1
0
Fork 0
mirror of https://github.com/beefytech/Beef.git synced 2025-07-04 23:36:00 +02:00

Initial checkin

This commit is contained in:
Brian Fiete 2019-08-23 11:56:54 -07:00
parent c74712dad9
commit 078564ac9e
3242 changed files with 1616395 additions and 0 deletions

View file

@ -0,0 +1,761 @@
#ifdef __arm__
/* -----------------------------------------------------------------------
ffi.c - Copyright (c) 2011 Timothy Wall
Copyright (c) 2011 Plausible Labs Cooperative, Inc.
Copyright (c) 2011 Anthony Green
Copyright (c) 2011 Free Software Foundation
Copyright (c) 1998, 2008, 2011 Red Hat, Inc.
ARM Foreign Function Interface
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
----------------------------------------------------------------------- */
#include <ffi.h>
#include <ffi_common.h>
#include <stdlib.h>
/* Forward declares. */
static int vfp_type_p (ffi_type *);
static void layout_vfp_args (ffi_cif *);
/* ffi_prep_args is called by the assembly routine once stack space
has been allocated for the function's arguments
The vfp_space parameter is the load area for VFP regs, the return
value is cif->vfp_used (word bitset of VFP regs used for passing
arguments). These are only used for the VFP hard-float ABI.
*/
int ffi_prep_args(char *stack, extended_cif *ecif, float *vfp_space)
{
register unsigned int i, vi = 0;
register void **p_argv;
register char *argp;
register ffi_type **p_arg;
argp = stack;
if ( ecif->cif->flags == FFI_TYPE_STRUCT ) {
*(void **) argp = ecif->rvalue;
argp += 4;
}
p_argv = ecif->avalue;
for (i = ecif->cif->nargs, p_arg = ecif->cif->arg_types;
(i != 0);
i--, p_arg++)
{
size_t z;
size_t alignment;
/* Allocated in VFP registers. */
if (ecif->cif->abi == FFI_VFP
&& vi < ecif->cif->vfp_nargs && vfp_type_p (*p_arg))
{
float* vfp_slot = vfp_space + ecif->cif->vfp_args[vi++];
if ((*p_arg)->type == FFI_TYPE_FLOAT)
*((float*)vfp_slot) = *((float*)*p_argv);
else if ((*p_arg)->type == FFI_TYPE_DOUBLE)
*((double*)vfp_slot) = *((double*)*p_argv);
else
memcpy(vfp_slot, *p_argv, (*p_arg)->size);
p_argv++;
continue;
}
/* Align if necessary */
alignment = (*p_arg)->alignment;
#ifdef _WIN32_WCE
if (alignment > 4)
alignment = 4;
#endif
if ((alignment - 1) & (unsigned) argp) {
argp = (char *) ALIGN(argp, alignment);
}
if ((*p_arg)->type == FFI_TYPE_STRUCT)
argp = (char *) ALIGN(argp, 4);
z = (*p_arg)->size;
if (z < sizeof(int))
{
z = sizeof(int);
switch ((*p_arg)->type)
{
case FFI_TYPE_SINT8:
*(signed int *) argp = (signed int)*(SINT8 *)(* p_argv);
break;
case FFI_TYPE_UINT8:
*(unsigned int *) argp = (unsigned int)*(UINT8 *)(* p_argv);
break;
case FFI_TYPE_SINT16:
*(signed int *) argp = (signed int)*(SINT16 *)(* p_argv);
break;
case FFI_TYPE_UINT16:
*(unsigned int *) argp = (unsigned int)*(UINT16 *)(* p_argv);
break;
case FFI_TYPE_STRUCT:
memcpy(argp, *p_argv, (*p_arg)->size);
break;
default:
FFI_ASSERT(0);
}
}
else if (z == sizeof(int))
{
*(unsigned int *) argp = (unsigned int)*(UINT32 *)(* p_argv);
}
else
{
memcpy(argp, *p_argv, z);
}
p_argv++;
argp += z;
}
/* Indicate the VFP registers used. */
return ecif->cif->vfp_used;
}
/* Perform machine dependent cif processing */
ffi_status ffi_prep_cif_machdep(ffi_cif *cif)
{
int type_code;
/* Round the stack up to a multiple of 8 bytes. This isn't needed
everywhere, but it is on some platforms, and it doesn't harm anything
when it isn't needed. */
cif->bytes = (cif->bytes + 7) & ~7;
/* Set the return type flag */
switch (cif->rtype->type)
{
case FFI_TYPE_VOID:
case FFI_TYPE_FLOAT:
case FFI_TYPE_DOUBLE:
cif->flags = (unsigned) cif->rtype->type;
break;
case FFI_TYPE_SINT64:
case FFI_TYPE_UINT64:
cif->flags = (unsigned) FFI_TYPE_SINT64;
break;
case FFI_TYPE_STRUCT:
if (cif->abi == FFI_VFP
&& (type_code = vfp_type_p (cif->rtype)) != 0)
{
/* A Composite Type passed in VFP registers, either
FFI_TYPE_STRUCT_VFP_FLOAT or FFI_TYPE_STRUCT_VFP_DOUBLE. */
cif->flags = (unsigned) type_code;
}
else if (cif->rtype->size <= 4)
/* A Composite Type not larger than 4 bytes is returned in r0. */
cif->flags = (unsigned)FFI_TYPE_INT;
else
/* A Composite Type larger than 4 bytes, or whose size cannot
be determined statically ... is stored in memory at an
address passed [in r0]. */
cif->flags = (unsigned)FFI_TYPE_STRUCT;
break;
default:
cif->flags = FFI_TYPE_INT;
break;
}
/* Map out the register placements of VFP register args.
The VFP hard-float calling conventions are slightly more sophisticated than
the base calling conventions, so we do it here instead of in ffi_prep_args(). */
if (cif->abi == FFI_VFP)
layout_vfp_args (cif);
return FFI_OK;
}
/* Perform machine dependent cif processing for variadic calls */
ffi_status ffi_prep_cif_machdep_var(ffi_cif *cif,
unsigned int nfixedargs,
unsigned int ntotalargs)
{
/* VFP variadic calls actually use the SYSV ABI */
if (cif->abi == FFI_VFP)
cif->abi = FFI_SYSV;
return ffi_prep_cif_machdep(cif);
}
/* Prototypes for assembly functions, in sysv.S */
extern void ffi_call_SYSV (void (*fn)(void), extended_cif *, unsigned, unsigned, unsigned *);
extern void ffi_call_VFP (void (*fn)(void), extended_cif *, unsigned, unsigned, unsigned *);
void ffi_call(ffi_cif *cif, void (*fn)(void), void *rvalue, void **avalue)
{
extended_cif ecif;
int small_struct = (cif->flags == FFI_TYPE_INT
&& cif->rtype->type == FFI_TYPE_STRUCT);
int vfp_struct = (cif->flags == FFI_TYPE_STRUCT_VFP_FLOAT
|| cif->flags == FFI_TYPE_STRUCT_VFP_DOUBLE);
ecif.cif = cif;
ecif.avalue = avalue;
unsigned int temp;
/* If the return value is a struct and we don't have a return */
/* value address then we need to make one */
if ((rvalue == NULL) &&
(cif->flags == FFI_TYPE_STRUCT))
{
ecif.rvalue = alloca(cif->rtype->size);
}
else if (small_struct)
ecif.rvalue = &temp;
else if (vfp_struct)
{
/* Largest case is double x 4. */
ecif.rvalue = alloca(32);
}
else
ecif.rvalue = rvalue;
switch (cif->abi)
{
case FFI_SYSV:
ffi_call_SYSV (fn, &ecif, cif->bytes, cif->flags, ecif.rvalue);
break;
case FFI_VFP:
#ifdef __ARM_EABI__
ffi_call_VFP (fn, &ecif, cif->bytes, cif->flags, ecif.rvalue);
break;
#endif
default:
FFI_ASSERT(0);
break;
}
if (small_struct)
memcpy (rvalue, &temp, cif->rtype->size);
else if (vfp_struct)
memcpy (rvalue, ecif.rvalue, cif->rtype->size);
}
/** private members **/
static void ffi_prep_incoming_args_SYSV (char *stack, void **ret,
void** args, ffi_cif* cif, float *vfp_stack);
void ffi_closure_SYSV (ffi_closure *);
void ffi_closure_VFP (ffi_closure *);
/* This function is jumped to by the trampoline */
unsigned int
ffi_closure_SYSV_inner (closure, respp, args, vfp_args)
ffi_closure *closure;
void **respp;
void *args;
void *vfp_args;
{
// our various things...
ffi_cif *cif;
void **arg_area;
cif = closure->cif;
arg_area = (void**) alloca (cif->nargs * sizeof (void*));
/* this call will initialize ARG_AREA, such that each
* element in that array points to the corresponding
* value on the stack; and if the function returns
* a structure, it will re-set RESP to point to the
* structure return address. */
ffi_prep_incoming_args_SYSV(args, respp, arg_area, cif, vfp_args);
(closure->fun) (cif, *respp, arg_area, closure->user_data);
return cif->flags;
}
/*@-exportheader@*/
static void
ffi_prep_incoming_args_SYSV(char *stack, void **rvalue,
void **avalue, ffi_cif *cif,
/* Used only under VFP hard-float ABI. */
float *vfp_stack)
/*@=exportheader@*/
{
register unsigned int i, vi = 0;
register void **p_argv;
register char *argp;
register ffi_type **p_arg;
argp = stack;
if ( cif->flags == FFI_TYPE_STRUCT ) {
*rvalue = *(void **) argp;
argp += 4;
}
p_argv = avalue;
for (i = cif->nargs, p_arg = cif->arg_types; (i != 0); i--, p_arg++)
{
size_t z;
size_t alignment;
if (cif->abi == FFI_VFP
&& vi < cif->vfp_nargs && vfp_type_p (*p_arg))
{
*p_argv++ = (void*)(vfp_stack + cif->vfp_args[vi++]);
continue;
}
alignment = (*p_arg)->alignment;
if (alignment < 4)
alignment = 4;
#ifdef _WIN32_WCE
else
if (alignment > 4)
alignment = 4;
#endif
/* Align if necessary */
if ((alignment - 1) & (unsigned) argp) {
argp = (char *) ALIGN(argp, alignment);
}
z = (*p_arg)->size;
/* because we're little endian, this is what it turns into. */
*p_argv = (void*) argp;
p_argv++;
argp += z;
}
return;
}
/* How to make a trampoline. */
extern unsigned int ffi_arm_trampoline[3];
#if FFI_EXEC_TRAMPOLINE_TABLE
#include <mach/mach.h>
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
extern void *ffi_closure_trampoline_table_page;
typedef struct ffi_trampoline_table ffi_trampoline_table;
typedef struct ffi_trampoline_table_entry ffi_trampoline_table_entry;
struct ffi_trampoline_table {
/* contigious writable and executable pages */
vm_address_t config_page;
vm_address_t trampoline_page;
/* free list tracking */
uint16_t free_count;
ffi_trampoline_table_entry *free_list;
ffi_trampoline_table_entry *free_list_pool;
ffi_trampoline_table *prev;
ffi_trampoline_table *next;
};
struct ffi_trampoline_table_entry {
void *(*trampoline)();
ffi_trampoline_table_entry *next;
