypeInstance()->mTypeDef, populateType);
}
selfType = GetOuterType(selfType->ToTypeInstance());
}
if (selfType == NULL)
Fail("'SelfOuter' type is not usable here", typeRef);
return ResolveTypeResult(typeRef, selfType, populateType, resolveFlags);
}
else if (findName == "ExpectedType")
{
Fail("'ExpectedType' is not usable here", typeRef);
return ResolveTypeResult(typeRef, NULL, populateType, resolveFlags);
}
auto genericCheckTypeInstance = contextTypeInstance;
if (contextTypeInstance->IsBoxed())
genericCheckTypeInstance = contextTypeInstance->GetUnderlyingType()->ToTypeInstance();
BfGenericParamDef* genericParamDef = NULL;
BfType* genericParamResult = NULL;
bool disallowConstExprValue = false;
if ((contextMethodInstance != NULL) && (genericParamResult == NULL))
{
BfMethodInstance* prevMethodInstance = NULL;
// If we're in a closure then use the outside method generic arguments
auto checkMethodInstance = contextMethodInstance;
if ((mCurMethodState != NULL) && (checkMethodInstance->mIsClosure))
{
auto checkMethodState = mCurMethodState;
while (checkMethodState != NULL)
{
if ((checkMethodState->mMethodInstance != NULL) && (checkMethodState->mMethodInstance->mIsClosure))
{
checkMethodInstance = checkMethodState->mPrevMethodState->mMethodInstance;
}
checkMethodState = checkMethodState->mPrevMethodState;
}
}
for (int genericParamIdx = (int)checkMethodInstance->mMethodDef->mGenericParams.size() - 1; genericParamIdx >= 0; genericParamIdx--)
{
auto checkGenericParamDef = checkMethodInstance->mMethodDef->mGenericParams[genericParamIdx];
String genericName = checkGenericParamDef->mName;
if (genericName == findName)
{
genericParamDef = checkGenericParamDef;
if (((genericParamDef->mGenericParamFlags & BfGenericParamFlag_Const) != 0) &&
((resolveFlags & BfResolveTypeRefFlag_AllowGenericMethodParamConstValue) == 0))
disallowConstExprValue = true;
HandleMethodGenericParamRef(typeRef, checkMethodInstance->GetOwner()->mTypeDef, checkMethodInstance->mMethodDef, genericParamIdx);
if ((resolveFlags & BfResolveTypeRefFlag_NoResolveGenericParam) != 0)
return GetGenericParamType(BfGenericParamKind_Method, genericParamIdx);
else
{
if ((mContext->mCurConstraintState != NULL) && (mContext->mCurConstraintState->mMethodInstance == checkMethodInstance) &&
(mContext->mCurConstraintState->mMethodGenericArgsOverride != NULL))
{
return ResolveTypeResult(typeRef, (*mContext->mCurConstraintState->mMethodGenericArgsOverride)[genericParamIdx], populateType, resolveFlags);
}
SetAndRestoreValue<BfGetSymbolReferenceKind> prevSymbolRefKind;
if (mCompiler->mResolvePassData != NULL) // Don't add these typeRefs, they are indirect
prevSymbolRefKind.Init(mCompiler->mResolvePassData->mGetSymbolReferenceKind, BfGetSymbolReferenceKind_None);
genericParamResult = checkMethodInstance->mMethodInfoEx->mMethodGenericArguments[genericParamIdx];
if ((genericParamResult != NULL) &&
(genericParamResult->IsConstExprValue()) &&
((resolveFlags & BfResolveTypeRefFlag_AllowGenericMethodParamConstValue) == 0))
disallowConstExprValue = true;
}
}
}
}
if ((genericCheckTypeInstance != NULL) && (genericCheckTypeInstance->IsGenericTypeInstance()) && (genericParamResult == NULL))
{
auto genericTypeInst = (BfTypeInstance*)genericCheckTypeInstance;
auto* genericParams = &curTypeDef->mGenericParamDefs;
if (genericTypeInst->mGenericTypeInfo->mGenericExtensionInfo != NULL)
{
auto activeTypeDef = GetActiveTypeDef(NULL, true);
genericParams = &activeTypeDef->mGenericParamDefs;
}
for (int genericParamIdx = (int)genericParams->size() - 1; genericParamIdx >= 0; genericParamIdx--)
{
auto checkGenericParamDef = (*genericParams)[genericParamIdx];
String genericName = checkGenericParamDef->mName;
if (genericName == findName)
{
genericParamDef = checkGenericParamDef;
if (((genericParamDef->mGenericParamFlags & BfGenericParamFlag_Const) != 0) &&
((resolveFlags & BfResolveTypeRefFlag_AllowGenericTypeParamConstValue) == 0))
disallowConstExprValue = true;
HandleTypeGenericParamRef(typeRef, curTypeDef, genericParamIdx);
if ((resolveFlags & BfResolveTypeRefFlag_NoResolveGenericParam) != 0)
return GetGenericParamType(BfGenericParamKind_Type, genericParamIdx);
else
{
SetAndRestoreValue<BfGetSymbolReferenceKind> prevSymbolRefKind;
if (mCompiler->mResolvePassData != NULL) // Don't add these typeRefs, they are indirect
prevSymbolRefKind.Init(mCompiler->mResolvePassData->mGetSymbolReferenceKind, BfGetSymbolReferenceKind_None);
genericParamResult = genericTypeInst->mGenericTypeInfo->mTypeGenericArguments[genericParamIdx];
if ((genericParamResult != NULL) &&
(genericParamResult->IsConstExprValue()) &&
((resolveFlags & BfResolveTypeRefFlag_AllowGenericTypeParamConstValue) == 0))
disallowConstExprValue = true;
}
}
}
}
if (genericParamResult != NULL)
{
if (disallowConstExprValue)
{
Fail("Invalid use of constant generic value", typeRef);
return ResolveTypeResult(typeRef, NULL, populateType, resolveFlags);
}
if (genericParamResult->IsRef())
{
if ((resolveFlags & BfResolveTypeRefFlag_AllowRefGeneric) == 0)
genericParamResult = genericParamResult->GetUnderlyingType();
}
return ResolveTypeResult(typeRef, genericParamResult, populateType, (BfResolveTypeRefFlags)(resolveFlags | BfResolveTypeRefFlag_FromIndirectSource));
}
}
}
BfTypeDef* typeDef = NULL;
if (typeRef->IsNamedTypeReference())
{
BfTypeLookupError error;
error.mRefNode = typeRef;
typeDef = FindTypeDef(typeRef, contextTypeInstance, &error, 0, resolveFlags);
if (auto namedTypeRef = BfNodeDynCast<BfNamedTypeReference>(typeRef))
{
if (auto qualifiedNameNode = BfNodeDynCast<BfQualifiedNameNode>(namedTypeRef->mNameNode))
{
// This handles the case where we have an "BaseClass.InnerClass", but the name is qualified as "DerivedClass.InnerClass"
auto leftType = ResolveTypeRef(qualifiedNameNode->mLeft, NULL, BfPopulateType_Identity, (BfResolveTypeRefFlags)(resolveFlags | BfResolveTypeRefFlag_NoResolveGenericParam | BfResolveTypeRefFlag_AllowRef));
if ((leftType != NULL) && (qualifiedNameNode->mRight != NULL))
{
// Try searching within inner type
auto resolvedType = ResolveInnerType(leftType, qualifiedNameNode->mRight, populateType, true);
if (resolvedType != NULL)
{
if (mCurTypeInstance != NULL)
AddDependency(leftType, mCurTypeInstance, BfDependencyMap::DependencyFlag_NameReference);
return ResolveTypeResult(typeRef, resolvedType, populateType, resolveFlags);
}
}
}
}
if ((typeDef == NULL) && (mCurTypeInstance != NULL))
{
// Try searching within inner type
auto checkOuterType = mCurTypeInstance;
while (checkOuterType != NULL)
{
// We check for mBaseType to not be NULL because we can't inherit from an inner type, so don't even search there
// Causes reference cycles (bad).
if ((checkOuterType != mCurTypeInstance) || (checkOuterType->mBaseType != NULL))
{
auto resolvedType = ResolveInnerType(checkOuterType, typeRef, populateType, true);
if (resolvedType != NULL)
{
if (mCurTypeInstance != NULL)
AddDependency(checkOuterType, mCurTypeInstance, BfDependencyMap::DependencyFlag_NameReference);
return ResolveTypeResult(typeRef, resolvedType, populateType, resolveFlags);
}
}
checkOuterType = GetOuterType(checkOuterType);
}
}
if (typeDef == NULL)
{
auto staticSearch = GetStaticSearch();
if (staticSearch != NULL)
{
for (auto staticTypeInst : staticSearch->mStaticTypes)
{
auto resolvedType = ResolveInnerType(staticTypeInst, typeRef, populateType, true);
if (resolvedType != NULL)
{
if (mCurTypeInstance != NULL)
AddDependency(staticTypeInst, mCurTypeInstance, BfDependencyMap::DependencyFlag_NameReference);
return ResolveTypeResult(typeRef, resolvedType, populateType, resolveFlags);
}
}
}
}
if (typeDef == NULL)
{
#ifdef BF_AST_HAS_PARENT_MEMBER
if (auto parentQualifiedTypeRef = BfNodeDynCast<BfQualifiedTypeReference>(typeRef->mParent))
{
BF_ASSERT(typeRef->mParent == mParentNodeEntry->mNode);
}
#endif
if (mParentNodeEntry != NULL)
{
if (auto parentQualifiedTypeRef = BfNodeDynCast<BfQualifiedTypeReference>(mParentNodeEntry->mNode))
{
if (typeRef == parentQualifiedTypeRef->mLeft)
{
if ((resolveFlags & BfResolveTypeRefFlag_IgnoreLookupError) == 0)
TypeRefNotFound(typeRef);
return ResolveTypeResult(typeRef, NULL, populateType, resolveFlags);
}
}
}
if ((resolveFlags & BfResolveTypeRefFlag_IgnoreLookupError) == 0)
{
TypeRefNotFound(typeRef, ((resolveFlags & Beefy::BfResolveTypeRefFlag_Attribute) != 0) ? "Attribute" : NULL);
return ResolveTypeResult(typeRef, NULL, populateType, resolveFlags);
}
return NULL;
}
}
else if (auto typeDefTypeRef = BfNodeDynCastExact<BfDirectTypeDefReference>(typeRef))
{
typeDef = typeDefTypeRef->mTypeDef;
}
if (auto qualifiedTypeRef = BfNodeDynCast<BfQualifiedTypeReference>(typeRef))
{
//TODO: Determine why we had this prevIgnoreErrors set here. It causes things like IEnumerator<Hey.Test<INVALIDNAME>> not fail
// properly on INVALIDNAME
SetAndRestoreValue<bool> prevIgnoreErrors(mIgnoreErrors, /*true*/mIgnoreErrors);
StringView leftNameStr;
BfType* leftType = NULL;
BfSizedAtomComposite leftComposite;
bool leftIsValid = false;
//bool leftIsValid = (qualifiedTypeRef->mLeft != NULL) && mSystem->ParseAtomComposite(qualifiedTypeRef->mLeft->ToString(), leftComposite);
if (qualifiedTypeRef->mLeft != NULL)
{
leftNameStr = qualifiedTypeRef->mLeft->ToStringView();
if (mSystem->ParseAtomComposite(leftNameStr, leftComposite))
leftIsValid = true;
}
if ((leftIsValid) && (qualifiedTypeRef->mRight != NULL))
{
StringT<128> findName;
auto genericTypeRef = BfNodeDynCast<BfGenericInstanceTypeRef>(qualifiedTypeRef->mRight);
auto activeTypeDef = GetActiveTypeDef();
BfProject* bfProject = NULL;
if (activeTypeDef != NULL)
bfProject = activeTypeDef->mProject;
bool leftIsNamespace = false;
if (mSystem->ContainsNamespace(leftComposite, bfProject))
{
leftIsNamespace = true;
}
else if (checkProjects != NULL)
{
for (auto checkProject : *checkProjects)
{
if (mSystem->ContainsNamespace(leftComposite, checkProject))
{
leftIsNamespace = true;
break;
}
}
}
if (leftIsNamespace)
{
qualifiedTypeRef->mLeft->ToString(findName);
findName.Append('.');
if (genericTypeRef != NULL)
genericTypeRef->mElementType->ToString(findName);
else
qualifiedTypeRef->mRight->ToString(findName);
if ((resolveFlags & BfResolveTypeRefFlag_Attribute) != 0)
findName += "Attribute";
}
else if ((activeTypeDef != NULL) && (activeTypeDef->mNamespace.EndsWith(leftComposite)))
{
// Partial namespace reference, extend to a full reference
findName += activeTypeDef->mNamespace.ToString();
findName.Append('.');
qualifiedTypeRef->mRight->ToString(findName);
}
if (!findName.IsEmpty())
{
int wantNumGenericArgs = numGenericArgs;
#ifdef BF_AST_HAS_PARENT_MEMBER
if (auto genericTypeParent = BfNodeDynCast<BfGenericInstanceTypeRef>(typeRef->mParent))
{
BF_ASSERT(mParentNodeEntry->mNode == genericTypeParent);
//wantNumGenericArgs = (int)genericTypeParent->mGenericArguments.size();
//genericTypeRef = genericTypeParent;
}
#endif
if (mParentNodeEntry != NULL)
{
if (auto genericTypeParent = BfNodeDynCast<BfGenericInstanceTypeRef>(mParentNodeEntry->mNode))
{
wantNumGenericArgs = (int)genericTypeParent->mGenericArguments.size();
genericTypeRef = genericTypeParent;
}
}
BfTypeDef* ambiguousTypeDef = NULL;
BfTypeLookupError lookupError;
auto typeDef = FindTypeDef(findName, wantNumGenericArgs, NULL, &lookupError, resolveFlags);
if (typeDef != NULL)
{
if (ambiguousTypeDef != NULL)
ShowAmbiguousTypeError(typeRef, typeDef, ambiguousTypeDef);
BfTypeVector genericArgs;
if (populateType != BfPopulateType_TypeDef)
{
if (genericTypeRef != NULL)
{
for (auto genericParamTypeRef : genericTypeRef->mGenericArguments)
{
auto genericParam = ResolveTypeRef(genericParamTypeRef, NULL, BfPopulateType_Declaration);
if (genericParam == NULL)
return ResolveTypeResult(typeRef, NULL, populateType, resolveFlags);
genericArgs.push_back(genericParam);
}
}
if (typeDef->mGenericParamDefs.size() != genericArgs.size())
{
prevIgnoreErrors.Restore();
BfAstNode* refNode = typeRef;
if (genericTypeRef != NULL)
refNode = genericTypeRef->mOpenChevron;
int wantedGenericParams = (int)typeDef->mGenericParamDefs.size();
if (wantedGenericParams == 1)
Fail("Expected one generic argument", refNode);
else
Fail(StrFormat("Expected %d generic arguments", wantedGenericParams), refNode);
return ResolveTypeResult(typeRef, NULL, populateType, resolveFlags);
}
}
return ResolveTypeResult(typeRef, ResolveTypeDef(typeDef, genericArgs, populateType, resolveFlags), populateType, resolveFlags);
}
}
}
if (leftType == NULL)
{
BfAutoParentNodeEntry autoParentNodeEntry(this, qualifiedTypeRef);
auto leftPopulateType = BfPopulateType_Identity;
if ((resolveFlags & BfResolveTypeRefFlag_AllowUnboundGeneric) == 0)
{
// We can't just pass 'Identity' here because it won't validate a generic type ref on the left
leftPopulateType = BfPopulateType_Declaration;
}
leftType = ResolveTypeRef(qualifiedTypeRef->mLeft, leftPopulateType,
(BfResolveTypeRefFlags)((resolveFlags | BfResolveTypeRefFlag_IgnoreLookupError) & ~BfResolveTypeRefFlag_Attribute)); // We throw an error below if we can't find the type
}
if (leftType == NULL)
{
mIgnoreErrors = prevIgnoreErrors.mPrevVal;
BfTypeReference* errorRefNode = qualifiedTypeRef->mLeft;
if ((leftIsValid) && (mCurTypeInstance != NULL) && (mSystem->ContainsNamespace(leftComposite, curTypeDef->mProject)))
{
// The left was a namespace name, so throw an error on the whole string
errorRefNode = qualifiedTypeRef;
}
TypeRefNotFound(errorRefNode);
return ResolveTypeResult(typeRef, NULL, populateType, resolveFlags);
}
prevIgnoreErrors.Restore();
if (qualifiedTypeRef->mRight == NULL)
{
FailAfter("Expected identifier", qualifiedTypeRef->mDot);
//AssertErrorState();
return ResolveTypeResult(typeRef, NULL, populateType, resolveFlags);
}
if (leftType->IsGenericParam())
{
auto genericParam = GetGenericParamInstance((BfGenericParamType*)leftType);
if ((genericParam->mGenericParamFlags & BfGenericParamFlag_Var) != 0)
return ResolveTypeResult(typeRef, GetPrimitiveType(BfTypeCode_Var), populateType, resolveFlags);
if ((genericParam->IsEnum()) && (qualifiedTypeRef->mRight != NULL))
{
StringView findNameRight = qualifiedTypeRef->mRight->ToStringView();
if (findNameRight == "UnderlyingType")
return ResolveTypeResult(typeRef, GetPrimitiveType(BfTypeCode_Var), populateType, resolveFlags);
}
}
auto resolvedType = ResolveInnerType(leftType, qualifiedTypeRef->mRight, populateType, false, numGenericArgs, resolveFlags);
if ((resolvedType != NULL) && (mCurTypeInstance != NULL))
AddDependency(leftType, mCurTypeInstance, BfDependencyMap::DependencyFlag_NameReference);
return ResolveTypeResult(typeRef, resolvedType, populateType, resolveFlags);
// If we did a ResolveTypeResult, then that may process an alias as the alias-to type instead of the actual alias
//return ResolveInnerType(leftType, qualifiedTypeRef->mRight, populateType);
}
if (auto resolvedTypeRef = BfNodeDynCast<BfResolvedTypeReference>(typeRef))
{
return ResolveTypeResult(typeRef, resolvedTypeRef->mType, populateType, resolveFlags);
}
if (auto retTypeTypeRef = BfNodeDynCastExact<BfModifiedTypeRef>(typeRef))
{
if (retTypeTypeRef->mRetTypeToken->mToken == BfToken_RetType)
{
bool allowThrough = false;
BfType* resolvedType = NULL;
if (retTypeTypeRef->mElementType != NULL)
{
auto innerType = ResolveTypeRef(retTypeTypeRef->mElementType, BfPopulateType_Declaration, BfResolveTypeRefFlag_AllowGenericParamConstValue);
if (innerType != NULL)
{
if ((innerType->IsDelegate()) || (innerType->IsFunction()))
{
PopulateType(innerType, BfPopulateType_DataAndMethods);
BfMethodInstance* invokeMethodInstance = GetRawMethodInstanceAtIdx(innerType->ToTypeInstance(), 0, "Invoke");
if (invokeMethodInstance != NULL)
{
resolvedType = invokeMethodInstance->mReturnType;
if ((resolvedType != NULL) && (resolvedType->IsRef()))
resolvedType = resolvedType->GetUnderlyingType();
return ResolveTypeResult(typeRef, resolvedType, populateType, resolveFlags);
}
}
else if (innerType->IsGenericParam())
{
if ((mCurTypeInstance != NULL) && (mCurTypeInstance->IsUnspecializedTypeVariation()))
{
// We could have case where we have "rettype(@T0)" and @T0 gets a type variation of @M0, but we can't do a
// GetGenericParamInstance on that
allowThrough = true;
}
else
{
auto genericParamInstance = GetGenericParamInstance((BfGenericParamType*)innerType);
if (genericParamInstance->mTypeConstraint != NULL)
{
if ((genericParamInstance->mTypeConstraint->IsDelegate()) || (genericParamInstance->mTypeConstraint->IsFunction()))
{
resolvedType = GetDelegateReturnType(genericParamInstance->mTypeConstraint);
return ResolveTypeResult(typeRef, resolvedType, populateType, resolveFlags);
}
else if ((genericParamInstance->mTypeConstraint->IsInstanceOf(mCompiler->mDelegateTypeDef)) ||
(genericParamInstance->mTypeConstraint->IsInstanceOf(mCompiler->mFunctionTypeDef)))
{
allowThrough = true;
}
}
}
}
else if (innerType->IsMethodRef())
{
auto methodRefType = (BfMethodRefType*)innerType;
resolvedType = methodRefType->mMethodRef->mReturnType;
if ((resolvedType != NULL) && (resolvedType->IsRef()))
resolvedType = resolvedType->GetUnderlyingType();
return ResolveTypeResult(typeRef, resolvedType, populateType, resolveFlags);
}
}
}
if (!allowThrough)
{
Fail("'rettype' can only be used on delegate or function types", retTypeTypeRef->mRetTypeToken);
return ResolveTypeResult(typeRef, resolvedType, populateType, resolveFlags);
}
}
else if (retTypeTypeRef->mRetTypeToken->mToken == BfToken_AllocType)
{
BfType* resolvedType = NULL;
if (retTypeTypeRef->mElementType != NULL)
{
resolvedType = ResolveTypeRef(retTypeTypeRef->mElementType, BfPopulateType_Declaration, BfResolveTypeRefFlag_AllowGenericParamConstValue);
if (resolvedType != NULL)
{
if (resolvedType->IsGenericParam())
{
auto genericParam = GetGenericParamInstance((BfGenericParamType*)resolvedType);
if (((genericParam->mTypeConstraint != NULL) && (genericParam->mTypeConstraint->IsValueType())) ||
((genericParam->mGenericParamFlags & (BfGenericParamFlag_Struct | BfGenericParamFlag_StructPtr | BfGenericParamFlag_Enum)) != 0))
{
resolvedType = CreatePointerType(resolvedType);
}
else if (((genericParam->mTypeConstraint != NULL) && (!genericParam->mTypeConstraint->IsValueType())) ||
((genericParam->mGenericParamFlags & (BfGenericParamFlag_Class)) != 0))
{
// Leave as 'T'
}
else
resolvedType = CreateModifiedTypeType(resolvedType, BfToken_AllocType);
}
else if (resolvedType->IsValueType())
resolvedType = CreatePointerType(resolvedType);
}
}
return ResolveTypeResult(typeRef, resolvedType, populateType, resolveFlags);
}
else if (retTypeTypeRef->mRetTypeToken->mToken == BfToken_Nullable)
{
bool allowThrough = false;
BfType* resolvedType = NULL;
if (retTypeTypeRef->mElementType != NULL)
{
resolvedType = ResolveTypeRef(retTypeTypeRef->mElementType, BfPopulateType_Declaration, BfResolveTypeRefFlag_AllowGenericParamConstValue);
}
if ((resolvedType != NULL) && (resolvedType->IsGenericParam()))
{
//resolvedType = CreateModifiedTypeType(resolvedType, BfToken_Nullable);
BfTypeVector typeVec;
typeVec.push_back(resolvedType);
resolvedType = ResolveTypeDef(mCompiler->mNullableTypeDef, typeVec, BfPopulateType_Declaration);
}
else if (resolvedType != NULL)
{
if (resolvedType->IsValueType())
{
if (InDefinitionSection())
Warn(0, StrFormat("Consider using '%s?' instead of nullable modifier", TypeToString(resolvedType).c_str()), retTypeTypeRef);
BfTypeVector typeVec;
typeVec.push_back(resolvedType);
resolvedType = ResolveTypeDef(mCompiler->mNullableTypeDef, typeVec, BfPopulateType_Declaration);
}
else
{
if (InDefinitionSection())
Warn(0, StrFormat("Unneeded nullable modifier, %s is already nullable", TypeToString(resolvedType).c_str()), retTypeTypeRef->mRetTypeToken);
}
}
if (resolvedType != NULL)
PopulateType(resolvedType, populateType);
return resolvedType;
}
else
BFMODULE_FATAL(this, "Unhandled");
}
if (auto refTypeRef = BfNodeDynCastExact<BfRefTypeRef>(typeRef))
{
if ((refTypeRef->mRefToken != NULL) && (refTypeRef->mRefToken->GetToken() == BfToken_Mut) && (refTypeRef->mElementType != NULL))
{
bool needsRefWrap = false;
auto resolvedType = ResolveTypeRef(refTypeRef->mElementType, BfPopulateType_Identity, BfResolveTypeRefFlag_AllowGenericParamConstValue);
if (resolvedType != NULL)
{
if ((resolvedType->IsValueType()) || (resolvedType->IsGenericParam()))
needsRefWrap = true;
if ((InDefinitionSection()) && (!resolvedType->IsGenericParam()) && ((resolveFlags & BfResolveTypeRefFlag_NoWarnOnMut) == 0))
{
if (!resolvedType->IsValueType())
Warn(0, StrFormat("Specified 'mut' has no effect on '%s' since reference types are always mutable", TypeToString(resolvedType).c_str()), refTypeRef->mRefToken);
else
Warn(0, "Use 'mut' for generic arguments which may or may not be reference types. Consider using 'ref' here, instead.", refTypeRef->mRefToken);
}
}
if (!needsRefWrap)
{
// Non-composites (including pointers) don't actually need ref-wrapping for 'mut'
return ResolveTypeResult(typeRef, resolvedType, populateType, resolveFlags);
}
}
}
static int sCallIdx = 0;
int callIdx = sCallIdx++;
if (callIdx == 0x00006CA4)
{
NOP;
}
BfResolvedTypeSet::LookupContext lookupCtx;
lookupCtx.mResolveFlags = (BfResolveTypeRefFlags)(resolveFlags &
(BfResolveTypeRefFlag_NoCreate | BfResolveTypeRefFlag_IgnoreLookupError | BfResolveTypeRefFlag_DisallowComptime |
BfResolveTypeRefFlag_AllowInferredSizedArray | BfResolveTypeRefFlag_Attribute | BfResolveTypeRefFlag_AllowUnboundGeneric |
BfResolveTypeRefFlag_ForceUnboundGeneric | BfResolveTypeRefFlag_AllowGenericParamConstValue |
BfResolveTypeRefFlag_AllowImplicitConstExpr | BfResolveTypeRefFlag_SpecializedProject));
