1
0
Fork 0
mirror of https://github.com/beefytech/Beef.git synced 2025-06-07 19:18:19 +02:00
Beef/IDEHelper/DebugTarget.cpp

2733 lines
No EOL
75 KiB
C++

#include "DebugTarget.h"
#include "WinDebugger.h"
#include "DWARFInfo.h"
#include "BeefySysLib/FileStream.h"
#include "BeefySysLib/MemStream.h"
#include "BeefySysLib/Util/BeefPerf.h"
#include "DebugManager.h"
#include "HotHeap.h"
//#include <Winternl.h>
#include "BeefySysLib/util/AllocDebug.h"
USING_NS_BF_DBG;
#define GET(T) *((T*)(data += sizeof(T)) - 1)
#define GET_FROM(ptr, T) *((T*)(ptr += sizeof(T)) - 1)
DebugTarget::DebugTarget(WinDebugger* debugger)
{
mCheckedCompilerSettings = false;
mBfObjectHasFlags = false;
mBfObjectHasVDataExtender = false;
mBfHasLargeStrings = false;
mBfHasLargeCollections = false;
mBfObjectVDataIntefaceSlotCount = -1;
mBfObjectSize = -1;
mDebugger = debugger;
mLaunchBinary = NULL;
mTargetBinary = NULL;
mCapturedNamesPtr = NULL;
mCapturedTypesPtr = NULL;
mHotHeap = NULL;
mHotHeapAddr = 0;
mHotHeapReserveSize = 0;
mLastHotHeapCleanIdx = 0;
mVDataHotIdx = -1;
mHotChainBreakIdx = 0;
mIsEmpty = false;
mWasLocallyBuilt = false;
mCurModuleId = 0;
/*dbgType = new DbgType();
dbgType->mName = "int";
dbgType->mTypeCode = DbgType_i32;
dbgType->mSize = 4;
mPrimitiveTypes[DbgType_i32] = dbgType;*/
}
DebugTarget::~DebugTarget()
{
ClearFindDbgModuleCache();
for (auto dwarf : mDbgModules)
delete dwarf;
for (auto& dwSrcFilePair : mSrcFiles)
delete dwSrcFilePair.mValue;
delete mHotHeap;
mHotHeap = NULL;
}
static bool PathEquals(const String& pathA, String& pathB)
{
const char* ptrA = pathA.c_str();
const char* ptrB = pathB.c_str();
while (true)
{
char cA = *(ptrA++);
char cB = *(ptrB++);
if ((cA == 0) || (cB == 0))
{
return (cA == 0) && (cB == 0);
}
cA = toupper((uint8)cA);
cB = toupper((uint8)cB);
if (cA == '\\')
cA = '/';
if (cB == '\\')
cB = '/';
if (cA != cB)
return false;
}
return true;
}
void DebugTarget::SetupTargetBinary()
{
bool wantsHotHeap = (mDebugger->mHotSwapEnabled == true && mDebugger->mDbgProcessId == 0);
#ifdef BF_DBG_32
if (wantsHotHeap)
mHotHeap = new HotHeap();
#else
if (wantsHotHeap)
{
// 64-bit hot loaded code needs to be placed close to the original EXE so 32-bit relative
// offsets within the hot code can still reach the old code
addr_target checkHotReserveAddr = (addr_target)mTargetBinary->mImageBase + mTargetBinary->mImageSize;
int mb = 1024 * 1024;
int reserveSize = 512 * mb;
// Round up to MB boundary + 64MB, to help keep other DLLs at their preferred base addresses
checkHotReserveAddr = ((checkHotReserveAddr + 64 * mb) & ~(mb - 1));
checkHotReserveAddr = (addr_target)mTargetBinary->mImageBase;
addr_target reservedPtr = NULL;
while ((addr_target)checkHotReserveAddr < (addr_target)mTargetBinary->mImageBase + 0x30000000)
{
reservedPtr = (addr_target)VirtualAllocEx(mDebugger->mProcessInfo.hProcess, (void*)(intptr)checkHotReserveAddr, reserveSize, MEM_RESERVE, PAGE_EXECUTE_READWRITE);
if (reservedPtr != NULL)
{
mHotHeapAddr = reservedPtr;
mHotHeapReserveSize = reserveSize;
BfLogDbg("VirtualAllocEx %p %d. ImageBase: %p\n", mHotHeapAddr, mHotHeapReserveSize, mTargetBinary->mImageBase);
break;
}
checkHotReserveAddr += 4 * mb;
}
if (reservedPtr == 0)
{
BfLogDbg("VirtualAllocEx failed. ImageBase: %p\n", mTargetBinary->mImageBase);
mDebugger->Fail("Failed to reserve memory for hot swapping");
}
else
{
BF_ASSERT(mHotHeap == NULL);
mHotHeap = new HotHeap(reservedPtr, reserveSize);
}
}
#endif
}
void DebugTarget::CheckTargetBinary(DbgModule* module)
{
if (mTargetBinary != NULL)
return;
if (!PathEquals(module->mFilePath, mTargetPath))
return;
mTargetBinary = module;
if (mTargetBinary != mLaunchBinary)
SetupTargetBinary();
}
DbgModule* DebugTarget::Init(const StringImpl& launchPath, const StringImpl& targetPath, intptr imageBase)
{
BP_ZONE("DebugTarget::Init");
AutoDbgTime dbgTime("DebugTarget::Init Launch:" + launchPath + " Target:" + targetPath);
mTargetPath = targetPath;
FileStream fileStream;
fileStream.mFP = _wfopen(UTF8Decode(launchPath).c_str(), L"rb");
if (fileStream.mFP == NULL)
{
mDebugger->OutputMessage(StrFormat("Debugger failed to open binary: %s\n", launchPath.c_str()));
return NULL;
}
DbgModule* dwarf = new COFF(this);
mLaunchBinary = dwarf;
dwarf->mDisplayName = GetFileName(launchPath);
dwarf->mFilePath = launchPath;
dwarf->mImageBase = (intptr)imageBase;
if (!dwarf->ReadCOFF(&fileStream, DbgModuleKind_Module))
{
mDebugger->OutputMessage(StrFormat("Debugger failed to read binary: %s\n", launchPath.c_str()));
delete dwarf;
return NULL;
}
CheckTargetBinary(dwarf);
AddDbgModule(dwarf);
return dwarf;
}
void DebugTarget::CreateEmptyTarget()
{
auto emptyTarget = new DbgModule(this);
AddDbgModule(emptyTarget);
mTargetBinary = emptyTarget;
mLaunchBinary = emptyTarget;
}
DbgModule* DebugTarget::HotLoad(const StringImpl& fileName, int hotIdx)
{
BP_ZONE("DebugTarget::HotLoad");
AutoDbgTime dbgTime("DebugTarget::HotLoad " + fileName);
FileStream fileStream;
fileStream.mFP = _wfopen(UTF8Decode(fileName).c_str(), L"rb");
if (fileStream.mFP == NULL)
{
mDebugger->OutputMessage(StrFormat("Debugger failed to open binary: %s\n", fileName.c_str()));
return NULL;
}
DbgModule* dwarf = new COFF(this);
dwarf->mHotIdx = hotIdx;
dwarf->mDisplayName = GetFileName(fileName);
dwarf->mFilePath = fileName;
if (!dwarf->ReadCOFF(&fileStream, DbgModuleKind_HotObject))
{
mDebugger->OutputMessage(StrFormat("Debugger failed to read binary: %s\n", fileName.c_str()));
delete dwarf;
return NULL;
}
AddDbgModule(dwarf);
return dwarf;
}
DbgModule* DebugTarget::SetupDyn(const StringImpl& filePath, DataStream* stream, intptr imageBase)
{
BP_ZONE("DebugTarget::SetupDyn");
//AutoDbgTime dbgTime("DebugTarget::SetupDyn " + filePath);
DbgModule* dwarf = new COFF(this);
dwarf->mFilePath = filePath;
dwarf->mImageBase = (intptr)imageBase;
if (!dwarf->ReadCOFF(stream, DbgModuleKind_Module))
{
//mDebugger->OutputMessage(StrFormat("Debugger failed to read binary: %s", fileName.c_str()));
delete dwarf;
return NULL;
}
AddDbgModule(dwarf);
dwarf->mDisplayName = GetFileName(filePath);
dwarf->mOrigImageData = new DbgModuleMemoryCache(dwarf->mImageBase, dwarf->mImageSize);
CheckTargetBinary(dwarf);
/*dbgModule->mOrigImageData = new uint8[dbgModule->mImageSize];
memset(dbgModule->mOrigImageData, 0xCC, dbgModule->mImageSize);
for (auto& section : dbgModule->mSections)
{
bool couldRead = mDebugger->ReadMemory((intptr)imageBase + section.mAddrStart, section.mAddrLength, dbgModule->mOrigImageData + section.mAddrStart);
BF_ASSERT(couldRead);
}
dbgModule->GotImageData();*/
return dwarf;
}
String DebugTarget::UnloadDyn(addr_target imageBase)
{
String filePath;
//AutoDbgTime dbgTime("DebugTarget::UnloadDyn");
for (int i = 0; i < (int)mDbgModules.size(); i++)
{
DbgModule* dwarf = mDbgModules[i];
if (dwarf->mImageBase == imageBase)
{
dwarf->mDeleting = true;
dwarf->RemoveTargetData();
RemoveTargetData();
filePath = dwarf->mFilePath;
if (mTargetBinary == dwarf)
{
mTargetBinary = NULL;
delete mHotHeap;
mHotHeap = NULL;
if (mHotHeapAddr != 0)
{
BfLogDbg("VirtualFreeEx %p %d\n", mHotHeapAddr, mHotHeapReserveSize);
::VirtualFreeEx(mDebugger->mProcessInfo.hProcess, (void*)(intptr)mHotHeapAddr, 0, MEM_RELEASE);
mHotHeapAddr = 0;
}
}
ClearFindDbgModuleCache();
mDbgModules.RemoveAt(i);
bool success = mDbgModuleMap.Remove(dwarf->mId);
BF_ASSERT_REL(success);
delete dwarf;
return filePath;
}
}
return "";
}
void DebugTarget::CleanupHotHeap()
{
//TODO: We have more work to do before this catches all the required cases
return;
bool hadRemovals = false;
for (int dwarfIdx = 0; dwarfIdx < (int)mDbgModules.size(); dwarfIdx++)
{
DbgModule* dbgModule = mDbgModules[dwarfIdx];
if (dbgModule->IsObjectFile())
{
if (!mHotHeap->IsReferenced(dbgModule->mImageBase, dbgModule->mImageSize))
{
Beefy::OutputDebugStrF("Clearing hot module %p data from %@ to %@\n", dbgModule, dbgModule->mImageBase, dbgModule->mImageBase + dbgModule->mImageSize);
BfLogDbg("Unloading hot idx: %s@%d\n", dbgModule->mFilePath.c_str(), dbgModule->mHotIdx);
dbgModule->mDeleting = true;
dbgModule->RemoveTargetData();
hadRemovals = true;
}
}
}
if (hadRemovals)
{
RemoveTargetData();
for (int dwarfIdx = 0; dwarfIdx < (int)mDbgModules.size(); dwarfIdx++)
{
DbgModule* dbgModule = mDbgModules[dwarfIdx];
if (dbgModule->mDeleting)
{
ClearFindDbgModuleCache();
mDbgModules.RemoveAt(dwarfIdx);
bool success = mDbgModuleMap.Remove(dbgModule->mId);
BF_ASSERT_REL(success);
delete dbgModule;
dwarfIdx--;
}
}
}
}
void DebugTarget::RehupSrcFiles()
{
for (auto srcFile : mPendingSrcFileRehup)
srcFile->RehupLineData();
mPendingSrcFileRehup.Clear();
}
DbgSrcFile* DebugTarget::AddSrcFile(const String& srcFilePath)
{
String filePath = FixPathAndCase(srcFilePath);
DbgSrcFile* dwSrcFile = NULL;
DbgSrcFile** dwSrcFilePtr = NULL;
if (mSrcFiles.TryAdd(filePath, NULL, &dwSrcFilePtr))