};
/* Override the standard architecture trampoline size */
// XXX TODO - Fix
#undef FFI_TRAMPOLINE_SIZE
#define FFI_TRAMPOLINE_SIZE 12
/* The trampoline configuration is placed at 4080 bytes prior to the trampoline's entry point */
#define FFI_TRAMPOLINE_CODELOC_CONFIG(codeloc) ((void **) (((uint8_t *) codeloc) - 4080));
/* The first 16 bytes of the config page are unused, as they are unaddressable from the trampoline page. */
#define FFI_TRAMPOLINE_CONFIG_PAGE_OFFSET 16
/* Total number of trampolines that fit in one trampoline table */
#define FFI_TRAMPOLINE_COUNT ((PAGE_SIZE - FFI_TRAMPOLINE_CONFIG_PAGE_OFFSET) / FFI_TRAMPOLINE_SIZE)
static pthread_mutex_t ffi_trampoline_lock = PTHREAD_MUTEX_INITIALIZER;
static ffi_trampoline_table *ffi_trampoline_tables = NULL;
static ffi_trampoline_table *
ffi_trampoline_table_alloc ()
{
ffi_trampoline_table *table = NULL;
/* Loop until we can allocate two contigious pages */
while (table == NULL) {
vm_address_t config_page = 0x0;
kern_return_t kt;
/* Try to allocate two pages */
kt = vm_allocate (mach_task_self (), &config_page, PAGE_SIZE*2, VM_FLAGS_ANYWHERE);
if (kt != KERN_SUCCESS) {
fprintf(stderr, "vm_allocate() failure: %d at %s:%d\n", kt, __FILE__, __LINE__);
break;
}
/* Now drop the second half of the allocation to make room for the trampoline table */
vm_address_t trampoline_page = config_page+PAGE_SIZE;
kt = vm_deallocate (mach_task_self (), trampoline_page, PAGE_SIZE);
if (kt != KERN_SUCCESS) {
fprintf(stderr, "vm_deallocate() failure: %d at %s:%d\n", kt, __FILE__, __LINE__);
break;
}
/* Remap the trampoline table to directly follow the config page */
vm_prot_t cur_prot;
vm_prot_t max_prot;
kt = vm_remap (mach_task_self (), &trampoline_page, PAGE_SIZE, 0x0, FALSE, mach_task_self (), (vm_address_t) &ffi_closure_trampoline_table_page, FALSE, &cur_prot, &max_prot, VM_INHERIT_SHARE);
/* If we lost access to the destination trampoline page, drop our config allocation mapping and retry */
if (kt != KERN_SUCCESS) {
/* Log unexpected failures */
if (kt != KERN_NO_SPACE) {
fprintf(stderr, "vm_remap() failure: %d at %s:%d\n", kt, __FILE__, __LINE__);
}
vm_deallocate (mach_task_self (), config_page, PAGE_SIZE);
continue;
}
/* We have valid trampoline and config pages */
table = calloc (1, sizeof(ffi_trampoline_table));
table->free_count = FFI_TRAMPOLINE_COUNT;
table->config_page = config_page;
table->trampoline_page = trampoline_page;
/* Create and initialize the free list */
table->free_list_pool = calloc(FFI_TRAMPOLINE_COUNT, sizeof(ffi_trampoline_table_entry));
uint16_t i;
for (i = 0; i < table->free_count; i++) {
ffi_trampoline_table_entry *entry = &table->free_list_pool[i];
entry->trampoline = (void *) (table->trampoline_page + (i * FFI_TRAMPOLINE_SIZE));
if (i < table->free_count - 1)
entry->next = &table->free_list_pool[i+1];
}
table->free_list = table->free_list_pool;
}
return table;
}
void *
ffi_closure_alloc (size_t size, void **code)
{
/* Create the closure */
ffi_closure *closure = malloc(size);
if (closure == NULL)
return NULL;
pthread_mutex_lock(&ffi_trampoline_lock);
/* Check for an active trampoline table with available entries. */
ffi_trampoline_table *table = ffi_trampoline_tables;
if (table == NULL || table->free_list == NULL) {
table = ffi_trampoline_table_alloc ();
if (table == NULL) {
free(closure);
return NULL;
}
/* Insert the new table at the top of the list */
table->next = ffi_trampoline_tables;
if (table->next != NULL)
table->next->prev = table;
ffi_trampoline_tables = table;
}
/* Claim the free entry */
ffi_trampoline_table_entry *entry = ffi_trampoline_tables->free_list;
ffi_trampoline_tables->free_list = entry->next;
ffi_trampoline_tables->free_count--;
entry->next = NULL;
pthread_mutex_unlock(&ffi_trampoline_lock);
/* Initialize the return values */
*code = entry->trampoline;
closure->trampoline_table = table;
closure->trampoline_table_entry = entry;
return closure;
}
void
ffi_closure_free (void *ptr)
{
ffi_closure *closure = ptr;
pthread_mutex_lock(&ffi_trampoline_lock);
/* Fetch the table and entry references */
ffi_trampoline_table *table = closure->trampoline_table;
ffi_trampoline_table_entry *entry = closure->trampoline_table_entry;
/* Return the entry to the free list */
entry->next = table->free_list;
table->free_list = entry;
table->free_count++;
/* If all trampolines within this table are free, and at least one other table exists, deallocate
* the table */
if (table->free_count == FFI_TRAMPOLINE_COUNT && ffi_trampoline_tables != table) {
/* Remove from the list */
if (table->prev != NULL)
table->prev->next = table->next;
if (table->next != NULL)
table->next->prev = table->prev;
/* Deallocate pages */
kern_return_t kt;
kt = vm_deallocate (mach_task_self (), table->config_page, PAGE_SIZE);
if (kt != KERN_SUCCESS)
fprintf(stderr, "vm_deallocate() failure: %d at %s:%d\n", kt, __FILE__, __LINE__);
kt = vm_deallocate (mach_task_self (), table->trampoline_page, PAGE_SIZE);
if (kt != KERN_SUCCESS)
fprintf(stderr, "vm_deallocate() failure: %d at %s:%d\n", kt, __FILE__, __LINE__);
/* Deallocate free list */
free (table->free_list_pool);
free (table);
} else if (ffi_trampoline_tables != table) {
/* Otherwise, bump this table to the top of the list */
table->prev = NULL;
table->next = ffi_trampoline_tables;
if (ffi_trampoline_tables != NULL)
ffi_trampoline_tables->prev = table;
ffi_trampoline_tables = table;
}
pthread_mutex_unlock (&ffi_trampoline_lock);
/* Free the closure */
free (closure);
}
#else
#define FFI_INIT_TRAMPOLINE(TRAMP,FUN,CTX) \
({ unsigned char *__tramp = (unsigned char*)(TRAMP); \
unsigned int __fun = (unsigned int)(FUN); \
unsigned int __ctx = (unsigned int)(CTX); \
unsigned char *insns = (unsigned char *)(CTX); \
memcpy (__tramp, ffi_arm_trampoline, sizeof ffi_arm_trampoline); \
*(unsigned int*) &__tramp[12] = __ctx; \
*(unsigned int*) &__tramp[16] = __fun; \
__clear_cache((&__tramp[0]), (&__tramp[19])); /* Clear data mapping. */ \
__clear_cache(insns, insns + 3 * sizeof (unsigned int)); \
/* Clear instruction \
mapping. */ \
})
#endif
/* the cif must already be prep'ed */
ffi_status
ffi_prep_closure_loc (ffi_closure* closure,
ffi_cif* cif,
void (*fun)(ffi_cif*,void*,void**,void*),
void *user_data,
void *codeloc)
{
void (*closure_func)(ffi_closure*) = NULL;
if (cif->abi == FFI_SYSV)
closure_func = &ffi_closure_SYSV;
#ifdef __ARM_EABI__
else if (cif->abi == FFI_VFP)
closure_func = &ffi_closure_VFP;
#endif
else
return FFI_BAD_ABI;
#if FFI_EXEC_TRAMPOLINE_TABLE
void **config = FFI_TRAMPOLINE_CODELOC_CONFIG(codeloc);
config[0] = closure;
config[1] = closure_func;
#else
FFI_INIT_TRAMPOLINE (&closure->tramp[0], \
closure_func, \
codeloc);
#endif
closure->cif = cif;
closure->user_data = user_data;
closure->fun = fun;
return FFI_OK;
}
/* Below are routines for VFP hard-float support. */
static int rec_vfp_type_p (ffi_type *t, int *elt, int *elnum)
{
switch (t->type)
{
case FFI_TYPE_FLOAT:
case FFI_TYPE_DOUBLE:
*elt = (int) t->type;
*elnum = 1;
return 1;
case FFI_TYPE_STRUCT_VFP_FLOAT:
*elt = FFI_TYPE_FLOAT;
*elnum = t->size / sizeof (float);
return 1;
case FFI_TYPE_STRUCT_VFP_DOUBLE:
*elt = FFI_TYPE_DOUBLE;
*elnum = t->size / sizeof (double);
return 1;
case FFI_TYPE_STRUCT:;
{
int base_elt = 0, total_elnum = 0;
ffi_type **el = t->elements;
while (*el)
{
int el_elt = 0, el_elnum = 0;
if (! rec_vfp_type_p (*el, &el_elt, &el_elnum)
|| (base_elt && base_elt != el_elt)
|| total_elnum + el_elnum > 4)
return 0;
base_elt = el_elt;
total_elnum += el_elnum;
el++;
}
*elnum = total_elnum;
*elt = base_elt;
return 1;
}
default: ;
}
return 0;
}
static int vfp_type_p (ffi_type *t)
{
int elt, elnum;
if (rec_vfp_type_p (t, &elt, &elnum))
{
if (t->type == FFI_TYPE_STRUCT)
{
if (elnum == 1)
t->type = elt;
else
t->type = (elt == FFI_TYPE_FLOAT
? FFI_TYPE_STRUCT_VFP_FLOAT
: FFI_TYPE_STRUCT_VFP_DOUBLE);
}
return (int) t->type;
}
return 0;
}
static void place_vfp_arg (ffi_cif *cif, ffi_type *t)
{
int reg = cif->vfp_reg_free;
int nregs = t->size / sizeof (float);
int align = ((t->type == FFI_TYPE_STRUCT_VFP_FLOAT
|| t->type == FFI_TYPE_FLOAT) ? 1 : 2);
/* Align register number. */
if ((reg & 1) && align == 2)
reg++;
while (reg + nregs <= 16)
{
int s, new_used = 0;
for (s = reg; s < reg + nregs; s++)
{
new_used |= (1 << s);
if (cif->vfp_used & (1 << s))
{
reg += align;
goto next_reg;
}
}
/* Found regs to allocate. */
cif->vfp_used |= new_used;
cif->vfp_args[cif->vfp_nargs++] = reg;
/* Update vfp_reg_free. */
if (cif->vfp_used & (1 << cif->vfp_reg_free))
{
reg += nregs;
while (cif->vfp_used & (1 << reg))
reg += 1;
cif->vfp_reg_free = reg;
}
return;
next_reg: ;
}
}
static void layout_vfp_args (ffi_cif *cif)
{
int i;
/* Init VFP fields */
cif->vfp_used = 0;
cif->vfp_nargs = 0;
cif->vfp_reg_free = 0;
memset (cif->vfp_args, -1, 16); /* Init to -1. */
for (i = 0; i < cif->nargs; i++)
{
ffi_type *t = cif->arg_types[i];
if (vfp_type_p (t))
place_vfp_arg (cif, t);
}
}
#endif