lookupCtx.mRootTypeRef = typeRef;
lookupCtx.mRootTypeDef = typeDef;
lookupCtx.mModule = this;
BfResolvedTypeSet::EntryRef resolvedEntry;
if (auto delegateTypeRef = BfNodeDynCastExact<BfDelegateTypeRef>(typeRef))
GetDelegateTypeRefAttributes(delegateTypeRef, lookupCtx.mCallingConvention);
auto inserted = mContext->mResolvedTypes.Insert(typeRef, &lookupCtx, &resolvedEntry);
if (!resolvedEntry)
{
if (lookupCtx.mHadVar)
return ResolveTypeResult(typeRef, GetPrimitiveType(BfTypeCode_Var), populateType, resolveFlags);
return ResolveTypeResult(typeRef, NULL, populateType, resolveFlags);
}
if (!inserted)
{
BF_ASSERT(resolvedEntry->mValue != NULL);
BF_ASSERT(!resolvedEntry->mValue->IsDeleting());
return ResolveTypeResult(typeRef, resolvedEntry->mValue, populateType, resolveFlags);
}
defer({
if (resolvedEntry->mValue == NULL)
mContext->mResolvedTypes.RemoveEntry(resolvedEntry);
});
if ((lookupCtx.mIsUnboundGeneric) && (lookupCtx.mRootTypeDef != NULL))
{
return ResolveTypeResult(typeRef, ResolveTypeDef(lookupCtx.mRootTypeDef), populateType, resolveFlags);
}
if ((resolveFlags & BfResolveTypeRefFlag_NoCreate) != 0)
{
return ResolveTypeResult(typeRef, NULL, populateType, resolveFlags);
}
BfModule* populateModule = this;
if ((resolveFlags & BfResolveTypeRefFlag_NoReify) != 0)
populateModule = mContext->mUnreifiedModule;
if (typeRef->IsTypeDefTypeReference())
{
//BF_ASSERT(typeDefTypeRef->mTypeDef != NULL); // Resolved higher up
//auto typeDef = typeDefTypeRef->mTypeDef;
if ((typeDef->mTypeCode >= BfTypeCode_None) && (typeDef->mTypeCode <= BfTypeCode_Double))
{
BfPrimitiveType* primType = new BfPrimitiveType();
primType->mTypeDef = typeDef;
resolvedEntry->mValue = primType;
BF_ASSERT(BfResolvedTypeSet::Hash(primType, &lookupCtx, false) == resolvedEntry->mHashCode);
populateModule->InitType(primType, populateType);
return ResolveTypeResult(typeRef, primType, populateType, resolveFlags);
}
BfTypeInstance* outerTypeInstance = lookupCtx.mRootOuterTypeInstance;
if (outerTypeInstance == NULL)
outerTypeInstance = mCurTypeInstance;
if ((outerTypeInstance != NULL) && (typeDef->mGenericParamDefs.size() != 0))
{
// Try to inherit generic params from current parent
BfTypeDef* outerType = mSystem->GetCombinedPartial(typeDef->mOuterType);
BF_ASSERT(!outerType->mIsPartial);
if (TypeHasParentOrEquals(outerTypeInstance->mTypeDef, outerType))
{
BfType* checkCurType = outerTypeInstance;
if (checkCurType->IsBoxed())
checkCurType = checkCurType->GetUnderlyingType();
if (checkCurType->IsTypeAlias())
checkCurType = GetOuterType(checkCurType);
BF_ASSERT(checkCurType->IsGenericTypeInstance());
int numParentGenericParams = (int)outerType->mGenericParamDefs.size();
int wantedGenericParams = (int)typeDef->mGenericParamDefs.size() - numParentGenericParams;
if (wantedGenericParams != 0)
{
if (wantedGenericParams == 1)
Fail("Expected generic argument", typeRef);
else
Fail(StrFormat("Expected %d generic arguments", wantedGenericParams), typeRef);
return ResolveTypeResult(typeRef, NULL, populateType, resolveFlags);
}
auto parentGenericTypeInstance = (BfTypeInstance*)checkCurType;
BfTypeInstance* genericTypeInst;
if (typeDef->mTypeCode == BfTypeCode_TypeAlias)
{
auto typeAliasType = new BfTypeAliasType();
genericTypeInst = typeAliasType;
}
else
genericTypeInst = new BfTypeInstance();
genericTypeInst->mGenericTypeInfo = new BfGenericTypeInfo();
genericTypeInst->mTypeDef = typeDef;
if (parentGenericTypeInstance->mGenericTypeInfo->mGenericParams.IsEmpty())
PopulateType(parentGenericTypeInstance, BfPopulateType_Declaration);
for (int i = 0; i < numParentGenericParams; i++)
{
genericTypeInst->mGenericTypeInfo->mGenericParams.push_back(parentGenericTypeInstance->mGenericTypeInfo->mGenericParams[i]->AddRef());
genericTypeInst->mGenericTypeInfo->mTypeGenericArguments.push_back(parentGenericTypeInstance->mGenericTypeInfo->mTypeGenericArguments[i]);
}
CheckUnspecializedGenericType(genericTypeInst, populateType);
resolvedEntry->mValue = genericTypeInst;
populateModule->InitType(genericTypeInst, populateType);
#ifdef _DEBUG
if (BfResolvedTypeSet::Hash(genericTypeInst, &lookupCtx) != resolvedEntry->mHashCode)
{
int refHash = BfResolvedTypeSet::Hash(typeRef, &lookupCtx);
int typeHash = BfResolvedTypeSet::Hash(genericTypeInst, &lookupCtx);
BF_ASSERT(refHash == typeHash);
}
#endif
return ResolveTypeResult(typeRef, genericTypeInst, populateType, resolveFlags);
}
}
BfTypeInstance* typeInst;
if (typeDef->mTypeCode == BfTypeCode_TypeAlias)
{
auto typeAliasType = new BfTypeAliasType();
typeInst = typeAliasType;
}
else
{
typeInst = new BfTypeInstance();
}
typeInst->mTypeDef = typeDef;
if (((resolveFlags & BfResolveTypeRefFlag_NoReify) != 0) && (mCompiler->mOptions.mCompileOnDemandKind != BfCompileOnDemandKind_AlwaysInclude))
{
typeInst->mIsReified = false;
}
if (typeInst->mTypeDef->mGenericParamDefs.size() != 0)
{
Fail("Generic type arguments expected", typeRef);
delete typeInst;
return ResolveTypeResult(typeRef, NULL, populateType, resolveFlags);
}
resolvedEntry->mValue = typeInst;
#ifdef _DEBUG
int typeRefash = BfResolvedTypeSet::Hash(typeRef, &lookupCtx);
#endif
populateModule->InitType(typeInst, populateType);
if (BfResolvedTypeSet::Hash(typeInst, &lookupCtx) != resolvedEntry->mHashCode)
{
int refHash = BfResolvedTypeSet::Hash(typeRef, &lookupCtx);
int typeHash = BfResolvedTypeSet::Hash(typeInst, &lookupCtx);
BF_ASSERT(refHash == typeHash);
}
{
BF_ASSERT(BfResolvedTypeSet::Hash(typeInst, &lookupCtx) == resolvedEntry->mHashCode);
}
return ResolveTypeResult(typeRef, typeInst, populateType, resolveFlags);
}
else if (auto arrayTypeRef = BfNodeDynCast<BfArrayTypeRef>(typeRef))
{
if (arrayTypeRef->mDimensions > 4)
{
Fail("Too many array dimensions, consider using a jagged array.", arrayTypeRef);
return ResolveTypeResult(typeRef, NULL, populateType, resolveFlags);
}
auto elementType = ResolveTypeRef(arrayTypeRef->mElementType, BfPopulateType_Declaration, BfResolveTypeRefFlag_AllowGenericParamConstValue);
auto arrayTypeDef = mCompiler->GetArrayTypeDef(arrayTypeRef->mDimensions);
if ((elementType == NULL) || (arrayTypeDef == NULL))
{
return ResolveTypeResult(typeRef, NULL, populateType, resolveFlags);
}
if ((arrayTypeRef->mDimensions == 1) && (arrayTypeRef->mParams.size() == 1))
{
intptr elementCount = -1;
BfExpression* sizeExpr = BfNodeDynCast<BfExpression>(arrayTypeRef->mParams[0]);
BF_ASSERT(sizeExpr != NULL);
if (sizeExpr != NULL)
{
BfType* intType = GetPrimitiveType(BfTypeCode_IntPtr);
BfTypedValue typedVal;
lookupCtx.mResolvedValueMap.TryGetValue(sizeExpr, &typedVal);
if (typedVal.mKind == BfTypedValueKind_GenericConstValue)
{
BfUnknownSizedArrayType* arrayType = new BfUnknownSizedArrayType();
arrayType->mContext = mContext;
arrayType->mElementType = elementType;
arrayType->mElementCount = -1;
arrayType->mElementCountSource = typedVal.mType;
resolvedEntry->mValue = arrayType;
BF_ASSERT(BfResolvedTypeSet::Hash(arrayType, &lookupCtx) == resolvedEntry->mHashCode);
populateModule->InitType(arrayType, populateType);
return ResolveTypeResult(typeRef, arrayType, populateType, resolveFlags);
}
if (typedVal)
typedVal = Cast(sizeExpr, typedVal, intType);
if (typedVal)
{
auto constant = mBfIRBuilder->GetConstant(typedVal.mValue);
if (constant != NULL)
{
if (constant->mConstType == BfConstType_Undef)
elementCount = -1; // Undef marker
else if (BfIRBuilder::IsInt(constant->mTypeCode))
elementCount = (intptr)constant->mInt64;
}
}
}
/*if (elementCount < 0)
{
Fail(StrFormat("Array length '%d' is illegal", elementCount), arrayTypeRef->mParams[0]);
mContext->mResolvedTypes.RemoveEntry(resolvedEntry);
return CreateSizedArrayType(elementType, 0);
}*/
BfSizedArrayType* arrayType = new BfSizedArrayType();
arrayType->mContext = mContext;
arrayType->mElementType = elementType;
arrayType->mElementCount = elementCount;
arrayType->mWantsGCMarking = false; // Fill in in InitType
arrayType->mGenericDepth = elementType->GetGenericDepth() + 1;
resolvedEntry->mValue = arrayType;
BF_ASSERT(BfResolvedTypeSet::Hash(arrayType, &lookupCtx) == resolvedEntry->mHashCode);
populateModule->InitType(arrayType, populateType);
return ResolveTypeResult(typeRef, arrayType, populateType, resolveFlags);
}
BfArrayType* arrayType = new BfArrayType();
arrayType->mGenericTypeInfo = new BfGenericTypeInfo();
arrayType->mContext = mContext;
arrayType->mDimensions = arrayTypeRef->mDimensions;
arrayType->mTypeDef = arrayTypeDef;
arrayType->mGenericTypeInfo->mTypeGenericArguments.push_back(elementType);
resolvedEntry->mValue = arrayType;
CheckUnspecializedGenericType(arrayType, populateType);
BF_ASSERT(BfResolvedTypeSet::Hash(arrayType, &lookupCtx) == resolvedEntry->mHashCode);
populateModule->InitType(arrayType, populateType);
return ResolveTypeResult(typeRef, arrayType, populateType, resolveFlags);
}
else if (auto genericTypeInstRef = BfNodeDynCast<BfGenericInstanceTypeRef>(typeRef))
{
BfTypeReference* outerTypeRef = NULL;
Array<BfAstNode*> genericArguments;
BfTypeReference* checkTypeRef = genericTypeInstRef;
int checkIdx = 0;
while (checkTypeRef != NULL)
{
checkIdx++;
if (checkIdx >= 3)
{
outerTypeRef = checkTypeRef;
break;
}
if (auto genericTypeRef = BfNodeDynCast<BfGenericInstanceTypeRef>(checkTypeRef))
{
for (auto genericArg : genericTypeRef->mGenericArguments)
genericArguments.push_back(genericArg);
checkTypeRef = genericTypeRef->mElementType;
continue;
}
if (auto elementedTypeRef = BfNodeDynCast<BfElementedTypeRef>(checkTypeRef))
{
checkTypeRef = elementedTypeRef->mElementType;
continue;
}
if (auto qualifiedTypeRef = BfNodeDynCast<BfQualifiedTypeReference>(checkTypeRef))
{
checkTypeRef = qualifiedTypeRef->mLeft;
continue;
}
break;
}
BfTypeVector genericArgs;
BfType* type = NULL;
BfTypeDef* typeDef = ResolveGenericInstanceDef(genericTypeInstRef, &type, resolveFlags);
if (typeDef == NULL)
{
Fail("Unable to resolve type", typeRef);
return ResolveTypeResult(typeRef, NULL, populateType, resolveFlags);
}
BfTypeInstance* outerTypeInstance = NULL;
BfTypeDef* commonOuterType = NULL;
int startDefGenericParamIdx = 0;
if (outerTypeRef != NULL)
{
BfType* outerType = lookupCtx.GetCachedResolvedType(outerTypeRef);
if (outerType != NULL)
{
outerTypeInstance = outerType->ToTypeInstance();
commonOuterType = outerTypeInstance->mTypeDef;
}
}
else
{
outerTypeInstance = mCurTypeInstance;
auto outerType = typeDef->mOuterType;
commonOuterType = BfResolvedTypeSet::FindRootCommonOuterType(outerType, &lookupCtx, outerTypeInstance);
}
if ((commonOuterType) && (outerTypeInstance->IsGenericTypeInstance()))
{
startDefGenericParamIdx = (int)commonOuterType->mGenericParamDefs.size();
auto parentTypeInstance = outerTypeInstance;
if (parentTypeInstance->IsTypeAlias())
parentTypeInstance = (BfTypeInstance*)GetOuterType(parentTypeInstance)->ToTypeInstance();
for (int i = 0; i < startDefGenericParamIdx; i++)
genericArgs.push_back(parentTypeInstance->mGenericTypeInfo->mTypeGenericArguments[i]);
}
for (auto genericArgRef : genericArguments)
{
BfType* genericArg = NULL;
lookupCtx.mResolvedTypeMap.TryGetValue(genericArgRef, &genericArg);
if (genericArg == NULL)
genericArg = ResolveTypeRef(genericArgRef, NULL, BfPopulateType_Identity, (BfResolveTypeRefFlags)(BfResolveTypeRefFlag_AllowGenericTypeParamConstValue | BfResolveTypeRefFlag_AllowGenericMethodParamConstValue));
if ((genericArg == NULL) || (genericArg->IsVar()))
{
return ResolveTypeResult(typeRef, ((genericArg != NULL) && (genericArg->IsVar())) ? genericArg : NULL, populateType, resolveFlags);
}
genericArgs.Add(genericArg);
}
BfTypeInstance* genericTypeInst;
if ((type != NULL) &&
((type->IsDelegateFromTypeRef()) || (type->IsFunctionFromTypeRef())))
{
return ResolveGenericType(type, &genericArgs, NULL, mCurTypeInstance);
}
else if ((type != NULL) && (type->IsTuple()))
{
return ResolveGenericType(type, &genericArgs, NULL, mCurTypeInstance);
}
else if ((typeDef != NULL) && (typeDef->mTypeCode == BfTypeCode_TypeAlias))
{
auto typeAliasType = new BfTypeAliasType();
genericTypeInst = typeAliasType;
}
else
genericTypeInst = new BfTypeInstance();
genericTypeInst->mContext = mContext;
genericTypeInst->mGenericTypeInfo = new BfGenericTypeInfo();
BF_ASSERT(typeDef->mDefState != BfTypeDef::DefState_Deleted);
int genericParamCount = (int)typeDef->mGenericParamDefs.size();
if ((type != NULL) && (type->IsGenericTypeInstance()))
{
// Is a generic type for sure...
// We need this case for generic methods
genericParamCount = (int)((BfTypeInstance*)type)->mGenericTypeInfo->mTypeGenericArguments.size();
}
else if (typeDef->mGenericParamDefs.size() == 0)
{
Fail("Not a generic type", typeRef);
delete genericTypeInst;
return ResolveTypeResult(typeRef, NULL, populateType, resolveFlags);
}
genericTypeInst->mTypeDef = typeDef;
if (commonOuterType != NULL)
{
auto parentTypeInstance = outerTypeInstance;
if ((parentTypeInstance != NULL) && (parentTypeInstance->IsTypeAlias()))
parentTypeInstance = (BfTypeInstance*)GetOuterType(parentTypeInstance)->ToTypeInstance();
if (parentTypeInstance->mDefineState < BfTypeDefineState_Declared)
PopulateType(parentTypeInstance, BfPopulateType_Declaration);
if ((parentTypeInstance != NULL) && (parentTypeInstance->IsGenericTypeInstance()))
{
genericTypeInst->mGenericTypeInfo->mMaxGenericDepth = BF_MAX(genericTypeInst->mGenericTypeInfo->mMaxGenericDepth, parentTypeInstance->mGenericTypeInfo->mMaxGenericDepth);
for (int i = 0; i < startDefGenericParamIdx; i++)
{
genericTypeInst->mGenericTypeInfo->mGenericParams.push_back(parentTypeInstance->mGenericTypeInfo->mGenericParams[i]->AddRef());
genericTypeInst->mGenericTypeInfo->mTypeGenericArguments.push_back(parentTypeInstance->mGenericTypeInfo->mTypeGenericArguments[i]);
auto typeGenericArg = genericTypeInst->mGenericTypeInfo->mTypeGenericArguments[i];
genericTypeInst->mGenericTypeInfo->mIsUnspecialized |= typeGenericArg->IsGenericParam() || typeGenericArg->IsUnspecializedType();
}
}
}
int wantedGenericParams = genericParamCount - startDefGenericParamIdx;
int genericArgDiffCount = (int)genericArguments.size() - wantedGenericParams;
if (genericArgDiffCount != 0)
{
int innerWantedGenericParams = genericParamCount;
if (typeDef->mOuterType != NULL)
innerWantedGenericParams -= (int)typeDef->mOuterType->mGenericParamDefs.size();
ShowGenericArgCountError(genericTypeInstRef, innerWantedGenericParams);
delete genericTypeInst;
return ResolveTypeResult(typeRef, NULL, populateType, resolveFlags);
}
int genericParamIdx = 0;
for (auto genericArgRef : genericArguments)
{
auto genericArg = genericArgs[genericParamIdx + startDefGenericParamIdx];
genericTypeInst->mGenericTypeInfo->mMaxGenericDepth = BF_MAX(genericTypeInst->mGenericTypeInfo->mMaxGenericDepth, genericArg->GetGenericDepth() + 1);
genericTypeInst->mGenericTypeInfo->mTypeGenericArguments.push_back(genericArg);
genericParamIdx++;
}
if (genericTypeInst->mGenericTypeInfo->mMaxGenericDepth > 64)
{
Fail("Maximum generic depth exceeded", typeRef);
delete genericTypeInst;
return ResolveTypeResult(typeRef, NULL, populateType, resolveFlags);
}
resolvedEntry->mValue = genericTypeInst;
CheckUnspecializedGenericType(genericTypeInst, populateType);
populateModule->InitType(genericTypeInst, populateType);
#ifdef _DEBUG
if (BfResolvedTypeSet::Hash(genericTypeInst, &lookupCtx) != resolvedEntry->mHashCode)
{
int refHash = BfResolvedTypeSet::Hash(typeRef, &lookupCtx);
int typeHash = BfResolvedTypeSet::Hash(genericTypeInst, &lookupCtx);
BF_ASSERT(refHash == typeHash);
BF_ASSERT(refHash == resolvedEntry->mHashCode);
}
if (!BfResolvedTypeSet::Equals(genericTypeInst, typeRef, &lookupCtx))
{
BF_ASSERT(BfResolvedTypeSet::Equals(genericTypeInst, typeRef, &lookupCtx) || (mCompiler->mCanceling));
}
BfLogSysM("Generic type %p typeHash: %8X\n", genericTypeInst, resolvedEntry->mHashCode);
#endif
BF_ASSERT(BfResolvedTypeSet::Hash(genericTypeInst, &lookupCtx) == resolvedEntry->mHashCode);
return ResolveTypeResult(typeRef, genericTypeInst, populateType, resolveFlags);
}
else if (auto tupleTypeRef = BfNodeDynCast<BfTupleTypeRef>(typeRef))
{
Array<BfType*> types;
Array<String> names;
bool wantGeneric = false;
bool isUnspecialized = false;
for (int fieldIdx = 0; fieldIdx < (int)tupleTypeRef->mFieldTypes.size(); fieldIdx++)
{
BfTypeReference* typeRef = tupleTypeRef->mFieldTypes[fieldIdx];
auto type = ResolveTypeRef(typeRef, BfPopulateType_Identity, BfResolveTypeRefFlag_AllowGenericParamConstValue);
if (type == NULL)
return ResolveTypeResult(typeRef, NULL, populateType, resolveFlags);
String fieldName;
BfIdentifierNode* identifierNode = NULL;
if (fieldIdx < (int)tupleTypeRef->mFieldNames.size())
identifierNode = tupleTypeRef->mFieldNames[fieldIdx];
if (identifierNode != NULL)
fieldName = identifierNode->ToString();
else
fieldName = StrFormat("%d", fieldIdx);
if (type->IsTypeGenericParam())
wantGeneric = true;
if (type->IsUnspecializedType())
isUnspecialized = true;
if (type->IsVar())
{
return ResolveTypeResult(typeRef, NULL, populateType, resolveFlags);
}
types.push_back(type);
names.push_back(fieldName);
}
if ((mCurTypeInstance == NULL) || (!mCurTypeInstance->IsGenericTypeInstance()))
wantGeneric = false;
//TODO:
wantGeneric = false;
auto baseType = (BfTypeInstance*)ResolveTypeDef(mContext->mCompiler->mValueTypeTypeDef, BfPopulateType_Identity);
BfTupleType* tupleType = NULL;
if (wantGeneric)
{
BfTupleType* actualTupleType = new BfTupleType();
actualTupleType->mGenericTypeInfo = new BfGenericTypeInfo();
actualTupleType->mGenericTypeInfo->mFinishedGenericParams = true;
actualTupleType->Init(baseType->mTypeDef->mProject, baseType);
for (int fieldIdx = 0; fieldIdx < (int)types.size(); fieldIdx++)
{
BfFieldDef* fieldDef = actualTupleType->AddField(names[fieldIdx]);
fieldDef->mProtection = (names[fieldIdx][0] == '_') ? BfProtection_Private : BfProtection_Public;
}
actualTupleType->Finish();
auto parentTypeInstance = (BfTypeInstance*)mCurTypeInstance;
for (int i = 0; i < parentTypeInstance->mGenericTypeInfo->mGenericParams.size(); i++)
{
actualTupleType->mGenericTypeInfo->mGenericParams.push_back(parentTypeInstance->mGenericTypeInfo->mGenericParams[i]->AddRef());
}
for (int i = 0; i < parentTypeInstance->mGenericTypeInfo->mTypeGenericArguments.size(); i++)
{
actualTupleType->mGenericTypeInfo->mTypeGenericArguments.push_back(parentTypeInstance->mGenericTypeInfo->mTypeGenericArguments[i]);
auto typeGenericArg = actualTupleType->mGenericTypeInfo->mTypeGenericArguments[i];
actualTupleType->mGenericTypeInfo->mIsUnspecialized |= typeGenericArg->IsGenericParam() || typeGenericArg->IsUnspecializedType();
}
CheckUnspecializedGenericType(actualTupleType, populateType);
if (isUnspecialized)
{
actualTupleType->mGenericTypeInfo->mIsUnspecialized = true;
actualTupleType->mGenericTypeInfo->mIsUnspecializedVariation = true;
}
actualTupleType->mIsUnspecializedType = actualTupleType->mGenericTypeInfo->mIsUnspecialized;
actualTupleType->mIsUnspecializedTypeVariation = actualTupleType->mGenericTypeInfo->mIsUnspecializedVariation;
tupleType = actualTupleType;
}
else
{
BfTupleType* actualTupleType = new BfTupleType();
actualTupleType->Init(baseType->mTypeDef->mProject, baseType);
for (int fieldIdx = 0; fieldIdx < (int)types.size(); fieldIdx++)
{
BfFieldDef* fieldDef = actualTupleType->AddField(names[fieldIdx]);
fieldDef->mProtection = (names[fieldIdx][0] == '_') ? BfProtection_Private : BfProtection_Public;
}
actualTupleType->Finish();
tupleType = actualTupleType;
actualTupleType->mIsUnspecializedType = isUnspecialized;
actualTupleType->mIsUnspecializedTypeVariation = isUnspecialized;
}
tupleType->mFieldInstances.Resize(types.size());
for (int fieldIdx = 0; fieldIdx < (int)types.size(); fieldIdx++)
{
BfFieldInstance* fieldInstance = &tupleType->mFieldInstances[fieldIdx];
fieldInstance->mFieldIdx = fieldIdx;
fieldInstance->SetResolvedType(types[fieldIdx]);
BF_ASSERT(!types[fieldIdx]->IsVar());
fieldInstance->mOwner = tupleType;
tupleType->mGenericDepth = BF_MAX(tupleType->mGenericDepth, fieldInstance->mResolvedType->GetGenericDepth() + 1);
}
resolvedEntry->mValue = tupleType;
BF_ASSERT(BfResolvedTypeSet::Hash(tupleType, &lookupCtx) == resolvedEntry->mHashCode);
populateModule->InitType(tupleType, populateType);
return ResolveTypeResult(typeRef, tupleType, populateType, resolveFlags);
}
else if (auto nullableTypeRef = BfNodeDynCast<BfNullableTypeRef>(typeRef))
{
BfTypeReference* elementTypeRef = nullableTypeRef->mElementType;
auto typeDef = mCompiler->mNullableTypeDef;
auto elementType = ResolveTypeRef(elementTypeRef, BfPopulateType_Identity, BfResolveTypeRefFlag_AllowGenericParamConstValue);
if ((elementType == NULL) || (elementType->IsVar()))
return ResolveTypeResult(typeRef, elementType, populateType, resolveFlags);
BfTypeInstance* genericTypeInst = new BfTypeInstance();
genericTypeInst->mGenericTypeInfo = new BfGenericTypeInfo();
genericTypeInst->mContext = mContext;
genericTypeInst->mTypeDef = typeDef;
auto genericParamInstance = new BfGenericTypeParamInstance(typeDef, 0);
genericTypeInst->mGenericTypeInfo->mGenericParams.push_back(genericParamInstance);
genericTypeInst->mGenericTypeInfo->mTypeGenericArguments.push_back(elementType);
//genericTypeInst->mIsUnspecialized = elementType->IsGenericParam() || elementType->IsUnspecializedType();
CheckUnspecializedGenericType(genericTypeInst, populateType);
resolvedEntry->mValue = genericTypeInst;
#ifdef _DEBUG
if (BfResolvedTypeSet::Hash(genericTypeInst, &lookupCtx) != resolvedEntry->mHashCode)
{
int refHash = BfResolvedTypeSet::Hash(typeRef, &lookupCtx);
int typeHash = BfResolvedTypeSet::Hash(genericTypeInst, &lookupCtx);
BF_ASSERT(refHash == typeHash);