{
dwSrcFile = new DbgSrcFile();
dwSrcFile->mFilePath = FixPath(srcFilePath);
*dwSrcFilePtr = dwSrcFile;
}
else
{
dwSrcFile = *dwSrcFilePtr;
}
return dwSrcFile;
}
DbgSrcFile* DebugTarget::GetSrcFile(const String& srcFilePath)
{
String filePath = FixPathAndCase(srcFilePath);
DbgSrcFile* srcFile = NULL;
if (!mSrcFiles.TryGetValue(filePath, &srcFile))
{
String* origSrcPath;
if (mLocalToOrigSrcMap.TryGetValue(filePath, &origSrcPath))
{
mSrcFiles.TryGetValue(*origSrcPath, &srcFile);
}
}
return srcFile;
}
bool DebugTarget::FindSymbolAt(addr_target addr, String* outSymbol, addr_target* outOffset, DbgModule** outDWARF, bool allowRemote)
{
//TODO: First search for symbol, then determine if the addr is within the defining DbgModule
DbgModule* insideDWARF = NULL;
auto dbgModule = FindDbgModuleForAddress(addr);
if (dbgModule != NULL)
dbgModule->ParseSymbolData();
auto dwSymbol = mSymbolMap.Get(addr, 16*1024*1024);
if (dwSymbol != NULL)
{
dbgModule = dwSymbol->mDbgModule;
}
if (dbgModule == NULL)
return false;
if (outDWARF != NULL)
*outDWARF = dbgModule;
bool isExecutable = false;
bool isInsideSomeSegment = false;
for (int i = 0; i < (int)dbgModule->mSections.size(); i++)
{
auto section = &dbgModule->mSections[i];
if ((addr >= section->mAddrStart + dbgModule->mImageBase) && (addr < section->mAddrStart + dbgModule->mImageBase + section->mAddrLength))
{
if (dbgModule->HasPendingDebugInfo())
{
if (dbgModule->WantsAutoLoadDebugInfo())
{
DbgPendingDebugInfoLoad* dbgPendingDebugInfoLoad = NULL;
mDebugger->mPendingDebugInfoLoad.TryAdd(dbgModule, NULL, &dbgPendingDebugInfoLoad);
dbgPendingDebugInfoLoad->mModule = dbgModule;
dbgPendingDebugInfoLoad->mAllowRemote |= allowRemote;
}
}
isInsideSomeSegment = true;
if (section->mIsExecutable)
isExecutable = true;
}
}
if (!isInsideSomeSegment)
return false;
if (dwSymbol == NULL)
return false;
if (isExecutable)
{
addr_target thunkAddr = mDebugger->mCPU->DecodeThunk(addr, dwSymbol->mDbgModule->mOrigImageData);
if (thunkAddr != 0)
{
if (FindSymbolAt(thunkAddr, outSymbol, outOffset, outDWARF))
return true;
}
}
if (outSymbol != NULL)
{
*outSymbol = dwSymbol->mName;
}
if (outOffset != NULL)
*outOffset = addr - dwSymbol->mAddress;
else if (addr != dwSymbol->mAddress)
return false;
return true;
}
addr_target DebugTarget::FindSymbolAddr(const StringImpl& name)
{
//TODO: Search through all modules?
auto dbgModule = GetMainDbgModule();
if (dbgModule != NULL)
{
auto entry = dbgModule->mSymbolNameMap.Find(name.c_str());
if (entry!= NULL)
{
DbgSymbol* dwSymbol = entry->mValue;
return dwSymbol->mAddress;
}
}
return (addr_target)-1;
}
bool DebugTarget::GetValueByName(DbgSubprogram* subProgram, const StringImpl& name, WdStackFrame* stackFrame, intptr* outAddr, DbgType** outType, DbgAddrType* outAddrType)
{
BP_ZONE("DebugTarget::GetValueByName");
//BF_ASSERT(*outAddrType == DbgAddrType_None);
String checkName = name;
if (subProgram != NULL)
{
subProgram->PopulateSubprogram();
if (GetValueByNameInBlock(subProgram, &subProgram->mBlock, checkName, stackFrame, outAddr, outType, outAddrType))
return true;
}
for (int dwarfIdx = mDbgModules.size() - 1; dwarfIdx >= 0; dwarfIdx--)
{
DbgModule* dwarf = mDbgModules[dwarfIdx];
for (auto compileUnit : dwarf->mCompileUnits)
{
if (GetValueByNameInBlock(NULL, compileUnit->mGlobalBlock, checkName, stackFrame, outAddr, outType, outAddrType))
return true;
}
}
return false;
}
static const uint64 kAutoStaticBucketPageSize = 1024ull;
void DebugTarget::AddAutoStaticEntry(const DbgAutoStaticEntry& entry)
{
uint64 remainingSize = entry.mAddrLen;
uint64 offset = entry.mAddrStart % kAutoStaticBucketPageSize;
uint64 curPage = entry.mAddrStart / kAutoStaticBucketPageSize;
while (remainingSize > 0)
{
int bucketIndex = -1;
/*auto map_iter = mAutoStaticEntryBucketMap.find((addr_target)curPage);
if (map_iter != mAutoStaticEntryBucketMap.end())*/
int* bucketIndexPtr = NULL;
if (!mAutoStaticEntryBucketMap.TryAddRaw((addr_target)curPage, NULL, &bucketIndexPtr))
{
bucketIndex = *bucketIndexPtr;
}
else
{
bucketIndex = (int)mAutoStaticEntryBuckets.size();
*bucketIndexPtr = bucketIndex;
mAutoStaticEntryBuckets.push_back(Array<DbgAutoStaticEntry>());
//mAutoStaticEntryBucketMap[(addr_target)curPage] = bucketIndex;
}
mAutoStaticEntryBuckets[bucketIndex].push_back(entry);
uint64 adjSize = BF_MIN(kAutoStaticBucketPageSize - offset, remainingSize);
remainingSize -= adjSize;
offset = 0;
++curPage;
}
}
void DebugTarget::IterateAutoStaticEntries(uint64 memoryRangeStart, uint64 memoryRangeLen, std::function<void(DbgAutoStaticEntry const&)>& func)
{
uint64 remainingSize = memoryRangeLen;
uint64 offset = memoryRangeStart % kAutoStaticBucketPageSize;
uint64 curPage = memoryRangeStart / kAutoStaticBucketPageSize;
HashSet<DbgVariable*> foundVariables;
while (remainingSize > 0)
{
//int bucketIndex = -1;
/*auto map_iter = mAutoStaticEntryBucketMap.find((addr_target)curPage);
if (map_iter != mAutoStaticEntryBucketMap.end())*/
int* bucketIndexPtr = NULL;
if (mAutoStaticEntryBucketMap.TryGetValue((addr_target)curPage, &bucketIndexPtr))
{
auto const & bucket = mAutoStaticEntryBuckets[*bucketIndexPtr];
for (auto const & entry : bucket)
{
uint64 rangeMin = BF_MAX((uint64)entry.mAddrStart, memoryRangeStart);
uint64 rangeMax = BF_MIN((uint64)entry.mAddrStart + entry.mAddrLen, memoryRangeStart + memoryRangeLen);
if (rangeMin > rangeMax)
continue;
if (foundVariables.Contains(entry.mVariable))
continue;
func(entry);
foundVariables.Add(entry.mVariable);
}
}
uint64 adjSize = std::min(kAutoStaticBucketPageSize - offset, remainingSize);
remainingSize -= adjSize;
offset = 0;
++curPage;
}
}
void DebugTarget::EvaluateAutoStaticVariable(DbgVariable* variable, const StringImpl& fullName)
{
BF_ASSERT(variable->mIsStatic && !variable->mIsConst); // why are you calling this if you haven't checked these yet
BF_ASSERT(!variable->mInAutoStaticMap);
if ((variable->mLocationData != NULL) && (variable->mLocationLen > 0))
{
DbgAddrType addrType = DbgAddrType_Local;
intptr variableAddr = variable->mStaticCachedAddr;
if (variableAddr == 0)
{
addrType = DbgAddrType_Target;
variableAddr = variable->mCompileUnit->mDbgModule->EvaluateLocation(NULL, variable->mLocationData, variable->mLocationLen, NULL/*registers*/, &addrType);
}
//BF_ASSERT((addrType == DbgAddrType_Value) || (variableAddr > 0));
if ((addrType == DbgAddrType_Local) && (variableAddr != 0))
{
DbgAutoStaticEntry entry;
entry.mFullName = fullName;
entry.mVariable = variable;
entry.mAddrStart = variableAddr;
entry.mAddrLen = variable->mType->mSize;
AddAutoStaticEntry(entry);
variable->mInAutoStaticMap = true;
}
}
}
void DebugTarget::GetAutoValueNames(DbgAutoValueMapType& outAutos, WdStackFrame* stackFrame, uint64 memoryRangeStart, uint64 memoryRangeLen)
{
BP_ZONE("DebugTarget::GetAutoValueNames");
for (auto dbgModule : mDbgModules)
{
// one-time iteration of mTypeMap
if (mAutoStaticEntryBuckets.empty())
{
if (dbgModule->mTypeMap.IsEmpty())
continue;
for (auto typeEntry : dbgModule->mTypeMap)
{
for (auto variable : typeEntry.mValue->mMemberList)
{
if (variable->mIsConst)
continue;
if (variable->mIsStatic)
{
String fullName = variable->mName;
for (DbgType* scope = typeEntry.mValue; scope && scope->mTypeName; scope = scope->mParent)
fullName = String(scope->mTypeName) + "." + fullName;
EvaluateAutoStaticVariable(variable, fullName);
}
}
}
}
for (int subProgramIdx = (int)dbgModule->mSubprograms.size() - 1; subProgramIdx >= 0; subProgramIdx--)
{
auto subProgram = dbgModule->mSubprograms[subProgramIdx];
GetAutoValueNamesInBlock(outAutos, subProgram, &subProgram->mBlock, stackFrame, memoryRangeStart, memoryRangeLen);
}
for (auto compileUnit : dbgModule->mCompileUnits)
{
GetAutoValueNamesInBlock(outAutos, NULL, compileUnit->mGlobalBlock, stackFrame, memoryRangeStart, memoryRangeLen);
}
}
std::function<void(const DbgAutoStaticEntry&)> iterFunc = [this, &outAutos](const DbgAutoStaticEntry& entry)
{
//outAutos.insert(DbgAutoValueMapType::value_type(entry.mFullName, DbgAutoValueMapType::value_type::second_type(entry.mAddrStart, entry.mAddrLen)));
outAutos.TryAdd(entry.mFullName, std::make_pair(entry.mAddrStart, entry.mAddrLen));
};
IterateAutoStaticEntries(memoryRangeStart, memoryRangeLen, iterFunc);
}
void DebugTarget::GetAutoValueNamesInBlock(DbgAutoValueMapType& outAutos, DbgSubprogram* dwSubprogram, DbgBlock* dwBlock, WdStackFrame* stackFrame, uint64 memoryRangeStart, uint64 memoryRangeLen)
{
addr_target pc = stackFrame->GetSourcePC();
if (dwSubprogram != NULL)
{
auto dwarf = dwSubprogram->mCompileUnit->mDbgModule;
if (dwBlock->mLowPC == -1)
{
//Debug ranges
addr_target* rangeData = (addr_target*)(dwarf->mDebugRangesData + dwBlock->mHighPC);
while (true)
{
addr_target lowPC = *(rangeData++);
if (lowPC == 0)
return;
addr_target highPC = *(rangeData++);
// Matches?