View file

@ -0,0 +1,123 @@
#ifdef __arm__
#!/bin/sh
# -----------------------------------------------------------------------
# gentramp.sh - Copyright (c) 2010, Plausible Labs Cooperative, Inc.
#
# ARM Trampoline Page Generator
#
# Permission is hereby granted, free of charge, to any person obtaining
# a copy of this software and associated documentation files (the
# ``Software''), to deal in the Software without restriction, including
# without limitation the rights to use, copy, modify, merge, publish,
# distribute, sublicense, and/or sell copies of the Software, and to
# permit persons to whom the Software is furnished to do so, subject to
# the following conditions:
#
# The above copyright notice and this permission notice shall be included
# in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
# HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
# WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
# -----------------------------------------------------------------------
PROGNAME=$0
# Each trampoline is exactly 3 instructions, or 12 bytes. If any of these values change,
# the entire arm trampoline implementation must be updated to match, too.
# Size of an individual trampoline, in bytes
TRAMPOLINE_SIZE=12
# Page size, in bytes
PAGE_SIZE=4096
# Compute the size of the reachable config page; The first 16 bytes of the config page
# are unreachable due to our maximum pc-relative ldr offset.
PAGE_AVAIL=`expr $PAGE_SIZE - 16`
# Compute the number of of available trampolines.
TRAMPOLINE_COUNT=`expr $PAGE_AVAIL / $TRAMPOLINE_SIZE`
header () {
echo "# GENERATED CODE - DO NOT EDIT"
echo "# This file was generated by $PROGNAME"
echo ""
# Write out the license header
cat << EOF
# Copyright (c) 2010, Plausible Labs Cooperative, Inc.
#
# Permission is hereby granted, free of charge, to any person obtaining
# a copy of this software and associated documentation files (the
# ``Software''), to deal in the Software without restriction, including
# without limitation the rights to use, copy, modify, merge, publish,
# distribute, sublicense, and/or sell copies of the Software, and to
# permit persons to whom the Software is furnished to do so, subject to
# the following conditions:
#
# The above copyright notice and this permission notice shall be included
# in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
# HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
# WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
# -----------------------------------------------------------------------
EOF
# Write out the trampoline table, aligned to the page boundary
echo ".text"
echo ".align 12"
echo ".globl _ffi_closure_trampoline_table_page"
echo "_ffi_closure_trampoline_table_page:"
}
# WARNING - Don't modify the trampoline code size without also updating the relevent libffi code
trampoline () {
cat << END
// trampoline
// Save to stack
stmfd sp!, {r0-r3}
// Load the context argument from the config page.
// This places the first usable config value at _ffi_closure_trampoline_table-4080
// This accounts for the above 4-byte stmfd instruction, plus 8 bytes constant when loading from pc.
ldr r0, [pc, #-4092]
// Load the jump address from the config page.
ldr pc, [pc, #-4092]
END
}
main () {
# Write out the header
header
# Write out the trampolines
local i=0
while [ $i -lt ${TRAMPOLINE_COUNT} ]; do
trampoline
local i=`expr $i + 1`
done
}
main
#endif

View file

@ -0,0 +1,510 @@
#ifdef __arm__
/* -----------------------------------------------------------------------
sysv.S - Copyright (c) 1998, 2008, 2011 Red Hat, Inc.
Copyright (c) 2011 Plausible Labs Cooperative, Inc.
ARM Foreign Function Interface
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
----------------------------------------------------------------------- */
#define LIBFFI_ASM
#include <fficonfig.h>
#include <ffi.h>
#ifdef HAVE_MACHINE_ASM_H
#include <machine/asm.h>
#else
#ifdef __USER_LABEL_PREFIX__
#define CONCAT1(a, b) CONCAT2(a, b)
#define CONCAT2(a, b) a ## b
/* Use the right prefix for global labels. */
#define CNAME(x) CONCAT1 (__USER_LABEL_PREFIX__, x)
#else
#define CNAME(x) x
#endif
#ifdef __APPLE__
#define ENTRY(x) .globl _##x; _##x:
#else
#define ENTRY(x) .globl CNAME(x); .type CNAME(x),%function; CNAME(x):
#endif /* __APPLE__ */
#endif
#ifdef __ELF__
#define LSYM(x) .x
#else
#define LSYM(x) x
#endif
/* Use the SOFTFP return value ABI on Mac OS X, as per the iOS ABI
Function Call Guide */
#ifdef __APPLE__
#define __SOFTFP__
#endif
/* We need a better way of testing for this, but for now, this is all
we can do. */
@ This selects the minimum architecture level required.
#define __ARM_ARCH__ 3
#if defined(__ARM_ARCH_4__) || defined(__ARM_ARCH_4T__)
# undef __ARM_ARCH__
# define __ARM_ARCH__ 4
#endif
#if defined(__ARM_ARCH_5__) || defined(__ARM_ARCH_5T__) \
|| defined(__ARM_ARCH_5E__) || defined(__ARM_ARCH_5TE__) \
|| defined(__ARM_ARCH_5TEJ__)
# undef __ARM_ARCH__
# define __ARM_ARCH__ 5
#endif
#if defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) \
|| defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) \
|| defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) \
|| defined(__ARM_ARCH_6M__)
# undef __ARM_ARCH__
# define __ARM_ARCH__ 6
#endif
#if defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) \
|| defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) \
|| defined(__ARM_ARCH_7EM__)
# undef __ARM_ARCH__
# define __ARM_ARCH__ 7
#endif
#if __ARM_ARCH__ >= 5
# define call_reg(x) blx x
#elif defined (__ARM_ARCH_4T__)
# define call_reg(x) mov lr, pc ; bx x
# if defined(__thumb__) || defined(__THUMB_INTERWORK__)
# define __INTERWORKING__
# endif
#else
# define call_reg(x) mov lr, pc ; mov pc, x
#endif
/* Conditionally compile unwinder directives. */
#ifdef __ARM_EABI__
#define UNWIND
#else
#define UNWIND @
#endif
#if defined(__thumb__) && !defined(__THUMB_INTERWORK__)
.macro ARM_FUNC_START name
.text
.align 0
.thumb
.thumb_func
#ifdef __APPLE__
ENTRY($0)
#else
ENTRY(\name)
#endif
bx pc
nop
.arm
UNWIND .fnstart
/* A hook to tell gdb that we've switched to ARM mode. Also used to call
directly from other local arm routines. */
#ifdef __APPLE__
_L__$0:
#else
_L__\name:
#endif
.endm
#else
.macro ARM_FUNC_START name
.text
.align 0
.arm
#ifdef __APPLE__
ENTRY($0)
#else
ENTRY(\name)
#endif
UNWIND .fnstart
.endm
#endif
.macro RETLDM regs=, cond=, dirn=ia
#if defined (__INTERWORKING__)
.ifc "\regs",""
ldr\cond lr, [sp], #4
.else
ldm\cond\dirn sp!, {\regs, lr}
.endif
bx\cond lr
#else
.ifc "\regs",""
ldr\cond pc, [sp], #4
.else
ldm\cond\dirn sp!, {\regs, pc}
.endif
#endif
.endm
@ r0: ffi_prep_args
@ r1: &ecif
@ r2: cif->bytes
@ r3: fig->flags
@ sp+0: ecif.rvalue
@ This assumes we are using gas.
ARM_FUNC_START ffi_call_SYSV
@ Save registers
stmfd sp!, {r0-r3, fp, lr}
UNWIND .save {r0-r3, fp, lr}
mov fp, sp
UNWIND .setfp fp, sp
@ Make room for all of the new args.
sub sp, fp, r2
@ Place all of the ffi_prep_args in position
mov r0, sp
@ r1 already set
@ Call ffi_prep_args(stack, &ecif)
bl CNAME(ffi_prep_args)
@ move first 4 parameters in registers
ldmia sp, {r0-r3}
@ and adjust stack
sub lr, fp, sp @ cif->bytes == fp - sp
ldr ip, [fp] @ load fn() in advance
cmp lr, #16
movhs lr, #16
add sp, sp, lr
@ call (fn) (...)
call_reg(ip)
@ Remove the space we pushed for the args
mov sp, fp
@ Load r2 with the pointer to storage for the return value
ldr r2, [sp, #24]
@ Load r3 with the return type code
ldr r3, [sp, #12]
@ If the return value pointer is NULL, assume no return value.
cmp r2, #0
beq LSYM(Lepilogue)
@ return INT
cmp r3, #FFI_TYPE_INT
#if defined(__SOFTFP__) || defined(__ARM_EABI__)
cmpne r3, #FFI_TYPE_FLOAT
#endif
streq r0, [r2]
beq LSYM(Lepilogue)
@ return INT64
cmp r3, #FFI_TYPE_SINT64
#if defined(__SOFTFP__) || defined(__ARM_EABI__)
cmpne r3, #FFI_TYPE_DOUBLE
#endif
stmeqia r2, {r0, r1}
#if !defined(__SOFTFP__) && !defined(__ARM_EABI__)
beq LSYM(Lepilogue)
@ return FLOAT
cmp r3, #FFI_TYPE_FLOAT
stfeqs f0, [r2]
beq LSYM(Lepilogue)
@ return DOUBLE or LONGDOUBLE
cmp r3, #FFI_TYPE_DOUBLE
stfeqd f0, [r2]
#endif
LSYM(Lepilogue):
#if defined (__INTERWORKING__)
ldmia sp!, {r0-r3,fp, lr}
bx lr
#else
ldmia sp!, {r0-r3,fp, pc}
#endif
.ffi_call_SYSV_end:
UNWIND .fnend
#ifdef __ELF__
.size CNAME(ffi_call_SYSV),.ffi_call_SYSV_end-CNAME(ffi_call_SYSV)
#endif
/*
unsigned int FFI_HIDDEN
ffi_closure_SYSV_inner (closure, respp, args)
ffi_closure *closure;
void **respp;
void *args;
*/
ARM_FUNC_START ffi_closure_SYSV
UNWIND .pad #16
add ip, sp, #16
stmfd sp!, {ip, lr}
UNWIND .save {r0, lr}
add r2, sp, #8
UNWIND .pad #16
sub sp, sp, #16
str sp, [sp, #8]
add r1, sp, #8
bl CNAME(ffi_closure_SYSV_inner)
cmp r0, #FFI_TYPE_INT
beq .Lretint
cmp r0, #FFI_TYPE_FLOAT
#if defined(__SOFTFP__) || defined(__ARM_EABI__)
beq .Lretint
#else
beq .Lretfloat
#endif
cmp r0, #FFI_TYPE_DOUBLE
#if defined(__SOFTFP__) || defined(__ARM_EABI__)
beq .Lretlonglong
#else
beq .Lretdouble
#endif
cmp r0, #FFI_TYPE_LONGDOUBLE
#if defined(__SOFTFP__) || defined(__ARM_EABI__)
beq .Lretlonglong
#else
beq .Lretlongdouble
#endif
cmp r0, #FFI_TYPE_SINT64
beq .Lretlonglong
.Lclosure_epilogue:
add sp, sp, #16
ldmfd sp, {sp, pc}
.Lretint:
ldr r0, [sp]
b .Lclosure_epilogue
.Lretlonglong:
ldr r0, [sp]
ldr r1, [sp, #4]
b .Lclosure_epilogue
#if !defined(__SOFTFP__) && !defined(__ARM_EABI__)
.Lretfloat:
ldfs f0, [sp]
b .Lclosure_epilogue
.Lretdouble:
ldfd f0, [sp]
b .Lclosure_epilogue
.Lretlongdouble:
ldfd f0, [sp]
b .Lclosure_epilogue
#endif
.ffi_closure_SYSV_end:
UNWIND .fnend
#ifdef __ELF__
.size CNAME(ffi_closure_SYSV),.ffi_closure_SYSV_end-CNAME(ffi_closure_SYSV)
#endif
/* Below are VFP hard-float ABI call and closure implementations.
Add VFP FPU directive here. This is only compiled into the library
under EABI. */
#ifdef __ARM_EABI__
.fpu vfp
@ r0: fn
@ r1: &ecif
@ r2: cif->bytes
@ r3: fig->flags
@ sp+0: ecif.rvalue
ARM_FUNC_START ffi_call_VFP
@ Save registers
stmfd sp!, {r0-r3, fp, lr}
UNWIND .save {r0-r3, fp, lr}
mov fp, sp
UNWIND .setfp fp, sp
@ Make room for all of the new args.
sub sp, sp, r2
@ Make room for loading VFP args
sub sp, sp, #64
@ Place all of the ffi_prep_args in position
mov r0, sp
@ r1 already set
sub r2, fp, #64 @ VFP scratch space
@ Call ffi_prep_args(stack, &ecif, vfp_space)
bl CNAME(ffi_prep_args)
@ Load VFP register args if needed
cmp r0, #0
beq LSYM(Lbase_args)
@ Load only d0 if possible
cmp r0, #3
sub ip, fp, #64
flddle d0, [ip]
fldmiadgt ip, {d0-d7}
LSYM(Lbase_args):
@ move first 4 parameters in registers
ldmia sp, {r0-r3}
@ and adjust stack
sub lr, ip, sp @ cif->bytes == (fp - 64) - sp
ldr ip, [fp] @ load fn() in advance
cmp lr, #16
movhs lr, #16
add sp, sp, lr
@ call (fn) (...)
call_reg(ip)
@ Remove the space we pushed for the args
mov sp, fp
@ Load r2 with the pointer to storage for
@ the return value
ldr r2, [sp, #24]
@ Load r3 with the return type code
ldr r3, [sp, #12]
@ If the return value pointer is NULL,
@ assume no return value.
cmp r2, #0
beq LSYM(Lepilogue_vfp)
cmp r3, #FFI_TYPE_INT
streq r0, [r2]
beq LSYM(Lepilogue_vfp)
cmp r3, #FFI_TYPE_SINT64
stmeqia r2, {r0, r1}
beq LSYM(Lepilogue_vfp)
cmp r3, #FFI_TYPE_FLOAT
fstseq s0, [r2]
beq LSYM(Lepilogue_vfp)
cmp r3, #FFI_TYPE_DOUBLE
fstdeq d0, [r2]
beq LSYM(Lepilogue_vfp)
cmp r3, #FFI_TYPE_STRUCT_VFP_FLOAT
cmpne r3, #FFI_TYPE_STRUCT_VFP_DOUBLE
fstmiadeq r2, {d0-d3}
LSYM(Lepilogue_vfp):
RETLDM "r0-r3,fp"
.ffi_call_VFP_end:
UNWIND .fnend
.size CNAME(ffi_call_VFP),.ffi_call_VFP_end-CNAME(ffi_call_VFP)
ARM_FUNC_START ffi_closure_VFP
fstmfdd sp!, {d0-d7}
@ r0-r3, then d0-d7
UNWIND .pad #80
add ip, sp, #80
stmfd sp!, {ip, lr}
UNWIND .save {r0, lr}
add r2, sp, #72
add r3, sp, #8
UNWIND .pad #72
sub sp, sp, #72
str sp, [sp, #64]
add r1, sp, #64
bl CNAME(ffi_closure_SYSV_inner)
cmp r0, #FFI_TYPE_INT
beq .Lretint_vfp
cmp r0, #FFI_TYPE_FLOAT
beq .Lretfloat_vfp
cmp r0, #FFI_TYPE_DOUBLE
cmpne r0, #FFI_TYPE_LONGDOUBLE
beq .Lretdouble_vfp
cmp r0, #FFI_TYPE_SINT64
beq .Lretlonglong_vfp
cmp r0, #FFI_TYPE_STRUCT_VFP_FLOAT
beq .Lretfloat_struct_vfp
cmp r0, #FFI_TYPE_STRUCT_VFP_DOUBLE
beq .Lretdouble_struct_vfp
.Lclosure_epilogue_vfp:
add sp, sp, #72
ldmfd sp, {sp, pc}
.Lretfloat_vfp:
flds s0, [sp]
b .Lclosure_epilogue_vfp
.Lretdouble_vfp:
fldd d0, [sp]
b .Lclosure_epilogue_vfp
.Lretint_vfp:
ldr r0, [sp]
b .Lclosure_epilogue_vfp
.Lretlonglong_vfp:
ldmia sp, {r0, r1}
b .Lclosure_epilogue_vfp
.Lretfloat_struct_vfp:
fldmiad sp, {d0-d1}
b .Lclosure_epilogue_vfp
.Lretdouble_struct_vfp:
fldmiad sp, {d0-d3}
b .Lclosure_epilogue_vfp
.ffi_closure_VFP_end:
UNWIND .fnend
.size CNAME(ffi_closure_VFP),.ffi_closure_VFP_end-CNAME(ffi_closure_VFP)
#endif
ENTRY(ffi_arm_trampoline)
stmfd sp!, {r0-r3}
ldr r0, [pc]
ldr pc, [pc]
#if defined __ELF__ && defined __linux__
.section .note.GNU-stack,"",%progbits
#endif
#endif