}
#endif
populateModule->InitType(genericTypeInst, populateType);
return ResolveTypeResult(typeRef, genericTypeInst, populateType, resolveFlags);
}
else if (auto pointerTypeRef = BfNodeDynCast<BfPointerTypeRef>(typeRef))
{
BfPointerType* pointerType = new BfPointerType();
auto elementType = ResolveTypeRef(pointerTypeRef->mElementType, BfPopulateType_Identity, BfResolveTypeRefFlag_AllowGenericParamConstValue);
if ((elementType == NULL) || (elementType->IsVar()))
{
delete pointerType;
return ResolveTypeResult(typeRef, elementType, populateType, resolveFlags);
}
pointerType->mGenericDepth = elementType->GetGenericDepth() + 1;
pointerType->mElementType = elementType;
pointerType->mContext = mContext;
resolvedEntry->mValue = pointerType;
//int hashVal = mContext->mResolvedTypes.Hash(typeRef, &lookupCtx);
BF_ASSERT(BfResolvedTypeSet::Hash(pointerType, &lookupCtx) == resolvedEntry->mHashCode);
populateModule->InitType(pointerType, populateType);
return ResolveTypeResult(typeRef, pointerType, populateType, resolveFlags);
}
else if (auto refTypeRef = BfNodeDynCast<BfRefTypeRef>(typeRef))
{
BfRefType* refType = new BfRefType();
refType->mRefKind = BfRefType::RefKind_Ref;
if (refTypeRef->mRefToken == NULL)
refType->mRefKind = BfRefType::RefKind_Ref;
else if (refTypeRef->mRefToken->GetToken() == BfToken_In)
refType->mRefKind = BfRefType::RefKind_In;
else if (refTypeRef->mRefToken->GetToken() == BfToken_Out)
refType->mRefKind = BfRefType::RefKind_Out;
else if (refTypeRef->mRefToken->GetToken() == BfToken_Mut)
refType->mRefKind = BfRefType::RefKind_Mut;
auto elementType = ResolveTypeRef(refTypeRef->mElementType, BfPopulateType_Identity, BfResolveTypeRefFlag_AllowGenericParamConstValue);
if ((elementType == NULL) || (elementType->IsVar()))
{
delete refType;
return ResolveTypeResult(typeRef, elementType, populateType, resolveFlags);
}
refType->mElementType = elementType;
resolvedEntry->mValue = refType;
#ifdef _DEBUG
if (BfResolvedTypeSet::Hash(refType, &lookupCtx) != resolvedEntry->mHashCode)
{
int refHash = BfResolvedTypeSet::Hash(typeRef, &lookupCtx, BfResolvedTypeSet::BfHashFlag_AllowRef);
int typeHash = BfResolvedTypeSet::Hash(refType, &lookupCtx);
BF_ASSERT(refHash == typeHash);
}
BF_ASSERT(BfResolvedTypeSet::Equals(refType, typeRef, &lookupCtx));
#endif
populateModule->InitType(refType, populateType);
return ResolveTypeResult(typeRef, refType, populateType, resolveFlags);
}
else if (auto delegateTypeRef = BfNodeDynCast<BfDelegateTypeRef>(typeRef))
{
bool wantGeneric = false;
bool isUnspecialized = false;
auto _CheckType = [&](BfType* type)
{
if (type->IsTypeGenericParam())
wantGeneric = true;
if (type->IsUnspecializedType())
isUnspecialized = true;
};
bool failed = false;
auto returnType = ResolveTypeRef(delegateTypeRef->mReturnType, NULL, BfPopulateType_Declaration, BfResolveTypeRefFlag_AllowRef);
if (returnType == NULL)
{
failed = true;
returnType = GetPrimitiveType(BfTypeCode_Var);
}
_CheckType(returnType);
BfType* functionThisType = NULL;
bool hasMutSpecifier = false;
bool isFirst = true;
bool isDelegate = delegateTypeRef->mTypeToken->GetToken() == BfToken_Delegate;
bool hasVarArgs = false;
Array<BfType*> paramTypes;
for (int paramIdx = 0; paramIdx < delegateTypeRef->mParams.size(); paramIdx++)
{
auto param = delegateTypeRef->mParams[paramIdx];
BfResolveTypeRefFlags resolveTypeFlags = BfResolveTypeRefFlag_AllowRef;
if ((param->mNameNode != NULL) && (param->mNameNode->Equals("this")))
resolveTypeFlags = (BfResolveTypeRefFlags)(resolveTypeFlags | BfResolveTypeRefFlag_NoWarnOnMut);
if (paramIdx == delegateTypeRef->mParams.size() - 1)
{
if (auto dotTypeRef = BfNodeDynCast<BfDotTypeReference>(param->mTypeRef))
{
if (dotTypeRef->mDotToken->mToken == BfToken_DotDotDot)
{
hasVarArgs = true;
continue;
}
}
}
auto paramType = ResolveTypeRef(param->mTypeRef, BfPopulateType_Declaration, resolveTypeFlags);
if (paramType == NULL)
{
failed = true;
paramType = GetPrimitiveType(BfTypeCode_Var);
}
if ((!isDelegate) && (isFirst) && (param->mNameNode != NULL) && (param->mNameNode->Equals("this")))
{
functionThisType = paramType;
if (functionThisType->IsRef())
{
auto refType = (BfRefType*)functionThisType;
if (refType->mRefKind != BfRefType::RefKind_Mut)
{
if (auto refTypeRef = BfNodeDynCast<BfRefTypeRef>(param->mTypeRef))
{
failed = true;
Fail("Only 'mut' is allowed here", refTypeRef->mRefToken);
}
}
hasMutSpecifier = true;
functionThisType = refType->mElementType;
}
paramTypes.Add(functionThisType);
_CheckType(functionThisType);
}
else
{
paramTypes.Add(paramType);
_CheckType(paramType);
}
isFirst = false;
}
if ((mCurTypeInstance == NULL) || (!mCurTypeInstance->IsGenericTypeInstance()))
wantGeneric = false;
//TODO:
wantGeneric = false;
BfTypeInstance* baseDelegateType = NULL;
if (mCompiler->mDelegateTypeDef != NULL)
baseDelegateType = ResolveTypeDef(mCompiler->mDelegateTypeDef)->ToTypeInstance();
else
failed = true;
BfDelegateInfo* delegateInfo = NULL;
BfDelegateType* delegateType = NULL;
if (wantGeneric)
{
BfDelegateType* genericTypeInst = new BfDelegateType();
genericTypeInst->mGenericTypeInfo = new BfGenericTypeInfo();
genericTypeInst->mGenericTypeInfo->mFinishedGenericParams = true;
delegateType = genericTypeInst;
delegateInfo = delegateType->GetDelegateInfo();
auto parentTypeInstance = (BfTypeInstance*)mCurTypeInstance;
for (int i = 0; i < parentTypeInstance->mGenericTypeInfo->mGenericParams.size(); i++)
{
genericTypeInst->mGenericTypeInfo->mGenericParams.push_back(parentTypeInstance->mGenericTypeInfo->mGenericParams[i]->AddRef());
}
for (int i = 0; i < parentTypeInstance->mGenericTypeInfo->mTypeGenericArguments.size(); i++)
{
genericTypeInst->mGenericTypeInfo->mTypeGenericArguments.push_back(parentTypeInstance->mGenericTypeInfo->mTypeGenericArguments[i]);
auto typeGenericArg = genericTypeInst->mGenericTypeInfo->mTypeGenericArguments[i];
genericTypeInst->mGenericTypeInfo->mIsUnspecialized |= typeGenericArg->IsGenericParam() || typeGenericArg->IsUnspecializedType();
}
CheckUnspecializedGenericType(genericTypeInst, populateType);
// We don't ever need to do an actual pass over generic delegate methods, so it's safe to set the 'unspecialized variation' flag
if (isUnspecialized)
{
genericTypeInst->mGenericTypeInfo->mIsUnspecialized = true;
genericTypeInst->mGenericTypeInfo->mIsUnspecializedVariation = true;
}
genericTypeInst->mIsUnspecializedType = genericTypeInst->mGenericTypeInfo->mIsUnspecialized;
genericTypeInst->mIsUnspecializedTypeVariation = genericTypeInst->mGenericTypeInfo->mIsUnspecializedVariation;
}
else
{
auto dlgType = new BfDelegateType();
delegateInfo = dlgType->GetDelegateInfo();
dlgType->mIsUnspecializedType = isUnspecialized;
dlgType->mIsUnspecializedTypeVariation = isUnspecialized;
delegateType = dlgType;
}
delegateInfo->mCallingConvention = lookupCtx.mCallingConvention;
Val128 hashContext;
BfTypeDef* typeDef = new BfTypeDef();
if (baseDelegateType != NULL)
typeDef->mProject = baseDelegateType->mTypeDef->mProject;
typeDef->mSystem = mCompiler->mSystem;
typeDef->mName = mSystem->mEmptyAtom;
if (delegateTypeRef->mTypeToken->GetToken() == BfToken_Delegate)
{
typeDef->mIsDelegate = true;
typeDef->mTypeCode = BfTypeCode_Object;
}
else
{
typeDef->mIsFunction = true;
typeDef->mTypeCode = BfTypeCode_Struct;
}
BfMethodDef* methodDef = new BfMethodDef();
methodDef->mDeclaringType = typeDef;
methodDef->mName = "Invoke";
methodDef->mProtection = BfProtection_Public;
methodDef->mIdx = 0;
methodDef->mIsStatic = !typeDef->mIsDelegate && (functionThisType == NULL);
methodDef->mHasExplicitThis = functionThisType != NULL;
if ((functionThisType != NULL) && (hasMutSpecifier))
{
if ((functionThisType->IsValueType()) || (functionThisType->IsGenericParam()))
methodDef->mIsMutating = true;
}
auto directTypeRef = BfAstNode::ZeroedAlloc<BfDirectTypeReference>();
delegateInfo->mDirectAllocNodes.push_back(directTypeRef);
if (typeDef->mIsDelegate)
directTypeRef->Init(delegateType);
else if (mCompiler->mFunctionTypeDef == NULL)
failed = true;
else
directTypeRef->Init(ResolveTypeDef(mCompiler->mFunctionTypeDef));
if (!failed)
typeDef->mBaseTypes.push_back(directTypeRef);
directTypeRef = BfAstNode::ZeroedAlloc<BfDirectTypeReference>();
delegateInfo->mDirectAllocNodes.push_back(directTypeRef);
directTypeRef->Init(returnType);
methodDef->mReturnTypeRef = directTypeRef;
delegateInfo->mReturnType = returnType;
delegateInfo->mHasExplicitThis = functionThisType != NULL;
delegateInfo->mHasVarArgs = hasVarArgs;
delegateType->mGenericDepth = BF_MAX(delegateType->mGenericDepth, returnType->GetGenericDepth() + 1);
auto hashVal = mContext->mResolvedTypes.Hash(typeRef, &lookupCtx);
//int paramSrcOfs = (functionThisType != NULL) ? 1 : 0;
int paramSrcOfs = 0;
for (int paramIdx = 0; paramIdx < (int)paramTypes.size(); paramIdx++)
{
auto param = delegateTypeRef->mParams[paramIdx + paramSrcOfs];
auto paramType = paramTypes[paramIdx];
if (paramType == NULL)
paramType = GetPrimitiveType(BfTypeCode_Var);
String paramName;
if (param->mNameNode != NULL)
paramName = param->mNameNode->ToString();
if (!paramType->IsReified())
delegateType->mIsReified = false;
auto directTypeRef = BfAstNode::ZeroedAlloc<BfDirectTypeReference>();
delegateInfo->mDirectAllocNodes.push_back(directTypeRef);
directTypeRef->Init(paramType);
BfParameterDef* paramDef = new BfParameterDef();
paramDef->mTypeRef = directTypeRef;
paramDef->mName = paramName;
if ((paramIdx == 0) && (functionThisType != NULL))
paramDef->mParamKind = BfParamKind_ExplicitThis;
methodDef->mParams.push_back(paramDef);
if ((param->mModToken != NULL) && (param->mModToken->mToken == BfToken_Params))
{
if (paramIdx == (int)paramTypes.size() - 1)
paramDef->mParamKind = BfParamKind_Params;
else
{
failed = true;
Fail("Params parameter must be the last parameter", param);
}
}
if (auto dotTypeRef = BfNodeDynCast<BfDotTypeReference>(paramDef->mTypeRef))
{
if (dotTypeRef->mDotToken->mToken == BfToken_DotDotDot)
{
if (paramIdx == (int)paramTypes.size() - 1)
paramDef->mParamKind = BfParamKind_VarArgs;
else
{
failed = true;
Fail("Varargs specifier must be the last parameter", param);
}
}
}
delegateInfo->mParams.Add(paramType);
delegateType->mGenericDepth = BF_MAX(delegateType->mGenericDepth, paramType->GetGenericDepth() + 1);
}
if (delegateInfo->mHasVarArgs)
{
BfParameterDef* paramDef = new BfParameterDef();
paramDef->mParamKind = BfParamKind_VarArgs;
methodDef->mParams.push_back(paramDef);
}
typeDef->mMethods.push_back(methodDef);
if (failed)
{
delete delegateType;
return ResolveTypeResult(typeRef, NULL, populateType, resolveFlags);
}
//
if (typeDef->mIsDelegate)
{
BfDefBuilder::AddMethod(typeDef, BfMethodType_Ctor, BfProtection_Public, false, "");
BfDefBuilder::AddDynamicCastMethods(typeDef);
}
delegateType->mContext = mContext;
delegateType->mTypeDef = typeDef;
populateModule->InitType(delegateType, populateType);
resolvedEntry->mValue = delegateType;
AddDependency(directTypeRef->mType, delegateType, BfDependencyMap::DependencyFlag_ParamOrReturnValue);
// if (delegateInfo->mFunctionThisType != NULL)
// AddDependency(delegateInfo->mFunctionThisType, delegateType, BfDependencyMap::DependencyFlag_ParamOrReturnValue);
for (auto paramType : paramTypes)
AddDependency(paramType, delegateType, BfDependencyMap::DependencyFlag_ParamOrReturnValue);
#ifdef _DEBUG
if (BfResolvedTypeSet::Hash(delegateType, &lookupCtx) != resolvedEntry->mHashCode)
{
int refHash = BfResolvedTypeSet::Hash(typeRef, &lookupCtx);
int typeHash = BfResolvedTypeSet::Hash(delegateType, &lookupCtx);
BF_ASSERT(refHash == typeHash);
}
BF_ASSERT(BfResolvedTypeSet::Equals(delegateType, typeRef, &lookupCtx));
#endif
BF_ASSERT(BfResolvedTypeSet::Hash(delegateType, &lookupCtx) == resolvedEntry->mHashCode);
return ResolveTypeResult(typeRef, delegateType, populateType, resolveFlags);
}
else if (auto genericParamTypeRef = BfNodeDynCast<BfGenericParamTypeRef>(typeRef))
{
auto genericParamType = GetGenericParamType(genericParamTypeRef->mGenericParamKind, genericParamTypeRef->mGenericParamIdx);
resolvedEntry->mValue = genericParamType;
BF_ASSERT(BfResolvedTypeSet::Hash(genericParamType, &lookupCtx) == resolvedEntry->mHashCode);
return ResolveTypeResult(typeRef, genericParamType, populateType, resolveFlags);
}
else if (auto retTypeTypeRef = BfNodeDynCast<BfModifiedTypeRef>(typeRef))
{
auto retTypeType = new BfModifiedTypeType();
retTypeType->mModifiedKind = retTypeTypeRef->mRetTypeToken->mToken;
retTypeType->mElementType = ResolveTypeRef(retTypeTypeRef->mElementType, BfPopulateType_Declaration, BfResolveTypeRefFlag_AllowGenericParamConstValue);
// We know this is a generic param type, it can't fail to resolve
BF_ASSERT(retTypeType->mElementType);
resolvedEntry->mValue = retTypeType;
BF_ASSERT(BfResolvedTypeSet::Hash(retTypeType, &lookupCtx) == resolvedEntry->mHashCode);
populateModule->InitType(retTypeType, populateType);
return ResolveTypeResult(typeRef, retTypeType, populateType, resolveFlags);
}
else if (auto qualifiedTypeRef = BfNodeDynCast<BfQualifiedTypeReference>(typeRef))
{
auto leftType = ResolveTypeRef(qualifiedTypeRef->mLeft, BfPopulateType_Declaration, BfResolveTypeRefFlag_AllowGenericParamConstValue);
if (leftType == NULL)
return ResolveTypeResult(typeRef, NULL, populateType, resolveFlags);
return ResolveTypeResult(typeRef, ResolveInnerType(leftType, qualifiedTypeRef->mRight), populateType, resolveFlags);
}
else if (auto constTypeRef = BfNodeDynCastExact<BfConstTypeRef>(typeRef))
{
return ResolveTypeRef(constTypeRef->mElementType, populateType, (BfResolveTypeRefFlags)(resolveFlags & BfResolveTypeRefFlag_NoResolveGenericParam));
}
else if (auto constExprTypeRef = BfNodeDynCastExact<BfConstExprTypeRef>(typeRef))
{
if ((mCurTypeInstance != NULL) && (mCurTypeInstance->mDependencyMap.mMinDependDepth > 32))
{
Fail("Generic type dependency depth exceeded", typeRef);
return ResolveTypeResult(typeRef, NULL, populateType, resolveFlags);
}
BfVariant result;
BfType* resultType = NULL;
if (constExprTypeRef->mConstExpr != NULL)
{
result = mContext->mResolvedTypes.EvaluateToVariant(&lookupCtx, constExprTypeRef->mConstExpr, resultType);
BF_ASSERT(resultType != NULL);
}
auto constExprType = new BfConstExprValueType();
constExprType->mContext = mContext;
constExprType->mType = resultType;
BF_ASSERT(constExprType->mType != NULL);
if (constExprType->mType == NULL)
constExprType->mType = GetPrimitiveType(BfTypeCode_Let);
constExprType->mValue = result;
resolvedEntry->mValue = constExprType;
#ifdef _DEBUG
if (BfResolvedTypeSet::Hash(constExprType, &lookupCtx) != resolvedEntry->mHashCode)
{
int refHash = BfResolvedTypeSet::Hash(typeRef, &lookupCtx);
int typeHash = BfResolvedTypeSet::Hash(constExprType, &lookupCtx);
BF_ASSERT(refHash == typeHash);
}
BF_ASSERT(BfResolvedTypeSet::Equals(constExprType, typeRef, &lookupCtx));
#endif
populateModule->InitType(constExprType, populateType);
return constExprType;
}
else
{
BFMODULE_FATAL(this, "Not implemented!");
NotImpl(typeRef);
return ResolveTypeResult(typeRef, NULL, populateType, resolveFlags);
}
return ResolveTypeResult(typeRef, NULL, populateType, resolveFlags);
}
BfType* BfModule::ResolveTypeRefAllowUnboundGenerics(BfTypeReference* typeRef, BfPopulateType populateType, BfResolveTypeRefFlags resolveFlags, bool resolveGenericParam)
{
if (auto genericTypeRef = BfNodeDynCast<BfGenericInstanceTypeRef>(typeRef))
{
if (genericTypeRef->mGenericArguments.size() == 0)
{
auto genericTypeDef = ResolveGenericInstanceDef(genericTypeRef);
if (genericTypeDef == NULL)
return NULL;
BfTypeVector typeVector;
for (int i = 0; i < (int)genericTypeDef->mGenericParamDefs.size(); i++)
typeVector.push_back(GetGenericParamType(BfGenericParamKind_Type, i));
auto result = ResolveTypeDef(genericTypeDef, typeVector, populateType, resolveFlags);
if ((result != NULL) && (genericTypeRef->mCommas.size() + 1 != genericTypeDef->mGenericParamDefs.size()))
{
SetAndRestoreValue<BfTypeInstance*> prevTypeInstance(mCurTypeInstance, result->ToTypeInstance());
SetAndRestoreValue<BfMethodInstance*> prevMethodInstance(mCurMethodInstance, NULL);
Fail(StrFormat("Type '%s' requires %d generic arguments", TypeToString(result).c_str(), genericTypeDef->mGenericParamDefs.size()), typeRef);
}
return result;
}
}
return ResolveTypeRef(typeRef, populateType, resolveGenericParam ? (BfResolveTypeRefFlags)0 : BfResolveTypeRefFlag_NoResolveGenericParam);
}
// This finds non-default unspecialized generic type instances and converts them into a BfUnspecializedGenericTypeVariation
BfType* BfModule::CheckUnspecializedGenericType(BfTypeInstance* genericTypeInst, BfPopulateType populateType)
{
int argCount = (int)genericTypeInst->mGenericTypeInfo->mTypeGenericArguments.size();
bool isDefaultUnspecialized = true;
for (int argIdx = 0; argIdx < argCount; argIdx++)
{
auto argType = genericTypeInst->mGenericTypeInfo->mTypeGenericArguments[argIdx];
if (argType->IsGenericParam())
{
auto genericParamType = (BfGenericParamType*)argType;
if ((genericParamType->mGenericParamKind != BfGenericParamKind_Type) || (genericParamType->mGenericParamIdx != argIdx))
isDefaultUnspecialized = false;
genericTypeInst->mGenericTypeInfo->mIsUnspecialized = true;
}
else if (argType->IsUnspecializedType())
{
isDefaultUnspecialized = false;
genericTypeInst->mGenericTypeInfo->mIsUnspecialized = true;
}
else
isDefaultUnspecialized = false;
}
if (genericTypeInst->mGenericTypeInfo->mIsUnspecialized)
genericTypeInst->mGenericTypeInfo->mIsUnspecializedVariation = !isDefaultUnspecialized;
return genericTypeInst;
}
BfTypeInstance* BfModule::GetUnspecializedTypeInstance(BfTypeInstance* typeInst)
{
if (!typeInst->IsGenericTypeInstance())
return typeInst;
BF_ASSERT((!typeInst->IsDelegateFromTypeRef()) && (!typeInst->IsFunctionFromTypeRef()));
auto genericTypeInst = (BfTypeInstance*)typeInst;
auto result = ResolveTypeDef(genericTypeInst->mTypeDef->GetDefinition(), BfPopulateType_Declaration);
BF_ASSERT((result != NULL) && (result->IsUnspecializedType()));
if (result == NULL)
return NULL;
return result->ToTypeInstance();
}
BfType* BfModule::ResolveTypeRef_Type(BfAstNode* astNode, const BfSizedArray<BfAstNode*>* genericArgs, BfPopulateType populateType, BfResolveTypeRefFlags resolveFlags)
{
if ((genericArgs == NULL) || (genericArgs->size() == 0))
{
if (auto identifier = BfNodeDynCast<BfIdentifierNode>(astNode))
{
BfNamedTypeReference typeRef;
typeRef.mNameNode = identifier;
typeRef.mSrcEnd = 0;
typeRef.mToken = BfToken_None;
auto type = ResolveTypeRef(&typeRef, populateType, resolveFlags);
return type;
}
}
BfAstAllocator alloc;
alloc.mSourceData = astNode->GetSourceData();
std::function<BfTypeReference* (BfAstNode*)> _ConvType = [&](BfAstNode* astNode) -> BfTypeReference*
{
if (auto typeRef = BfNodeDynCast<BfTypeReference>(astNode))
return typeRef;
BfTypeReference* result = NULL;
if (auto identifier = BfNodeDynCast<BfIdentifierNode>(astNode))
{
auto* typeRef = alloc.Alloc<BfNamedTypeReference>();
typeRef->mNameNode = identifier;
result = typeRef;
}
else if (auto memberRefExpr = BfNodeDynCast<BfMemberReferenceExpression>(astNode))
{
auto qualifiedTypeRef = alloc.Alloc<BfQualifiedTypeReference>();
qualifiedTypeRef->mLeft = _ConvType(memberRefExpr->mTarget);
qualifiedTypeRef->mDot = memberRefExpr->mDotToken;
qualifiedTypeRef->mRight = _ConvType(memberRefExpr->mMemberName);
if ((qualifiedTypeRef->mLeft == NULL) || (qualifiedTypeRef->mRight == NULL))
return NULL;
result = qualifiedTypeRef;
}
if (result == NULL)
return NULL;
result->SetSrcStart(astNode->GetSrcStart());
result->SetSrcEnd(astNode->GetSrcEnd());
return result;
};
auto typeRef = _ConvType(astNode);
if (typeRef == NULL)
return NULL;
if ((genericArgs != NULL) && (genericArgs->size() != 0))
{
auto genericInstanceTypeRef = alloc.Alloc<BfGenericInstanceTypeRef>();
genericInstanceTypeRef->SetSrcStart(typeRef->GetSrcStart());
genericInstanceTypeRef->mElementType = typeRef;
#ifdef BF_AST_HAS_PARENT_MEMBER
typeRef->mParent = genericInstanceTypeRef;
#endif
BfDeferredAstSizedArray<BfAstNode*> arguments(genericInstanceTypeRef->mGenericArguments, &alloc);
for (auto genericArg : *genericArgs)
{
if (genericArg != NULL)
{
arguments.push_back(genericArg);
genericInstanceTypeRef->SetSrcEnd(genericArg->GetSrcEnd());
}
}
typeRef = genericInstanceTypeRef;
}
return ResolveTypeRef(typeRef, populateType, resolveFlags);
}
BfType* BfModule::ResolveTypeRef(BfAstNode* astNode, const BfSizedArray<BfAstNode*>* genericArgs, BfPopulateType populateType, BfResolveTypeRefFlags resolveFlags)
{
if (astNode == NULL)
{
AssertErrorState();
return NULL;
}
if (auto typeRef = BfNodeDynCast<BfTypeReference>(astNode))
return ResolveTypeRef(typeRef, populateType, resolveFlags);
if ((resolveFlags & BfResolveTypeRefFlag_AllowImplicitConstExpr) != 0)
{
if (auto expr = BfNodeDynCast<BfExpression>(astNode))
{
auto checkType = ResolveTypeRef_Type(astNode, genericArgs, populateType, (BfResolveTypeRefFlags)(resolveFlags | BfResolveTypeRefFlag_IgnoreLookupError));
if (checkType != NULL)
return checkType;
BfResolvedTypeSet::LookupContext lookupCtx;
lookupCtx.mModule = this;
BfResolvedTypeSet::Entry* typeEntry = NULL;
BfType* resultType = NULL;
auto result = mContext->mResolvedTypes.EvaluateToVariant(&lookupCtx, expr, resultType);
if (resultType != NULL)
{
auto constExprValue = CreateConstExprValueType(result, resultType);
return constExprValue;
}
}
}
return ResolveTypeRef_Type(astNode, genericArgs, populateType, resolveFlags);
}
// This flow should mirror CastToValue
bool BfModule::CanCast(BfTypedValue typedVal, BfType* toType, BfCastFlags castFlags)