if ((pc >= lowPC) && (pc < highPC))
break;
}
}
else if ((pc < dwBlock->mLowPC) || (pc >= dwBlock->mHighPC))
return;
}
for (auto subBlocks : dwBlock->mSubBlocks)
{
GetAutoValueNamesInBlock(outAutos, dwSubprogram, subBlocks, stackFrame, memoryRangeStart, memoryRangeLen);
}
auto evalFunc = [this, &outAutos, stackFrame, dwSubprogram, memoryRangeStart, memoryRangeLen, dwBlock](Beefy::SLIList<DbgVariable*>& varList)
{
for (auto variable : varList)
{
if (variable->mIsConst)
continue;
if (variable->mRangeStart != 0)
{
auto curPC = stackFrame->mRegisters.GetPC();
if ((curPC < variable->mRangeStart) || (curPC >= variable->mRangeStart + variable->mRangeLen))
continue;
}
if (variable->mIsStatic)
{
if (!variable->mInAutoStaticMap && !dwBlock->mAutoStaticVariablesProcessed)
EvaluateAutoStaticVariable(variable, variable->mName);
if (variable->mInAutoStaticMap)
continue; // we'll pick it up in IterateAutoStaticEntries if it's in range
}
if (variable->mName == NULL)
continue;
if (variable->mType == NULL)
continue;
uint64 variableAddr = 0;
outAutos.TryAdd(variable->mName, std::make_pair(variableAddr, variable->mType->mSize));
}
};
if (dwBlock == &dwSubprogram->mBlock)
{
evalFunc(dwSubprogram->mParams);
}
evalFunc(dwBlock->mVariables);
dwBlock->mAutoStaticVariablesProcessed = true;
}
bool DebugTarget::GetAutoLocalsInBlock(Array<String>& outLocals, DbgSubprogram* dwSubprogram, DbgBlock* dwBlock, WdStackFrame* stackFrame, DbgLineData* dwLineData)
{
std::function<void(const StringImpl& localName)> _AddLocal = [&](const StringImpl& localName)
{
if (!outLocals.Contains(localName))
outLocals.Add(localName);
else
_AddLocal(String("@") + localName);
};
addr_target pc = stackFrame->GetSourcePC();
if (dwSubprogram != NULL)
{
auto dwarf = dwSubprogram->mCompileUnit->mDbgModule;
if (dwBlock->mLowPC == -1)
{
//Debug ranges
addr_target* rangeData = (addr_target*)(dwarf->mDebugRangesData + dwBlock->mHighPC);
while (true)
{
addr_target lowPC = *(rangeData++);
if (lowPC == 0)
return false;
addr_target highPC = *(rangeData++);
// Matches?
if ((pc >= lowPC) && (pc < highPC))
break;
}
}
else if ((pc < dwBlock->mLowPC) || (pc >= dwBlock->mHighPC))
return false;
}
for (auto subBlock : dwBlock->mSubBlocks)
{
GetAutoLocalsInBlock(outLocals, dwSubprogram, subBlock, stackFrame, dwLineData);
}
if (dwBlock == &dwSubprogram->mBlock)
{
for (auto variable : dwSubprogram->mParams)
{
if ((variable->mName != NULL) &&
(variable->mName[0] != '$') &&
((variable->mLocationData != NULL) || (variable->mIsConst)))
_AddLocal(variable->mName);
}
}
for (auto variable : dwBlock->mVariables)
{
if (variable->mRangeStart != 0)
{
auto curPC = stackFrame->GetSourcePC();
if ((curPC < variable->mRangeStart) || (curPC >= variable->mRangeStart + variable->mRangeLen))
continue;
}
if ((variable->mName[0] != '$'))
_AddLocal(variable->mName);
}
return true;
}
DbgSubprogram* DebugTarget::FindSubProgram(addr_target pc, DbgOnDemandKind onDemandKind)
{
BP_ZONE("WinDebugger::FindSubProgram");
for (int pass = 0; pass < 2; pass++)
{
int mapBlockSize = 1 << DbgRadixMap<DbgSubprogramMapEntry*>::BLOCK_SHIFT;
DbgSubprogram* foundSubprogram = NULL;
// Even though the radix map is LIFO, we might find an inline parent in an earlier block
// so we can't terminate the search until we exhaust the lookup
addr_target bestStart = 0;
for (int offset = 0; offset < DBG_MAX_LOOKBACK; offset += mapBlockSize)
{
DbgSubprogramMapEntry* subprogramMapEntry = mSubprogramMap.FindFirstLeafAt(pc - offset);
while (subprogramMapEntry != NULL)
{
auto dwSubprogram = subprogramMapEntry->mEntry;
if ((pc >= dwSubprogram->mBlock.mLowPC) && (pc < dwSubprogram->mBlock.mHighPC) && (dwSubprogram->mBlock.mLowPC > bestStart))
{
if ((dwSubprogram->mLineInfo != NULL) && (dwSubprogram->mLineInfo->mHasInlinees))
{
if (dwSubprogram->mNeedLineDataFixup)
mDebugger->FixupLineDataForSubprogram(dwSubprogram);
DbgSubprogram* inlinedSubprogram = NULL;
if (dwSubprogram->FindClosestLine(pc, &inlinedSubprogram) != NULL)
{
return inlinedSubprogram;
}
}
/*bool inGap = false;
if (dwSubprogram->mHasLineGaps)
{
mDebugger->FixupLineDataForSubprogram(dwSubprogram);
auto lineData = dwSubprogram->FindClosestLine(pc, 0, true);
inGap == (lineData == NULL) || (lineData->mLine == -1);
}
if (!inGap)
{
foundSubprogram = dwSubprogram;
bestStart = dwSubprogram->mBlock.mLowPC;
}
else
{
}*/
return dwSubprogram;
//foundSubprogram = dwSubprogram;
//bestStart = dwSubprogram->mBlock.mLowPC;
}
subprogramMapEntry = subprogramMapEntry->mNext;
}
}
if (foundSubprogram != NULL)
return foundSubprogram;
if (pass != 0)
return NULL;
DbgCompileUnitContrib* contrib = mContribMap.Get(pc, DBG_MAX_LOOKBACK);
if ((contrib != NULL) && (pc >= contrib->mAddress) && (pc < contrib->mAddress + contrib->mLength))
{
contrib->mDbgModule->ParseCompileUnit(contrib->mCompileUnitId);
}
else if (onDemandKind != DbgOnDemandKind_None)
{
bool found = false;
for (auto module : mDbgModules)
{
if ((pc >= module->mImageBase) && (pc < module->mImageBase + module->mImageSize))
{
if ((module->mFilePath.EndsWith("ntdll.dll", String::CompareKind_OrdinalIgnoreCase)) ||
(module->mFilePath.EndsWith("kernel32.dll", String::CompareKind_OrdinalIgnoreCase)) ||
(module->mFilePath.EndsWith("kernelbase.dll", String::CompareKind_OrdinalIgnoreCase)))
{
String symName;
addr_target addrOfs = 0;
if (FindSymbolAt(pc, &symName, &addrOfs))
{
// We don't need any symbols for the loader
if ((symName == "LdrInitShimEngineDynamic") ||
(symName == "DebugBreak"))
continue;
}
}
if (module->RequestDebugInfo(onDemandKind == DbgOnDemandKind_AllowRemote))
{
// Give another chance to ParseCompileUnit and then match again
found = true;
pass = -1;
}
}
}
// No contribution found
if (!found)
break;
}
}
//BF_ASSERT(slowFoundSubprogram == foundSubprogram);
return NULL;
}
void DebugTarget::GetCompilerSettings()
{
if (!mCheckedCompilerSettings)
{
auto dbgModule = GetMainDbgModule();
if (dbgModule == NULL)
return;
DbgType* bfObjectType = dbgModule->FindType("System.CompilerSettings", NULL, DbgLanguage_Beef);
if (bfObjectType != NULL)
{
bfObjectType->PopulateType();
if (bfObjectType->IsBfObjectPtr())
bfObjectType = bfObjectType->mTypeParam;
for (auto member : bfObjectType->mMemberList)
{
if (strcmp(member->mName, "cHasDebugFlags") == 0)
mBfObjectHasFlags = member->mConstValue != 0;
if (strcmp(member->mName, "cHasVDataExtender") == 0)
mBfObjectHasVDataExtender = member->mConstValue != 0;
if (strcmp(member->mName, "cHasLargeStrings") == 0)
mBfHasLargeStrings = member->mConstValue != 0;
if (strcmp(member->mName, "cHasLargeCollections") == 0)
mBfHasLargeCollections = member->mConstValue != 0;
if (strcmp(member->mName, "cVDataIntefaceSlotCount") == 0)
mBfObjectVDataIntefaceSlotCount = (int)member->mConstValue;
}
auto objectRoot = bfObjectType->GetBaseType();
BF_ASSERT(strcmp(objectRoot->mTypeName, "Object") == 0);
mBfObjectSize = objectRoot->GetByteCount();
}
mCheckedCompilerSettings = true;
}
}
void DebugTarget::ClearFindDbgModuleCache()
{
for (auto& entry : mFindDbgModuleCache)
{
delete entry.mValue.mCollisions;
}
mFindDbgModuleCache.Clear();
}
void DebugTarget::AddDbgModule(DbgModule* dbgModule)
{
dbgModule->mId = ++mCurModuleId;
ClearFindDbgModuleCache();
mDbgModules.Add(dbgModule);
bool success = mDbgModuleMap.TryAdd(dbgModule->mId, dbgModule);
BF_ASSERT_REL(success);
}
#if 1
bool DebugTarget::RollBackStackFrame_ExceptionDirectory(addr_target findPC, CPURegisters* registers, addr_target* outReturnAddressLoc, bool& alreadyRolledBackPC)
{
addr_target pcAddress = registers->GetPC();
auto exceptionDirectoryEntry = mExceptionDirectoryMap.Get(findPC, DBG_MAX_LOOKBACK);
if ((exceptionDirectoryEntry != NULL) && (findPC >= exceptionDirectoryEntry->mAddress) &&
(findPC < exceptionDirectoryEntry->mAddress + exceptionDirectoryEntry->mAddressLength))
{
auto dbgModule = exceptionDirectoryEntry->mDbgModule;
//const uint8* data = dbgModule->mExceptionData + exceptionDirectoryEntry->mExceptionPos;
uint32 exceptionPos = exceptionDirectoryEntry->mExceptionPos;
if (dbgModule->IsObjectFile())
{
exceptionPos -= dbgModule->mImageBase - dbgModule->GetLinkedModule()->mImageBase;
}
while ((exceptionPos & 1) != 0)
{
// It's a reference to another entry -- directly reference the 'exceptionPos' from that other entry
dbgModule->mOrigImageData->Read(dbgModule->mImageBase + (exceptionPos & ~1) + 8, (uint8*)&exceptionPos, 4);
}
struct EntryHeader
{
uint8 mVersion;
uint8 mPrologSize;
uint8 mNumUnwindCodes;
uint8 mFrameRegister;
};
EntryHeader entryHeader;
dbgModule->mOrigImageData->Read(dbgModule->mImageBase + exceptionPos, (uint8*)&entryHeader, sizeof(EntryHeader));
uint8 version = entryHeader.mVersion;
uint8 flags = (version >> 3);
version &= 7;
//TODO: Sometimes we get a 'version 2'. Not sure how to parse that yet.