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,644 @@
/* -----------------------------------------------------------------------
closures.c - Copyright (c) 2007, 2009, 2010 Red Hat, Inc.
Copyright (C) 2007, 2009, 2010 Free Software Foundation, Inc
Copyright (c) 2011 Plausible Labs Cooperative, Inc.
Code to allocate and deallocate memory for closures.
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
----------------------------------------------------------------------- */
#if defined __linux__ && !defined _GNU_SOURCE
#define _GNU_SOURCE 1
#endif
#include <ffi.h>
#include <ffi_common.h>
#if !FFI_MMAP_EXEC_WRIT && !FFI_EXEC_TRAMPOLINE_TABLE
# if __gnu_linux__
/* This macro indicates it may be forbidden to map anonymous memory
with both write and execute permission. Code compiled when this
option is defined will attempt to map such pages once, but if it
fails, it falls back to creating a temporary file in a writable and
executable filesystem and mapping pages from it into separate
locations in the virtual memory space, one location writable and
another executable. */
# define FFI_MMAP_EXEC_WRIT 1
# define HAVE_MNTENT 1
# endif
# if defined(X86_WIN32) || defined(X86_WIN64) || defined(__OS2__)
/* Windows systems may have Data Execution Protection (DEP) enabled,
which requires the use of VirtualMalloc/VirtualFree to alloc/free
executable memory. */
# define FFI_MMAP_EXEC_WRIT 1
# endif
#endif
#if FFI_MMAP_EXEC_WRIT && !defined FFI_MMAP_EXEC_SELINUX
# ifdef __linux__
/* When defined to 1 check for SELinux and if SELinux is active,
don't attempt PROT_EXEC|PROT_WRITE mapping at all, as that
might cause audit messages. */
# define FFI_MMAP_EXEC_SELINUX 1
# endif
#endif
#if FFI_CLOSURES
# if FFI_EXEC_TRAMPOLINE_TABLE
// Per-target implementation; It's unclear what can reasonable be shared between two OS/architecture implementations.
# elif FFI_MMAP_EXEC_WRIT /* !FFI_EXEC_TRAMPOLINE_TABLE */
#define USE_LOCKS 1
#define USE_DL_PREFIX 1
#ifdef __GNUC__
#ifndef USE_BUILTIN_FFS
#define USE_BUILTIN_FFS 1
#endif
#endif
/* We need to use mmap, not sbrk. */
#define HAVE_MORECORE 0
/* We could, in theory, support mremap, but it wouldn't buy us anything. */
#define HAVE_MREMAP 0
/* We have no use for this, so save some code and data. */
#define NO_MALLINFO 1
/* We need all allocations to be in regular segments, otherwise we
lose track of the corresponding code address. */
#define DEFAULT_MMAP_THRESHOLD MAX_SIZE_T
/* Don't allocate more than a page unless needed. */
#define DEFAULT_GRANULARITY ((size_t)malloc_getpagesize)
#if FFI_CLOSURE_TEST
/* Don't release single pages, to avoid a worst-case scenario of
continuously allocating and releasing single pages, but release
pairs of pages, which should do just as well given that allocations
are likely to be small. */
#define DEFAULT_TRIM_THRESHOLD ((size_t)malloc_getpagesize)
#endif
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <errno.h>
#ifndef _MSC_VER
#include <unistd.h>
#endif
#include <string.h>
#include <stdio.h>
#if !defined(X86_WIN32) && !defined(X86_WIN64)
#ifdef HAVE_MNTENT
#include <mntent.h>
#endif /* HAVE_MNTENT */
#include <sys/param.h>
#include <pthread.h>
/* We don't want sys/mman.h to be included after we redefine mmap and
dlmunmap. */
#include <sys/mman.h>
#define LACKS_SYS_MMAN_H 1
#if FFI_MMAP_EXEC_SELINUX
#include <sys/statfs.h>
#include <stdlib.h>
static int selinux_enabled = -1;
static int
selinux_enabled_check (void)
{
struct statfs sfs;
FILE *f;
char *buf = NULL;
size_t len = 0;
if (statfs ("/selinux", &sfs) >= 0
&& (unsigned int) sfs.f_type == 0xf97cff8cU)
return 1;
f = fopen ("/proc/mounts", "r");
if (f == NULL)
return 0;
while (getline (&buf, &len, f) >= 0)
{
char *p = strchr (buf, ' ');
if (p == NULL)
break;
p = strchr (p + 1, ' ');
if (p == NULL)
break;
if (strncmp (p + 1, "selinuxfs ", 10) == 0)
{
free (buf);
fclose (f);
return 1;
}
}
free (buf);
fclose (f);
return 0;
}
#define is_selinux_enabled() (selinux_enabled >= 0 ? selinux_enabled \
: (selinux_enabled = selinux_enabled_check ()))
#else
#define is_selinux_enabled() 0
#endif /* !FFI_MMAP_EXEC_SELINUX */
/* On PaX enable kernels that have MPROTECT enable we can't use PROT_EXEC. */
#ifdef FFI_MMAP_EXEC_EMUTRAMP_PAX
#include <stdlib.h>
static int emutramp_enabled = -1;
static int
emutramp_enabled_check (void)
{
if (getenv ("FFI_DISABLE_EMUTRAMP") == NULL)
return 1;
else
return 0;
}
#define is_emutramp_enabled() (emutramp_enabled >= 0 ? emutramp_enabled \
: (emutramp_enabled = emutramp_enabled_check ()))
#endif /* FFI_MMAP_EXEC_EMUTRAMP_PAX */
#elif defined (__CYGWIN__) || defined(__INTERIX)
#include <sys/mman.h>
/* Cygwin is Linux-like, but not quite that Linux-like. */
#define is_selinux_enabled() 0
#endif /* !defined(X86_WIN32) && !defined(X86_WIN64) */
#ifndef FFI_MMAP_EXEC_EMUTRAMP_PAX
#define is_emutramp_enabled() 0
#endif /* FFI_MMAP_EXEC_EMUTRAMP_PAX */
/* Declare all functions defined in dlmalloc.c as static. */
static void *dlmalloc(size_t);
static void dlfree(void*);
static void *dlcalloc(size_t, size_t) MAYBE_UNUSED;
static void *dlrealloc(void *, size_t) MAYBE_UNUSED;
static void *dlmemalign(size_t, size_t) MAYBE_UNUSED;
static void *dlvalloc(size_t) MAYBE_UNUSED;
static int dlmallopt(int, int) MAYBE_UNUSED;
static size_t dlmalloc_footprint(void) MAYBE_UNUSED;
static size_t dlmalloc_max_footprint(void) MAYBE_UNUSED;
static void** dlindependent_calloc(size_t, size_t, void**) MAYBE_UNUSED;
static void** dlindependent_comalloc(size_t, size_t*, void**) MAYBE_UNUSED;
static void *dlpvalloc(size_t) MAYBE_UNUSED;
static int dlmalloc_trim(size_t) MAYBE_UNUSED;
static size_t dlmalloc_usable_size(void*) MAYBE_UNUSED;
static void dlmalloc_stats(void) MAYBE_UNUSED;
#if !(defined(X86_WIN32) || defined(X86_WIN64) || defined(__OS2__)) || defined (__CYGWIN__) || defined(__INTERIX)
/* Use these for mmap and munmap within dlmalloc.c. */
static void *dlmmap(void *, size_t, int, int, int, off_t);
static int dlmunmap(void *, size_t);
#endif /* !(defined(X86_WIN32) || defined(X86_WIN64) || defined(__OS2__)) || defined (__CYGWIN__) || defined(__INTERIX) */
#define mmap dlmmap
#define munmap dlmunmap
#include "dlmalloc.c"
#undef mmap
#undef munmap
#if !(defined(X86_WIN32) || defined(X86_WIN64) || defined(__OS2__)) || defined (__CYGWIN__) || defined(__INTERIX)
/* A mutex used to synchronize access to *exec* variables in this file. */
static pthread_mutex_t open_temp_exec_file_mutex = PTHREAD_MUTEX_INITIALIZER;
/* A file descriptor of a temporary file from which we'll map
executable pages. */
static int execfd = -1;
/* The amount of space already allocated from the temporary file. */
static size_t execsize = 0;
/* Open a temporary file name, and immediately unlink it. */
static int
open_temp_exec_file_name (char *name)
{
int fd = mkstemp (name);
if (fd != -1)
unlink (name);
return fd;
}
/* Open a temporary file in the named directory. */
static int
open_temp_exec_file_dir (const char *dir)
{
static const char suffix[] = "/ffiXXXXXX";
int lendir = strlen (dir);
char *tempname = __builtin_alloca (lendir + sizeof (suffix));
if (!tempname)
return -1;
memcpy (tempname, dir, lendir);
memcpy (tempname + lendir, suffix, sizeof (suffix));
return open_temp_exec_file_name (tempname);
}
/* Open a temporary file in the directory in the named environment
variable. */
static int
open_temp_exec_file_env (const char *envvar)
{
const char *value = getenv (envvar);
if (!value)
return -1;
return open_temp_exec_file_dir (value);
}
#ifdef HAVE_MNTENT
/* Open a temporary file in an executable and writable mount point
listed in the mounts file. Subsequent calls with the same mounts
keep searching for mount points in the same file. Providing NULL
as the mounts file closes the file. */
static int
open_temp_exec_file_mnt (const char *mounts)
{
static const char *last_mounts;
static FILE *last_mntent;
if (mounts != last_mounts)
{
if (last_mntent)
endmntent (last_mntent);
last_mounts = mounts;
if (mounts)
last_mntent = setmntent (mounts, "r");
else
last_mntent = NULL;
}
if (!last_mntent)
return -1;
for (;;)
{
int fd;
struct mntent mnt;
char buf[MAXPATHLEN * 3];
if (getmntent_r (last_mntent, &mnt, buf, sizeof (buf)) == NULL)
return -1;
if (hasmntopt (&mnt, "ro")
|| hasmntopt (&mnt, "noexec")
|| access (mnt.mnt_dir, W_OK))
continue;
fd = open_temp_exec_file_dir (mnt.mnt_dir);
if (fd != -1)
return fd;
}
}
#endif /* HAVE_MNTENT */
/* Instructions to look for a location to hold a temporary file that
can be mapped in for execution. */
static struct
{
int (*func)(const char *);
const char *arg;
int repeat;
} open_temp_exec_file_opts[] = {
{ open_temp_exec_file_env, "TMPDIR", 0 },
{ open_temp_exec_file_dir, "/tmp", 0 },
{ open_temp_exec_file_dir, "/var/tmp", 0 },
{ open_temp_exec_file_dir, "/dev/shm", 0 },
{ open_temp_exec_file_env, "HOME", 0 },
#ifdef HAVE_MNTENT
{ open_temp_exec_file_mnt, "/etc/mtab", 1 },
{ open_temp_exec_file_mnt, "/proc/mounts", 1 },
#endif /* HAVE_MNTENT */
};
/* Current index into open_temp_exec_file_opts. */
static int open_temp_exec_file_opts_idx = 0;
/* Reset a current multi-call func, then advances to the next entry.
If we're at the last, go back to the first and return nonzero,
otherwise return zero. */
static int
open_temp_exec_file_opts_next (void)
{
if (open_temp_exec_file_opts[open_temp_exec_file_opts_idx].repeat)
open_temp_exec_file_opts[open_temp_exec_file_opts_idx].func (NULL);
open_temp_exec_file_opts_idx++;
if (open_temp_exec_file_opts_idx
== (sizeof (open_temp_exec_file_opts)
/ sizeof (*open_temp_exec_file_opts)))
{
open_temp_exec_file_opts_idx = 0;
return 1;
}
return 0;
}
/* Return a file descriptor of a temporary zero-sized file in a
writable and exexutable filesystem. */
static int
open_temp_exec_file (void)
{
int fd;
do
{
fd = open_temp_exec_file_opts[open_temp_exec_file_opts_idx].func
(open_temp_exec_file_opts[open_temp_exec_file_opts_idx].arg);
if (!open_temp_exec_file_opts[open_temp_exec_file_opts_idx].repeat
|| fd == -1)
{
if (open_temp_exec_file_opts_next ())
break;
}
}
while (fd == -1);
return fd;
}
/* Map in a chunk of memory from the temporary exec file into separate
locations in the virtual memory address space, one writable and one
executable. Returns the address of the writable portion, after
storing an offset to the corresponding executable portion at the
last word of the requested chunk. */
static void *
dlmmap_locked (void *start, size_t length, int prot, int flags, off_t offset)
{
void *ptr;
if (execfd == -1)
{
open_temp_exec_file_opts_idx = 0;
retry_open:
execfd = open_temp_exec_file ();
if (execfd == -1)
return MFAIL;
}
offset = execsize;
if (ftruncate (execfd, offset + length))
return MFAIL;
flags &= ~(MAP_PRIVATE | MAP_ANONYMOUS);
flags |= MAP_SHARED;
ptr = mmap (NULL, length, (prot & ~PROT_WRITE) | PROT_EXEC,
flags, execfd, offset);
if (ptr == MFAIL)
{
if (!offset)
{
close (execfd);
goto retry_open;
}
ftruncate (execfd, offset);
return MFAIL;
}
else if (!offset
&& open_temp_exec_file_opts[open_temp_exec_file_opts_idx].repeat)
open_temp_exec_file_opts_next ();
start = mmap (start, length, prot, flags, execfd, offset);
if (start == MFAIL)
{
munmap (ptr, length);
ftruncate (execfd, offset);
return start;
}
mmap_exec_offset ((char *)start, length) = (char*)ptr - (char*)start;
execsize += length;
return start;
}
/* Map in a writable and executable chunk of memory if possible.
Failing that, fall back to dlmmap_locked. */
static void *
dlmmap (void *start, size_t length, int prot,
int flags, int fd, off_t offset)
{
void *ptr;
assert (start == NULL && length % malloc_getpagesize == 0
&& prot == (PROT_READ | PROT_WRITE)
&& flags == (MAP_PRIVATE | MAP_ANONYMOUS)
&& fd == -1 && offset == 0);
#if FFI_CLOSURE_TEST
printf ("mapping in %zi\n", length);
#endif
if (execfd == -1 && is_emutramp_enabled ())
{
ptr = mmap (start, length, prot & ~PROT_EXEC, flags, fd, offset);
return ptr;
}
if (execfd == -1 && !is_selinux_enabled ())
{
ptr = mmap (start, length, prot | PROT_EXEC, flags, fd, offset);
if (ptr != MFAIL || (errno != EPERM && errno != EACCES))
/* Cool, no need to mess with separate segments. */
return ptr;
/* If MREMAP_DUP is ever introduced and implemented, try mmap
with ((prot & ~PROT_WRITE) | PROT_EXEC) and mremap with
MREMAP_DUP and prot at this point. */
}
if (execsize == 0 || execfd == -1)
{
pthread_mutex_lock (&open_temp_exec_file_mutex);
ptr = dlmmap_locked (start, length, prot, flags, offset);
pthread_mutex_unlock (&open_temp_exec_file_mutex);
return ptr;
}
return dlmmap_locked (start, length, prot, flags, offset);
}
/* Release memory at the given address, as well as the corresponding
executable page if it's separate. */
static int
dlmunmap (void *start, size_t length)
{
/* We don't bother decreasing execsize or truncating the file, since
we can't quite tell whether we're unmapping the end of the file.
We don't expect frequent deallocation anyway. If we did, we
could locate pages in the file by writing to the pages being
deallocated and checking that the file contents change.
Yuck. */
msegmentptr seg = segment_holding (gm, start);
void *code;
#if FFI_CLOSURE_TEST
printf ("unmapping %zi\n", length);
#endif
if (seg && (code = add_segment_exec_offset (start, seg)) != start)
{
int ret = munmap (code, length);
if (ret)
return ret;
}
return munmap (start, length);
}
#if FFI_CLOSURE_FREE_CODE
/* Return segment holding given code address. */
static msegmentptr
segment_holding_code (mstate m, char* addr)
{
msegmentptr sp = &m->seg;
for (;;) {
if (addr >= add_segment_exec_offset (sp->base, sp)
&& addr < add_segment_exec_offset (sp->base, sp) + sp->size)
return sp;
if ((sp = sp->next) == 0)
return 0;
}
}
#endif
#endif /* !(defined(X86_WIN32) || defined(X86_WIN64) || defined(__OS2__)) || defined (__CYGWIN__) || defined(__INTERIX) */
/* Allocate a chunk of memory with the given size. Returns a pointer
to the writable address, and sets *CODE to the executable
corresponding virtual address. */
void *
ffi_closure_alloc (size_t size, void **code)
{
void *ptr;
if (!code)
return NULL;
ptr = dlmalloc (size);
if (ptr)
{
msegmentptr seg = segment_holding (gm, ptr);
*code = add_segment_exec_offset (ptr, seg);
}
return ptr;
}
/* Release a chunk of memory allocated with ffi_closure_alloc. If
FFI_CLOSURE_FREE_CODE is nonzero, the given address can be the
writable or the executable address given. Otherwise, only the
writable address can be provided here. */
void
ffi_closure_free (void *ptr)
{
#if FFI_CLOSURE_FREE_CODE
msegmentptr seg = segment_holding_code (gm, ptr);
if (seg)
ptr = sub_segment_exec_offset (ptr, seg);
#endif
dlfree (ptr);
}
#if FFI_CLOSURE_TEST
/* Do some internal sanity testing to make sure allocation and
deallocation of pages are working as intended. */
int main ()
{
void *p[3];
#define GET(idx, len) do { p[idx] = dlmalloc (len); printf ("allocated %zi for p[%i]\n", (len), (idx)); } while (0)
#define PUT(idx) do { printf ("freeing p[%i]\n", (idx)); dlfree (p[idx]); } while (0)
GET (0, malloc_getpagesize / 2);
GET (1, 2 * malloc_getpagesize - 64 * sizeof (void*));
PUT (1);
GET (1, 2 * malloc_getpagesize);
GET (2, malloc_getpagesize / 2);
PUT (1);
PUT (0);
PUT (2);
return 0;
}
#endif /* FFI_CLOSURE_TEST */
# else /* ! FFI_MMAP_EXEC_WRIT */
/* On many systems, memory returned by malloc is writable and
executable, so just use it. */
#include <stdlib.h>
void *
ffi_closure_alloc (size_t size, void **code)
{
if (!code)
return NULL;
return *code = malloc (size);
}
void
ffi_closure_free (void *ptr)
{
free (ptr);
}
# endif /* ! FFI_MMAP_EXEC_WRIT */
#endif /* FFI_CLOSURES */