{
BP_ZONE("BfModule::CanCast");
SetAndRestoreValue<bool> prevIgnoreWrites(mBfIRBuilder->mIgnoreWrites, true);
return CastToValue(NULL, typedVal, toType, (BfCastFlags)(castFlags | BfCastFlags_SilentFail | BfCastFlags_IsCastCheck));
}
bool BfModule::AreSplatsCompatible(BfType* fromType, BfType* toType, bool* outNeedsMemberCasting)
{
if ((fromType->IsTypeInstance()) && (!fromType->IsSplattable()))
return false;
if ((toType->IsTypeInstance()) && (!toType->IsSplattable()))
return false;
auto _GetTypes = [&](BfType* type, Array<BfType*>& types)
{
BfTypeUtils::SplatIterate([&](BfType* memberType) { types.Add(memberType); }, type);
};
Array<BfType*> fromTypes;
_GetTypes(fromType, fromTypes);
Array<BfType*> toTypes;
_GetTypes(toType, toTypes);
if (toTypes.size() > fromTypes.size())
return false;
for (int i = 0; i < toTypes.size(); i++)
{
BfType* fromMemberType = fromTypes[i];
BfType* toMemberType = toTypes[i];
if (fromMemberType != toMemberType)
{
if ((outNeedsMemberCasting != NULL) &&
(fromMemberType->IsIntPtrable()) && (toMemberType->IsIntPtrable()))
*outNeedsMemberCasting = true;
else
return false;
}
}
return true;
}
BfType* BfModule::GetClosestNumericCastType(const BfTypedValue& typedVal, BfType* wantType)
{
BfType* toType = wantType;
if ((toType == NULL) ||
((!toType->IsFloat()) && (!toType->IsIntegral())))
toType = NULL;
BfType* bestReturnType = NULL;
if (typedVal.mType->IsTypedPrimitive())
return NULL;
auto checkType = typedVal.mType->ToTypeInstance();
while (checkType != NULL)
{
for (auto operatorDef : checkType->mTypeDef->mOperators)
{
if (operatorDef->mOperatorDeclaration->mIsConvOperator)
{
if (operatorDef->IsExplicit())
continue;
auto returnType = CheckOperator(checkType, operatorDef, typedVal, BfTypedValue());
if ((returnType != NULL) &&
((returnType->IsIntegral()) || (returnType->IsFloat())))
{
bool canCastTo = true;
if ((toType != NULL) && (!CanCast(GetFakeTypedValue(returnType), toType)))
canCastTo = false;
if (canCastTo)
{
if (bestReturnType == NULL)
{
bestReturnType = returnType;
}
else
{
if (CanCast(GetFakeTypedValue(bestReturnType), returnType))
{
bestReturnType = returnType;
}
}
}
}
}
}
checkType = checkType->mBaseType;
}
if ((toType == NULL) && (bestReturnType != NULL))
{
auto intPtrType = GetPrimitiveType(BfTypeCode_IntPtr);
if (!CanCast(GetFakeTypedValue(bestReturnType), intPtrType))
{
// If no 'wantType' is specified, try to get closest one to an intptr
auto otherType = GetClosestNumericCastType(typedVal, intPtrType);
if (otherType != NULL)
return otherType;
}
}
return bestReturnType;
}
BfIRValue BfModule::CastToFunction(BfAstNode* srcNode, const BfTypedValue& targetValue, BfMethodInstance* methodInstance, BfType* toType, BfCastFlags castFlags, BfIRValue irFunc)
{
auto invokeMethodInstance = GetDelegateInvokeMethod(toType->ToTypeInstance());
bool methodsThisMatch = true;
if (invokeMethodInstance->mMethodDef->mIsStatic != methodInstance->mMethodDef->mIsStatic)
methodsThisMatch = false;
else
{
if (!methodInstance->mMethodDef->mIsStatic)
{
BfType* thisType = methodInstance->GetThisType();
if (thisType->IsPointer())
thisType = thisType->GetUnderlyingType();
BfType* invokeThisType = invokeMethodInstance->GetThisType();
if (invokeThisType->IsPointer())
invokeThisType = invokeThisType->GetUnderlyingType();
if (!TypeIsSubTypeOf(thisType->ToTypeInstance(), invokeThisType->ToTypeInstance()))
methodsThisMatch = false;
}
}
bool methodMatches = methodsThisMatch;
if (methodMatches)
methodMatches = invokeMethodInstance->IsExactMatch(methodInstance, false, false);
if (methodMatches)
{
if (methodInstance->GetOwner()->IsFunction())
{
BF_ASSERT(targetValue);
return targetValue.mValue;
}
BfIRFunction bindFuncVal = irFunc;
if (!bindFuncVal)
{
BfModuleMethodInstance methodRefMethod;
if (methodInstance->mDeclModule == this)
methodRefMethod = methodInstance;
else
methodRefMethod = ReferenceExternalMethodInstance(methodInstance);
auto dataType = GetPrimitiveType(BfTypeCode_IntPtr);
if (!methodRefMethod.mFunc)
{
if ((!methodInstance->mIsUnspecialized) && (HasCompiledOutput()))
AssertErrorState();
return GetDefaultValue(dataType);
}
bindFuncVal = methodRefMethod.mFunc;
}
if ((mCompiler->mOptions.mAllowHotSwapping) && (!mIsComptimeModule))
bindFuncVal = mBfIRBuilder->RemapBindFunction(bindFuncVal);
return mBfIRBuilder->CreatePtrToInt(bindFuncVal, BfTypeCode_IntPtr);
}
if ((castFlags & BfCastFlags_SilentFail) == 0)
{
if ((methodsThisMatch) && (invokeMethodInstance->IsExactMatch(methodInstance, true, false)))
{
Fail(StrFormat("Non-static method '%s' cannot match '%s' because it contains captured variables, consider using a delegate or removing captures", MethodToString(methodInstance).c_str(), TypeToString(toType).c_str()), srcNode);
}
else if (invokeMethodInstance->IsExactMatch(methodInstance, false, false))
{
bool handled = false;
if (methodInstance->HasThis())
{
auto thisType = methodInstance->GetThisType();
if (invokeMethodInstance->HasExplicitThis())
{
auto invokeThisType = invokeMethodInstance->GetThisType();
bool thisWasPtr = false;
if (thisType->IsPointer())
{
thisType = thisType->GetUnderlyingType();
thisWasPtr = true;
}
bool invokeThisWasPtr = false;
if (invokeThisType->IsPointer())
{
invokeThisType = invokeThisType->GetUnderlyingType();
invokeThisWasPtr = true;
}
if (TypeIsSubTypeOf(thisType->ToTypeInstance(), invokeThisType->ToTypeInstance()))
{
if (invokeThisWasPtr != thisWasPtr)
{
if (invokeThisWasPtr)
Fail(StrFormat("Non-static method '%s' cannot match '%s', consider removing 'mut' from 'mut %s this' in the function parameters", MethodToString(methodInstance).c_str(), TypeToString(toType).c_str(), TypeToString(thisType).c_str()), srcNode);
else
Fail(StrFormat("Non-static method '%s' cannot match '%s', consider adding 'mut' specifier to '%s this' in the function parameters", MethodToString(methodInstance).c_str(), TypeToString(toType).c_str(), TypeToString(thisType).c_str()), srcNode);
handled = true;
}
}
}
}
if ((!methodInstance->mMethodDef->mIsStatic) && (!invokeMethodInstance->HasExplicitThis()))
{
handled = true;
auto thisType = methodInstance->GetParamType(-1);
Fail(StrFormat("Non-static method '%s' cannot match '%s', consider adding '%s this' to the function parameters", MethodToString(methodInstance).c_str(), TypeToString(toType).c_str(), TypeToString(thisType).c_str()), srcNode);
}
if (!handled)
{
if (invokeMethodInstance->mMethodDef->mIsStatic)
Fail(StrFormat("Static method '%s' cannot match '%s'", MethodToString(methodInstance).c_str(), TypeToString(toType).c_str()).c_str(), srcNode);
else
Fail(StrFormat("Non-static method '%s' cannot match '%s'", MethodToString(methodInstance).c_str(), TypeToString(toType).c_str()).c_str(), srcNode);
}
}
}
return BfIRValue();
}
BfIRValue BfModule::CastToValue(BfAstNode* srcNode, BfTypedValue typedVal, BfType* toType, BfCastFlags castFlags, BfCastResultFlags* resultFlags)
{
bool silentFail = ((castFlags & BfCastFlags_SilentFail) != 0);
bool explicitCast = (castFlags & BfCastFlags_Explicit) != 0;
bool ignoreErrors = mIgnoreErrors || ((castFlags & BfCastFlags_SilentFail) != 0);
bool ignoreWrites = mBfIRBuilder->mIgnoreWrites;
if (typedVal.mType == toType)
{
if (resultFlags != NULL)
{
if (typedVal.IsAddr())
*resultFlags = (BfCastResultFlags)(*resultFlags | BfCastResultFlags_IsAddr);
if (typedVal.mKind == BfTypedValueKind_TempAddr)
*resultFlags = (BfCastResultFlags)(*resultFlags | BfCastResultFlags_IsTemp);
}
else if (typedVal.IsAddr())
typedVal = LoadValue(typedVal);
return typedVal.mValue;
}
BF_ASSERT(typedVal.mType->mContext == mContext);
BF_ASSERT(toType->mContext == mContext);
if ((typedVal.IsAddr()) && (!typedVal.mType->IsValueType()))
typedVal = LoadValue(typedVal);
//BF_ASSERT(!typedVal.IsAddr() || typedVal.mType->IsGenericParam() || typedVal.mType->IsValueType());
// Ref X to Ref Y, X* to Y*
{
bool checkUnderlying = false;
bool isRef = false;
if (((typedVal.mType->IsRef()) && (toType->IsRef())))
{
isRef = true;
auto fromRefType = (BfRefType*)typedVal.mType;
auto toRefType = (BfRefType*)toType;
if (fromRefType->mRefKind == toRefType->mRefKind)
checkUnderlying = true;
else if ((fromRefType->mRefKind == BfRefType::RefKind_Ref) && (toRefType->mRefKind == BfRefType::RefKind_Mut))
checkUnderlying = true; // Allow a ref-to-mut implicit conversion
}
if ((typedVal.mType->IsPointer()) && (toType->IsPointer()))
checkUnderlying = true;
if (checkUnderlying)
{
auto fromInner = typedVal.mType->GetUnderlyingType();
auto toInner = toType->GetUnderlyingType();
if (fromInner == toInner)
{
return typedVal.mValue;
}
if ((fromInner->IsTuple()) && (toInner->IsTuple()))
{
auto fromTuple = (BfTupleType*)fromInner;
auto toTuple = (BfTupleType*)toInner;
if (fromTuple->mFieldInstances.size() == toTuple->mFieldInstances.size())
{
bool matches = true;
for (int fieldIdx = 0; fieldIdx < (int)fromTuple->mFieldInstances.size(); fieldIdx++)
{
if (fromTuple->mFieldInstances[fieldIdx].mResolvedType != toTuple->mFieldInstances[fieldIdx].mResolvedType)
{
matches = false;
break;
}
}
if (matches)
{
// This is either a ref or a ptr so we don't need to set the "IsAddr" flag
typedVal = MakeAddressable(typedVal);
return mBfIRBuilder->CreateBitCast(typedVal.mValue, mBfIRBuilder->MapType(toType));
}
}
}
if ((isRef) && (fromInner->IsStruct()) && (toInner->IsStruct()))
{
if (TypeIsSubTypeOf(fromInner->ToTypeInstance(), toInner->ToTypeInstance()))
{
if (toInner->IsValuelessType())
return mBfIRBuilder->GetFakeVal();
// Is this valid?
typedVal = MakeAddressable(typedVal);
return mBfIRBuilder->CreateBitCast(typedVal.mValue, mBfIRBuilder->MapType(toType));
}
}
// ref int <-> ref int64/int32 (of same size)
if (((fromInner->IsInteger()) && (toInner->IsInteger())) &&
(fromInner->mSize == toInner->mSize) &&
(fromInner->IsSigned() == toInner->IsSigned()))
return typedVal.mValue;
}
}
// Null -> ObjectInst|IFace|ptr
if ((typedVal.mType->IsNull()) &&
((toType->IsObjectOrInterface()) || (toType->IsPointer() || (toType->IsFunction()) || (toType->IsAllocType()))))
{
return mBfIRBuilder->CreateBitCast(typedVal.mValue, mBfIRBuilder->MapType(toType));
}
// Func -> void*
if ((typedVal.mType->IsFunction()) && (toType->IsVoidPtr()))
{
typedVal = LoadValue(typedVal);
return mBfIRBuilder->CreateIntToPtr(typedVal.mValue, mBfIRBuilder->MapType(toType));
}
if (explicitCast)
{
// void* -> Func
if ((typedVal.mType->IsVoidPtr()) && (toType->IsFunction()))
{
typedVal = LoadValue(typedVal);
return mBfIRBuilder->CreatePtrToInt(typedVal.mValue, BfTypeCode_IntPtr);
}
// * -> Valueless
if (toType->IsVoid())
return mBfIRBuilder->GetFakeVal();
// void* -> intptr
if ((typedVal.mType->IsPointer()) && (toType->IsIntPtr()))
{
if ((!typedVal.mType->GetUnderlyingType()->IsVoid()) && ((castFlags & BfCastFlags_FromCompiler) == 0))
{
if (!ignoreErrors)
Fail(StrFormat("Unable to cast directly from '%s' to '%s', consider casting to void* first", TypeToString(typedVal.mType).c_str(), TypeToString(toType).c_str()), srcNode);
else if (!silentFail)
SetFail();
}
auto toPrimitive = (BfPrimitiveType*)toType;
return mBfIRBuilder->CreatePtrToInt(typedVal.mValue, toPrimitive->mTypeDef->mTypeCode);
}
// intptr -> void*
if ((typedVal.mType->IsIntPtr()) && (toType->IsPointer()))
{
if ((!toType->GetUnderlyingType()->IsVoid()) && ((castFlags & BfCastFlags_FromCompiler) == 0))
{
if (!ignoreErrors)
Fail(StrFormat("Unable to cast directly from '%s' to '%s', consider casting to void* first", TypeToString(typedVal.mType).c_str(), TypeToString(toType).c_str()), srcNode);
else if (!silentFail)
SetFail();
}
return mBfIRBuilder->CreateIntToPtr(typedVal.mValue, mBfIRBuilder->MapType(toType));
}
}
// * <-> Var
if ((typedVal.mType->IsVar()) || (toType->IsVar()))
{
return mBfIRBuilder->CreateUndefValue(mBfIRBuilder->MapType(toType));
}
// Generic param -> *
if (typedVal.mType->IsGenericParam())
{
if (toType->IsGenericParam())
{
auto genericParamInst = GetGenericParamInstance((BfGenericParamType*)typedVal.mType);
if (genericParamInst->mTypeConstraint == toType)
return typedVal.mValue;
}
else
{
if ((typedVal.mKind != Beefy::BfTypedValueKind_GenericConstValue) && (toType == mContext->mBfObjectType))
{
// Always allow casting from generic to object
return typedVal.mValue;
}
auto _CheckGenericParamInstance = [&](BfGenericParamInstance* genericParamInst)
{
if ((genericParamInst->mGenericParamFlags & BfGenericParamFlag_Var) != 0)
{
return typedVal.mValue;
}
if (toType->IsInterface())
{
for (auto iface : genericParamInst->mInterfaceConstraints)
if (TypeIsSubTypeOf(iface, toType->ToTypeInstance()))
return mBfIRBuilder->GetFakeVal();
}
if (genericParamInst->mTypeConstraint != NULL)
{
SetAndRestoreValue<bool> prevIgnoreWrites(mBfIRBuilder->mIgnoreWrites, true);
auto constraintTypeInst = genericParamInst->mTypeConstraint->ToTypeInstance();
if ((constraintTypeInst != NULL) && (constraintTypeInst->IsDelegateOrFunction()))
{
// Could be a methodref - can't cast to anything else
}
else
{
if ((constraintTypeInst != NULL) && (constraintTypeInst->IsInstanceOf(mCompiler->mEnumTypeDef)) && (explicitCast))
{
// Enum->int
if ((explicitCast) && (toType->IsInteger()))
return typedVal.mValue;
}
BfTypedValue fromTypedValue;
if (typedVal.mKind == BfTypedValueKind_GenericConstValue)
{
if (genericParamInst->mTypeConstraint->IsVar())
fromTypedValue = GetDefaultTypedValue(genericParamInst->mTypeConstraint);
else
fromTypedValue = GetDefaultTypedValue(genericParamInst->mTypeConstraint, false, BfDefaultValueKind_Undef);
}
else
fromTypedValue = BfTypedValue(mBfIRBuilder->GetFakeVal(), genericParamInst->mTypeConstraint, genericParamInst->mTypeConstraint->IsValueType());
auto result = CastToValue(srcNode, fromTypedValue, toType, (BfCastFlags)(castFlags | BfCastFlags_SilentFail));
if (result)
{
if ((genericParamInst->mTypeConstraint->IsDelegate()) && (toType->IsDelegate()))
{
// Don't allow cast when we are constrained by a delegate type, because BfMethodRefs can match and we require an actual alloc
Fail(StrFormat("Unable to cast '%s' to '%s' because delegate constraints allow valueless direct method references", TypeToString(typedVal.mType).c_str(), TypeToString(toType).c_str()), srcNode);
return BfIRValue();
}
return result;
}
}
}
// Generic constrained with class or pointer type -> void*
if (toType->IsVoidPtr())
{
if (((genericParamInst->mGenericParamFlags & (BfGenericParamFlag_Class | BfGenericParamFlag_StructPtr | BfGenericParamFlag_Interface)) != 0) ||
((genericParamInst->mTypeConstraint != NULL) &&
((genericParamInst->mTypeConstraint->IsPointer()) ||
(genericParamInst->mTypeConstraint->IsInstanceOf(mCompiler->mFunctionTypeDef)) ||
(genericParamInst->mTypeConstraint->IsObjectOrInterface()))))
{
return typedVal.mValue;
}
}
if ((toType->IsInteger()) && (explicitCast))
{
if ((genericParamInst->mGenericParamFlags & BfGenericParamFlag_Enum) != 0)
{
return typedVal.mValue;
}
}
return BfIRValue();
};
BfIRValue retVal;
// For these casts, it's just important we get *A* value to work with here,
// as this is just use for unspecialized parsing. We don't use the generated code
{
auto genericParamInst = GetGenericParamInstance((BfGenericParamType*)typedVal.mType);
retVal = _CheckGenericParamInstance(genericParamInst);
if (retVal)
return retVal;
}
// Check method generic constraints
if ((mCurMethodInstance != NULL) && (mCurMethodInstance->mIsUnspecialized) && (mCurMethodInstance->mMethodInfoEx != NULL))
{
for (int genericParamIdx = (int)mCurMethodInstance->mMethodInfoEx->mMethodGenericArguments.size();
genericParamIdx < mCurMethodInstance->mMethodInfoEx->mGenericParams.size(); genericParamIdx++)
{
auto genericParamInst = mCurMethodInstance->mMethodInfoEx->mGenericParams[genericParamIdx];
if (genericParamInst->mExternType == typedVal.mType)
{
retVal = _CheckGenericParamInstance(genericParamInst);
if (retVal)
return retVal;
}
}
}
}
}
// * -> Generic param
if (toType->IsGenericParam())
{
if (explicitCast)
{
// Either an upcast or an unbox
if ((typedVal.mType == mContext->mBfObjectType) || (typedVal.mType->IsInterface()))
{
return GetDefaultValue(toType);
}
}
auto genericParamInst = GetGenericParamInstance((BfGenericParamType*)toType);
if (genericParamInst->mGenericParamFlags & BfGenericParamFlag_Var)
return GetDefaultValue(toType);
if (typedVal.mType->IsNull())
{
bool allowCast = (genericParamInst->mGenericParamFlags & (BfGenericParamFlag_Class | BfGenericParamFlag_StructPtr | BfGenericParamFlag_Interface)) != 0;
if ((!allowCast) && (genericParamInst->mTypeConstraint != NULL))
allowCast = genericParamInst->mTypeConstraint->IsObject() || genericParamInst->mTypeConstraint->IsPointer();
if (allowCast)
return mBfIRBuilder->CreateBitCast(typedVal.mValue, mBfIRBuilder->MapType(toType));
}
if (genericParamInst->mTypeConstraint != NULL)
{
if (genericParamInst->mTypeConstraint->IsInstanceOf(mCompiler->mEnumTypeDef))
{
// int->Enum
if ((explicitCast) && (typedVal.mType->IsInteger()))
return mBfIRBuilder->GetFakeVal();
}
if ((genericParamInst->mTypeConstraint == toType) && (toType->IsUnspecializedType()))
return mBfIRBuilder->GetFakeVal();
auto castedVal = CastToValue(srcNode, typedVal, genericParamInst->mTypeConstraint, (BfCastFlags)(castFlags | BfCastFlags_SilentFail));
if (castedVal)
return castedVal;
}
if (explicitCast)
{
if (((genericParamInst->mGenericParamFlags & BfGenericParamFlag_StructPtr) != 0) ||
((genericParamInst->mTypeConstraint != NULL) && genericParamInst->mTypeConstraint->IsInstanceOf(mCompiler->mFunctionTypeDef)))
{
auto voidPtrType = CreatePointerType(GetPrimitiveType(BfTypeCode_None));
auto castedVal = CastToValue(srcNode, typedVal, voidPtrType, (BfCastFlags)(castFlags | BfCastFlags_SilentFail));
if (castedVal)
return castedVal;
}
}
if ((typedVal.mType->IsIntegral()) && ((genericParamInst->mGenericParamFlags & BfGenericParamFlag_Enum) != 0))
{
bool allowCast = explicitCast;
if ((!allowCast) && (typedVal.mType->IsIntegral()))
{
// Allow implicit cast of zero
auto constant = mBfIRBuilder->GetConstant(typedVal.mValue);
if ((constant != NULL) && (mBfIRBuilder->IsInt(constant->mTypeCode)))
{
allowCast = constant->mInt64 == 0;
}
}
if (allowCast)
{
return mBfIRBuilder->GetFakeVal();
}
}
}
if ((typedVal.mType->IsTypeInstance()) && (toType->IsTypeInstance()))
{
auto fromTypeInstance = typedVal.mType->ToTypeInstance();
auto toTypeInstance = toType->ToTypeInstance();
if ((typedVal.mType->IsValueType()) && (toType->IsValueType()))
{
bool allowCast = false;
if (TypeIsSubTypeOf(fromTypeInstance, toTypeInstance))
allowCast = true;
if (allowCast)
{
PopulateType(toType);
if (toType->IsValuelessType())
return BfIRValue::sValueless;
if (ignoreWrites)
return mBfIRBuilder->GetFakeVal();
if (resultFlags != NULL)
*resultFlags = (BfCastResultFlags)(BfCastResultFlags_IsAddr);
typedVal = MakeAddressable(typedVal);
return mBfIRBuilder->CreateBitCast(typedVal.mValue, mBfIRBuilder->MapTypeInstPtr(toTypeInstance));
}
}
// ObjectInst|IFace -> object|IFace
if ((typedVal.mType->IsObject() || (typedVal.mType->IsInterface())) && ((toType->IsObject() || (toType->IsInterface()))))
{
bool allowCast = false;
if (((castFlags & BfCastFlags_NoInterfaceImpl) != 0) && (toTypeInstance->IsInterface()))
{
// Don't allow
}
else if (TypeIsSubTypeOf(fromTypeInstance, toTypeInstance))
allowCast = true;
else if ((explicitCast) &&
((toType->IsInterface()) || (TypeIsSubTypeOf(toTypeInstance, fromTypeInstance))))
{
if (toType->IsObjectOrInterface())
{
if ((castFlags & BfCastFlags_Unchecked) == 0)
EmitDynamicCastCheck(typedVal, toType, true);
}
allowCast = true;
}
if (allowCast)
{
if ((ignoreWrites) && (!typedVal.mValue.IsConst()))
return mBfIRBuilder->GetFakeVal();
return mBfIRBuilder->CreateBitCast(typedVal.mValue, mBfIRBuilder->MapType(toType));
}
}
}
// MethodRef -> Function
if ((typedVal.mType->IsMethodRef()) && (toType->IsFunction()))
{
BfMethodInstance* methodInstance = ((BfMethodRefType*)typedVal.mType)->mMethodRef;
auto result = CastToFunction(srcNode, BfTypedValue(), methodInstance, toType, castFlags);
if (result)
return result;
}
// concrete IFace -> object|IFace
if ((typedVal.mType->IsConcreteInterfaceType()) && ((toType->IsObject() || (toType->IsInterface()))))
{
auto concreteInterfaceType = (BfConcreteInterfaceType*)typedVal.mType;
if ((toType->IsObject()) || (concreteInterfaceType->mInterface == toType))
return mBfIRBuilder->CreateBitCast(typedVal.mValue, mBfIRBuilder->MapType(toType));
}
// IFace -> object
if ((typedVal.mType->IsInterface()) && (toType == mContext->mBfObjectType))
return mBfIRBuilder->CreateBitCast(typedVal.mValue, mBfIRBuilder->MapType(toType));
// * -> Pointer
if (toType->IsPointer())
{
// Ptr -> Ptr
if (typedVal.mType->IsPointer())
{
bool allowCast = explicitCast;
auto fromPointerType = (BfPointerType*)typedVal.mType;
auto toPointerType = (BfPointerType*)toType;
auto fromUnderlying = fromPointerType->mElementType;
auto toUnderlying = toPointerType->mElementType;
// Allow cast from T[size]* to T* implicitly
// And from T* to T[size]* explicitly
while (fromUnderlying->IsSizedArray())
fromUnderlying = fromUnderlying->GetUnderlyingType();
while ((toUnderlying->IsSizedArray()) && (explicitCast))
toUnderlying = toUnderlying->GetUnderlyingType();
if ((fromUnderlying == toUnderlying) ||
(TypeIsSubTypeOf(fromUnderlying->ToTypeInstance(), toUnderlying->ToTypeInstance())) ||
(toUnderlying->IsVoid()))
allowCast = true;
if (allowCast)
{
if ((ignoreWrites) && (!typedVal.mValue.IsConst()))
return mBfIRBuilder->GetFakeVal();
return mBfIRBuilder->CreateBitCast(typedVal.mValue, mBfIRBuilder->MapType(toType));
}
}
else if (typedVal.mType->IsObject())
{
// ???