//BF_ASSERT(version == 1);
//uint8 prologSize = GET(uint8);
//uint8 numUnwindCodes = GET(uint8);
int dataSize = entryHeader.mNumUnwindCodes * 2;
if (flags & 4) // UNW_FLAG_CHAININFO
{
if ((entryHeader.mNumUnwindCodes % 2) == 1)
dataSize += 2; // Align
dataSize += sizeof(uint32)*3;
}
uint8 dataBuf[512];
dbgModule->mOrigImageData->Read(dbgModule->mImageBase + exceptionPos + sizeof(EntryHeader), dataBuf, dataSize);
const uint8* data = dataBuf;
if (flags & 1) // UNW_FLAG_EHANDLER
{
}
else if (flags & 4) // UNW_FLAG_CHAININFO
{
}
/*if (pcAddress < exceptionDirectoryEntry->mAddress + prologSize)
{
// We're in the prolog so just do a standard leaf 'ret'
return false;
}*/
addr_target* regSP = registers->GetSPRegisterRef();
int regFPOffset = 0;
uint8 frameRegister = entryHeader.mFrameRegister;
uint8 frameRegisterOffset = frameRegister >> 4;
frameRegister &= 15;
intptr_target newSP = 0;
const uint8* paramAreaStart = data;
const uint8* dataEnd = data + entryHeader.mNumUnwindCodes * 2;
while (data < dataEnd)
{
uint8 offsetInProlog = GET(uint8);
uint8 unwindOpCode = GET(uint8);
uint8 opInfo = unwindOpCode >> 4;
unwindOpCode &= 15;
bool executeOp = pcAddress >= exceptionDirectoryEntry->mAddress - exceptionDirectoryEntry->mOrigAddressOffset + offsetInProlog;
if ((unwindOpCode == 0) && (executeOp))
{
// UWOP_PUSH_NONVOL
intptr_target* regRef = registers->GetExceptionRegisterRef(opInfo);
if (!gDebugger->ReadMemory(*regSP, sizeof(intptr_target), regRef))
return false;
*regSP += sizeof(intptr_target);
}
else if (unwindOpCode == 1)
{
// UWOP_ALLOC_LARGE
int allocSize = 0;
if (opInfo == 0)
allocSize = (int)GET(uint16) * 8;
else if (opInfo == 1)
allocSize = (int)GET(int32);
if (executeOp)
*regSP += allocSize;
}
else if ((unwindOpCode == 2) && (executeOp))
{
// UWOP_ALLOC_SMALL
int allocSize = (int)opInfo * 8 + 8;
*regSP += allocSize;
}
else if ((unwindOpCode == 3) && (executeOp))
{
// UWOP_SET_FPREG
intptr_target* regRef = registers->GetExceptionRegisterRef(frameRegister);
*regSP = *regRef - (16 * frameRegisterOffset);
}
else if (unwindOpCode == 4)
{
// UWOP_SAVE_NONVOL
int offset = (int)GET(uint16) * 8;
if (executeOp)
{
intptr_target* regRef = registers->GetExceptionRegisterRef(opInfo);
if (!gDebugger->ReadMemory(*regSP + offset, sizeof(intptr_target), regRef))
return false;
}
}
else if (unwindOpCode == 5)
{
// UWOP_SAVE_NONVOL_FAR
int offset = GET(int32);
if (executeOp)
{
intptr_target* regRef = registers->GetExceptionRegisterRef(opInfo);
if (!gDebugger->ReadMemory(*regSP + offset, sizeof(intptr_target), regRef))
return false;
}
}
else if (unwindOpCode == 8)
{
// UWOP_SAVE_XMM128
int offset = (int)GET(uint16) * 16;
if (executeOp)
{
auto* regRef = registers->GetXMMRegRef(opInfo);
if (!gDebugger->ReadMemory(*regSP + offset, sizeof(*regRef), regRef))
return false;
}
}
else if (unwindOpCode == 9)
{
// UWOP_SAVE_XMM128_FAR
int offset = GET(int32);
if (executeOp)
{
auto* regRef = registers->GetXMMRegRef(opInfo);
if (!gDebugger->ReadMemory(*regSP + offset, sizeof(*regRef), regRef))
return false;
}
}
else if (unwindOpCode == 10)
{
// UWOP_PUSH_MACHFRAME
if (executeOp)
{
alreadyRolledBackPC = true;
if (opInfo == 0)
{
addr_target regRIP;
gDebugger->ReadMemory(*regSP, sizeof(intptr_target), &regRIP); // RIP (correct back trace)
*regSP += sizeof(intptr_target);
addr_target reg;
gDebugger->ReadMemory(*regSP, sizeof(intptr_target), &reg); // CS
*regSP += sizeof(intptr_target);
gDebugger->ReadMemory(*regSP, sizeof(intptr_target), &reg); // EFLAGS
*regSP += sizeof(intptr_target);
addr_target oldRSP;
gDebugger->ReadMemory(*regSP, sizeof(intptr_target), &oldRSP); // Old RSP
*regSP += sizeof(intptr_target);
gDebugger->ReadMemory(*regSP, sizeof(intptr_target), &reg); //SS
*regSP += sizeof(intptr_target);
addr_target* regPC = registers->GetPCRegisterRef();
*regSP = oldRSP;
*regPC = regRIP;
}
else
{
*regSP += 6 * sizeof(intptr_target);
}
}
}
// Note: RCX/RDX are reversed
}
if (flags & 4) // UNW_FLAG_CHAININFO
{
if (((intptr)data & 3) != 0)
{
// Align
data = (const uint8*)(((intptr)data + 3) & ~3);
}
uint32 chainedRVAStart = GET(uint32);
uint32 chainedRVAEnd = GET(uint32);
uint32 chainedUnwindRVA = GET(uint32);
return RollBackStackFrame_ExceptionDirectory(dbgModule->mImageBase + chainedRVAStart, registers, outReturnAddressLoc, alreadyRolledBackPC);
}
return true;
}
return false;
}
// We write the modified callerRegisters into the saved memory locations in the callee's stack frame --
// this is needed for modifying variables tied to non-volatile registers on non-topmost stack frames
bool DebugTarget::PropogateRegisterUpCallStack_ExceptionDirectory(addr_target findPC, CPURegisters* callerRegisters, CPURegisters* calleeRegisters, void* regPtr, bool& wasSaved)
{
addr_target pcAddress = calleeRegisters->GetPC();
auto exceptionDirectoryEntry = mExceptionDirectoryMap.Get(findPC, DBG_MAX_LOOKBACK);
if ((exceptionDirectoryEntry != NULL) && (findPC >= exceptionDirectoryEntry->mAddress) &&
(findPC < exceptionDirectoryEntry->mAddress + exceptionDirectoryEntry->mAddressLength))
{
auto dbgModule = exceptionDirectoryEntry->mDbgModule;
//const uint8* data = dbgModule->mExceptionData + exceptionDirectoryEntry->mExceptionPos;
uint32 exceptionPos = exceptionDirectoryEntry->mExceptionPos;
while ((exceptionPos & 1) != 0)
{
// It's a reference to another entry -- directly reference the 'exceptionPos' from that other entry
dbgModule->mOrigImageData->Read(dbgModule->mImageBase + (exceptionPos & ~1) + 8, (uint8*)&exceptionPos, 4);
}
struct EntryHeader
{
uint8 mVersion;
uint8 mPrologSize;
uint8 mNumUnwindCodes;
uint8 mFrameRegister;
};
EntryHeader entryHeader;
dbgModule->mOrigImageData->Read(dbgModule->mImageBase + exceptionPos, (uint8*)&entryHeader, sizeof(EntryHeader));
uint8 version = entryHeader.mVersion;
uint8 flags = (version >> 3);
version &= 7;
int dataSize = entryHeader.mNumUnwindCodes * 2;
if (flags & 4) // UNW_FLAG_CHAININFO
{
if ((entryHeader.mNumUnwindCodes % 2) == 1)
dataSize += 2; // Align
dataSize += sizeof(uint32)*3;
}
uint8 dataBuf[512];
dbgModule->mOrigImageData->Read(dbgModule->mImageBase + exceptionPos + sizeof(EntryHeader), dataBuf, dataSize);
const uint8* data = dataBuf;
if (flags & 1) // UNW_FLAG_EHANDLER
{
}
else if (flags & 4) // UNW_FLAG_CHAININFO
{
}
/*if (pcAddress < exceptionDirectoryEntry->mAddress + prologSize)
{
// We're in the prolog so just do a standard leaf 'ret'
return false;
}*/
addr_target regSP = calleeRegisters->GetSP();
int regFPOffset = 0;
uint8 frameRegister = entryHeader.mFrameRegister;
uint8 frameRegisterOffset = frameRegister >> 4;
frameRegister &= 15;
intptr_target newSP = 0;
const uint8* paramAreaStart = data;
const uint8* dataEnd = data + entryHeader.mNumUnwindCodes * 2;
while (data < dataEnd)
{
uint8 offsetInProlog = GET(uint8);
uint8 unwindOpCode = GET(uint8);
uint8 opInfo = unwindOpCode >> 4;
unwindOpCode &= 15;
bool executeOp = pcAddress >= exceptionDirectoryEntry->mAddress - exceptionDirectoryEntry->mOrigAddressOffset + offsetInProlog;
if ((unwindOpCode == 0) && (executeOp))
{
// UWOP_PUSH_NONVOL
intptr_target* regRef = callerRegisters->GetExceptionRegisterRef(opInfo);
if (regRef == regPtr)
{
mDebugger->WriteMemory(regSP, regRef, sizeof(intptr_target));
wasSaved = true;
}
regSP += sizeof(intptr_target);
}
else if (unwindOpCode == 1)
{
// UWOP_ALLOC_LARGE
int allocSize = 0;
if (opInfo == 0)
allocSize = (int)GET(uint16) * 8;
else if (opInfo == 1)
allocSize = (int)GET(int32);
if (executeOp)
regSP += allocSize;
}
else if ((unwindOpCode == 2) && (executeOp))
{
// UWOP_ALLOC_SMALL
int allocSize = (int)opInfo * 8 + 8;
regSP += allocSize;
}
else if ((unwindOpCode == 3) && (executeOp))
{
// UWOP_SET_FPREG
intptr_target* regRef = callerRegisters->GetExceptionRegisterRef(frameRegister);
regSP = *regRef - (16 * frameRegisterOffset);
}
else if (unwindOpCode == 4)
{
// UWOP_SAVE_NONVOL
int offset = (int)GET(uint16) * 8;
if (executeOp)
{
intptr_target* regRef = callerRegisters->GetExceptionRegisterRef(opInfo);
if (regRef == regPtr)
{
if (!gDebugger->WriteMemory(regSP + offset, regRef, sizeof(intptr_target)))
return false;
wasSaved = true;
}
}
}
else if (unwindOpCode == 5)
{
// UWOP_SAVE_NONVOL_FAR
int offset = GET(int32);
if (executeOp)
{
intptr_target* regRef = callerRegisters->GetExceptionRegisterRef(opInfo);
if (regRef == regPtr)
{
if (!gDebugger->WriteMemory(regSP + offset, regRef, sizeof(intptr_target)))
return false;
wasSaved = true;
}
}
}
else if (unwindOpCode == 8)
{
// UWOP_SAVE_XMM128
int offset = (int)GET(uint16) * 16;
if (executeOp)
{
auto* regRef = callerRegisters->GetXMMRegRef(opInfo);
if (regRef == regPtr)
{
if (!gDebugger->WriteMemory(regSP + offset, regRef, sizeof(*regRef)))
return false;
wasSaved = true;
}
}
}
else if (unwindOpCode == 9)
{
// UWOP_SAVE_XMM128_FAR
int offset = GET(int32);
if (executeOp)
{
auto* regRef = callerRegisters->GetXMMRegRef(opInfo);