View file

@ -0,0 +1,59 @@
/* -----------------------------------------------------------------------
debug.c - Copyright (c) 1996 Red Hat, Inc.
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
----------------------------------------------------------------------- */
#include <ffi.h>
#include <ffi_common.h>
#include <stdlib.h>
#include <stdio.h>
/* General debugging routines */
void ffi_stop_here(void)
{
/* This function is only useful for debugging purposes.
Place a breakpoint on ffi_stop_here to be notified of
significant events. */
}
/* This function should only be called via the FFI_ASSERT() macro */
void ffi_assert(char *expr, char *file, int line)
{
fprintf(stderr, "ASSERTION FAILURE: %s at %s:%d\n", expr, file, line);
ffi_stop_here();
abort();
}
/* Perform a sanity check on an ffi_type structure */
void ffi_type_test(ffi_type *a, char *file, int line)
{
FFI_ASSERT_AT(a != NULL, file, line);
FFI_ASSERT_AT(a->type <= FFI_TYPE_LAST, file, line);
FFI_ASSERT_AT(a->type == FFI_TYPE_VOID || a->size > 0, file, line);
FFI_ASSERT_AT(a->type == FFI_TYPE_VOID || a->alignment > 0, file, line);
FFI_ASSERT_AT(a->type != FFI_TYPE_STRUCT || a->elements != NULL, file, line);
}