}
/*else if (typedVal.mType->IsSizedArray())
{
if (typedVal.IsAddr())
{
BfSizedArrayType* arrayType = (BfSizedArrayType*)typedVal.mType;
auto ptrType = CreatePointerType(arrayType->mElementType);
BfTypedValue returnPointer(mBfIRBuilder->CreateBitCast(typedVal.mValue, mBfIRBuilder->MapType(ptrType)), ptrType);
return CastToValue(srcNode, returnPointer, toType, castFlags, silentFail);
}
}*/
}
// Boxing?
bool mayBeBox = false;
if (((typedVal.mType->IsValueType()) || (typedVal.mType->IsPointer()) || (typedVal.mType->IsValuelessType())) &&
((toType->IsInterface()) || (toType == mContext->mBfObjectType)))
{
// Make sure there's no conversion operator before we box
if ((!typedVal.mType->IsRef()) && (!typedVal.mType->IsModifiedTypeType()))
mayBeBox = true;
}
//TODO: the IsGenericParam is not valid - why did we have that? The generic param could be a struct for example...
if ((explicitCast) && ((typedVal.mType->IsInterface()) || (typedVal.mType == mContext->mBfObjectType) /*|| (typedVal.mType->IsGenericParam())*/) &&
((toType->IsValueType()) || (toType->IsPointer())))
{
if (toType->IsValuelessType())
return BfIRValue::sValueless;
if (ignoreWrites)
return mBfIRBuilder->GetFakeVal();
// Unbox!
if ((castFlags & BfCastFlags_Unchecked) == 0)
{
EmitDynamicCastCheck(typedVal, toType, false);
EmitObjectAccessCheck(typedVal);
}
if (toType->IsNullable())
{
auto toTypeInst = toType->ToTypeInstance();
int valueIdx = toTypeInst->mFieldInstances[0].mDataIdx;
int hasValueIdx = toTypeInst->mFieldInstances[1].mDataIdx;
typedVal = MakeAddressable(typedVal);
auto elementType = toType->GetUnderlyingType();
auto ptrElementType = CreatePointerType(elementType);
auto boolType = GetPrimitiveType(BfTypeCode_Boolean);
auto allocaInst = CreateAlloca(toType, true, "unboxN");
auto prevBB = mBfIRBuilder->GetInsertBlock();
auto nullBB = mBfIRBuilder->CreateBlock("unboxN.null");
auto notNullBB = mBfIRBuilder->CreateBlock("unboxN.notNull");
auto endBB = mBfIRBuilder->CreateBlock("unboxN.end");
auto isNull = mBfIRBuilder->CreateIsNull(typedVal.mValue);
mBfIRBuilder->CreateCondBr(isNull, nullBB, notNullBB);
int dataIdx = toTypeInst->mFieldInstances[1].mDataIdx;
mBfIRBuilder->AddBlock(nullBB);
mBfIRBuilder->SetInsertPoint(nullBB);
auto hasValueAddr = mBfIRBuilder->CreateInBoundsGEP(allocaInst, 0, hasValueIdx); // has_value
mBfIRBuilder->CreateStore(GetConstValue(0, boolType), hasValueAddr);
auto nullableValueAddr = mBfIRBuilder->CreateInBoundsGEP(allocaInst, 0, valueIdx); // value
auto nullableValueBits = mBfIRBuilder->CreateBitCast(nullableValueAddr, mBfIRBuilder->GetPrimitiveType(BfTypeCode_NullPtr));
mBfIRBuilder->CreateMemSet(nullableValueBits, GetConstValue(0, GetPrimitiveType(BfTypeCode_Int8)), GetConstValue(elementType->mSize), elementType->mAlign);
mBfIRBuilder->CreateBr(endBB);
mBfIRBuilder->AddBlock(notNullBB);
mBfIRBuilder->SetInsertPoint(notNullBB);
hasValueAddr = mBfIRBuilder->CreateInBoundsGEP(allocaInst, 0, hasValueIdx); // has_value
mBfIRBuilder->CreateStore(GetConstValue(1, boolType), hasValueAddr);
nullableValueAddr = mBfIRBuilder->CreateInBoundsGEP(allocaInst, 0, valueIdx); // value
auto srcObjBits = mBfIRBuilder->CreateBitCast(typedVal.mValue, mBfIRBuilder->MapType(ptrElementType));
auto boxedValueAddr = mBfIRBuilder->CreateInBoundsGEP(srcObjBits, 1); // Skip over vdata
auto boxedValue = mBfIRBuilder->CreateLoad(boxedValueAddr);
mBfIRBuilder->CreateStore(boxedValue, nullableValueAddr);
mBfIRBuilder->CreateBr(endBB);
mBfIRBuilder->AddBlock(endBB);
mBfIRBuilder->SetInsertPoint(endBB);
if (resultFlags != NULL)
*resultFlags = (BfCastResultFlags)(BfCastResultFlags_IsAddr | BfCastResultFlags_IsTemp);
return allocaInst;
}
auto boxedType = CreateBoxedType(toType);
mBfIRBuilder->PopulateType(boxedType);
AddDependency(boxedType, mCurTypeInstance, BfDependencyMap::DependencyFlag_ReadFields);
auto boxedObj = mBfIRBuilder->CreateBitCast(typedVal.mValue, mBfIRBuilder->MapType(boxedType));
auto valPtr = mBfIRBuilder->CreateInBoundsGEP(boxedObj, 0, 1);
if ((toType->IsPrimitiveType()) || (toType->IsTypedPrimitive()) || (toType->IsPointer()) || (toType->IsSizedArray()) || (toType->IsMethodRef()))
{
valPtr = mBfIRBuilder->CreateBitCast(valPtr, mBfIRBuilder->GetPointerTo(mBfIRBuilder->MapType(toType)));
}
if ((toType->IsComposite()) && (resultFlags != NULL))
{
*resultFlags = BfCastResultFlags_IsAddr;
return valPtr;
}
else
return mBfIRBuilder->CreateLoad(valPtr, false);
}
// Null -> Nullable<T>
if ((typedVal.mType->IsNull()) && (toType->IsNullable()))
{
if (ignoreWrites)
return mBfIRBuilder->GetFakeVal();
if ((castFlags & BfCastFlags_PreferAddr) != 0)
{
auto boolType = GetPrimitiveType(BfTypeCode_Boolean);
auto toTypeInst = toType->ToTypeInstance();
int hasValueIdx = toTypeInst->mFieldInstances[1].mDataIdx;
auto allocaInst = CreateAlloca(toType);
auto hasValueAddr = mBfIRBuilder->CreateInBoundsGEP(allocaInst, 0, hasValueIdx); // has_value
mBfIRBuilder->CreateStore(GetConstValue(0, boolType), hasValueAddr);
auto typedValue = BfTypedValue(allocaInst, toType, true);
if (resultFlags != NULL)
*resultFlags = (BfCastResultFlags)(BfCastResultFlags_IsAddr | BfCastResultFlags_IsTemp);
return allocaInst;
}
auto zeroNullable = mBfIRBuilder->CreateConstAggZero(mBfIRBuilder->MapType(toType));
return zeroNullable;
}
// Nullable<A> -> Nullable<B>
if ((typedVal.mType->IsNullable()) && (toType->IsNullable()))
{
auto fromNullableType = (BfTypeInstance*)typedVal.mType;
auto toNullableType = (BfTypeInstance*)toType;
if (ignoreWrites)
{
auto toVal = CastToValue(srcNode, BfTypedValue(mBfIRBuilder->GetFakeVal(), fromNullableType->mGenericTypeInfo->mTypeGenericArguments[0]),
toNullableType->mGenericTypeInfo->mTypeGenericArguments[0], ignoreErrors ? BfCastFlags_SilentFail : BfCastFlags_None);
if (!toVal)
return BfIRValue();
return mBfIRBuilder->GetFakeVal();
}
BfIRValue srcPtr = typedVal.mValue;
if (!typedVal.IsAddr())
{
auto srcAlloca = CreateAllocaInst(fromNullableType);
mBfIRBuilder->CreateStore(typedVal.mValue, srcAlloca);
srcPtr = srcAlloca;
}
auto srcAddr = mBfIRBuilder->CreateInBoundsGEP(srcPtr, 0, 1); // mValue
auto srcVal = mBfIRBuilder->CreateLoad(srcAddr);
auto toVal = CastToValue(srcNode, BfTypedValue(srcVal, fromNullableType->mGenericTypeInfo->mTypeGenericArguments[0]),
toNullableType->mGenericTypeInfo->mTypeGenericArguments[0], ignoreErrors ? BfCastFlags_SilentFail : BfCastFlags_None);
if (!toVal)
return BfIRValue();
auto allocaInst = CreateAllocaInst(toNullableType);
auto destAddr = mBfIRBuilder->CreateInBoundsGEP(allocaInst, 0, 1); // mValue
mBfIRBuilder->CreateStore(toVal, destAddr);
srcAddr = mBfIRBuilder->CreateInBoundsGEP(srcPtr, 0, 2); // mHasValue
srcVal = mBfIRBuilder->CreateLoad(srcAddr);
destAddr = mBfIRBuilder->CreateInBoundsGEP(allocaInst, 0, 2); // mHasValue
mBfIRBuilder->CreateStore(srcVal, destAddr);
if (resultFlags != NULL)
*resultFlags = (BfCastResultFlags)(BfCastResultFlags_IsAddr | BfCastResultFlags_IsTemp);
return allocaInst;
}
// Tuple -> Tuple
if ((typedVal.mType->IsTuple()) && (toType->IsTuple()))
{
auto fromTupleType = (BfTypeInstance*)typedVal.mType;
auto toTupleType = (BfTypeInstance*)toType;
PopulateType(fromTupleType);
PopulateType(toTupleType);
if (fromTupleType->mFieldInstances.size() == toTupleType->mFieldInstances.size())
{
typedVal = LoadValue(typedVal);
BfIRValue curTupleValue = mBfIRBuilder->CreateUndefValue(mBfIRBuilder->MapType(toTupleType));
for (int valueIdx = 0; valueIdx < (int)fromTupleType->mFieldInstances.size(); valueIdx++)
{
BfFieldInstance* fromFieldInstance = &fromTupleType->mFieldInstances[valueIdx];
BfFieldInstance* toFieldInstance = &toTupleType->mFieldInstances[valueIdx];
if (!explicitCast)
{
BfFieldDef* fromFieldDef = fromFieldInstance->GetFieldDef();
BfFieldDef* toFieldDef = toFieldInstance->GetFieldDef();
// Either the names have to match or one has to be unnamed
if ((!fromFieldDef->IsUnnamedTupleField()) && (!toFieldDef->IsUnnamedTupleField()) &&
(fromFieldDef->mName != toFieldDef->mName))
{
curTupleValue = BfIRValue();
break;
}
}
auto fromFieldType = fromFieldInstance->GetResolvedType();
auto toFieldType = toFieldInstance->GetResolvedType();
if (toFieldType->IsVoid())
continue; // Allow sinking to void
BfIRValue fromFieldValue;
if (fromFieldInstance->mDataIdx >= 0)
fromFieldValue = mBfIRBuilder->CreateExtractValue(typedVal.mValue, fromFieldInstance->mDataIdx);
BfIRValue toFieldValue = CastToValue(srcNode, BfTypedValue(fromFieldValue, fromFieldType), toFieldType, (BfCastFlags)(castFlags | BfCastFlags_Explicit));
if (!toFieldValue)
{
curTupleValue = BfIRValue();
break;
}
if (toFieldInstance->mDataIdx >= 0)
curTupleValue = mBfIRBuilder->CreateInsertValue(curTupleValue, toFieldValue, toFieldInstance->mDataIdx);
}
if (curTupleValue)
return curTupleValue;
}
}
// -> const <value>
if (toType->IsConstExprValue())
{
auto constant = mBfIRBuilder->GetConstant(typedVal.mValue);
if (constant != NULL)
{
BfConstExprValueType* toConstExprValueType = (BfConstExprValueType*)toType;
auto variantVal = TypedValueToVariant(srcNode, typedVal, true);
if ((mBfIRBuilder->IsIntable(variantVal.mTypeCode)) && (mBfIRBuilder->IsIntable(toConstExprValueType->mValue.mTypeCode)))
{
if (variantVal.mUInt64 == toConstExprValueType->mValue.mUInt64)
return typedVal.mValue;
}
else if ((mBfIRBuilder->IsFloat(variantVal.mTypeCode)) && (mBfIRBuilder->IsFloat(toConstExprValueType->mValue.mTypeCode)))
{
if (variantVal.ToDouble() == toConstExprValueType->mValue.ToDouble())
return typedVal.mValue;
}
if (toConstExprValueType->mValue.mTypeCode == BfTypeCode_StringId)
{
int stringIdx = GetStringPoolIdx(typedVal.mValue, mBfIRBuilder);
if ((stringIdx != -1) && (stringIdx == toConstExprValueType->mValue.mInt32))
return typedVal.mValue;
}
if ((toConstExprValueType->mValue.mTypeCode == BfTypeCode_Let) && (constant->mConstType == BfConstType_Undef))
{
return typedVal.mValue;
}
if (!ignoreErrors)
{
String valStr;
VariantToString(valStr, variantVal);
Fail(StrFormat("Unable to cast '%s %s' to '%s'", TypeToString(typedVal.mType).c_str(), valStr.c_str(), TypeToString(toType).c_str()), srcNode);
}
else if (!silentFail)
SetFail();
}
}
if ((typedVal.mType->IsPrimitiveType()) && (toType->IsPrimitiveType()))
{
auto fromPrimType = (BfPrimitiveType*)typedVal.mType;
auto toPrimType = (BfPrimitiveType*)toType;
BfTypeCode fromTypeCode = fromPrimType->mTypeDef->mTypeCode;
BfTypeCode toTypeCode = toPrimType->mTypeDef->mTypeCode;
if (toType->IsIntegral())
{
// Allow constant ints to be implicitly casted to a smaller type if they fit
auto constant = mBfIRBuilder->GetConstant(typedVal.mValue);
if (constant != NULL)
{
if (mBfIRBuilder->IsInt(constant->mTypeCode))
{
int64 srcVal = constant->mInt64;
if (toPrimType->IsChar())
{
if (srcVal == 0)
explicitCast = true;
}
else if ((fromPrimType->IsChar()) && (!toPrimType->IsChar()))
{
// Never allow this
}
else if ((constant->mTypeCode == BfTypeCode_UInt64) && (srcVal < 0))
{
// There's nothing that this could fit into
}
else if (toType->IsSigned())
{
if (toType->mSize == 8) // int64
explicitCast = true;
else
{
int64 minVal = -(1LL << (8 * toType->mSize - 1));
int64 maxVal = (1LL << (8 * toType->mSize - 1)) - 1;
if ((srcVal >= minVal) && (srcVal <= maxVal))
explicitCast = true;
}
}
else if (toType->mSize == 8) // uint64
{
if (srcVal >= 0)
explicitCast = true;
}
else
{
int64 minVal = 0;
int64 maxVal = (1LL << (8 * toType->mSize)) - 1;
if ((srcVal >= minVal) && (srcVal <= maxVal))
explicitCast = true;
}
}
else if (constant->mConstType == BfConstType_Undef)
{
if (mIsComptimeModule)
return mBfIRBuilder->GetUndefConstValue(mBfIRBuilder->MapType(toType));
auto undefConst = (BfConstantUndef*)constant;
BfType* bfType = NULL;
if (undefConst->mType.mKind == BfIRTypeData::TypeKind_TypeCode)
{
bfType = GetPrimitiveType((BfTypeCode)undefConst->mType.mId);
}
else
{
BF_ASSERT(undefConst->mType.mKind == BfIRTypeData::TypeKind_TypeId);
if (undefConst->mType.mKind == BfIRTypeData::TypeKind_TypeId)
bfType = mContext->FindTypeById(undefConst->mType.mId);
}
if (bfType == NULL)
return BfIRValue();
auto fakeVal = GetFakeTypedValue(bfType);
auto val = CastToValue(srcNode, fakeVal, toType, castFlags);
if (val)
return mBfIRBuilder->GetUndefConstValue(mBfIRBuilder->MapType(toType));
}
}
}
bool allowCast = false;
switch (toTypeCode)
{
case BfTypeCode_Char16:
switch (fromTypeCode)
{
case BfTypeCode_Char8:
allowCast = true; break;
default: break;
}
break;
case BfTypeCode_Int16:
switch (fromTypeCode)
{
case BfTypeCode_Int8:
allowCast = true; break;
case BfTypeCode_UInt8:
allowCast = true; break;
default: break;
}
break;
case BfTypeCode_UInt16:
switch (fromTypeCode)
{
case BfTypeCode_UInt8:
allowCast = true; break;
default: break;
}
break;
case BfTypeCode_Int32:
switch (fromTypeCode)
{
case BfTypeCode_Int8:
case BfTypeCode_Int16:
allowCast = true; break;
case BfTypeCode_IntPtr:
if (mCompiler->mSystem->mPtrSize == 4)
allowCast = true;
break;
case BfTypeCode_UInt8:
case BfTypeCode_UInt16:
allowCast = true; break;
default: break;
}
break;
case BfTypeCode_Char32:
switch (fromTypeCode)
{
case BfTypeCode_Char8:
case BfTypeCode_Char16:
allowCast = true; break;
default: break;
}
break;
case BfTypeCode_UInt32:
switch (fromTypeCode)
{
case BfTypeCode_UInt8:
case BfTypeCode_UInt16:
case BfTypeCode_UInt32:
allowCast = true; break;
case BfTypeCode_UIntPtr:
if (mCompiler->mSystem->mPtrSize == 4)
allowCast = true;
break;
default: break;
}
break;
case BfTypeCode_Int64:
switch (fromTypeCode)
{
case BfTypeCode_Int8:
case BfTypeCode_Int16:
case BfTypeCode_Int32:
case BfTypeCode_IntPtr:
allowCast = true; break;
case BfTypeCode_UInt8:
case BfTypeCode_UInt16:
case BfTypeCode_UInt32:
allowCast = true; break;
default: break;
}
break;
case BfTypeCode_UInt64:
switch (fromTypeCode)
{
case BfTypeCode_UInt8:
case BfTypeCode_UInt16:
case BfTypeCode_UInt32:
case BfTypeCode_UIntPtr:
allowCast = true; break;
default: break;
}
break;
case BfTypeCode_IntPtr:
switch (fromTypeCode)
{
case BfTypeCode_Int8:
case BfTypeCode_Int16:
case BfTypeCode_Int32:
allowCast = true; break;
case BfTypeCode_UInt8:
case BfTypeCode_UInt16:
allowCast = true; break;
case BfTypeCode_UInt32:
case BfTypeCode_Int64:
// It may seem that we want this to require an explicit cast,
// but consider the case of
// int val = Math.Max(intA, intB)
// Math.Max has an int32 and int64 override, so we want the correct one to be chosen and
// to be able to have the int64 return value implicitly used in a 64-bit build
if (mCompiler->mSystem->mPtrSize == 8)
allowCast = true;
break;
default: break;
}
break;
case BfTypeCode_UIntPtr:
switch (fromTypeCode)
{
case BfTypeCode_UInt8:
case BfTypeCode_UInt16:
case BfTypeCode_UInt32:
allowCast = true; break;
case BfTypeCode_UInt64:
if (mCompiler->mSystem->mPtrSize == 8)
allowCast = true;
break;
default: break;
}
break;
case BfTypeCode_Float:
switch (fromTypeCode)
{
case BfTypeCode_Int8:
case BfTypeCode_Int16:
case BfTypeCode_Int32:
case BfTypeCode_Int64:
case BfTypeCode_IntPtr:
case BfTypeCode_IntUnknown:
allowCast = true; break;
case BfTypeCode_UInt8:
case BfTypeCode_UInt16:
case BfTypeCode_UInt32:
case BfTypeCode_UInt64:
case BfTypeCode_UIntPtr:
case BfTypeCode_UIntUnknown:
allowCast = true; break;
default: break;
}
break;
case BfTypeCode_Double:
switch (fromTypeCode)
{
case BfTypeCode_Int8:
case BfTypeCode_Int16:
case BfTypeCode_Int32:
case BfTypeCode_Int64:
case BfTypeCode_IntPtr:
case BfTypeCode_IntUnknown:
allowCast = true; break;
case BfTypeCode_UInt8:
case BfTypeCode_UInt16:
case BfTypeCode_UInt32:
case BfTypeCode_UInt64:
case BfTypeCode_UIntPtr:
case BfTypeCode_UIntUnknown:
allowCast = true; break;
case BfTypeCode_Float:
allowCast = true; break;
default: break;
}
break;
default: break;
}
if (explicitCast)
{
if (((fromPrimType->IsIntegral()) || (fromPrimType->IsFloat())) &&
((toType->IsIntegral()) || (toType->IsFloat())))
allowCast = true;
}
if (allowCast)
{
if (typedVal.IsAddr())
typedVal = LoadValue(typedVal);
return mBfIRBuilder->CreateNumericCast(typedVal.mValue, typedVal.mType->IsSigned(), toTypeCode);
}
}
if (typedVal.mValue.IsConst())
{
if ((toType->IsPointer()) && (toType->GetUnderlyingType() == GetPrimitiveType(BfTypeCode_Char8)) && (typedVal.mType->IsInstanceOf(mCompiler->mStringTypeDef)))
{
int stringId = GetStringPoolIdx(typedVal.mValue, mBfIRBuilder);
if (stringId >= 0)
return GetStringCharPtr(stringId);
}
else if ((toType->IsInstanceOf(mCompiler->mStringViewTypeDef)))
{
int stringId = GetStringPoolIdx(typedVal.mValue, mBfIRBuilder);
bool isNull = false;
auto constant = mBfIRBuilder->GetConstant(typedVal.mValue);
if (constant->mTypeCode == BfTypeCode_NullPtr)
isNull = true;
if ((stringId >= 0) || (isNull))
{
int strLen = 0;
String str;
BfStringPoolEntry* entry = NULL;
if ((isNull) || (mContext->mStringObjectIdMap.TryGetValue(stringId, &entry)))
{
auto svTypeInst = toType->ToTypeInstance();
PopulateType(svTypeInst);
PopulateType(svTypeInst->mBaseType);
mBfIRBuilder->PopulateType(svTypeInst);
// Sanity check
if (svTypeInst->mMergedFieldDataCount == 2)
{
SizedArray<BfIRValue, 2> spanFieldVals;
spanFieldVals.Add(mBfIRBuilder->CreateConstAggZero(mBfIRBuilder->MapType(svTypeInst->mBaseType->mBaseType)));
if (isNull)
{
spanFieldVals.Add(mBfIRBuilder->CreateConstNull(mBfIRBuilder->MapType(CreatePointerType(GetPrimitiveType(BfTypeCode_Char8)))));
spanFieldVals.Add(mBfIRBuilder->CreateConst(BfTypeCode_IntPtr, 0));
}
else
{
auto stringCharPtr = GetStringCharPtr(stringId);
spanFieldVals.Add(stringCharPtr);
spanFieldVals.Add(mBfIRBuilder->CreateConst(BfTypeCode_IntPtr, entry->mString.mLength));
}
SizedArray<BfIRValue, 2> svFieldVals;
svFieldVals.Add(mBfIRBuilder->CreateConstAgg(mBfIRBuilder->MapType(svTypeInst->mBaseType), spanFieldVals));
return mBfIRBuilder->CreateConstAgg(mBfIRBuilder->MapType(svTypeInst), svFieldVals);
}
}
}
}
else if (toType->IsSizedArray())
{
auto sizedArray = (BfSizedArrayType*)toType;
if (sizedArray->mElementType == GetPrimitiveType(BfTypeCode_Char8))
{
int stringId = GetStringPoolIdx(typedVal.mValue, mBfIRBuilder);
if (stringId >= 0)
{
BfStringPoolEntry* entry = NULL;
if (mContext->mStringObjectIdMap.TryGetValue(stringId, &entry))
{
String& string = entry->mString;
if (string.GetLength() > sizedArray->mElementCount)
{
if (!ignoreErrors)
Fail(StrFormat("String literal is too long to fit into '%s'", TypeToString(sizedArray).c_str()), srcNode);
}
Array<BfIRValue> charValues;
for (int i = 0; i < (int)BF_MIN(string.GetLength(), sizedArray->mElementCount); i++)
{
char c = string[i];
charValues.Add(mBfIRBuilder->CreateConst(BfTypeCode_Char8, (int)(uint8)c));
}
if (sizedArray->mElementCount > charValues.size())
charValues.Add(mBfIRBuilder->CreateConst(BfTypeCode_Char8, 0));
return mBfIRBuilder->CreateConstAgg(mBfIRBuilder->MapType(sizedArray), charValues);
}
}
}
}
}
// Check user-defined operators
if (((castFlags & BfCastFlags_NoConversionOperator) == 0) && (toType != mContext->mBfObjectType))
{
BfType* walkFromType = typedVal.mType;
if (walkFromType->IsWrappableType())
walkFromType = GetWrappedStructType(walkFromType);
BfType* walkToType = toType;
if (walkToType->IsWrappableType())
walkToType = GetWrappedStructType(walkToType);
SizedArray<BfResolvedArg, 1> args;
BfResolvedArg resolvedArg;
resolvedArg.mTypedValue = typedVal;
if (resolvedArg.mTypedValue.IsParams())
{
resolvedArg.mTypedValue = LoadOrAggregateValue(resolvedArg.mTypedValue);
resolvedArg.mTypedValue.mKind = BfTypedValueKind_Value;
}
args.push_back(resolvedArg);
BfMethodMatcher methodMatcher(srcNode, this, "", args, BfMethodGenericArguments());
methodMatcher.mCheckReturnType = toType;
methodMatcher.mBfEvalExprFlags = (BfEvalExprFlags)(BfEvalExprFlags_NoAutoComplete | BfEvalExprFlags_FromConversionOp);