if (regRef == regPtr)
{
if (!gDebugger->WriteMemory(regSP + offset, regRef, sizeof(*regRef)))
return false;
wasSaved = true;
}
}
}
else if (unwindOpCode == 10)
{
// UWOP_PUSH_MACHFRAME
if (executeOp)
{
if (opInfo == 0)
{
//addr_target regRIP;
//gDebugger->ReadMemory(*regSP, sizeof(intptr_target), &regRIP); // RIP (correct back trace)
regSP += sizeof(intptr_target);
//addr_target reg;
//gDebugger->ReadMemory(*regSP, sizeof(intptr_target), &reg); // CS
regSP += sizeof(intptr_target);
//gDebugger->ReadMemory(*regSP, sizeof(intptr_target), &reg); // EFLAGS
regSP += sizeof(intptr_target);
//addr_target oldRSP;
//gDebugger->ReadMemory(*regSP, sizeof(intptr_target), &oldRSP); // Old RSP
regSP += sizeof(intptr_target);
//gDebugger->ReadMemory(*regSP, sizeof(intptr_target), &reg); //SS
regSP += sizeof(intptr_target);
addr_target* regPC = calleeRegisters->GetPCRegisterRef();
//*regSP = oldRSP;
//*regPC = regRIP;
}
else
{
regSP += 6 * sizeof(intptr_target);
}
}
}
// Note: RCX/RDX are reversed
}
if (flags & 4) // UNW_FLAG_CHAININFO
{
if (((intptr)data & 3) != 0)
{
// Align
data = (const uint8*)(((intptr)data + 3) & ~3);
}
uint32 chainedRVAStart = GET(uint32);
uint32 chainedRVAEnd = GET(uint32);
uint32 chainedUnwindRVA = GET(uint32);
return PropogateRegisterUpCallStack_ExceptionDirectory(dbgModule->mImageBase + chainedRVAStart, callerRegisters, calleeRegisters, regPtr, wasSaved);
}
return true;
}
return false;
}
#endif
#if 0
bool DebugTarget::RollBackStackFrame_ExceptionDirectory(addr_target findPC, CPURegisters* registers, addr_target* outReturnAddressLoc)
{
addr_target pcAddress = registers->GetPC();
auto exceptionDirectoryEntry = mExceptionDirectoryMap.Get(findPC, DBG_MAX_LOOKBACK);
if ((exceptionDirectoryEntry != NULL) && (findPC >= exceptionDirectoryEntry->mAddress) &&
(findPC < exceptionDirectoryEntry->mAddress + exceptionDirectoryEntry->mAddressLength))
{
auto dbgModule = exceptionDirectoryEntry->mDbgModule;
const uint8* data = dbgModule->mExceptionData + (exceptionDirectoryEntry->mExceptionPos - dbgModule->mExceptionDataRVA);
uint8 version = GET(uint8);
uint8 flags = (version >> 3);
version &= 7;
uint8 prologSize = GET(uint8);
uint8 numUnwindCodes = GET(uint8);
if (exceptionDirectoryEntry->mAddress - dbgModule->mImageBase == 0x0000000000048efc)
{
}
if (flags & 1) // UNW_FLAG_EHANDLER
{
}
else if (flags & 4) // UNW_FLAG_CHAININFO
{
}
/*if (pcAddress < exceptionDirectoryEntry->mAddress + prologSize)
{
// We're in the prolog so just do a standard leaf 'ret'
return false;
}*/
addr_target* regSP = registers->GetSPRegisterRef();
int regFPOffset = 0;
uint8 frameRegister = GET(uint8);
uint8 frameRegisterOffset = frameRegister >> 4;
frameRegister &= 15;
intptr_target newSP = 0;
const uint8* paramAreaStart = data;
const uint8* dataEnd = data + numUnwindCodes * 2;
while (data < dataEnd)
{
uint8 offsetInProlog = GET(uint8);
uint8 unwindOpCode = GET(uint8);
uint8 opInfo = unwindOpCode >> 4;
unwindOpCode &= 15;
bool executeOp = pcAddress >= exceptionDirectoryEntry->mAddress - exceptionDirectoryEntry->mOrigAddressOffset + offsetInProlog;
if ((unwindOpCode == 0) && (executeOp))
{
// UWOP_PUSH_NONVOL
intptr_target* regRef = registers->GetExceptionRegisterRef(opInfo);
gDebugger->ReadMemory(*regSP, sizeof(intptr_target), regRef);
*regSP += sizeof(intptr_target);
}
else if (unwindOpCode == 1)
{
// UWOP_ALLOC_LARGE
int allocSize = 0;
if (opInfo == 0)
allocSize = (int)GET(uint16) * 8;
else if (opInfo == 1)
allocSize = (int)GET(int32);
if (executeOp)
*regSP += allocSize;
}
else if ((unwindOpCode == 2) && (executeOp))
{
// UWOP_ALLOC_SMALL
int allocSize = (int)opInfo * 8 + 8;
*regSP += allocSize;
}
else if ((unwindOpCode == 3) && (executeOp))
{
// UWOP_SET_FPREG
intptr_target* regRef = registers->GetExceptionRegisterRef(frameRegister);
*regSP = *regRef - (16 * frameRegisterOffset);
}
else if (unwindOpCode == 4)
{
// UWOP_SAVE_NONVOL
int offset = (int)GET(uint16) * 8;
if (executeOp)
{
intptr_target* regRef = registers->GetExceptionRegisterRef(opInfo);
gDebugger->ReadMemory(*regSP - offset, sizeof(intptr_target), regRef);
}
}
else if (unwindOpCode == 5)
{
// UWOP_SAVE_NONVOL_FAR
int offset = GET(int32);
if (executeOp)
{
intptr_target* regRef = registers->GetExceptionRegisterRef(opInfo);
gDebugger->ReadMemory(*regSP - offset, sizeof(intptr_target), regRef);
}
}
else if (unwindOpCode == 8)
{
// UWOP_SAVE_XMM128
int offset = (int)GET(uint16) * 16;
if (executeOp)
{
auto* regRef = registers->GetXMMRegRef(opInfo);
gDebugger->ReadMemory(*regSP - offset, sizeof(*regRef), regRef);
}
}
else if (unwindOpCode == 9)
{
// UWOP_SAVE_XMM128_FAR
int offset = GET(int32);
if (executeOp)
{
auto* regRef = registers->GetXMMRegRef(opInfo);
gDebugger->ReadMemory(*regSP - offset, sizeof(*regRef), regRef);
}
}
else if (unwindOpCode == 10)
{
// UWOP_PUSH_MACHFRAME
BF_ASSERT(0 == "Not supported");
}
// Note: RCX/RDX are reversed
}
if (flags & 4) // UNW_FLAG_CHAININFO
{
if (((intptr)data & 3) != 0)
{
// Align
data = (const uint8*)(((intptr)data + 3) & ~3);
}
uint32 chainedRVAStart = GET(uint32);
uint32 chainedRVAEnd = GET(uint32);
uint32 chainedUnwindRVA = GET(uint32);
return RollBackStackFrame_ExceptionDirectory(dbgModule->mImageBase + chainedRVAStart, registers, outReturnAddressLoc);
}
return true;
}
return false;
}
#endif
bool DebugTarget::RollBackStackFrame_ExceptionDirectory(CPURegisters* registers, addr_target* outReturnAddressLoc, bool& alreadyRolledBackPC)
{
addr_target pcAddress = (addr_target)registers->GetPC();
return RollBackStackFrame_ExceptionDirectory(registers->GetPC(), registers, outReturnAddressLoc, alreadyRolledBackPC);
}
bool DebugTarget::RollBackStackFrame_DwFrameDescriptor(CPURegisters* registers, addr_target* outReturnAddressLoc)
{
addr_target pcAddress = (addr_target)registers->GetPC();
//TODO: Verify we replaced this correctly
/*auto stackFrameItr = mFrameDescriptorMap.upper_bound(pcAddress);
if (stackFrameItr != mFrameDescriptorMap.end())
stackFrameItr--;
if (stackFrameItr == mFrameDescriptorMap.end())
return false;*/
if (mDwFrameDescriptorMap.empty())
return false;
auto stackFrameItr = mDwFrameDescriptorMap.upper_bound(pcAddress);
if (stackFrameItr == mDwFrameDescriptorMap.begin())
return false;
stackFrameItr--;
auto dwFrameDescriptor = &stackFrameItr->second;
if (pcAddress > dwFrameDescriptor->mHighPC)
return false;
struct RegisterRuleData
{
public:
int mRegisterRule;
int mParamOffset;
const uint8* mParamData;
public:
RegisterRuleData()
{
mRegisterRule = DW_CFA_undefined;
mParamOffset = 0;
mParamData = NULL;
}
};
struct State
{
State* mPrevState;
RegisterRuleData mRegisterRuleDataArray[CPURegisters::kNumIntRegs];
int mRegisterRuleDataIdx;
addr_target mCFA = 0;
int mCFAOffset = 0;
State()
{
mPrevState = NULL;
mCFA = 0;
mCFAOffset = 0;
mRegisterRuleDataIdx = -1;
}
};
State initialState;
State rootState;
rootState.mRegisterRuleDataIdx = DwarfReg_SP;
State* state = &rootState;
// Set up default rule to restore stack pointer
state->mRegisterRuleDataArray[state->mRegisterRuleDataIdx].mRegisterRule = DW_CFA_val_offset;
state->mRegisterRuleDataArray[state->mRegisterRuleDataIdx].mParamOffset = 0;
for (int pass = 0; pass < 2; pass++)
{
/*if ((pass == 0) && (dwFrameDescriptor->mCommonFrameDescriptor == NULL))
continue;*/
addr_target curLoc = dwFrameDescriptor->mLowPC;
const uint8* data = (pass == 0) ? dwFrameDescriptor->mCommonFrameDescriptor->mInstData : dwFrameDescriptor->mInstData;
const uint8* dataEnd = data + ((pass == 0) ? dwFrameDescriptor->mCommonFrameDescriptor->mInstLen : dwFrameDescriptor->mInstLen);
if (pass == 1)
initialState = rootState;
while ((data < dataEnd) && (pcAddress >= curLoc))
{
uint8 opCode = GET(uint8);
if ((opCode >= DW_CFA_advance_loc) && (opCode < DW_CFA_offset0))
{
int advance = opCode - DW_CFA_advance_loc;
curLoc += advance * dwFrameDescriptor->mCommonFrameDescriptor->mCodeAlignmentFactor;
}
else if (opCode >= DW_CFA_restore)
{
int regNum = opCode - DW_CFA_restore;
state->mRegisterRuleDataArray[regNum] = initialState.mRegisterRuleDataArray[regNum];
}
else
{
switch (opCode)
{
case DW_CFA_advance_loc1:
curLoc += GET(uint8) * dwFrameDescriptor->mCommonFrameDescriptor->mCodeAlignmentFactor;
break;
case DW_CFA_advance_loc2:
curLoc += GET(uint16) * dwFrameDescriptor->mCommonFrameDescriptor->mCodeAlignmentFactor;
break;
case DW_CFA_advance_loc4:
curLoc += GET(uint32) * dwFrameDescriptor->mCommonFrameDescriptor->mCodeAlignmentFactor;
break;
case DW_CFA_def_cfa:
{
int regNum = (int)DecodeULEB128(data);
state->mCFAOffset = (int)DecodeULEB128(data);
BF_ASSERT(regNum < CPURegisters::kNumIntRegs);
state->mCFA = registers->mIntRegsArray[regNum] + state->mCFAOffset;
}
break;
case DW_CFA_def_cfa_offset:
state->mCFA -= state->mCFAOffset;
state->mCFAOffset = DecodeULEB128(data);
state->mCFA += state->mCFAOffset;
case DW_CFA_nop:
break;
case DW_CFA_offset0:
case DW_CFA_offset1:
case DW_CFA_offset2:
case DW_CFA_offset3:
case DW_CFA_offset4:
case DW_CFA_offset5:
case DW_CFA_offset6:
case DW_CFA_offset7:
case DW_CFA_offset8:
{
int regNum = opCode - DW_CFA_offset0;
BF_ASSERT(regNum < CPURegisters::kNumIntRegs);
int offset = (int)DecodeULEB128(data) * dwFrameDescriptor->mCommonFrameDescriptor->mDataAlignmentFactor;
auto registerRuleData = &state->mRegisterRuleDataArray[regNum];
registerRuleData->mRegisterRule = DW_CFA_offset;
registerRuleData->mParamOffset = offset;
//int registerSize = 4;//TODO
//gDebugger->ReadMemory(state_mCFA + offset, registerSize, &registers->mIntRegsArray[regNum]);
}
break;
case DW_CFA_def_cfa_register:
{
int regNum = (int)DecodeULEB128(data);
BF_ASSERT(regNum < CPURegisters::kNumIntRegs);
state->mCFA = registers->mIntRegsArray[regNum] + state->mCFAOffset;
}
break;
case DW_CFA_def_cfa_expression:
{
int blockLen = (int)DecodeULEB128(data);
DbgAddrType addrType;
state->mCFA = dwFrameDescriptor->mCommonFrameDescriptor->mDbgModule->ExecuteOps(NULL, data, blockLen , NULL, registers, &addrType, DbgEvalLocFlag_None, &state->mCFA);
}
break;
case DW_CFA_expression:
{
int regNum = (int)DecodeULEB128(data);
BF_ASSERT(regNum < CPURegisters::kNumIntRegs);
int blockLen = (int)DecodeULEB128(data);
auto registerRuleData = &state->mRegisterRuleDataArray[regNum];
registerRuleData->mRegisterRule = DW_CFA_expression;
registerRuleData->mParamOffset = blockLen;
registerRuleData->mParamData = data;
data += blockLen;
}
break;
case DW_CFA_remember_state:
{
auto nextState = new State();
*nextState = *state;
nextState->mPrevState = state;
state = nextState;
}
break;
case DW_CFA_restore_state:
{
auto prevState = state->mPrevState;
BF_ASSERT(prevState != NULL);
delete state;
state = prevState;
}
break;
case DW_CFA_restore_extended:
{
int regNum = (int)DecodeULEB128(data);
state->mRegisterRuleDataArray[regNum] = initialState.mRegisterRuleDataArray[regNum];
}
break;
default:
BF_FATAL("Unknown DW_CFA");
break;
}
}
}
}
for (int registerNum = 0; registerNum < CPURegisters::kNumIntRegs; registerNum++)
{
auto registerRuleData = &state->mRegisterRuleDataArray[registerNum];
switch (registerRuleData->mRegisterRule)
{
case DW_CFA_offset:
{
if (outReturnAddressLoc != 0)
*outReturnAddressLoc = state->mCFA + registerRuleData->mParamOffset;
int registerSize = sizeof(addr_target);
gDebugger->ReadMemory(state->mCFA + registerRuleData->mParamOffset, registerSize, &registers->mIntRegsArray[registerNum]);
}
break;
case DW_CFA_val_offset:
registers->mIntRegsArray[registerNum] = state->mCFA + registerRuleData->mParamOffset;
break;
case DW_CFA_remember_state:
case DW_CFA_undefined:
break;
case DW_CFA_expression:
{
DbgAddrType addrType;
registers->mIntRegsArray[registerNum] = dwFrameDescriptor->mCommonFrameDescriptor->mDbgModule->ExecuteOps(NULL, registerRuleData->mParamData, registerRuleData->mParamOffset, NULL, registers, &addrType, DbgEvalLocFlag_None, &state->mCFA);
}
break;
default:
BF_FATAL("Unknown DW_CFA");
break;
}
}
while (state->mPrevState != NULL)
{
auto prev = state->mPrevState;
delete state;
state = prev;
}
return true;
}
bool DebugTarget::RollBackStackFrame_COFFFrameDescriptor(CPURegisters* registers, addr_target* outReturnAddressLoc, bool isStackStart)
{
#ifdef BF_DBG_32
addr_target pcAddress = (addr_target)registers->GetPC();
if (mCOFFFrameDescriptorMap.empty())
return false;
auto stackFrameItr = mCOFFFrameDescriptorMap.upper_bound(pcAddress);
if (stackFrameItr == mCOFFFrameDescriptorMap.begin())
return false;
stackFrameItr--;
auto frameEntry = &stackFrameItr->second;
addr_target startAddress = stackFrameItr->first;
if (pcAddress > startAddress + frameEntry->mFrameDescriptor->mCodeSize)
return false;
struct _StackEntry
{
COFFFrameProgram::Command mCmd;
addr_target mValue;
};
//SizedArray<_StackEntry, 8> stack;
int stackPos = 0;
COFFFrameProgram::Command stackCmds[8];
addr_target stackValues[8];
addr_target temps[4];
auto _GetValue = [&](int stackPos)
{
addr_target val = 0;
switch (stackCmds[stackPos])
{
case COFFFrameProgram::Command_EIP:
return (addr_target)registers->mIntRegs.eip;
case COFFFrameProgram::Command_ESP:
return (addr_target)registers->mIntRegs.esp;
case COFFFrameProgram::Command_EBP:
return (addr_target)registers->mIntRegs.ebp;
case COFFFrameProgram::Command_EAX:
return (addr_target)registers->mIntRegs.eax;
case COFFFrameProgram::Command_EBX:
return (addr_target)registers->mIntRegs.ebx;
case COFFFrameProgram::Command_ECX:
return (addr_target)registers->mIntRegs.ecx;
case COFFFrameProgram::Command_EDX:
return (addr_target)registers->mIntRegs.edx;
case COFFFrameProgram::Command_ESI:
return (addr_target)registers->mIntRegs.esi;
case COFFFrameProgram::Command_EDI:
return (addr_target)registers->mIntRegs.edi;
case COFFFrameProgram::Command_T0:
return (addr_target)temps[0];
case COFFFrameProgram::Command_T1:
return (addr_target)temps[1];
case COFFFrameProgram::Command_T2:
return (addr_target)temps[2];
case COFFFrameProgram::Command_T3:
return (addr_target)temps[3];
case COFFFrameProgram::Command_RASearch:
{
addr_target raSearch = (addr_target)(registers->GetSP() + frameEntry->mFrameDescriptor->mLocalSize + frameEntry->mFrameDescriptor->mSavedRegsSize);
// If we are directly on a "sub esp, <X>", this can occur when stepping out of a function, where the caller needs to adjust the stack after the call.
// There is generally not a unique frame descriptor to handle this condition, so we need to manually handle it here
if ((isStackStart) && (pcAddress != startAddress))
{
uint8 ops[2];
if (ReadOrigImageData(pcAddress, ops, 2) != DbgMemoryFlags_None)
{
if ((ops[0] == 0x83) && (ops[1] == 0xEC))
{
// SUB ESP, <UINT8>
uint8 rhs = 0;
ReadOrigImageData(pcAddress + 2, &rhs, 1);
raSearch -= rhs;
}
else if ((ops[0] == 0x81) && (ops[1] == 0xEC))
{
// SUB ESP, <UINT32>
uint32 rhs = 0;
ReadOrigImageData(pcAddress + 2, (uint8*)&rhs, 4);
raSearch -= rhs;
}
}
}
return raSearch;
}
case COFFFrameProgram::Command_Value:
return stackValues[stackPos];
}
return val;
};
COFFFrameProgram::Command* cmdPtr = frameEntry->mProgram.mCommands;
while (true)
{
COFFFrameProgram::Command cmd = *(cmdPtr++);
if (cmd == COFFFrameProgram::Command_None)
break;
switch (cmd)
{
case COFFFrameProgram::Command_EIP:
case COFFFrameProgram::Command_ESP:
case COFFFrameProgram::Command_EBP:
case COFFFrameProgram::Command_EAX:
case COFFFrameProgram::Command_EBX:
case COFFFrameProgram::Command_ECX:
case COFFFrameProgram::Command_EDX:
case COFFFrameProgram::Command_ESI:
case COFFFrameProgram::Command_EDI:
case COFFFrameProgram::Command_T0:
case COFFFrameProgram::Command_T1:
case COFFFrameProgram::Command_RASearch:
if (stackPos >= 8)
return false;
stackCmds[stackPos++] = cmd;
break;
case COFFFrameProgram::Command_Add:
{
if (stackPos < 2)
return false;
addr_target lhs = _GetValue(stackPos - 2);
addr_target rhs = _GetValue(stackPos - 1);
stackPos -= 2;
stackValues[stackPos] = lhs + rhs;
stackCmds[stackPos++] = COFFFrameProgram::Command_Value;
}
break;
case COFFFrameProgram::Command_Subtract:
{
if (stackPos < 2)
return false;
addr_target lhs = _GetValue(stackPos - 2);
addr_target rhs = _GetValue(stackPos - 1);
stackPos -= 2;
stackValues[stackPos] = lhs - rhs;
stackCmds[stackPos++] = COFFFrameProgram::Command_Value;
}
break;
case COFFFrameProgram::Command_Align:
{
if (stackPos < 2)
return false;
addr_target lhs = _GetValue(stackPos - 2);
addr_target rhs = _GetValue(stackPos - 1);
stackPos -= 2;
stackValues[stackPos] = BF_ALIGN(lhs, rhs);
stackCmds[stackPos++] = COFFFrameProgram::Command_Value;
}
break;
case COFFFrameProgram::Command_Set:
{
if (stackPos < 2)
return false;
addr_target rhs = _GetValue(stackPos - 1);
switch (stackCmds[stackPos - 2])
{
case COFFFrameProgram::Command_EIP:
registers->mIntRegs.eip = rhs;
break;
case COFFFrameProgram::Command_ESP:
registers->mIntRegs.esp = rhs;
break;
case COFFFrameProgram::Command_EBP:
registers->mIntRegs.ebp = rhs;
break;
case COFFFrameProgram::Command_EAX:
registers->mIntRegs.eax = rhs;
break;
case COFFFrameProgram::Command_EBX:
registers->mIntRegs.ebx = rhs;
break;
case COFFFrameProgram::Command_ECX:
registers->mIntRegs.ecx = rhs;
break;
case COFFFrameProgram::Command_EDX:
registers->mIntRegs.edx = rhs;
break;
case COFFFrameProgram::Command_ESI:
registers->mIntRegs.esi = rhs;
break;
case COFFFrameProgram::Command_EDI:
registers->mIntRegs.edi = rhs;
break;
case COFFFrameProgram::Command_T0:
temps[0] = rhs;
break;
case COFFFrameProgram::Command_T1:
temps[1] = rhs;
break;
case COFFFrameProgram::Command_T2:
temps[2] = rhs;
break;
case COFFFrameProgram::Command_T3:
temps[3] = rhs;
break;
}
stackPos -= 2;
}
break;
case COFFFrameProgram::Command_Deref:
{
if (stackPos < 1)
return false;
addr_target addr = _GetValue(stackPos - 1);
stackPos--;
stackValues[stackPos] = mDebugger->ReadMemory<addr_target>(addr);
stackCmds[stackPos++] = COFFFrameProgram::Command_Value;
}
break;