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,356 @@
/* -----------------------------------------------------------------------
java_raw_api.c - Copyright (c) 1999, 2007, 2008 Red Hat, Inc.
Cloned from raw_api.c
Raw_api.c author: Kresten Krab Thorup <krab@gnu.org>
Java_raw_api.c author: Hans-J. Boehm <hboehm@hpl.hp.com>
$Id $
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
----------------------------------------------------------------------- */
/* This defines a Java- and 64-bit specific variant of the raw API. */
/* It assumes that "raw" argument blocks look like Java stacks on a */
/* 64-bit machine. Arguments that can be stored in a single stack */
/* stack slots (longs, doubles) occupy 128 bits, but only the first */
/* 64 bits are actually used. */
#include <ffi.h>
#include <ffi_common.h>
#include <stdlib.h>
#if !defined(NO_JAVA_RAW_API) && !defined(FFI_NO_RAW_API)
size_t
ffi_java_raw_size (ffi_cif *cif)
{
size_t result = 0;
int i;
ffi_type **at = cif->arg_types;
for (i = cif->nargs-1; i >= 0; i--, at++)
{
switch((*at) -> type) {
case FFI_TYPE_UINT64:
case FFI_TYPE_SINT64:
case FFI_TYPE_DOUBLE:
result += 2 * FFI_SIZEOF_JAVA_RAW;
break;
case FFI_TYPE_STRUCT:
/* No structure parameters in Java. */
abort();
default:
result += FFI_SIZEOF_JAVA_RAW;
}
}
return result;
}
void
ffi_java_raw_to_ptrarray (ffi_cif *cif, ffi_java_raw *raw, void **args)
{
unsigned i;
ffi_type **tp = cif->arg_types;
#if WORDS_BIGENDIAN
for (i = 0; i < cif->nargs; i++, tp++, args++)
{
switch ((*tp)->type)
{
case FFI_TYPE_UINT8:
case FFI_TYPE_SINT8:
*args = (void*) ((char*)(raw++) + 3);
break;
case FFI_TYPE_UINT16:
case FFI_TYPE_SINT16:
*args = (void*) ((char*)(raw++) + 2);
break;
#if FFI_SIZEOF_JAVA_RAW == 8
case FFI_TYPE_UINT64:
case FFI_TYPE_SINT64:
case FFI_TYPE_DOUBLE:
*args = (void *)raw;
raw += 2;
break;
#endif
case FFI_TYPE_POINTER:
*args = (void*) &(raw++)->ptr;
break;
default:
*args = raw;
raw +=
ALIGN ((*tp)->size, sizeof(ffi_java_raw)) / sizeof(ffi_java_raw);
}
}
#else /* WORDS_BIGENDIAN */
#if !PDP
/* then assume little endian */
for (i = 0; i < cif->nargs; i++, tp++, args++)
{
#if FFI_SIZEOF_JAVA_RAW == 8
switch((*tp)->type) {
case FFI_TYPE_UINT64:
case FFI_TYPE_SINT64:
case FFI_TYPE_DOUBLE:
*args = (void*) raw;
raw += 2;
break;
default:
*args = (void*) raw++;
}
#else /* FFI_SIZEOF_JAVA_RAW != 8 */
*args = (void*) raw;
raw +=
ALIGN ((*tp)->size, sizeof(ffi_java_raw)) / sizeof(ffi_java_raw);
#endif /* FFI_SIZEOF_JAVA_RAW == 8 */
}
#else
#error "pdp endian not supported"
#endif /* ! PDP */
#endif /* WORDS_BIGENDIAN */
}
void
ffi_java_ptrarray_to_raw (ffi_cif *cif, void **args, ffi_java_raw *raw)
{
unsigned i;
ffi_type **tp = cif->arg_types;
for (i = 0; i < cif->nargs; i++, tp++, args++)
{
switch ((*tp)->type)
{
case FFI_TYPE_UINT8:
#if WORDS_BIGENDIAN
*(UINT32*)(raw++) = *(UINT8*) (*args);
#else
(raw++)->uint = *(UINT8*) (*args);
#endif
break;
case FFI_TYPE_SINT8:
#if WORDS_BIGENDIAN
*(SINT32*)(raw++) = *(SINT8*) (*args);
#else
(raw++)->sint = *(SINT8*) (*args);
#endif
break;
case FFI_TYPE_UINT16:
#if WORDS_BIGENDIAN
*(UINT32*)(raw++) = *(UINT16*) (*args);
#else
(raw++)->uint = *(UINT16*) (*args);
#endif
break;
case FFI_TYPE_SINT16:
#if WORDS_BIGENDIAN
*(SINT32*)(raw++) = *(SINT16*) (*args);
#else
(raw++)->sint = *(SINT16*) (*args);
#endif
break;
case FFI_TYPE_UINT32:
#if WORDS_BIGENDIAN
*(UINT32*)(raw++) = *(UINT32*) (*args);
#else
(raw++)->uint = *(UINT32*) (*args);
#endif
break;
case FFI_TYPE_SINT32:
#if WORDS_BIGENDIAN
*(SINT32*)(raw++) = *(SINT32*) (*args);
#else
(raw++)->sint = *(SINT32*) (*args);
#endif
break;
case FFI_TYPE_FLOAT:
(raw++)->flt = *(FLOAT32*) (*args);
break;
#if FFI_SIZEOF_JAVA_RAW == 8
case FFI_TYPE_UINT64:
case FFI_TYPE_SINT64:
case FFI_TYPE_DOUBLE:
raw->uint = *(UINT64*) (*args);
raw += 2;
break;
#endif
case FFI_TYPE_POINTER:
(raw++)->ptr = **(void***) args;
break;
default:
#if FFI_SIZEOF_JAVA_RAW == 8
FFI_ASSERT(0); /* Should have covered all cases */
#else
memcpy ((void*) raw->data, (void*)*args, (*tp)->size);
raw +=
ALIGN ((*tp)->size, sizeof(ffi_java_raw)) / sizeof(ffi_java_raw);
#endif
}
}
}
#if !FFI_NATIVE_RAW_API
static void
ffi_java_rvalue_to_raw (ffi_cif *cif, void *rvalue)
{
#if WORDS_BIGENDIAN && FFI_SIZEOF_ARG == 8
switch (cif->rtype->type)
{
case FFI_TYPE_UINT8:
case FFI_TYPE_UINT16:
case FFI_TYPE_UINT32:
*(UINT64 *)rvalue <<= 32;
break;
case FFI_TYPE_SINT8:
case FFI_TYPE_SINT16:
case FFI_TYPE_SINT32:
case FFI_TYPE_INT:
#if FFI_SIZEOF_JAVA_RAW == 4
case FFI_TYPE_POINTER:
#endif
*(SINT64 *)rvalue <<= 32;
break;
default:
break;
}
#endif
}
static void
ffi_java_raw_to_rvalue (ffi_cif *cif, void *rvalue)
{
#if WORDS_BIGENDIAN && FFI_SIZEOF_ARG == 8
switch (cif->rtype->type)
{
case FFI_TYPE_UINT8:
case FFI_TYPE_UINT16:
case FFI_TYPE_UINT32:
*(UINT64 *)rvalue >>= 32;
break;
case FFI_TYPE_SINT8:
case FFI_TYPE_SINT16:
case FFI_TYPE_SINT32:
case FFI_TYPE_INT:
*(SINT64 *)rvalue >>= 32;
break;
default:
break;
}
#endif
}
/* This is a generic definition of ffi_raw_call, to be used if the
* native system does not provide a machine-specific implementation.
* Having this, allows code to be written for the raw API, without
* the need for system-specific code to handle input in that format;
* these following couple of functions will handle the translation forth
* and back automatically. */
void ffi_java_raw_call (ffi_cif *cif, void (*fn)(void), void *rvalue,
ffi_java_raw *raw)
{
void **avalue = (void**) alloca (cif->nargs * sizeof (void*));
ffi_java_raw_to_ptrarray (cif, raw, avalue);
ffi_call (cif, fn, rvalue, avalue);
ffi_java_rvalue_to_raw (cif, rvalue);
}
#if FFI_CLOSURES /* base system provides closures */
static void
ffi_java_translate_args (ffi_cif *cif, void *rvalue,
void **avalue, void *user_data)
{
ffi_java_raw *raw = (ffi_java_raw*)alloca (ffi_java_raw_size (cif));
ffi_raw_closure *cl = (ffi_raw_closure*)user_data;
ffi_java_ptrarray_to_raw (cif, avalue, raw);
(*cl->fun) (cif, rvalue, (ffi_raw*)raw, cl->user_data);
ffi_java_raw_to_rvalue (cif, rvalue);
}
ffi_status
ffi_prep_java_raw_closure_loc (ffi_java_raw_closure* cl,
ffi_cif *cif,
void (*fun)(ffi_cif*,void*,ffi_java_raw*,void*),
void *user_data,
void *codeloc)
{
ffi_status status;
status = ffi_prep_closure_loc ((ffi_closure*) cl,
cif,
&ffi_java_translate_args,
codeloc,
codeloc);
if (status == FFI_OK)
{
cl->fun = fun;
cl->user_data = user_data;
}
return status;
}
/* Again, here is the generic version of ffi_prep_raw_closure, which
* will install an intermediate "hub" for translation of arguments from
* the pointer-array format, to the raw format */
ffi_status
ffi_prep_java_raw_closure (ffi_java_raw_closure* cl,
ffi_cif *cif,
void (*fun)(ffi_cif*,void*,ffi_java_raw*,void*),
void *user_data)
{
return ffi_prep_java_raw_closure_loc (cl, cif, fun, user_data, cl);
}
#endif /* FFI_CLOSURES */
#endif /* !FFI_NATIVE_RAW_API */
#endif /* !FFI_NO_RAW_API */