if ((castFlags & BfCastFlags_Explicit) != 0)
methodMatcher.mBfEvalExprFlags = (BfEvalExprFlags)(methodMatcher.mBfEvalExprFlags | BfEvalExprFlags_FromConversionOp_Explicit);
methodMatcher.mAllowImplicitRef = true;
methodMatcher.mAllowImplicitWrap = true;
BfBaseClassWalker baseClassWalker(walkFromType, walkToType, this);
bool isConstraintCheck = ((castFlags & BfCastFlags_IsConstraintCheck) != 0);
BfType* bestSelfType = NULL;
while (true)
{
auto entry = baseClassWalker.Next();
auto checkType = entry.mTypeInstance;
if (checkType == NULL)
break;
for (auto operatorDef : checkType->mTypeDef->mOperators)
{
if (operatorDef->mOperatorDeclaration->mIsConvOperator)
{
if ((!explicitCast) && (operatorDef->IsExplicit()))
continue;
if (!methodMatcher.IsMemberAccessible(checkType, operatorDef->mDeclaringType))
continue;
int prevArgSize = (int)args.mSize;
if (!operatorDef->mIsStatic)
{
// Try without arg
args.mSize = 0;
}
if (isConstraintCheck)
{
auto returnType = CheckOperator(checkType, operatorDef, typedVal, BfTypedValue());
if (returnType != NULL)
{
auto result = BfTypedValue(mBfIRBuilder->GetFakeVal(), returnType);
if (result)
{
if (result.mType != toType)
{
auto castedResult = CastToValue(srcNode, result, toType, (BfCastFlags)(castFlags | BfCastFlags_Explicit | BfCastFlags_NoConversionOperator), resultFlags);
if (castedResult)
return castedResult;
}
else
return result.mValue;
}
}
}
else
{
if (methodMatcher.CheckMethod(NULL, checkType, operatorDef, false))
methodMatcher.mSelfType = entry.mSrcType;
}
args.mSize = prevArgSize;
}
}
}
if (methodMatcher.mBestMethodDef != NULL)
{
if (mayBeBox)
{
if (!ignoreErrors)
{
if (Fail("Ambiguous cast, may be conversion operator or may be boxing request", srcNode) != NULL)
mCompiler->mPassInstance->MoreInfo("See conversion operator", methodMatcher.mBestMethodDef->GetRefNode());
}
else if (!silentFail)
SetFail();
}
}
if (methodMatcher.mBestMethodDef == NULL)
{
// Check method generic constraints
if ((mCurMethodInstance != NULL) && (mCurMethodInstance->mIsUnspecialized) && (mCurMethodInstance->mMethodInfoEx != NULL))
{
for (int genericParamIdx = 0; genericParamIdx < mCurMethodInstance->mMethodInfoEx->mGenericParams.size(); genericParamIdx++)
{
auto genericParam = mCurMethodInstance->mMethodInfoEx->mGenericParams[genericParamIdx];
for (auto& opConstraint : genericParam->mOperatorConstraints)
{
if ((opConstraint.mCastToken == BfToken_Implicit) ||
((explicitCast) && (opConstraint.mCastToken == BfToken_Explicit)))
{
// If we can convert OUR fromVal to the constraint's fromVal then we may match
if (CanCast(typedVal, opConstraint.mRightType, BfCastFlags_NoConversionOperator))
{
// .. and we can convert the constraint's toType to OUR toType then we're good
auto opToVal = genericParam->mExternType;
if (CanCast(BfTypedValue(BfIRValue::sValueless, opToVal), toType, BfCastFlags_NoConversionOperator))
{
if (mBfIRBuilder->IsConstValue(typedVal.mValue))
{
// Retain constness
return mBfIRBuilder->GetUndefConstValue(mBfIRBuilder->MapType(toType));
}
else
return mBfIRBuilder->GetFakeVal();
}
}
}
}
}
}
// Check type generic constraints
if ((mCurTypeInstance != NULL) && (mCurTypeInstance->IsGenericTypeInstance()) && (mCurTypeInstance->IsUnspecializedType()))
{
SizedArray<BfGenericParamInstance*, 4> genericParams;
GetActiveTypeGenericParamInstances(genericParams);
for (auto genericParam : genericParams)
{
for (auto& opConstraint : genericParam->mOperatorConstraints)
{
if ((opConstraint.mCastToken == BfToken_Implicit) ||
((explicitCast) && (opConstraint.mCastToken == BfToken_Explicit)))
{
// If we can convert OUR fromVal to the constraint's fromVal then we may match
if (CanCast(typedVal, opConstraint.mRightType, BfCastFlags_NoConversionOperator))
{
// .. and we can convert the constraint's toType to OUR toType then we're good
auto opToVal = genericParam->mExternType;
if (CanCast(BfTypedValue(BfIRValue::sValueless, opToVal), toType, BfCastFlags_NoConversionOperator))
{
if (mBfIRBuilder->IsConstValue(typedVal.mValue))
{
// Retain constness
return mBfIRBuilder->GetUndefConstValue(mBfIRBuilder->MapType(toType));
}
else
return mBfIRBuilder->GetFakeVal();
}
}
}
}
}
}
}
else
{
BfTypedValue result;
BfExprEvaluator exprEvaluator(this);
exprEvaluator.mBfEvalExprFlags = BfEvalExprFlags_FromConversionOp;
if ((castFlags & BfCastFlags_WantsConst) != 0)
exprEvaluator.mBfEvalExprFlags = (BfEvalExprFlags)(exprEvaluator.mBfEvalExprFlags | BfEvalExprFlags_Comptime);
auto methodDeclaration = BfNodeDynCast<BfMethodDeclaration>(methodMatcher.mBestMethodDef->mMethodDeclaration);
if ((methodDeclaration != NULL) && (methodDeclaration->mBody == NULL))
{
auto fromType = typedVal.mType;
// Handle the typedPrim<->underlying part implicitly
if (fromType->IsTypedPrimitive())
{
typedVal = LoadValue(typedVal);
auto convTypedValue = BfTypedValue(typedVal.mValue, fromType->GetUnderlyingType());
return CastToValue(srcNode, convTypedValue, toType, (BfCastFlags)(castFlags & ~BfCastFlags_Explicit), NULL);
}
else if (toType->IsTypedPrimitive())
{
auto castedVal = CastToValue(srcNode, typedVal, toType->GetUnderlyingType(), (BfCastFlags)(castFlags & ~BfCastFlags_Explicit), NULL);
return castedVal;
}
}
bool doCall = true;
auto moduleMethodInstance = exprEvaluator.GetSelectedMethod(methodMatcher);
if (moduleMethodInstance.mMethodInstance != NULL)
{
auto returnType = moduleMethodInstance.mMethodInstance->mReturnType;
auto paramType = moduleMethodInstance.mMethodInstance->GetParamType(0);
BfCastFlags implicitCastFlags = (BfCastFlags)(castFlags & ~BfCastFlags_Explicit | BfCastFlags_NoConversionOperator);
// Check typedPrimitive->underlying cast
if ((explicitCast) && (typedVal.mType->IsTypedPrimitive()))
{
auto underlyingType = typedVal.mType->GetUnderlyingType();
if ((returnType == underlyingType) && (explicitCast))
{
doCall = false;
}
else if ((CanCast(GetFakeTypedValue(underlyingType), toType, (BfCastFlags)(castFlags | BfCastFlags_NoConversionOperator))))
{
float underlyingCanCast = CanCast(GetFakeTypedValue(underlyingType), toType, implicitCastFlags);
float returnCanCast = CanCast(GetFakeTypedValue(returnType), toType, implicitCastFlags);
if ((underlyingCanCast) &&
(!returnCanCast))
{
doCall = false;
}
else if ((returnCanCast) &&
(!underlyingCanCast))
{
// Can do
}
else if ((CanCast(GetFakeTypedValue(underlyingType), returnType, implicitCastFlags)) &&
(!CanCast(GetFakeTypedValue(returnType), underlyingType, implicitCastFlags)))
{
// Can do
}
else
doCall = false;
}
}
// Check underlying->typedPrimitive cast
if ((explicitCast) && (toType->IsTypedPrimitive()))
{
auto underlyingType = toType->GetUnderlyingType();
if ((paramType == underlyingType) && (explicitCast))
{
doCall = false;
}
else if (CanCast(typedVal, underlyingType, (BfCastFlags)(castFlags | BfCastFlags_NoConversionOperator)))
{
float underlyingCanCast = CanCast(typedVal, underlyingType, implicitCastFlags);
float paramCanCast = CanCast(typedVal, paramType, implicitCastFlags);
if ((underlyingType) &&
(!paramCanCast))
{
doCall = false;
}
else if ((paramCanCast) &&
(!underlyingCanCast))
{
// Can do
}
else if ((CanCast(GetFakeTypedValue(underlyingType), paramType, implicitCastFlags)) &&
(!CanCast(GetFakeTypedValue(paramType), underlyingType, implicitCastFlags)))
{
// Can do
}
else
doCall = false;
}
}
if (doCall)
{
if (!silentFail)
methodMatcher.FlushAmbiguityError();
auto wantType = paramType;
if (wantType->IsRef())
wantType = wantType->GetUnderlyingType();
auto convTypedVal = methodMatcher.mArguments[0].mTypedValue;
if (wantType != convTypedVal.mType)
{
if ((convTypedVal.mType->IsWrappableType()) && (wantType == GetWrappedStructType(convTypedVal.mType)))
{
convTypedVal = MakeAddressable(convTypedVal);
methodMatcher.mArguments[0].mTypedValue = BfTypedValue(mBfIRBuilder->CreateBitCast(convTypedVal.mValue, mBfIRBuilder->MapTypeInstPtr(wantType->ToTypeInstance())),
paramType, paramType->IsRef() ? BfTypedValueKind_Value : BfTypedValueKind_Addr);
}
else
{
methodMatcher.mArguments[0].mTypedValue = Cast(srcNode, convTypedVal, wantType, (BfCastFlags)(castFlags | BfCastFlags_Explicit | BfCastFlags_NoConversionOperator));
if (paramType->IsRef())
{
convTypedVal = MakeAddressable(convTypedVal);
convTypedVal.mKind = BfTypedValueKind_Addr;
}
}
}
}
}
if (doCall)
{
if ((castFlags & BfCastFlags_IsCastCheck) != 0)
{
// We've already verified that we can cast from the return type to toType in MethodMatcher.CheckMethod
return mBfIRBuilder->GetFakeVal();
}
result = exprEvaluator.CreateCall(&methodMatcher, BfTypedValue());
if (result.mType != toType)
return CastToValue(srcNode, result, toType, (BfCastFlags)(castFlags | BfCastFlags_Explicit | BfCastFlags_NoConversionOperator), resultFlags);
if (result)
{
if (resultFlags != NULL)
{
if (result.IsAddr())
*resultFlags = (BfCastResultFlags)(*resultFlags | BfCastResultFlags_IsAddr);
if (result.mKind == BfTypedValueKind_TempAddr)
*resultFlags = (BfCastResultFlags)(*resultFlags | BfCastResultFlags_IsTemp);
}
else if (result.IsAddr())
result = LoadValue(result);
return result.mValue;
}
}
}
}
// Default typed primitive 'underlying casts' happen after checking cast operators
if (explicitCast)
{
// TypedPrimitive -> Primitive
if ((typedVal.mType->IsTypedPrimitive()) && (!typedVal.mType->IsFunction()) && (toType->IsPrimitiveType()))
{
auto fromTypedPrimitiveType = typedVal.mType->ToTypeInstance();
auto primTypedVal = BfTypedValue(typedVal.mValue, fromTypedPrimitiveType->mFieldInstances.back().mResolvedType, typedVal.IsAddr());
primTypedVal = LoadValue(primTypedVal);
return CastToValue(srcNode, primTypedVal, toType, castFlags);
}
// TypedPrimitive -> TypedPrimitive
if ((typedVal.mType->IsTypedPrimitive()) && (!typedVal.mType->IsFunction()) && (toType->IsTypedPrimitive()))
{
auto fromTypedPrimitiveType = typedVal.mType->ToTypeInstance();
auto toTypedPrimitiveType = toType->ToTypeInstance();
auto fromUnderlyingType = fromTypedPrimitiveType->GetUnderlyingType();
auto toUnderlyingType = toTypedPrimitiveType->GetUnderlyingType();
BfTypedValue underlyingTypedValue(typedVal.mValue, fromUnderlyingType, typedVal.IsAddr());
underlyingTypedValue = LoadValue(underlyingTypedValue);
BfIRValue castedToValue = CastToValue(srcNode, underlyingTypedValue, toUnderlyingType, (BfCastFlags)(castFlags | BfCastFlags_Explicit));
if (castedToValue)
return castedToValue;
}
}
else if ((typedVal.mType->IsTypedPrimitive()) && (toType->IsTypedPrimitive()))
{
if (TypeIsSubTypeOf(typedVal.mType->ToTypeInstance(), toType->ToTypeInstance()))
{
// These have the same underlying primitive type, just keep it all the same
if ((resultFlags != NULL) && (typedVal.IsAddr()))
*resultFlags = BfCastResultFlags_IsAddr;
return typedVal.mValue;
}
}
// Prim -> TypedPrimitive
if ((typedVal.mType->IsPrimitiveType()) && (toType->IsTypedPrimitive()))
{
bool allowCast = explicitCast;
if (toType == mCurTypeInstance)
allowCast = true;
if ((!allowCast) && (typedVal.mType->IsIntegral()) /*&& (!toType->IsEnum())*/)
{
// Allow implicit cast of zero
auto constant = mBfIRBuilder->GetConstant(typedVal.mValue);
if ((constant != NULL) && (mBfIRBuilder->IsInt(constant->mTypeCode)))
{
allowCast = constant->mInt64 == 0;
}
}
if (allowCast)
{
return CastToValue(srcNode, typedVal, toType->GetUnderlyingType(), castFlags);
}
}
if (typedVal.mType->IsBoxed())
{
BfBoxedType* boxedType = (BfBoxedType*)typedVal.mType;
if (boxedType->mElementType->IsGenericParam())
{
// If we have a boxed generic param, the actual available interfaces constraints won't be
// handled, so we need to pass through again as the root generic param
BfTypedValue unboxedValue = typedVal;
unboxedValue.mType = boxedType->mElementType;
auto result = CastToValue(srcNode, unboxedValue, toType, (BfCastFlags)(castFlags | BfCastFlags_SilentFail), resultFlags);
if (result)
return result;
}
}
if ((mayBeBox) && ((castFlags & BfCastFlags_NoBox) == 0))
{
BfScopeData* scopeData = NULL;
if (mCurMethodState != NULL)
{
if (mCurMethodState->mOverrideScope)
scopeData = mCurMethodState->mOverrideScope;
else
scopeData = mCurMethodState->mCurScope;
}
if ((castFlags & BfCastFlags_WarnOnBox) != 0)
{
Warn(0, "This implicit boxing will only be in scope during the constructor. Consider using a longer-term allocation such as 'box new'", srcNode);
}
SetAndRestoreValue<bool> prevIgnoreWrites(mBfIRBuilder->mIgnoreWrites, ignoreWrites);
auto value = BoxValue(srcNode, typedVal, toType, scopeData, castFlags);
if (value)
return value.mValue;
}
if (!ignoreErrors)
{
const char* errStrF = explicitCast ?
"Unable to cast '%s' to '%s'" :
"Unable to implicitly cast '%s' to '%s'";
if ((castFlags & BfCastFlags_FromComptimeReturn) != 0)
errStrF = "Comptime return unable to cast '%s' to '%s'";
String errStr = StrFormat(errStrF, TypeToString(typedVal.mType).c_str(), TypeToString(toType).c_str());
auto error = Fail(errStr, srcNode);
if ((error != NULL) && (srcNode != NULL))
{
if ((mCompiler->IsAutocomplete()) && (mCompiler->mResolvePassData->mAutoComplete->CheckFixit((srcNode))))
{
SetAndRestoreValue<bool> ignoreWrites(mBfIRBuilder->mIgnoreWrites);
SetAndRestoreValue<bool> ignoreErrors(mIgnoreErrors, true);
if (CastToValue(srcNode, typedVal, toType, (BfCastFlags)(BfCastFlags_Explicit | BfCastFlags_SilentFail)))
{
bool doWrap = false;
if (auto unaryOpExpr = BfNodeDynCast<BfUnaryOperatorExpression>(srcNode))
{
if ((unaryOpExpr->mOp != BfUnaryOp_AddressOf) && (unaryOpExpr->mOp != BfUnaryOp_Dereference))
doWrap = true;
}
if ((srcNode->IsA<BfCastExpression>()) ||
(srcNode->IsA<BfBinaryOperatorExpression>()) ||
(srcNode->IsA<BfConditionalExpression>()))
doWrap = true;
BfParserData* parser = srcNode->GetSourceData()->ToParserData();
String typeName = TypeToString(toType);
if (doWrap)
{
mCompiler->mResolvePassData->mAutoComplete->AddEntry(AutoCompleteEntry("fixit",
StrFormat("(%s)\tcast|%s|%d|(%s)(|`%d|)", typeName.c_str(), parser->mFileName.c_str(), srcNode->GetSrcStart(), typeName.c_str(), srcNode->GetSrcLength()).c_str()));
}
else
{
mCompiler->mResolvePassData->mAutoComplete->AddEntry(AutoCompleteEntry("fixit",
StrFormat("(%s)\tcast|%s|%d|(%s)", typeName.c_str(), parser->mFileName.c_str(), srcNode->GetSrcStart(), typeName.c_str()).c_str()));
}
}
}
}
}
else if (!silentFail)
SetFail();
return BfIRValue();
}
BfTypedValue BfModule::Cast(BfAstNode* srcNode, const BfTypedValue& typedVal, BfType* toType, BfCastFlags castFlags)
{
bool explicitCast = (castFlags & BfCastFlags_Explicit) != 0;
if (typedVal.mType == toType)
return typedVal;
if ((toType->IsSizedArray()) && (typedVal.mType->IsSizedArray()))
{
// Retain our type if we're casting from a known-sized array to an unknown-sized arrays
if ((toType->IsUndefSizedArray()) && ((typedVal.mType->GetUnderlyingType()) == (toType->GetUnderlyingType())))
{
return typedVal;
}
}
if ((castFlags & BfCastFlags_Force) != 0)
{
PopulateType(toType, BfPopulateType_Data);
if (toType->IsValuelessType())
return BfTypedValue(mBfIRBuilder->GetFakeVal(), toType);
if ((typedVal.mType->IsValueType()) && (!typedVal.IsAddr()) && (typedVal.IsSplat()) && (toType->IsValueType()))
{
bool needsMemberCasting = false;
if (AreSplatsCompatible(typedVal.mType, toType, &needsMemberCasting))
{
return BfTypedValue(typedVal.mValue, toType, needsMemberCasting ? BfTypedValueKind_SplatHead_NeedsCasting : BfTypedValueKind_SplatHead);
}
}
if (typedVal.mType->IsValueType())
{
auto addrTypedValue = MakeAddressable(typedVal);
auto toPtrType = CreatePointerType(toType);
return BfTypedValue(mBfIRBuilder->CreateBitCast(addrTypedValue.mValue, mBfIRBuilder->MapType(toPtrType)), toType, BfTypedValueKind_Addr);
}
return BfTypedValue(mBfIRBuilder->CreateBitCast(typedVal.mValue, mBfIRBuilder->MapType(toType)), toType);
}
// This tuple cast may create a new type if the toType contains 'var' entries
if ((typedVal.mType->IsTuple()) && (toType->IsTuple()))
{
PopulateType(toType);
auto fromTupleType = (BfTypeInstance*)typedVal.mType;
auto toTupleType = (BfTypeInstance*)toType;
if (fromTupleType == toTupleType)
return typedVal;
if (fromTupleType->mFieldInstances.size() == toTupleType->mFieldInstances.size())
{
BfTypeVector fieldTypes;
Array<String> fieldNames;
bool isCompatible = true;
bool isExactTypeMatch = true;
for (int fieldIdx = 0; fieldIdx < (int)fromTupleType->mFieldInstances.size(); fieldIdx++)
{
auto fromFieldInst = &fromTupleType->mFieldInstances[fieldIdx];
auto toFieldInst = &toTupleType->mFieldInstances[fieldIdx];
auto fromFieldDef = fromFieldInst->GetFieldDef();
auto toFieldDef = toFieldInst->GetFieldDef();
if (!toFieldDef->IsUnnamedTupleField())
{
if ((!explicitCast) &&
(!fromFieldDef->IsUnnamedTupleField()) &&
(fromFieldDef->mName != toFieldDef->mName))
isCompatible = false;
fieldNames.push_back(toFieldDef->mName);
}
else
fieldNames.push_back("");
if (toFieldInst->mResolvedType->IsVar())
fieldTypes.push_back(fromFieldInst->mResolvedType);
else
{
if (fromFieldInst->mResolvedType != toFieldInst->mResolvedType)
isExactTypeMatch = false;
BfCastFlags tryCastFlags = BfCastFlags_SilentFail;
if (explicitCast)
tryCastFlags = (BfCastFlags)(tryCastFlags | BfCastFlags_Explicit);
// The unused-token '?' comes out as 'void', so we allow that to match here. We may want to wrap that with a different fake type
// so we can give normal implicit-cast-to-void errors
if ((fromFieldInst->mResolvedType != toFieldInst->mResolvedType) && (!toFieldInst->mResolvedType->IsVoid()) &&
(!CanCast(GetFakeTypedValue(fromFieldInst->mResolvedType), toFieldInst->mResolvedType, tryCastFlags)))
isCompatible = false;
fieldTypes.push_back(toFieldInst->mResolvedType);
}
}
auto tupleType = CreateTupleType(fieldTypes, fieldNames);
AddDependency(tupleType, mCurTypeInstance, BfDependencyMap::DependencyFlag_ReadFields);
mBfIRBuilder->PopulateType(tupleType);
if (isCompatible)
{
if (isExactTypeMatch)
{
if (typedVal.mKind == BfTypedValueKind_TempAddr)
{
return BfTypedValue(mBfIRBuilder->CreateBitCast(typedVal.mValue, mBfIRBuilder->MapTypeInstPtr(tupleType)), tupleType, BfTypedValueKind_TempAddr);
}
else if (typedVal.IsAddr())
{
return BfTypedValue(mBfIRBuilder->CreateBitCast(typedVal.mValue, mBfIRBuilder->MapTypeInstPtr(tupleType)), tupleType, BfTypedValueKind_ReadOnlyAddr);
}
else if (typedVal.IsSplat())
{
BfTypedValue retTypedValue = typedVal;
retTypedValue.mType = tupleType;
return retTypedValue;
}
BfIRValue curTupleValue = CreateAlloca(tupleType);
auto loadedVal = LoadValue(typedVal);
mBfIRBuilder->CreateStore(loadedVal.mValue, mBfIRBuilder->CreateBitCast(curTupleValue, mBfIRBuilder->MapTypeInstPtr(fromTupleType)));
return BfTypedValue(curTupleValue, tupleType, BfTypedValueKind_TempAddr);
}
BfIRValue curTupleValue = CreateAlloca(tupleType);
for (int fieldIdx = 0; fieldIdx < (int)fromTupleType->mFieldInstances.size(); fieldIdx++)
{
BfFieldInstance* fromFieldInstance = &fromTupleType->mFieldInstances[fieldIdx];
BfFieldInstance* toFieldInstance = &tupleType->mFieldInstances[fieldIdx];
if (toFieldInstance->mDataIdx >= 0)
{
if (fromFieldInstance->mDataIdx >= 0)
{
auto elementVal = ExtractValue(typedVal, fromFieldInstance, fromFieldInstance->mDataIdx);
elementVal = LoadValue(elementVal);
auto castedElementVal = Cast(srcNode, elementVal, toFieldInstance->GetResolvedType(), castFlags);
if (!castedElementVal)
return BfTypedValue();
auto fieldRef = mBfIRBuilder->CreateInBoundsGEP(curTupleValue, 0, toFieldInstance->mDataIdx);
castedElementVal = LoadValue(castedElementVal);
mBfIRBuilder->CreateStore(castedElementVal.mValue, fieldRef);
}
else
isCompatible = false;
}
}
return BfTypedValue(curTupleValue, tupleType, BfTypedValueKind_TempAddr);
}
}
const char* errStr = explicitCast ?