case COFFFrameProgram::Command_Value:
{
if (stackPos >= 8)
return false;
addr_target val = *(addr_target*)cmdPtr;
cmdPtr += 4;
stackValues[stackPos] = val;
stackCmds[stackPos++] = COFFFrameProgram::Command_Value;
}
break;
case COFFFrameProgram::Command_Value8:
{
if (stackPos >= 8)
return false;
addr_target val = (uint8)*(cmdPtr++);
stackValues[stackPos] = val;
stackCmds[stackPos++] = COFFFrameProgram::Command_Value;
}
break;
}
}
return true;
#endif
return false;
}
bool DebugTarget::RollBackStackFrame_SimpleRet(CPURegisters* registers)
{
int regSize = sizeof(addr_target);
addr_target* regPC = registers->GetPCRegisterRef();
addr_target* regSP = registers->GetSPRegisterRef();
addr_target newPC = 0;
gDebugger->ReadMemory(*regSP, sizeof(addr_target), &newPC);
*regSP += regSize;
*regPC = newPC;
return true;
}
bool DebugTarget::RollBackStackFrame(CPURegisters* registers, addr_target* outReturnAddressLoc, bool isStackStart)
{
if (outReturnAddressLoc != NULL)
*outReturnAddressLoc = 0;
CPUInst inst;
if (DecodeInstruction(registers->GetPC(), &inst))
{
if (inst.IsReturn())
{
// If we are literally just a return then often the frame descriptor is wrong,
// but we know this is ACTUALLY just a simple rollback
return RollBackStackFrame_SimpleRet(registers);
}
}
#ifdef BF_DBG_32
if (RollBackStackFrame_DwFrameDescriptor(registers, outReturnAddressLoc))
return true;
if (RollBackStackFrame_COFFFrameDescriptor(registers, outReturnAddressLoc, isStackStart))
return true;
auto pc = registers->GetPC();
DbgSubprogram* dbgSubprogram = FindSubProgram(pc);
if (dbgSubprogram != NULL)
{
if (pc == dbgSubprogram->mBlock.mLowPC)
return RollBackStackFrame_SimpleRet(registers);
auto dbgModule = dbgSubprogram->mCompileUnit->mDbgModule;
if ((dbgModule != NULL) && (!dbgModule->mParsedFrameDescriptors))
{
dbgModule->ParseFrameDescriptors();
if (RollBackStackFrame_COFFFrameDescriptor(registers, outReturnAddressLoc, isStackStart))
return true;
}
}
else
{
return RollBackStackFrame_SimpleRet(registers);
}
#endif
// Fall through after this, we need to process a 'return'
bool alreadyRolledBackPC = false;
bool success = RollBackStackFrame_ExceptionDirectory(registers, outReturnAddressLoc, alreadyRolledBackPC);
///TODO: Why did we break when there was a minidump? This breaks default-rollback of just a 'ret'
// if (!success)
// {
// if (mDebugger->IsMiniDumpDebugger())
// {
// return false;
// }
// }
if (alreadyRolledBackPC)
return true;
#ifdef BF_DBG_32
// Try rollback assuming a frame pointer
addr_target newPC = 0;
addr_target stackFrame = registers->GetBP();
int regSize = sizeof(addr_target);
addr_target* regPC = registers->GetPCRegisterRef();
addr_target* regSP = registers->GetSPRegisterRef();
addr_target* regBP = registers->GetBPRegisterRef();
// Using stack frame
*regSP = *regBP;
//*regBP = gDebugger->ReadMemory<addr_target>(*regSP);
gDebugger->ReadMemory(*regSP, sizeof(addr_target), regBP);
*regSP += regSize;
//newPC = gDebugger->ReadMemory<addr_target>(*regSP);
gDebugger->ReadMemory(*regSP, sizeof(addr_target), &newPC);
*regSP += regSize;
*regPC = newPC;
#else
// Do a 'leaf' rollback - assume no frame pointer
addr_target newPC = 0;
addr_target stackFrame = registers->GetBP();
int regSize = sizeof(addr_target);
addr_target* regPC = registers->GetPCRegisterRef();
addr_target* regSP = registers->GetSPRegisterRef();
if (!gDebugger->ReadMemory(*regSP, sizeof(addr_target), &newPC))
return false;
*regSP += regSize;
*regPC = newPC;
#endif
/*MEMORY_BASIC_INFORMATION memInfo;
if (VirtualQueryEx(mProcessInfo.hProcess, (void*)(intptr)(*regPC), &memInfo, sizeof(memInfo)) == 0)
return false;
if ((memInfo.Protect != PAGE_EXECUTE) && (memInfo.Protect != PAGE_EXECUTE_READ) &&
(memInfo.Protect != PAGE_EXECUTE_READWRITE) && (memInfo.Protect != PAGE_EXECUTE_WRITECOPY))
return false;*/
return true;
}
bool DebugTarget::PropogateRegisterUpCallStack(CPURegisters* callerRegisters, CPURegisters* calleeRegisters, void* regPtr, bool& wasSaved)
{
//TODO: Implement for X86
return PropogateRegisterUpCallStack_ExceptionDirectory(calleeRegisters->GetPC(), callerRegisters, calleeRegisters, regPtr, wasSaved);
}
int DebugTarget::GetFrameBaseRegister(DbgSubprogram* dwSubprogram)
{
if (dwSubprogram->mFrameBaseLen == 0)
return -1;
auto locData = dwSubprogram->mFrameBaseData;
if (locData != NULL)
{
uint8 opCode = GET_FROM(locData, uint8);
if ((opCode >= DW_OP_reg0) && (opCode <= DW_OP_reg8))
{
return opCode - DW_OP_reg0;
}
}
#ifdef BF_DBG_32
if (dwSubprogram->mLocalBaseReg == DbgSubprogram::LocalBaseRegKind_VFRAME)
return X86Reg_EBP;
else if (dwSubprogram->mLocalBaseReg == DbgSubprogram::LocalBaseRegKind_EBX)
return X86Reg_EBX;
return X86Reg_EBP;
#else
if (dwSubprogram->mLocalBaseReg == DbgSubprogram::LocalBaseRegKind_RSP)
return X64Reg_RSP;
else if (dwSubprogram->mLocalBaseReg == DbgSubprogram::LocalBaseRegKind_R13)
return X64Reg_R13;
return X64Reg_RBP;
#endif
return -1;
}
bool DebugTarget::GetVariableIndexRegisterAndOffset(DbgVariable* dwVariable, int* outRegister, int* outOffset)
{
if (dwVariable->mLocationLen == 0)
return false;
auto locData = dwVariable->mLocationData;
uint8 opCode = GET_FROM(locData, uint8);
if (opCode == DW_OP_fbreg)
{
*outRegister = -1;
int64 offset = DecodeSLEB128(locData);
*outOffset = offset;
return true;
}
else if ((opCode >= DW_OP_breg0) && (opCode <= DW_OP_breg8))
{
*outRegister = opCode - DW_OP_breg0;
*outOffset = DecodeSLEB128(locData);
return true;
}
return false;
}
//int64 BfDebuggerReadMemory(int64 addr);
addr_target DebugTarget::GetStaticAddress(DbgVariable* dwVariable)
{
DbgAddrType addrType;
return (addr_target)dwVariable->mCompileUnit->mDbgModule->EvaluateLocation(NULL, dwVariable->mLocationData, dwVariable->mLocationLen, NULL, &addrType);
}
bool DebugTarget::GetValueByNameInBlock_Helper(DbgSubprogram* dwSubprogram, DbgBlock* dwBlock, String& name, WdStackFrame* stackFrame, intptr* outAddr, DbgType** outType, DbgAddrType* outAddrType)
{
int nameLen = (int)name.length();
// Checks for previous version of a local name by stripping off the '@' each time we find a match, until we don't have any @'s left
auto _CheckName = [&](const char* localName)
{
const char* namePtr = name.c_str();
if (*namePtr != '@')
return;
while (*namePtr == '@')
namePtr++;
if (strcmp(localName, namePtr) == 0)
{
nameLen--;
name.Remove(0, 1);
}
};
SizedArray<DbgVariable*, 32> checkVars;
for (auto variable : dwBlock->mVariables)
{
checkVars.push_back(variable);
}
auto _FixParam = [&](DbgVariable* variable)
{
if (dwSubprogram->GetLanguage() != DbgLanguage_Beef)
{
if ((*outAddrType == DbgAddrType_Target) /*&& (variable->mIsParam)*/ && (dwSubprogram->mCompileUnit->mDbgModule->mDbgFlavor == DbgFlavor_MS))
{
auto dbgType = *outType;
int size = dbgType->GetByteCount();
if (dbgType->IsTypedPrimitive())
{
// Already correct
}
else if ((dbgType->IsCompositeType()) && (variable->mIsParam))
{
int size = (*outType)->mSize;
if ((size != 1) && (size != 2) && (size != 4) && (size != sizeof(intptr_target)))
{
auto actualAddr = mDebugger->ReadMemory<intptr_target>(*outAddr);
*outAddr = actualAddr;
}
}
}
}
if (variable->mSigNoPointer)
{
if (*outAddrType == DbgAddrType_Target)
*outAddrType = DbgAddrType_TargetDeref;
}
if ((variable->mIsParam) && (dwSubprogram->GetLanguage() == DbgLanguage_Beef))
{
if ((!(*outType)->IsRef()) && (!(*outType)->IsConst()))
*outType = dwSubprogram->mCompileUnit->mDbgModule->GetConstType(*outType);
}
};
for (int varIdx = (int)checkVars.size() - 1; varIdx >= 0; varIdx--)
{
auto variable = checkVars[varIdx];
if (variable->mRangeStart != 0)
{
auto curPC = stackFrame->GetSourcePC();
if ((curPC < variable->mRangeStart) || (curPC >= variable->mRangeStart + variable->mRangeLen))
continue;
}
if (mCapturedNamesPtr != NULL)
{
mCapturedNamesPtr->push_back(variable->mName);
if (mCapturedTypesPtr != NULL)
mCapturedTypesPtr->push_back(variable->mType);
}
else if ((strncmp(name.c_str(), variable->mName, nameLen) == 0))
{
if ((variable->mName[nameLen] == '$') && (variable->mName[nameLen + 1] == 'a')) // Alias
{
const char* aliasName = variable->mName + nameLen + 3;
return GetValueByName(dwSubprogram, aliasName, stackFrame, outAddr, outType, outAddrType);
}
else if (variable->mName[nameLen] != 0)
continue;
*outType = variable->mType;
if (((variable->mType != NULL) && (variable->mType->mTypeCode == DbgType_Const)) || (variable->mIsConst))
{
if ((variable->mLocationData == NULL) || (variable->mIsConst))
{
if (variable->mType->IsCompositeType())
{
*outAddr = (intptr)variable;
*outAddrType = DbgAddrType_LocalSplat;
return true;
}
*outAddrType = DbgAddrType_Local;
if (variable->mIsConst)
*outAddr = (uint64)&variable->mConstValue;
else
*outAddr = NULL; // Optimized out?
return true;
}
else
{
// Strip off const part, for proper evaluation of value for receiver
//TODO: Why did we do this? This screwed up our 'abuse' of the const
// for 'let' statements.