View file

@ -0,0 +1,237 @@
/* -----------------------------------------------------------------------
prep_cif.c - Copyright (c) 2011, 2012 Anthony Green
Copyright (c) 1996, 1998, 2007 Red Hat, Inc.
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
----------------------------------------------------------------------- */
#include <ffi.h>
#include <ffi_common.h>
#include <stdlib.h>
/* Round up to FFI_SIZEOF_ARG. */
#define STACK_ARG_SIZE(x) ALIGN(x, FFI_SIZEOF_ARG)
/* Perform machine independent initialization of aggregate type
specifications. */
static ffi_status initialize_aggregate(ffi_type *arg)
{
ffi_type **ptr;
if (UNLIKELY(arg == NULL || arg->elements == NULL))
return FFI_BAD_TYPEDEF;
arg->size = 0;
arg->alignment = 0;
ptr = &(arg->elements[0]);
if (UNLIKELY(ptr == 0))
return FFI_BAD_TYPEDEF;
while ((*ptr) != NULL)
{
if (UNLIKELY(((*ptr)->size == 0)
&& (initialize_aggregate((*ptr)) != FFI_OK)))
return FFI_BAD_TYPEDEF;
/* Perform a sanity check on the argument type */
FFI_ASSERT_VALID_TYPE(*ptr);
arg->size = ALIGN(arg->size, (*ptr)->alignment);
arg->size += (*ptr)->size;
arg->alignment = (arg->alignment > (*ptr)->alignment) ?
arg->alignment : (*ptr)->alignment;
ptr++;
}
/* Structure size includes tail padding. This is important for
structures that fit in one register on ABIs like the PowerPC64
Linux ABI that right justify small structs in a register.
It's also needed for nested structure layout, for example
struct A { long a; char b; }; struct B { struct A x; char y; };
should find y at an offset of 2*sizeof(long) and result in a
total size of 3*sizeof(long). */
arg->size = ALIGN (arg->size, arg->alignment);
if (arg->size == 0)
return FFI_BAD_TYPEDEF;
else
return FFI_OK;
}
#ifndef __CRIS__
/* The CRIS ABI specifies structure elements to have byte
alignment only, so it completely overrides this functions,
which assumes "natural" alignment and padding. */
/* Perform machine independent ffi_cif preparation, then call
machine dependent routine. */
/* For non variadic functions isvariadic should be 0 and
nfixedargs==ntotalargs.
For variadic calls, isvariadic should be 1 and nfixedargs
and ntotalargs set as appropriate. nfixedargs must always be >=1 */
ffi_status FFI_HIDDEN ffi_prep_cif_core(ffi_cif *cif, ffi_abi abi,
unsigned int isvariadic,
unsigned int nfixedargs,
unsigned int ntotalargs,
ffi_type *rtype, ffi_type **atypes)
{
unsigned bytes = 0;
unsigned int i;
ffi_type **ptr;
FFI_ASSERT(cif != NULL);
FFI_ASSERT((!isvariadic) || (nfixedargs >= 1));
FFI_ASSERT(nfixedargs <= ntotalargs);
#ifndef X86_WIN32
if (! (abi > FFI_FIRST_ABI && abi < FFI_LAST_ABI))
return FFI_BAD_ABI;
#else
if (! (abi > FFI_FIRST_ABI && abi < FFI_LAST_ABI || abi == FFI_THISCALL))
return FFI_BAD_ABI;
#endif
cif->abi = abi;
cif->arg_types = atypes;
cif->nargs = ntotalargs;
cif->rtype = rtype;
cif->flags = 0;
/* Initialize the return type if necessary */
if ((cif->rtype->size == 0) && (initialize_aggregate(cif->rtype) != FFI_OK))
return FFI_BAD_TYPEDEF;
/* Perform a sanity check on the return type */
FFI_ASSERT_VALID_TYPE(cif->rtype);
/* x86, x86-64 and s390 stack space allocation is handled in prep_machdep. */
#if !defined M68K && !defined X86_ANY && !defined S390 && !defined PA
/* Make space for the return structure pointer */
if (cif->rtype->type == FFI_TYPE_STRUCT
#ifdef SPARC
&& (cif->abi != FFI_V9 || cif->rtype->size > 32)
#endif
#ifdef TILE
&& (cif->rtype->size > 10 * FFI_SIZEOF_ARG)
#endif
#ifdef XTENSA
&& (cif->rtype->size > 16)
#endif
)
bytes = STACK_ARG_SIZE(sizeof(void*));
#endif
for (ptr = cif->arg_types, i = cif->nargs; i > 0; i--, ptr++)
{
/* Initialize any uninitialized aggregate type definitions */
if (((*ptr)->size == 0) && (initialize_aggregate((*ptr)) != FFI_OK))
return FFI_BAD_TYPEDEF;
/* Perform a sanity check on the argument type, do this
check after the initialization. */
FFI_ASSERT_VALID_TYPE(*ptr);
#if !defined X86_ANY && !defined S390 && !defined PA
#ifdef SPARC
if (((*ptr)->type == FFI_TYPE_STRUCT
&& ((*ptr)->size > 16 || cif->abi != FFI_V9))
|| ((*ptr)->type == FFI_TYPE_LONGDOUBLE
&& cif->abi != FFI_V9))
bytes += sizeof(void*);
else
#endif
{
/* Add any padding if necessary */
if (((*ptr)->alignment - 1) & bytes)
bytes = ALIGN(bytes, (*ptr)->alignment);
#ifdef TILE
if (bytes < 10 * FFI_SIZEOF_ARG &&
bytes + STACK_ARG_SIZE((*ptr)->size) > 10 * FFI_SIZEOF_ARG)
{
/* An argument is never split between the 10 parameter
registers and the stack. */
bytes = 10 * FFI_SIZEOF_ARG;
}
#endif
#ifdef XTENSA
if (bytes <= 6*4 && bytes + STACK_ARG_SIZE((*ptr)->size) > 6*4)
bytes = 6*4;
#endif
bytes += STACK_ARG_SIZE((*ptr)->size);
}
#endif
}
cif->bytes = bytes;
/* Perform machine dependent cif processing */
#ifdef FFI_TARGET_SPECIFIC_VARIADIC
if (isvariadic)
return ffi_prep_cif_machdep_var(cif, nfixedargs, ntotalargs);
#endif
return ffi_prep_cif_machdep(cif);
}
#endif /* not __CRIS__ */
ffi_status ffi_prep_cif(ffi_cif *cif, ffi_abi abi, unsigned int nargs,
ffi_type *rtype, ffi_type **atypes)
{
return ffi_prep_cif_core(cif, abi, 0, nargs, nargs, rtype, atypes);
}
ffi_status ffi_prep_cif_var(ffi_cif *cif,
ffi_abi abi,
unsigned int nfixedargs,
unsigned int ntotalargs,
ffi_type *rtype,
ffi_type **atypes)
{
return ffi_prep_cif_core(cif, abi, 1, nfixedargs, ntotalargs, rtype, atypes);
}
#if FFI_CLOSURES
ffi_status
ffi_prep_closure (ffi_closure* closure,
ffi_cif* cif,
void (*fun)(ffi_cif*,void*,void**,void*),
void *user_data)
{
return ffi_prep_closure_loc (closure, cif, fun, user_data, closure);
}
#endif

View file

@ -0,0 +1,254 @@
/* -----------------------------------------------------------------------
raw_api.c - Copyright (c) 1999, 2008 Red Hat, Inc.
Author: Kresten Krab Thorup <krab@gnu.org>
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
----------------------------------------------------------------------- */
/* This file defines generic functions for use with the raw api. */
#include <ffi.h>
#include <ffi_common.h>
#if !FFI_NO_RAW_API
size_t
ffi_raw_size (ffi_cif *cif)
{
size_t result = 0;
int i;
ffi_type **at = cif->arg_types;
for (i = cif->nargs-1; i >= 0; i--, at++)
{
#if !FFI_NO_STRUCTS
if ((*at)->type == FFI_TYPE_STRUCT)
result += ALIGN (sizeof (void*), FFI_SIZEOF_ARG);
else
#endif
result += ALIGN ((*at)->size, FFI_SIZEOF_ARG);
}
return result;
}
void
ffi_raw_to_ptrarray (ffi_cif *cif, ffi_raw *raw, void **args)
{
unsigned i;
ffi_type **tp = cif->arg_types;
#if WORDS_BIGENDIAN
for (i = 0; i < cif->nargs; i++, tp++, args++)
{
switch ((*tp)->type)
{
case FFI_TYPE_UINT8:
case FFI_TYPE_SINT8:
*args = (void*) ((char*)(raw++) + FFI_SIZEOF_ARG - 1);
break;
case FFI_TYPE_UINT16:
case FFI_TYPE_SINT16:
*args = (void*) ((char*)(raw++) + FFI_SIZEOF_ARG - 2);
break;
#if FFI_SIZEOF_ARG >= 4
case FFI_TYPE_UINT32:
case FFI_TYPE_SINT32:
*args = (void*) ((char*)(raw++) + FFI_SIZEOF_ARG - 4);
break;
#endif
#if !FFI_NO_STRUCTS
case FFI_TYPE_STRUCT:
*args = (raw++)->ptr;
break;
#endif
case FFI_TYPE_POINTER:
*args = (void*) &(raw++)->ptr;
break;
default:
*args = raw;
raw += ALIGN ((*tp)->size, FFI_SIZEOF_ARG) / FFI_SIZEOF_ARG;
}
}
#else /* WORDS_BIGENDIAN */
#if !PDP
/* then assume little endian */
for (i = 0; i < cif->nargs; i++, tp++, args++)
{
#if !FFI_NO_STRUCTS
if ((*tp)->type == FFI_TYPE_STRUCT)
{
*args = (raw++)->ptr;
}
else
#endif
{
*args = (void*) raw;
raw += ALIGN ((*tp)->size, sizeof (void*)) / sizeof (void*);
}
}
#else
#error "pdp endian not supported"
#endif /* ! PDP */
#endif /* WORDS_BIGENDIAN */
}
void
ffi_ptrarray_to_raw (ffi_cif *cif, void **args, ffi_raw *raw)
{
unsigned i;
ffi_type **tp = cif->arg_types;
for (i = 0; i < cif->nargs; i++, tp++, args++)
{
switch ((*tp)->type)
{
case FFI_TYPE_UINT8:
(raw++)->uint = *(UINT8*) (*args);
break;
case FFI_TYPE_SINT8:
(raw++)->sint = *(SINT8*) (*args);
break;
case FFI_TYPE_UINT16:
(raw++)->uint = *(UINT16*) (*args);
break;
case FFI_TYPE_SINT16:
(raw++)->sint = *(SINT16*) (*args);
break;
#if FFI_SIZEOF_ARG >= 4
case FFI_TYPE_UINT32:
(raw++)->uint = *(UINT32*) (*args);
break;
case FFI_TYPE_SINT32:
(raw++)->sint = *(SINT32*) (*args);
break;
#endif
#if !FFI_NO_STRUCTS
case FFI_TYPE_STRUCT:
(raw++)->ptr = *args;
break;
#endif
case FFI_TYPE_POINTER:
(raw++)->ptr = **(void***) args;
break;
default:
memcpy ((void*) raw->data, (void*)*args, (*tp)->size);
raw += ALIGN ((*tp)->size, FFI_SIZEOF_ARG) / FFI_SIZEOF_ARG;
}
}
}
#if !FFI_NATIVE_RAW_API
/* This is a generic definition of ffi_raw_call, to be used if the
* native system does not provide a machine-specific implementation.
* Having this, allows code to be written for the raw API, without
* the need for system-specific code to handle input in that format;
* these following couple of functions will handle the translation forth
* and back automatically. */
void ffi_raw_call (ffi_cif *cif, void (*fn)(void), void *rvalue, ffi_raw *raw)
{
void **avalue = (void**) alloca (cif->nargs * sizeof (void*));
ffi_raw_to_ptrarray (cif, raw, avalue);
ffi_call (cif, fn, rvalue, avalue);
}
#if FFI_CLOSURES /* base system provides closures */
static void
ffi_translate_args (ffi_cif *cif, void *rvalue,
void **avalue, void *user_data)
{
ffi_raw *raw = (ffi_raw*)alloca (ffi_raw_size (cif));
ffi_raw_closure *cl = (ffi_raw_closure*)user_data;
ffi_ptrarray_to_raw (cif, avalue, raw);
(*cl->fun) (cif, rvalue, raw, cl->user_data);
}
ffi_status
ffi_prep_raw_closure_loc (ffi_raw_closure* cl,
ffi_cif *cif,
void (*fun)(ffi_cif*,void*,ffi_raw*,void*),
void *user_data,
void *codeloc)
{
ffi_status status;
status = ffi_prep_closure_loc ((ffi_closure*) cl,
cif,
&ffi_translate_args,
codeloc,
codeloc);
if (status == FFI_OK)
{
cl->fun = fun;
cl->user_data = user_data;
}
return status;
}
#endif /* FFI_CLOSURES */
#endif /* !FFI_NATIVE_RAW_API */
#if FFI_CLOSURES
/* Again, here is the generic version of ffi_prep_raw_closure, which
* will install an intermediate "hub" for translation of arguments from
* the pointer-array format, to the raw format */
ffi_status
ffi_prep_raw_closure (ffi_raw_closure* cl,
ffi_cif *cif,
void (*fun)(ffi_cif*,void*,ffi_raw*,void*),
void *user_data)
{
return ffi_prep_raw_closure_loc (cl, cif, fun, user_data, cl);
}
#endif /* FFI_CLOSURES */
#endif /* !FFI_NO_RAW_API */