"Unable to cast '%s' to '%s'" :
"Unable to implicitly cast '%s' to '%s'";
Fail(StrFormat(errStr, TypeToString(typedVal.mType).c_str(), TypeToString(toType).c_str()), srcNode);
return BfTypedValue();
}
// Function->Function and Delegate->Delegate where type is compatible but not exact
if (((typedVal.mType->IsDelegate()) || (typedVal.mType->IsFunction())) &&
(typedVal.mType != toType) && // Don't bother to check for exact match, let CastToValue handle this
((typedVal.mType->IsDelegate()) == (toType->IsDelegate())) &&
((typedVal.mType->IsFunction()) == (toType->IsFunction())))
{
auto fromTypeInst = typedVal.mType->ToTypeInstance();
auto toTypeInst = toType->ToTypeInstance();
auto fromMethodInst = GetRawMethodByName(fromTypeInst, "Invoke", -1, true);
auto toMethodInst = GetRawMethodByName(toTypeInst, "Invoke", -1, true);
auto toDelegateInfo = toTypeInst->GetDelegateInfo();
if ((fromMethodInst != NULL) && (toMethodInst != NULL) &&
(fromMethodInst->mCallingConvention == toMethodInst->mCallingConvention) &&
(fromMethodInst->mMethodDef->mIsMutating == toMethodInst->mMethodDef->mIsMutating) &&
(fromMethodInst->mReturnType == toMethodInst->mReturnType) &&
(fromMethodInst->GetParamCount() == toMethodInst->GetParamCount()))
{
bool matched = true;
StringT<64> fromParamName;
StringT<64> toParamName;
if (fromMethodInst->HasExplicitThis() != toMethodInst->HasExplicitThis())
{
matched = false;
}
else
{
for (int paramIdx = 0; paramIdx < (int)fromMethodInst->GetParamCount(); paramIdx++)
{
bool nameMatches = true;
if (!explicitCast)
{
int fromNamePrefixCount = 0;
int toNamePrefixCount = 0;
fromMethodInst->GetParamName(paramIdx, fromParamName, fromNamePrefixCount);
toMethodInst->GetParamName(paramIdx, toParamName, toNamePrefixCount);
if ((!fromParamName.IsEmpty()) && (!toParamName.IsEmpty()))
nameMatches = fromParamName == toParamName;
}
if ((fromMethodInst->GetParamKind(paramIdx) == toMethodInst->GetParamKind(paramIdx)) &&
(fromMethodInst->GetParamType(paramIdx) == toMethodInst->GetParamType(paramIdx)) &&
(nameMatches))
{
// Matched, required for implicit/explicit
}
else
{
matched = false;
break;
}
}
}
if (matched)
{
BfTypedValue loadedVal = LoadValue(typedVal);
return BfTypedValue(mBfIRBuilder->CreateBitCast(loadedVal.mValue, mBfIRBuilder->MapType(toType)), toType);
}
}
}
// Struct truncate
if ((typedVal.mType->IsStruct()) && (toType->IsStruct()))
{
auto fromStructTypeInstance = typedVal.mType->ToTypeInstance();
auto toStructTypeInstance = toType->ToTypeInstance();
if (TypeIsSubTypeOf(fromStructTypeInstance, toStructTypeInstance))
{
if (typedVal.IsSplat())
{
if ((!toStructTypeInstance->IsSplattable()) && (toStructTypeInstance->mInstSize != 0))
return Cast(srcNode, MakeAddressable(typedVal), toType, castFlags);
BF_ASSERT(toStructTypeInstance->IsSplattable() || (toStructTypeInstance->mInstSize == 0));
return BfTypedValue(typedVal.mValue, toStructTypeInstance, typedVal.IsThis() ? BfTypedValueKind_ThisSplatHead : BfTypedValueKind_SplatHead);
}
if (typedVal.IsAddr())
{
BfIRValue castedIRValue;
if (typedVal.mValue.IsFake())
castedIRValue = typedVal.mValue;
else
castedIRValue = mBfIRBuilder->CreateBitCast(typedVal.mValue, mBfIRBuilder->MapTypeInstPtr(toStructTypeInstance));
return BfTypedValue(castedIRValue, toType, typedVal.IsThis() ?
(typedVal.IsReadOnly() ? BfTypedValueKind_ReadOnlyThisAddr : BfTypedValueKind_ThisAddr) :
(typedVal.IsReadOnly() ? BfTypedValueKind_ReadOnlyAddr : BfTypedValueKind_Addr));
}
BfTypedValue curTypedVal = typedVal;
while (curTypedVal.mType != toStructTypeInstance)
{
mBfIRBuilder->PopulateType(curTypedVal.mType);
auto curTypeInstance = curTypedVal.mType->ToTypeInstance();
BfIRValue extractedValue;
if (toStructTypeInstance->IsValuelessType())
extractedValue = mBfIRBuilder->GetFakeVal();
else
extractedValue = mBfIRBuilder->CreateExtractValue(curTypedVal.mValue, 0);
curTypedVal = BfTypedValue(extractedValue, curTypeInstance->mBaseType, typedVal.IsThis() ?
(typedVal.IsReadOnly() ? BfTypedValueKind_ReadOnlyThisValue : BfTypedValueKind_ThisValue) :
BfTypedValueKind_Value);
}
return curTypedVal;
}
}
/*if ((explicitCast) && (toType->IsValuelessType()))
{
return BfTypedValue(mBfIRBuilder->GetFakeVal(), toType);
}*/
BfCastResultFlags castResultFlags = BfCastResultFlags_None;
auto castedValue = CastToValue(srcNode, typedVal, toType, castFlags, &castResultFlags);
if (!castedValue)
return BfTypedValue();
if ((castResultFlags & BfCastResultFlags_IsAddr) != 0)
{
if ((castResultFlags & BfCastResultFlags_IsTemp) != 0)
return BfTypedValue(castedValue, toType, BfTypedValueKind_TempAddr);
return BfTypedValue(castedValue, toType, BfTypedValueKind_Addr);
}
return BfTypedValue(castedValue, toType, BfTypedValueKind_Value);
}
BfPrimitiveType* BfModule::GetIntCoercibleType(BfType* type)
{
if (type->IsSizedArray())
{
auto sizedArray = (BfSizedArrayType*)type;
if ((sizedArray->mElementType->IsChar()) && (sizedArray->mElementType->mSize == 1))
{
auto primType = (BfPrimitiveType*)sizedArray->mElementType;
if (sizedArray->mElementCount == 1)
return GetPrimitiveType(BfTypeCode_UInt8);
if (sizedArray->mElementCount == 2)
return GetPrimitiveType(BfTypeCode_UInt16);
if (sizedArray->mElementCount == 4)
return GetPrimitiveType(BfTypeCode_UInt32);
if (sizedArray->mElementCount == 8)
return GetPrimitiveType(BfTypeCode_UInt64);
}
}
return NULL;
}
BfTypedValue BfModule::GetIntCoercible(const BfTypedValue& typedValue)
{
auto intType = GetIntCoercibleType(typedValue.mType);
if (intType == NULL)
return BfTypedValue();
if (typedValue.mValue.IsConst())
{
auto constant = mBfIRBuilder->GetConstant(typedValue.mValue);
if (constant->mConstType == BfConstType_Agg)
{
uint64 intVal = 0;
auto constantArray = (BfConstantAgg*)constant;
int memberIdx = 0;
for (int memberIdx = 0; memberIdx < (int)constantArray->mValues.size(); memberIdx++)
{
auto memberConstant = mBfIRBuilder->GetConstant(constantArray->mValues[memberIdx]);
if (memberConstant->mTypeCode == BfTypeCode_Char8)
{
intVal |= (uint64)(memberConstant->mUInt8) << (8 * memberIdx);
//intVal = (intVal << 8) | memberConstant->mUInt8;
}
}
return BfTypedValue(mBfIRBuilder->CreateConst(intType->mTypeDef->mTypeCode, intVal), intType);
}
}
auto convTypedValue = typedValue;
convTypedValue = MakeAddressable(convTypedValue);
auto intPtrType = CreatePointerType(intType);
auto addrVal = mBfIRBuilder->CreateBitCast(convTypedValue.mValue, mBfIRBuilder->MapType(intPtrType));
auto val = mBfIRBuilder->CreateLoad(addrVal);
return BfTypedValue(val, intType);
}
bool BfModule::TypeHasParentOrEquals(BfTypeDef* checkChildTypeDef, BfTypeDef* checkParentTypeDef)
{
BfTypeDef* checkType = checkChildTypeDef;
if (checkType->mNestDepth < checkParentTypeDef->mNestDepth)
return false;
while (checkType->mNestDepth > checkParentTypeDef->mNestDepth)
checkType = checkType->mOuterType;
if (checkType->GetDefinition() == checkParentTypeDef->GetDefinition())
return true;
if (checkType->mNameEx != checkParentTypeDef->mNameEx)
return false;
if (checkType->mIsPartial)
{
for (auto partial : checkParentTypeDef->mPartials)
if (partial == checkType)
return true;
}
return false;
}
BfTypeDef* BfModule::FindCommonOuterType(BfTypeDef* type, BfTypeDef* type2)
{
if ((type == NULL) || (type2 == NULL))
return NULL;
int curNestDepth = BF_MIN(type->mNestDepth, type2->mNestDepth);
while (type->mNestDepth > curNestDepth)
type = type->mOuterType;
while (type2->mNestDepth > curNestDepth)
type2 = type2->mOuterType;
while (curNestDepth >= 0)
{
if ((!type->mIsPartial) && (!type2->mIsPartial))
{
if (type->GetDefinition() == type2->GetDefinition())
return type;
}
else
{
if (type->mFullNameEx == type2->mFullNameEx)
return type;
}
type = type->mOuterType;
type2 = type2->mOuterType;
curNestDepth--;
}
return NULL;
}
bool BfModule::TypeIsSubTypeOf(BfTypeInstance* srcType, BfTypeInstance* wantType, bool checkAccessibility)
{
if ((srcType == NULL) || (wantType == NULL))
return false;
if (srcType == wantType)
return true;
if (srcType->mDefineState < BfTypeDefineState_HasInterfaces_Direct)
{
if (srcType->mDefineState == BfTypeDefineState_ResolvingBaseType)
{
auto typeState = mContext->mCurTypeState;
while (typeState != NULL)
{
if ((typeState->mType == srcType) && (typeState->mCurBaseType != NULL))
{
return TypeIsSubTypeOf(typeState->mCurBaseType, wantType, checkAccessibility);
}
typeState = typeState->mPrevState;
}
}
// Type is incomplete. We don't do the IsIncomplete check here because of re-entry
// While handling 'var' resolution, we don't want to force a PopulateType reentry
// but we do have enough information for TypeIsSubTypeOf
PopulateType(srcType, BfPopulateType_Interfaces_Direct);
}
if (wantType->IsInterface())
{
if (wantType->mDefineState < BfTypeDefineState_HasInterfaces_All)
PopulateType(srcType, BfPopulateType_Interfaces_All);
BfTypeDef* checkActiveTypeDef = NULL;
bool checkAccessibility = true;
if (IsInSpecializedSection())
{
// When we have a specialized section, the generic params may not be considered "included"
// in the module that contains the generic type definition. We rely on any casting errors
// to be thrown on the unspecialized type pass. We have a similar issue with injecting mixins.
checkAccessibility = false;
}
auto checkType = srcType;
while (checkType != NULL)
{
for (auto ifaceInst : checkType->mInterfaces)
{
if (ifaceInst.mInterfaceType == wantType)
{
if (checkAccessibility)
{
if (checkActiveTypeDef == NULL)
checkActiveTypeDef = GetActiveTypeDef(NULL, false, true);
// We need to be lenient when validating generic constraints
// Otherwise "T<A> where T : IB" declared in a lib won't be able to match a type B in a using project 'C',
// because this check will see the lib using 'C', which it won't consider visible
if ((checkActiveTypeDef != NULL) &&
((mCurMethodInstance != NULL) && (mContext->mCurTypeState != NULL) && (mContext->mCurTypeState->mResolveKind != BfTypeState::ResolveKind_BuildingGenericParams)))
{
if ((!srcType->IsTypeMemberAccessible(ifaceInst.mDeclaringType, checkActiveTypeDef)) ||
(!srcType->IsTypeMemberIncluded(ifaceInst.mDeclaringType, checkActiveTypeDef, this)))
{
continue;
}
}
}
return true;
}
}
checkType = checkType->GetImplBaseType();
if ((checkType != NULL) && (checkType->mDefineState < BfTypeDefineState_CETypeInit))
{
// We check BfTypeDefineState_CETypeInit so we don't cause a populate loop during interface checking during CETypeInit
PopulateType(checkType, BfPopulateType_Interfaces_All);
}
}
if (srcType->IsTypedPrimitive())
{
BfType* underlyingType = srcType->GetUnderlyingType();
if (underlyingType->IsWrappableType())
{
BfTypeInstance* wrappedType = GetWrappedStructType(underlyingType);
if ((wrappedType != NULL) && (wrappedType != srcType))
return TypeIsSubTypeOf(wrappedType, wantType, checkAccessibility);
}
}
return false;
}
auto srcBaseType = srcType->mBaseType;
return TypeIsSubTypeOf(srcBaseType, wantType);
}
bool BfModule::TypeIsSubTypeOf(BfTypeInstance* srcType, BfTypeDef* wantType)
{
if ((srcType == NULL) || (wantType == NULL))
return false;
if (srcType->IsInstanceOf(wantType))
return true;
if (srcType->mDefineState < BfTypeDefineState_HasInterfaces_Direct)
{
if (srcType->mDefineState == BfTypeDefineState_ResolvingBaseType)
{
auto typeState = mContext->mCurTypeState;
while (typeState != NULL)
{
if ((typeState->mType == srcType) && (typeState->mCurBaseType != NULL))
{
return TypeIsSubTypeOf(typeState->mCurBaseType, wantType);
}
typeState = typeState->mPrevState;
}
}
// Type is incomplete. We don't do the IsIncomplete check here because of re-entry
// While handling 'var' resolution, we don't want to force a PopulateType reentry
// but we do have enough information for TypeIsSubTypeOf
PopulateType(srcType, BfPopulateType_Interfaces_Direct);
}
if (wantType->mTypeCode == BfTypeCode_Interface)
{
if (srcType->mDefineState < BfTypeDefineState_HasInterfaces_All)
PopulateType(srcType, BfPopulateType_Interfaces_All);
BfTypeDef* checkActiveTypeDef = NULL;
auto checkType = srcType;
while (checkType != NULL)
{
for (auto ifaceInst : checkType->mInterfaces)
{
if (ifaceInst.mInterfaceType->IsInstanceOf(wantType))
return true;
}
checkType = checkType->GetImplBaseType();
if ((checkType != NULL) && (checkType->mDefineState < BfTypeDefineState_HasInterfaces_All))
{
PopulateType(checkType, BfPopulateType_Interfaces_All);
}
}
if (srcType->IsTypedPrimitive())
{
BfType* underlyingType = srcType->GetUnderlyingType();
if (underlyingType->IsWrappableType())
{
BfTypeInstance* wrappedType = GetWrappedStructType(underlyingType);
if ((wrappedType != NULL) && (wrappedType != srcType))
return TypeIsSubTypeOf(wrappedType, wantType);
}
}
return false;
}
auto srcBaseType = srcType->mBaseType;
return TypeIsSubTypeOf(srcBaseType, wantType);
}
// Positive value means that toType encompasses fromType, negative value means toType is encompassed by formType
// INT_MAX means the types are not related
int BfModule::GetTypeDistance(BfType* fromType, BfType* toType)
{
if (fromType == toType)
return 0;
if (fromType->IsPrimitiveType())
{
if (!toType->IsPrimitiveType())
return INT_MAX;
auto fromPrimType = (BfPrimitiveType*)fromType;
auto toPrimType = (BfPrimitiveType*)toType;
if ((fromPrimType->IsIntegral()) && (toPrimType->IsIntegral()))
{
int fromBitSize = fromPrimType->mSize * 8;
if (fromPrimType->IsSigned())
fromBitSize--;
int toBitSize = toPrimType->mSize * 8;
if (toPrimType->IsSigned())
toBitSize--;
return fromBitSize - toBitSize;
}
if ((fromPrimType->IsFloat()) && (toPrimType->IsFloat()))
{
return (fromPrimType->mSize * 8) - (toPrimType->mSize * 8);
}
if (((fromPrimType->IsIntegral()) || (fromPrimType->IsFloat())) &&
((toPrimType->IsIntegral()) || (toPrimType->IsFloat())))
{
int sizeDiff = (fromPrimType->mSize * 8) - (toPrimType->mSize * 8);
if (sizeDiff < 0)
sizeDiff--;
else
sizeDiff++;
return sizeDiff;
}
return INT_MAX;
}
auto fromTypeInstance = fromType->ToTypeInstance();
auto toTypeInstance = toType->ToTypeInstance();
if ((fromTypeInstance != NULL) != (toTypeInstance != NULL))
return INT_MAX; // Ever valid?