// *outType = variable->mType->mTypeParam;
}
}
if (variable->mLocationData == NULL)
return false;
*outAddr = variable->mCompileUnit->mDbgModule->EvaluateLocation(dwSubprogram, variable->mLocationData, variable->mLocationLen, stackFrame, outAddrType);
_FixParam(variable);
return true;
}
else
_CheckName(variable->mName);
}
if (dwBlock == &dwSubprogram->mBlock)
{
for (auto variable : dwSubprogram->mParams)
{
if (variable->mName == NULL)
continue;
if (mCapturedNamesPtr != NULL)
{
mCapturedNamesPtr->push_back(variable->mName);
if (mCapturedTypesPtr != NULL)
mCapturedTypesPtr->push_back(variable->mType);
}
else if (strcmp(name.c_str(), variable->mName) == 0)
{
*outType = variable->mType;
if (variable->mLocationData == NULL)
{
if (variable->mIsConst)
{
if (variable->mType->IsCompositeType())
{
*outType = dwSubprogram->mCompileUnit->mDbgModule->GetConstType(*outType);
*outAddr = (intptr)variable;
*outAddrType = DbgAddrType_LocalSplat;
return true;
}
}
return false;
}
*outAddr = variable->mCompileUnit->mDbgModule->EvaluateLocation(dwSubprogram, variable->mLocationData, variable->mLocationLen, stackFrame, outAddrType, variable->mIsParam ? DbgEvalLocFlag_IsParam : DbgEvalLocFlag_None);
_FixParam(variable);
return true;
}
else
_CheckName(variable->mName);
}
}
return false;
}
bool DebugTarget::GetValueByNameInBlock(DbgSubprogram* dwSubprogram, DbgBlock* dwBlock, String& name, WdStackFrame* stackFrame, intptr* outAddr, DbgType** outType, DbgAddrType* outAddrType)
{
addr_target pc = stackFrame->GetSourcePC();
if (dwSubprogram != NULL)
{
auto dbgModule = dwSubprogram->mCompileUnit->mDbgModule;
if (dwBlock->mLowPC == -1)
{
//Debug ranges
addr_target* rangeData = (addr_target*)(dbgModule->mDebugRangesData + dwBlock->mHighPC);
while (true)
{
addr_target lowPC = *(rangeData++);
if (lowPC == 0)
return false;
addr_target highPC = *(rangeData++);
// Matches?
if ((pc >= lowPC) && (pc < highPC))
break;
}
}
else if ((pc < dwBlock->mLowPC) || (pc >= dwBlock->mHighPC))
return false;
}
for (auto subBlock : dwBlock->mSubBlocks)
{
if (GetValueByNameInBlock(dwSubprogram, subBlock, name, stackFrame, outAddr, outType, outAddrType))
return true;
}
if (GetValueByNameInBlock_Helper(dwSubprogram, dwBlock, name, stackFrame, outAddr, outType, outAddrType))
return true;
return false;
}
const DbgMemoryFlags DebugTarget::ReadOrigImageData(addr_target address, uint8* data, int size)
{
auto dwarf = FindDbgModuleForAddress(address);
if ((dwarf != NULL) && (dwarf->mOrigImageData != NULL))
{
return dwarf->mOrigImageData->Read(address, data, size);
}
return DbgMemoryFlags_None;
}
bool DebugTarget::DecodeInstruction(addr_target address, CPUInst* inst)
{
auto dwarf = FindDbgModuleForAddress(address);
if ((dwarf != NULL) && (dwarf->mOrigImageData != NULL))
{
return mDebugger->mCPU->Decode(address, dwarf->mOrigImageData, inst);
}
return false;
}
DbgBreakKind DebugTarget::GetDbgBreakKind(addr_target address, CPURegisters* registers, intptr_target* objAddr)
{
auto dwarf = FindDbgModuleForAddress(address);
if ((dwarf != NULL) && (dwarf->mOrigImageData != NULL))
{
auto result = mDebugger->mCPU->GetDbgBreakKind(address, dwarf->mOrigImageData, registers->mIntRegsArray, objAddr);
return result;
}
return DbgBreakKind_None;
}
#define ADDR_ROUGH(address) ((address) & ~0x3FFF)
DbgModule* DebugTarget::FindDbgModuleForAddress(addr_target address)
{
addr_target checkAddr = ADDR_ROUGH(address);
FindDbgModuleCacheEntry* valuePtr = NULL;
if (mFindDbgModuleCache.TryAdd(checkAddr, NULL, &valuePtr))
{
for (auto dwarf : mDbgModules)
{
if ((checkAddr >= ADDR_ROUGH(dwarf->mImageBase)) && (checkAddr <= ADDR_ROUGH(dwarf->mImageBase + dwarf->mImageSize)))
{
if (valuePtr->mFirst == NULL)
{
valuePtr->mFirst = dwarf;
}
else
{
if (valuePtr->mCollisions == NULL)
valuePtr->mCollisions = new Array<DbgModule*>();
valuePtr->mCollisions->Add(dwarf);
}
}
}
}
auto dwarf = valuePtr->mFirst;
if ((dwarf != NULL) && (address >= dwarf->mImageBase) && (address < dwarf->mImageBase + dwarf->mImageSize))
return dwarf;
if (valuePtr->mCollisions != NULL)
{
for (auto dwarf : *valuePtr->mCollisions)
if ((address >= dwarf->mImageBase) && (address < dwarf->mImageBase + dwarf->mImageSize))
return dwarf;
}
return NULL;
}
DbgModule* DebugTarget::GetMainDbgModule()
{
return mTargetBinary;
}
#ifdef BF_DBG_32
template <typename T>
void ReportRadixMap(MemReporter* memReporter, RadixMap32<T>& radixMap)
{
memReporter->Add(sizeof(void*) * RadixMap32<T>::ROOT_LENGTH);
for (int rootIdx = 0; rootIdx < RadixMap32<T>::ROOT_LENGTH; rootIdx++)
{
auto root = radixMap.mRoot[rootIdx];
if (root != NULL)
{
memReporter->Add(sizeof(RadixMap32<T>::Leaf));
}
}
}
#else
template <typename T>
void ReportRadixMap(MemReporter* memReporter, RadixMap64<T>& radixMap)
{
memReporter->Add(sizeof(void*) * RadixMap64<T>::ROOT_LENGTH);
for (int rootIdx = 0; rootIdx < RadixMap64<T>::ROOT_LENGTH; rootIdx++)
{
auto mid = radixMap.mRoot[rootIdx];
if (mid != NULL)
{
memReporter->Add(sizeof(RadixMap64<T>::Mid));
for (int midIdx = 0; midIdx < RadixMap64<T>::MID_LENGTH; midIdx++)
{
auto leaf = mid->mLeafs[midIdx];
if (leaf != NULL)
{
memReporter->Add(sizeof(RadixMap64<T>::Leaf));
}
}
}
}
}
#endif
void DebugTarget::ReportMemory(MemReporter* memReporter)
{
memReporter->BeginSection("SymbolMap");
ReportRadixMap(memReporter, mSymbolMap);
memReporter->EndSection();
memReporter->BeginSection("SubprogramMap");
ReportRadixMap(memReporter, mSubprogramMap);
memReporter->EndSection();
memReporter->BeginSection("ExceptionDirectoryMap");
ReportRadixMap(memReporter, mExceptionDirectoryMap);
memReporter->EndSection();
memReporter->BeginSection("ContribMap");
ReportRadixMap(memReporter, mContribMap);
memReporter->EndSection();
memReporter->BeginSection("CommonFrameDescriptors");
memReporter->AddVec(mCommonFrameDescriptors);
memReporter->EndSection();
for (auto dbgModule : mDbgModules)
{
memReporter->BeginSection("DbgModules");
dbgModule->ReportMemory(memReporter);
memReporter->EndSection();
}
}
template <typename T>
struct VectorRemoveCtx
{
T* mVec;
int mMatchStartIdx;
bool mFinished;
VectorRemoveCtx(T& vec)
{
mVec = &vec;
mMatchStartIdx = -1;
mFinished = false;
}
~VectorRemoveCtx()
{
BF_ASSERT(mFinished);
}
void RemoveCond(int& idx, bool doRemove)
{
if (doRemove)
{
if (mMatchStartIdx == -1)
mMatchStartIdx = idx;
}
else
{
if (mMatchStartIdx != -1)
{
mVec->RemoveRange(mMatchStartIdx, idx - mMatchStartIdx);
idx = mMatchStartIdx;
mMatchStartIdx = -1;
}
}
}
void Finish()
{
if (mMatchStartIdx != -1)
mVec->RemoveRange(mMatchStartIdx, (int)mVec->size() - mMatchStartIdx);
mFinished = true;
}
};
void DebugTarget::RemoveTargetData()
{
BP_ZONE("DebugTarget::RemoveTargetData");
#ifdef _DEBUG
DbgModule* problemModule = NULL;
int checkIdx = 0;
for (DbgSymbol* headNode : mSymbolMap)
{
auto node = headNode;
while (node != NULL)
{
checkIdx++;
auto next = node->mNext;
if (node->mDbgModule->mDeleting)
{
problemModule = node->mDbgModule;
//OutputDebugStrF("Should have been removed by DbgModule::RemoveTargetData %@ %s\n", node->mAddress, node->mName);
BF_DBG_FATAL("Should have been removed by DbgModule::RemoveTargetData");
mSymbolMap.Remove(node);
}
node = next;
}
}
if (problemModule != NULL)
{
problemModule->RemoveTargetData();
}
for (DbgSubprogramMapEntry* headNode : mSubprogramMap)
{
auto node = headNode;
while (node != NULL)
{
auto next = node->mNext;
if (node->mEntry->mCompileUnit->mDbgModule->mDeleting)
{
//OutputDebugStrF("Should have been removed by DbgModule::RemoveTargetData %s\n", node->mEntry->mName);
BF_DBG_FATAL("Should have been removed by DbgModule::RemoveTargetData");
mSubprogramMap.Remove(node);
}
node = next;
}
}
for (DbgExceptionDirectoryEntry* exDirEntry : mExceptionDirectoryMap)
{
auto node = exDirEntry;
while (node != NULL)
{
auto next = node->mNext;
if (node->mDbgModule->mDeleting)
{
//BF_DBG_FATAL("Should have been removed by DbgModule::RemoveTargetData");
mExceptionDirectoryMap.Remove(node);
}
node = next;
}
}
#endif
VectorRemoveCtx<Array<DwCommonFrameDescriptor*>> cieRemoveCtx(mCommonFrameDescriptors);
for (int dieIdx = 0; dieIdx < (int)mCommonFrameDescriptors.size(); dieIdx++)
{
DwCommonFrameDescriptor* commonFrameDescriptor = mCommonFrameDescriptors[dieIdx];
cieRemoveCtx.RemoveCond(dieIdx, commonFrameDescriptor->mDbgModule->mDeleting);
}
cieRemoveCtx.Finish();
auto frameDescItr = mDwFrameDescriptorMap.begin();
while (frameDescItr != mDwFrameDescriptorMap.end())
{
DwFrameDescriptor* frameDesc = &frameDescItr->second;
if (frameDesc->mCommonFrameDescriptor->mDbgModule->mDeleting)
frameDescItr = mDwFrameDescriptorMap.erase(frameDescItr);
else
++frameDescItr;
}
}