if ((fromTypeInstance != NULL) && (toTypeInstance != NULL))
{
if ((fromTypeInstance->IsNullable()) && (toTypeInstance->IsNullable()))
return GetTypeDistance(fromTypeInstance->GetUnderlyingType(), toTypeInstance->GetUnderlyingType());
int inheritDistance = toTypeInstance->mInheritDepth - fromTypeInstance->mInheritDepth;
auto mostSpecificInstance = (inheritDistance < 0) ? fromTypeInstance : toTypeInstance;
auto leastSpecificInstance = (inheritDistance < 0) ? toTypeInstance : fromTypeInstance;
while (mostSpecificInstance != NULL)
{
if (mostSpecificInstance == leastSpecificInstance)
return inheritDistance;
mostSpecificInstance = mostSpecificInstance->mBaseType;
}
}
return INT_MAX;
}
bool BfModule::IsTypeMoreSpecific(BfType* leftType, BfType* rightType)
{
if (leftType->IsGenericTypeInstance())
{
if (!rightType->IsGenericTypeInstance())
return true;
auto leftGenericType = (BfTypeInstance*)leftType;
auto rightGenericType = (BfTypeInstance*)rightType;
if (leftGenericType->mTypeDef != rightGenericType->mTypeDef)
return false;
bool isBetter = false;
bool isWorse = false;
for (int argIdx = 0; argIdx < (int)leftGenericType->mGenericTypeInfo->mTypeGenericArguments.size(); argIdx++)
{
if (IsTypeMoreSpecific(leftGenericType->mGenericTypeInfo->mTypeGenericArguments[argIdx], rightGenericType->mGenericTypeInfo->mTypeGenericArguments[argIdx]))
isBetter = true;
if (IsTypeMoreSpecific(rightGenericType->mGenericTypeInfo->mTypeGenericArguments[argIdx], leftGenericType->mGenericTypeInfo->mTypeGenericArguments[argIdx]))
isWorse = true;
}
return (isBetter) && (!isWorse);
}
return false;
}
StringT<128> BfModule::TypeToString(BfType* resolvedType, Array<String>* genericMethodParamNameOverrides)
{
BfTypeNameFlags flags = BfTypeNameFlags_None;
if ((mCurTypeInstance == NULL) || (!mCurTypeInstance->IsUnspecializedTypeVariation()))
flags = BfTypeNameFlag_ResolveGenericParamNames;
StringT<128> str;
DoTypeToString(str, resolvedType, flags, genericMethodParamNameOverrides);
return str;
}
StringT<128> BfModule::TypeToString(BfType* resolvedType, BfTypeNameFlags typeNameFlags, Array<String>* genericMethodParamNameOverrides)
{
StringT<128> str;
DoTypeToString(str, resolvedType, typeNameFlags, genericMethodParamNameOverrides);
return str;
}
void BfModule::DataToString(StringImpl& str, void* ptr, BfType* type)
{
if (type->IsPrimitiveType())
{
BfPrimitiveType* primType = (BfPrimitiveType*)type;
BfTypeCode typeCode = primType->GetTypeCode();
if (typeCode == BfTypeCode_IntPtr)
{
if (mSystem->mPtrSize == 8)
typeCode = BfTypeCode_Int64;
else
typeCode = BfTypeCode_Int32;
}
else if (typeCode == BfTypeCode_UIntPtr)
{
if (mSystem->mPtrSize == 8)
typeCode = BfTypeCode_UInt64;
else
typeCode = BfTypeCode_UInt32;
}
switch (typeCode)
{
case BfTypeCode_Boolean:
if (*(uint8*)ptr == 0)
str += "false";
else if (*(uint8*)ptr == 1)
str += "true";
else
str += StrFormat("%d", *(uint8*)ptr);
break;
case BfTypeCode_Int8:
str += StrFormat("%d", *(int8*)ptr);
break;
case BfTypeCode_UInt8:
str += StrFormat("%d", *(uint8*)ptr);
break;
case BfTypeCode_Int16:
str += StrFormat("%d", *(int16*)ptr);
break;
case BfTypeCode_UInt16:
str += StrFormat("%d", *(uint16*)ptr);
break;
case BfTypeCode_Int32:
str += StrFormat("%d", *(int32*)ptr);
break;
case BfTypeCode_Char8:
case BfTypeCode_Char16:
case BfTypeCode_Char32:
{
uint32 c = 0;
if (typeCode == BfTypeCode_Char8)
c = *(uint8*)ptr;
else if (typeCode == BfTypeCode_Char16)
c = *(uint16*)ptr;
else if (typeCode == BfTypeCode_Char32)
c = *(uint32*)ptr;
if ((c >= 32) && (c <= 0x7E))
str += StrFormat("'%c'", (char)c);
else if (c <= 0xFF)
str += StrFormat("'\\x%2X'", c);
else
str += StrFormat("'\\u{%X}'", c);
}
break;
case BfTypeCode_UInt32:
str += StrFormat("%lu", *(uint32*)ptr);
break;
case BfTypeCode_Int64:
str += StrFormat("%lld", *(int64*)ptr);
break;
case BfTypeCode_UInt64:
str += StrFormat("%llu", *(uint64*)ptr);
break;
case BfTypeCode_Float:
{
char cstr[64];
ExactMinimalFloatToStr(*(float*)ptr, cstr);
str += cstr;
if (strchr(cstr, '.') == NULL)
str += ".0f";
else
str += "f";
}
break;
case BfTypeCode_Double:
{
char cstr[64];
ExactMinimalDoubleToStr(*(double*)ptr, cstr);
str += cstr;
if (strchr(cstr, '.') == NULL)
str += ".0";
}
break;
case BfTypeCode_StringId:
{
int stringId = *(int32*)ptr;
auto stringPoolEntry = mContext->mStringObjectIdMap[stringId];
str += '"';
str += SlashString(stringPoolEntry.mString, false, false, true);
str += '"';
}
break;
case BfTypeCode_Let:
str += "?";
break;
default: break;
}
}
else
{
if (type->IsInstanceOf(mCompiler->mClosedRangeTypeDef))
{
if (type->mSize == 16)
str += StrFormat("%d...%d", ((int64*)ptr)[0], ((int64*)ptr)[1]);
else
str += StrFormat("%d...%d", ((int32*)ptr)[0], ((int32*)ptr)[1]);
return;
}
if (type->IsInstanceOf(mCompiler->mRangeTypeDef))
{
if (type->mSize == 16)
str += StrFormat("%d..<%d", ((int64*)ptr)[0], ((int64*)ptr)[1]);
else
str += StrFormat("%d..<%d", ((int32*)ptr)[0], ((int32*)ptr)[1]);
return;
}
BfTypeInstance* typeInstance = type->ToTypeInstance();
if (typeInstance != NULL)
{
str += "(";
DoPopulateType(typeInstance);
int showIdx = 0;
if ((typeInstance->mBaseType != NULL) && (!typeInstance->mBaseType->IsInstanceOf(mCompiler->mValueTypeTypeDef)))
{
DataToString(str, ptr, typeInstance->mBaseType);
showIdx++;
}
for (auto& fieldInstance : typeInstance->mFieldInstances)
{
if (fieldInstance.mDataOffset >= 0)
{
if (showIdx > 0)
str += ", ";
DataToString(str, (uint8*)ptr + fieldInstance.mDataOffset, fieldInstance.mResolvedType);
showIdx++;
}
}
str += ")";
}
else if (type->IsPointer())
str += "null";
else
{
str += "uint8[](";
for (int i = 0; i < type->mSize; i++)
{
if (i > 0)
str += ", ";
str += StrFormat("%d", ((uint8_t*)ptr)[i]);
}
str += ")";
}
}
}
void BfModule::VariantToString(StringImpl& str, const BfVariant& variant, BfType* type)
{
switch (variant.mTypeCode)
{
case BfTypeCode_Boolean:
if (variant.mUInt64 == 0)
str += "false";
else if (variant.mUInt64 == 1)
str += "true";
else
str += StrFormat("%lld", variant.mInt64);
break;
case BfTypeCode_Int8:
case BfTypeCode_UInt8:
case BfTypeCode_Int16:
case BfTypeCode_UInt16:
case BfTypeCode_Int32:
str += StrFormat("%d", variant.mInt32);
break;
case BfTypeCode_Char8:
case BfTypeCode_Char16:
case BfTypeCode_Char32:
if ((variant.mUInt32 >= 32) && (variant.mUInt32 <= 0x7E))
str += StrFormat("'%c'", (char)variant.mUInt32);
else if (variant.mUInt32 <= 0xFF)
str += StrFormat("'\\x%2X'", variant.mUInt32);
else
str += StrFormat("'\\u{%X}'", variant.mUInt32);
break;
case BfTypeCode_UInt32:
str += StrFormat("%lu", variant.mUInt32);
break;
case BfTypeCode_Int64:
str += StrFormat("%lld", variant.mInt64);
break;
case BfTypeCode_UInt64:
str += StrFormat("%llu", variant.mInt64);
break;
case BfTypeCode_Float:
{
char cstr[64];
ExactMinimalFloatToStr(variant.mSingle, cstr);
str += cstr;
if (strchr(cstr, '.') == NULL)
str += ".0f";
else
str += "f";
}
break;
case BfTypeCode_Double:
{
char cstr[64];
ExactMinimalDoubleToStr(variant.mDouble, cstr);
str += cstr;
if (strchr(cstr, '.') == NULL)
str += ".0";
}
break;
case BfTypeCode_StringId:
{
int stringId = variant.mInt32;
auto stringPoolEntry = mContext->mStringObjectIdMap[stringId];
str += '"';
str += SlashString(stringPoolEntry.mString, false, false, true);
str += '"';
}
break;
case BfTypeCode_Let:
str += "?";
break;
case BfTypeCode_Struct:
{
BfVariant::StructData* structData = (BfVariant::StructData*)variant.mPtr;
if (type == NULL)
{
str += "uint8[](";
for (int i = 0; i < structData->mSize; i++)
{
if (i > 0)
str += ", ";
str += StrFormat("%d", structData->mData[i]);
}
str += ")";
break;
}
DataToString(str, structData->mData, type);
}
break;
default: break;
}
}
void BfModule::DoTypeToString(StringImpl& str, BfType* resolvedType, BfTypeNameFlags typeNameFlags, Array<String>* genericMethodNameOverrides)
{
BP_ZONE("BfModule::DoTypeToString");
if ((typeNameFlags & BfTypeNameFlag_AddProjectName) != 0)
{
BfProject* defProject = NULL;
auto typeInst = resolvedType->ToTypeInstance();
if (typeInst != NULL)
{
defProject = typeInst->mTypeDef->mProject;
str += defProject->mName;
str += ":";
}
SizedArray<BfProject*, 4> projectList;
BfTypeUtils::GetProjectList(resolvedType, &projectList, 0);
if (!projectList.IsEmpty())
{
if (defProject != projectList[0])
{
str += projectList[0]->mName;
str += ":";
}
}
typeNameFlags = (BfTypeNameFlags)(typeNameFlags & ~BfTypeNameFlag_AddProjectName);
}
// This is clearly wrong. If we pass in @T0 from a generic type, this would immediately disable the ability to get its name
/*if (resolvedType->IsUnspecializedType())
typeNameFlags = (BfTypeNameFlags)(typeNameFlags & ~BfTypeNameFlag_ResolveGenericParamNames);*/
if (resolvedType->IsBoxed())
{
auto boxedType = (BfBoxedType*)resolvedType;
str += "boxed ";
DoTypeToString(str, boxedType->mElementType, typeNameFlags, genericMethodNameOverrides);
if (boxedType->mBoxedFlags == BfBoxedType::BoxedFlags_StructPtr)
str += "*";
return;
}
else if ((resolvedType->IsArray()) && ((typeNameFlags & BfTypeNameFlag_UseArrayImplType) == 0))
{
auto arrayType = (BfArrayType*)resolvedType;
DoTypeToString(str, arrayType->mGenericTypeInfo->mTypeGenericArguments[0], typeNameFlags, genericMethodNameOverrides);
str += "[";
for (int i = 1; i < arrayType->mDimensions; i++)
str += ",";
str += "]";
return;
}
else if (resolvedType->IsNullable())
{
auto genericType = (BfTypeInstance*)resolvedType;
auto elementType = genericType->mGenericTypeInfo->mTypeGenericArguments[0];
DoTypeToString(str, elementType, typeNameFlags, genericMethodNameOverrides);
str += "?";
return;
}
else if (resolvedType->IsTuple())
{
BfTypeInstance* tupleType = (BfTypeInstance*)resolvedType;
str += "(";
for (int fieldIdx = 0; fieldIdx < (int)tupleType->mFieldInstances.size(); fieldIdx++)
{
if (fieldIdx > 0)
str += ", ";
BfFieldInstance* fieldInstance = &tupleType->mFieldInstances[fieldIdx];
BfFieldDef* fieldDef = fieldInstance->GetFieldDef();
BfTypeNameFlags innerFlags = (BfTypeNameFlags)(typeNameFlags & ~(BfTypeNameFlag_OmitNamespace | BfTypeNameFlag_OmitOuterType | BfTypeNameFlag_ExtendedInfo));
DoTypeToString(str, fieldInstance->GetResolvedType(), innerFlags, genericMethodNameOverrides);
char c = fieldDef->mName[0];
if ((c < '0') || (c > '9'))
{
str += " ";
str += fieldDef->mName;
}
}
str += ")";
return;
}
else if (resolvedType->IsDelegateFromTypeRef() || resolvedType->IsFunctionFromTypeRef())
{
SetAndRestoreValue<BfTypeInstance*> prevTypeInstance(mCurTypeInstance);
auto delegateType = (BfTypeInstance*)resolvedType;
auto delegateInfo = resolvedType->GetDelegateInfo();
if (mCurTypeInstance == delegateType)
{
// Don't try to use ourselves for generic param resolution. This should only happen for debug printings from
// within InitType and such, not actual user-facing display
mCurTypeInstance = NULL;
}
auto methodDef = delegateType->mTypeDef->mMethods[0];
switch (methodDef->mCallingConvention)
{
case BfCallingConvention_Stdcall:
str += "[StdCall] ";
break;
case BfCallingConvention_Fastcall:
str += "[FastCall] ";
break;
default:
break;
}
if (resolvedType->IsDelegateFromTypeRef())
str += "delegate ";
else
str += "function ";
if (delegateInfo->mCallingConvention != BfCallingConvention_Unspecified)
{
str += "[CallingConvention(";
switch (delegateInfo->mCallingConvention)
{
case BfCallingConvention_Cdecl:
str += ".Cdecl";
break;
case BfCallingConvention_Stdcall:
str += ".Stdcall";
break;
case BfCallingConvention_Fastcall:
str += ".Fastcall";
break;
}
str += ")] ";
}
DoTypeToString(str, delegateInfo->mReturnType, typeNameFlags, genericMethodNameOverrides);
str += "(";
bool isFirstParam = true;//
for (int paramIdx = 0; paramIdx < methodDef->mParams.size(); paramIdx++)
{
if (!isFirstParam)
str += ", ";
auto paramDef = methodDef->mParams[paramIdx];
BfTypeNameFlags innerFlags = (BfTypeNameFlags)(typeNameFlags & ~(BfTypeNameFlag_OmitNamespace | BfTypeNameFlag_OmitOuterType | BfTypeNameFlag_ExtendedInfo));
if (paramDef->mParamKind == BfParamKind_VarArgs)
{
str += "...";
continue;
}
auto paramType = delegateInfo->mParams[paramIdx];
if ((paramIdx == 0) && (delegateInfo->mHasExplicitThis))
{
if ((methodDef->mIsMutating) && (paramType->IsValueType()))
str += "mut ";
}
DoTypeToString(str, paramType, innerFlags, genericMethodNameOverrides);
if (!paramDef->mName.IsEmpty())
{
str += " ";
str += paramDef->mName;
}
isFirstParam = false;
}
str += ")";
return;
}
else if (resolvedType->IsMethodRef())
{
auto methodRefType = (BfMethodRefType*)resolvedType;
BfMethodInstance* methodInstance = methodRefType->mMethodRef;
if (methodRefType->IsDeleting())
{
str += "DELETED METHODREF";
return;
}
if (methodInstance == NULL)
{
str += "method reference NULL";
return;
}
str += "method reference ";
str += MethodToString(methodInstance, BfMethodNameFlag_NoAst);
return;
}
else if (resolvedType->IsTypeInstance())
{
BfTypeInstance* typeInstance = (BfTypeInstance*)resolvedType;
if ((typeNameFlags & BfTypeNameFlag_ExtendedInfo) != 0)
{
if (typeInstance->mTypeDef->mIsDelegate)
str += "delegate ";
else if (typeInstance->mTypeDef->mIsFunction)
str += "function ";
else if (typeInstance->mTypeDef->mTypeCode == BfTypeCode_Object)
str += "class ";
else if (typeInstance->mTypeDef->mTypeCode == BfTypeCode_Enum)
str += "enum ";
else if (typeInstance->mTypeDef->mTypeCode == BfTypeCode_Struct)
str += "struct ";
else if (typeInstance->mTypeDef->mTypeCode == BfTypeCode_TypeAlias)
str += "typealias ";
}
bool omitNamespace = (typeNameFlags & BfTypeNameFlag_OmitNamespace) != 0;
if ((typeNameFlags & BfTypeNameFlag_ReduceName) != 0)
{
for (auto& checkNamespace : mCurTypeInstance->mTypeDef->mNamespaceSearch)
{
if (checkNamespace == typeInstance->mTypeDef->mNamespace)
omitNamespace = true;
}
}
if ((!typeInstance->mTypeDef->mNamespace.IsEmpty()) && (!omitNamespace))
{
if (!typeInstance->mTypeDef->mNamespace.IsEmpty())
{
typeInstance->mTypeDef->mNamespace.ToString(str);
if (!typeInstance->mTypeDef->IsGlobalsContainer())
str += '.';
}
}
SizedArray<BfTypeDef*, 8> typeDefStack;
BfTypeDef* endTypeDef = NULL;
if (((typeNameFlags & BfTypeNameFlag_ReduceName) != 0) && (mCurTypeInstance != NULL))
{
auto checkTypeInst = typeInstance;
auto outerTypeInst = GetOuterType(checkTypeInst);
if (outerTypeInst != NULL)
{
checkTypeInst = outerTypeInst;
auto checkTypeDef = checkTypeInst->mTypeDef;
auto checkCurTypeInst = mCurTypeInstance; // Only used for ReduceName
BfTypeDef* checkCurTypeDef = NULL;
if (checkCurTypeInst != NULL)
checkCurTypeDef = checkCurTypeInst->mTypeDef;
while (checkCurTypeDef->mNestDepth > checkTypeDef->mNestDepth)
{
checkCurTypeInst = GetOuterType(checkCurTypeInst);
checkCurTypeDef = checkCurTypeInst->mTypeDef;
}
while (checkTypeDef != NULL)
{
if (TypeIsSubTypeOf(checkCurTypeInst, checkTypeInst))
{
endTypeDef = checkTypeDef;
break;
}
checkCurTypeInst = GetOuterType(checkCurTypeInst);
if (checkCurTypeInst == NULL)
break;
checkCurTypeDef = checkCurTypeInst->mTypeDef;
checkTypeInst = GetOuterType(checkTypeInst);
if (checkTypeInst == NULL)
break;
checkTypeDef = checkTypeInst->mTypeDef;
}
}
}
BfTypeDef* checkTypeDef = typeInstance->mTypeDef;
while (checkTypeDef != NULL)
{
typeDefStack.Add(checkTypeDef);
checkTypeDef = checkTypeDef->mOuterType;
if ((typeNameFlags & BfTypeNameFlag_OmitOuterType) != 0)
break;
if (checkTypeDef == endTypeDef)
break;
}
while (!typeDefStack.IsEmpty())
{
BfTypeDef* checkTypeDef = typeDefStack.back();
int depth = (int)typeDefStack.size() - 1;
typeDefStack.pop_back();
if (checkTypeDef->IsGlobalsContainer())
{
if ((typeNameFlags & BfTypeNameFlag_AddGlobalContainerName) != 0)
{
str += "G$";
str += checkTypeDef->mProject->mName;
}
}
else
{
checkTypeDef->mName->ToString(str);
if (!checkTypeDef->mGenericParamDefs.IsEmpty())
{
for (int ofs = 0; ofs < 3; ofs++)
{
int checkIdx = (int)str.length() - 1 - ofs;
if (checkIdx < 0)
break;
if (str[checkIdx] == '`')
{
str.RemoveToEnd(checkIdx);
break;
}
}
}
if (((typeNameFlags & BfTypeNameFlag_DisambiguateDups) != 0) && (checkTypeDef->mDupDetectedRevision != -1))
{
str += StrFormat("_%p", checkTypeDef);
}
}
int prevGenericParamCount = 0;
if (checkTypeDef->mOuterType != NULL)
{
prevGenericParamCount = (int)checkTypeDef->mOuterType->mGenericParamDefs.size();
}
if (resolvedType->IsGenericTypeInstance())
{
auto genericTypeInst = (BfTypeInstance*)resolvedType;
if (prevGenericParamCount != (int)checkTypeDef->mGenericParamDefs.size())
{
str += '<';
for (int i = prevGenericParamCount; i < (int)checkTypeDef->mGenericParamDefs.size(); i++)
{
BfType* typeGenericArg = genericTypeInst->mGenericTypeInfo->mTypeGenericArguments[i];
if (typeGenericArg->IsGenericParam())
{
if ((typeNameFlags & BfTypeNameFlag_ResolveGenericParamNames) == 0)
{
// We don't want the param names, just the commas (this is an unspecialized type reference)
if (i > prevGenericParamCount)
str += ',';
if ((typeNameFlags & BfTypeNameFlag_UseUnspecializedGenericParamNames) != 0)
{
str += checkTypeDef->mGenericParamDefs[i]->mName;
}
continue;
}
}
if (i > prevGenericParamCount)
str += ", ";
DoTypeToString(str, typeGenericArg, (BfTypeNameFlags)((typeNameFlags | BfTypeNameFlag_ShortConst) & ~(BfTypeNameFlag_OmitNamespace | BfTypeNameFlag_OmitOuterType | BfTypeNameFlag_ExtendedInfo)), genericMethodNameOverrides);
}
str += '>';
}
}
if (depth > 0)
str += '.';
};
if (typeInstance->IsTypeAlias())
{
if ((typeNameFlags & BfTypeNameFlag_ExtendedInfo) != 0)
{
auto underlyingType = typeInstance->GetUnderlyingType();
if (underlyingType != NULL)
{
str += " = ";
DoTypeToString(str, underlyingType, (BfTypeNameFlags)(typeNameFlags & ~(BfTypeNameFlag_OmitNamespace | BfTypeNameFlag_OmitOuterType | BfTypeNameFlag_ExtendedInfo)));
}
}
}
return;
}
else if (resolvedType->IsPrimitiveType())
{
auto primitiveType = (BfPrimitiveType*)resolvedType;
if (!primitiveType->mTypeDef->mNamespace.IsEmpty())
{
primitiveType->mTypeDef->mNamespace.ToString(str);
str += '.';
primitiveType->mTypeDef->mName->ToString(str);
return;
}
else
{
primitiveType->mTypeDef->mName->ToString(str);
return;
}
}
else if (resolvedType->IsPointer())
{
auto pointerType = (BfPointerType*)resolvedType;
DoTypeToString(str, pointerType->mElementType, typeNameFlags, genericMethodNameOverrides);
str += '*';
return;
}
else if (resolvedType->IsGenericParam())
{
bool doResolveGenericParams = (typeNameFlags & BfTypeNameFlag_ResolveGenericParamNames) != 0;
if ((mCurTypeInstance != NULL) && (mCurTypeInstance->IsUnspecializedTypeVariation()))
doResolveGenericParams = false;
auto genericParam = (BfGenericParamType*)resolvedType;
if (genericParam->mGenericParamKind == BfGenericParamKind_Method)
{
if ((mCurMethodInstance != NULL) && (mCurMethodInstance->mIsUnspecializedVariation))
doResolveGenericParams = false;
}
if (!doResolveGenericParams)
{
if (genericParam->mGenericParamKind == BfGenericParamKind_Method)
{
if (genericMethodNameOverrides != NULL)
{
BF_ASSERT(genericParam->mGenericParamIdx < genericMethodNameOverrides->mSize);
if (genericParam->mGenericParamIdx < genericMethodNameOverrides->mSize)
{
str += (*genericMethodNameOverrides)[genericParam->mGenericParamIdx];
return;
}
}
str += StrFormat("@M%d", genericParam->mGenericParamIdx);
return;
}
str += StrFormat("@T%d", genericParam->mGenericParamIdx);
return;
}
if ((genericParam->mGenericParamKind == BfGenericParamKind_Type) && (mCurTypeInstance == NULL))
{
str += StrFormat("@T%d", genericParam->mGenericParamIdx);
return;
}
if (genericParam->mGenericParamKind == BfGenericParamKind_Method)
{
if (genericMethodNameOverrides != NULL)
{
str += (*genericMethodNameOverrides)[genericParam->mGenericParamIdx];
return;
}
if (mCurMethodInstance == NULL)
{
str += StrFormat("@M%d", genericParam->mGenericParamIdx);
return;
}
}
if (genericParam->mGenericParamKind == BfGenericParamKind_Type)
{
auto curTypeInstance = mCurTypeInstance;
if (mCurMethodInstance != NULL)
curTypeInstance = mCurMethodInstance->mMethodInstanceGroup->mOwner;
if ((curTypeInstance == NULL) || (!curTypeInstance->IsGenericTypeInstance()))
{
str += StrFormat("@T%d", genericParam->mGenericParamIdx);
return;
}
}
auto genericParamInstance = GetGenericParamInstance(genericParam, false, BfFailHandleKind_Soft);
if (genericParamInstance == NULL)
{
str += StrFormat("@M%d", genericParam->mGenericParamIdx);
return;
}
auto genericParamDef = genericParamInstance->GetGenericParamDef();
if (genericParamDef != NULL)
str += genericParamInstance->GetGenericParamDef()->mName;
else
str += "external generic " + TypeToString(genericParamInstance->mExternType, typeNameFlags, genericMethodNameOverrides);
return;
}
else if (resolvedType->IsRef())
{
auto refType = (BfRefType*)resolvedType;
if (refType->mRefKind == BfRefType::RefKind_Ref)
{
str += "ref ";
DoTypeToString(str, refType->mElementType, typeNameFlags, genericMethodNameOverrides);
return;
}
else if (refType->mRefKind == BfRefType::RefKind_In)
{
str += "in ";
DoTypeToString(str, refType->mElementType, typeNameFlags, genericMethodNameOverrides);
return;
}
else if (refType->mRefKind == BfRefType::RefKind_Out)
{
str += "out ";
DoTypeToString(str, refType->mElementType, typeNameFlags, genericMethodNameOverrides);
return;
}
else
{
str += "mut ";
DoTypeToString(str, refType->mElementType, typeNameFlags, genericMethodNameOverrides);
return;
}
}
else if (resolvedType->IsModifiedTypeType())
{
auto retTypeType = (BfModifiedTypeType*)resolvedType;
str += BfTokenToString(retTypeType->mModifiedKind);
str += "(";
DoTypeToString(str, retTypeType->mElementType, typeNameFlags, genericMethodNameOverrides);
str += ")";
return;
}
else if (resolvedType->IsConcreteInterfaceType())
{
auto concreteTypeType = (BfConcreteInterfaceType*)resolvedType;
str += "concrete ";
DoTypeToString(str, concreteTypeType->mInterface, typeNameFlags, genericMethodNameOverrides);
return;
}
else if (resolvedType->IsUnknownSizedArrayType())
{
auto arrayType = (BfUnknownSizedArrayType*)resolvedType;
DoTypeToString(str, arrayType->mElementType, typeNameFlags, genericMethodNameOverrides);
str += "[";
DoTypeToString(str, arrayType->mElementCountSource, typeNameFlags, genericMethodNameOverrides);
str += "]";
return;
}
else if (resolvedType->IsSizedArray())
{
SizedArray<intptr, 4> sizes;
auto checkType = resolvedType;
while (true)
{
if (checkType->IsSizedArray())
{
auto arrayType = (BfSizedArrayType*)checkType;
sizes.Add(arrayType->mElementCount);
checkType = arrayType->mElementType;
continue;
}
DoTypeToString(str, checkType, typeNameFlags, genericMethodNameOverrides);
break;
}
for (int i = 0; i < (int)sizes.mSize; i++)
{
if (sizes[i] == -1)
str += "[?]";
else
str += StrFormat("[%d]", sizes[i]);
}
return;
}
else if (resolvedType->IsConstExprValue())
{
auto constExprValueType = (BfConstExprValueType*)resolvedType;
if ((typeNameFlags & BfTypeNameFlag_ShortConst) == 0)
{
str += "const ";
if ((!constExprValueType->mType->IsInstanceOf(mCompiler->mRangeTypeDef)) &&
(!constExprValueType->mType->IsInstanceOf(mCompiler->mClosedRangeTypeDef)))
{
DoTypeToString(str, constExprValueType->mType, typeNameFlags, genericMethodNameOverrides);
if (constExprValueType->mValue.mTypeCode != BfTypeCode_Boolean)
str += " ";
}
}
if (constExprValueType->mValueString.IsEmpty())
VariantToString(constExprValueType->mValueString, constExprValueType->mValue, constExprValueType->mType);
str += constExprValueType->mValueString;
return;
}
BFMODULE_FATAL(this, "Not implemented");
str += "???";
return;
}