View file

@ -0,0 +1,77 @@
/* -----------------------------------------------------------------------
types.c - Copyright (c) 1996, 1998 Red Hat, Inc.
Predefined ffi_types needed by libffi.
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
----------------------------------------------------------------------- */
/* Hide the basic type definitions from the header file, so that we
can redefine them here as "const". */
#define LIBFFI_HIDE_BASIC_TYPES
#include <ffi.h>
#include <ffi_common.h>
/* Type definitions */
#define FFI_TYPEDEF(name, type, id) \
struct struct_align_##name { \
char c; \
type x; \
}; \
const ffi_type ffi_type_##name = { \
sizeof(type), \
offsetof(struct struct_align_##name, x), \
id, NULL \
}
/* Size and alignment are fake here. They must not be 0. */
const ffi_type ffi_type_void = {
1, 1, FFI_TYPE_VOID, NULL
};
FFI_TYPEDEF(uint8, UINT8, FFI_TYPE_UINT8);
FFI_TYPEDEF(sint8, SINT8, FFI_TYPE_SINT8);
FFI_TYPEDEF(uint16, UINT16, FFI_TYPE_UINT16);
FFI_TYPEDEF(sint16, SINT16, FFI_TYPE_SINT16);
FFI_TYPEDEF(uint32, UINT32, FFI_TYPE_UINT32);
FFI_TYPEDEF(sint32, SINT32, FFI_TYPE_SINT32);
FFI_TYPEDEF(uint64, UINT64, FFI_TYPE_UINT64);
FFI_TYPEDEF(sint64, SINT64, FFI_TYPE_SINT64);
FFI_TYPEDEF(pointer, void*, FFI_TYPE_POINTER);
FFI_TYPEDEF(float, float, FFI_TYPE_FLOAT);
FFI_TYPEDEF(double, double, FFI_TYPE_DOUBLE);
#ifdef __alpha__
/* Even if we're not configured to default to 128-bit long double,
maintain binary compatibility, as -mlong-double-128 can be used
at any time. */
/* Validate the hard-coded number below. */
# if defined(__LONG_DOUBLE_128__) && FFI_TYPE_LONGDOUBLE != 4
# error FFI_TYPE_LONGDOUBLE out of date
# endif
const ffi_type ffi_type_longdouble = { 16, 16, 4, NULL };
#elif FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE
FFI_TYPEDEF(longdouble, long double, FFI_TYPE_LONGDOUBLE);
#endif

View file

@ -0,0 +1,449 @@
#if !defined(__arm__) && defined(__i386__)
/* -----------------------------------------------------------------------
darwin.S - Copyright (c) 1996, 1998, 2001, 2002, 2003, 2005 Red Hat, Inc.
Copyright (C) 2008 Free Software Foundation, Inc.
X86 Foreign Function Interface
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
-----------------------------------------------------------------------
*/
#ifndef __x86_64__
#define LIBFFI_ASM
#include <fficonfig.h>
#include <ffi.h>
.text
.globl _ffi_prep_args
.align 4
.globl _ffi_call_SYSV
_ffi_call_SYSV:
.LFB1:
pushl %ebp
.LCFI0:
movl %esp,%ebp
.LCFI1:
subl $8,%esp
/* Make room for all of the new args. */
movl 16(%ebp),%ecx
subl %ecx,%esp
movl %esp,%eax
/* Place all of the ffi_prep_args in position */
subl $8,%esp
pushl 12(%ebp)
pushl %eax
call *8(%ebp)
/* Return stack to previous state and call the function */
addl $16,%esp
call *28(%ebp)
/* Load %ecx with the return type code */
movl 20(%ebp),%ecx
/* Protect %esi. We're going to pop it in the epilogue. */
pushl %esi
/* If the return value pointer is NULL, assume no return value. */
cmpl $0,24(%ebp)
jne 0f
/* Even if there is no space for the return value, we are
obliged to handle floating-point values. */
cmpl $FFI_TYPE_FLOAT,%ecx
jne noretval
fstp %st(0)
jmp epilogue
0:
.align 4
call 1f
.Lstore_table:
.long noretval-.Lstore_table /* FFI_TYPE_VOID */
.long retint-.Lstore_table /* FFI_TYPE_INT */
.long retfloat-.Lstore_table /* FFI_TYPE_FLOAT */
.long retdouble-.Lstore_table /* FFI_TYPE_DOUBLE */
.long retlongdouble-.Lstore_table /* FFI_TYPE_LONGDOUBLE */
.long retuint8-.Lstore_table /* FFI_TYPE_UINT8 */
.long retsint8-.Lstore_table /* FFI_TYPE_SINT8 */
.long retuint16-.Lstore_table /* FFI_TYPE_UINT16 */
.long retsint16-.Lstore_table /* FFI_TYPE_SINT16 */
.long retint-.Lstore_table /* FFI_TYPE_UINT32 */
.long retint-.Lstore_table /* FFI_TYPE_SINT32 */
.long retint64-.Lstore_table /* FFI_TYPE_UINT64 */
.long retint64-.Lstore_table /* FFI_TYPE_SINT64 */
.long retstruct-.Lstore_table /* FFI_TYPE_STRUCT */
.long retint-.Lstore_table /* FFI_TYPE_POINTER */
.long retstruct1b-.Lstore_table /* FFI_TYPE_SMALL_STRUCT_1B */
.long retstruct2b-.Lstore_table /* FFI_TYPE_SMALL_STRUCT_2B */
1:
pop %esi
add (%esi, %ecx, 4), %esi
jmp *%esi
/* Sign/zero extend as appropriate. */
retsint8:
movsbl %al, %eax
jmp retint
retsint16:
movswl %ax, %eax
jmp retint
retuint8:
movzbl %al, %eax
jmp retint
retuint16:
movzwl %ax, %eax
jmp retint
retfloat:
/* Load %ecx with the pointer to storage for the return value */
movl 24(%ebp),%ecx
fstps (%ecx)
jmp epilogue
retdouble:
/* Load %ecx with the pointer to storage for the return value */
movl 24(%ebp),%ecx
fstpl (%ecx)
jmp epilogue
retlongdouble:
/* Load %ecx with the pointer to storage for the return value */
movl 24(%ebp),%ecx
fstpt (%ecx)
jmp epilogue
retint64:
/* Load %ecx with the pointer to storage for the return value */
movl 24(%ebp),%ecx
movl %eax,0(%ecx)
movl %edx,4(%ecx)
jmp epilogue
retstruct1b:
/* Load %ecx with the pointer to storage for the return value */
movl 24(%ebp),%ecx
movb %al,0(%ecx)
jmp epilogue
retstruct2b:
/* Load %ecx with the pointer to storage for the return value */
movl 24(%ebp),%ecx
movw %ax,0(%ecx)
jmp epilogue
retint:
/* Load %ecx with the pointer to storage for the return value */
movl 24(%ebp),%ecx
movl %eax,0(%ecx)
retstruct:
/* Nothing to do! */
noretval:
epilogue:
popl %esi
movl %ebp,%esp
popl %ebp
ret
.LFE1:
.ffi_call_SYSV_end:
.align 4
FFI_HIDDEN (ffi_closure_SYSV)
.globl _ffi_closure_SYSV
_ffi_closure_SYSV:
.LFB2:
pushl %ebp
.LCFI2:
movl %esp, %ebp
.LCFI3:
subl $40, %esp
leal -24(%ebp), %edx
movl %edx, -12(%ebp) /* resp */
leal 8(%ebp), %edx
movl %edx, 4(%esp) /* args = __builtin_dwarf_cfa () */
leal -12(%ebp), %edx
movl %edx, (%esp) /* &resp */
movl %ebx, 8(%esp)
.LCFI7:
call L_ffi_closure_SYSV_inner$stub
movl 8(%esp), %ebx
movl -12(%ebp), %ecx
cmpl $FFI_TYPE_INT, %eax
je .Lcls_retint
/* Handle FFI_TYPE_UINT8, FFI_TYPE_SINT8, FFI_TYPE_UINT16,
FFI_TYPE_SINT16, FFI_TYPE_UINT32, FFI_TYPE_SINT32. */
cmpl $FFI_TYPE_UINT64, %eax
jge 0f
cmpl $FFI_TYPE_UINT8, %eax
jge .Lcls_retint
0: cmpl $FFI_TYPE_FLOAT, %eax
je .Lcls_retfloat
cmpl $FFI_TYPE_DOUBLE, %eax
je .Lcls_retdouble
cmpl $FFI_TYPE_LONGDOUBLE, %eax
je .Lcls_retldouble
cmpl $FFI_TYPE_SINT64, %eax
je .Lcls_retllong
cmpl $FFI_TYPE_SMALL_STRUCT_1B, %eax
je .Lcls_retstruct1b
cmpl $FFI_TYPE_SMALL_STRUCT_2B, %eax
je .Lcls_retstruct2b
cmpl $FFI_TYPE_STRUCT, %eax
je .Lcls_retstruct
.Lcls_epilogue:
movl %ebp, %esp
popl %ebp
ret
.Lcls_retint:
movl (%ecx), %eax
jmp .Lcls_epilogue
.Lcls_retfloat:
flds (%ecx)
jmp .Lcls_epilogue
.Lcls_retdouble:
fldl (%ecx)
jmp .Lcls_epilogue
.Lcls_retldouble:
fldt (%ecx)
jmp .Lcls_epilogue
.Lcls_retllong:
movl (%ecx), %eax
movl 4(%ecx), %edx
jmp .Lcls_epilogue
.Lcls_retstruct1b:
movsbl (%ecx), %eax
jmp .Lcls_epilogue
.Lcls_retstruct2b:
movswl (%ecx), %eax
jmp .Lcls_epilogue
.Lcls_retstruct:
lea -8(%ebp),%esp
movl %ebp, %esp
popl %ebp
ret $4
.LFE2:
#if !FFI_NO_RAW_API
#define RAW_CLOSURE_CIF_OFFSET ((FFI_TRAMPOLINE_SIZE + 3) & ~3)
#define RAW_CLOSURE_FUN_OFFSET (RAW_CLOSURE_CIF_OFFSET + 4)
#define RAW_CLOSURE_USER_DATA_OFFSET (RAW_CLOSURE_FUN_OFFSET + 4)
#define CIF_FLAGS_OFFSET 20
.align 4
FFI_HIDDEN (ffi_closure_raw_SYSV)
.globl _ffi_closure_raw_SYSV
_ffi_closure_raw_SYSV:
.LFB3:
pushl %ebp
.LCFI4:
movl %esp, %ebp
.LCFI5:
pushl %esi
.LCFI6:
subl $36, %esp
movl RAW_CLOSURE_CIF_OFFSET(%eax), %esi /* closure->cif */
movl RAW_CLOSURE_USER_DATA_OFFSET(%eax), %edx /* closure->user_data */
movl %edx, 12(%esp) /* user_data */
leal 8(%ebp), %edx /* __builtin_dwarf_cfa () */
movl %edx, 8(%esp) /* raw_args */
leal -24(%ebp), %edx
movl %edx, 4(%esp) /* &res */
movl %esi, (%esp) /* cif */
call *RAW_CLOSURE_FUN_OFFSET(%eax) /* closure->fun */
movl CIF_FLAGS_OFFSET(%esi), %eax /* rtype */
cmpl $FFI_TYPE_INT, %eax
je .Lrcls_retint
/* Handle FFI_TYPE_UINT8, FFI_TYPE_SINT8, FFI_TYPE_UINT16,
FFI_TYPE_SINT16, FFI_TYPE_UINT32, FFI_TYPE_SINT32. */
cmpl $FFI_TYPE_UINT64, %eax
jge 0f
cmpl $FFI_TYPE_UINT8, %eax
jge .Lrcls_retint
0:
cmpl $FFI_TYPE_FLOAT, %eax
je .Lrcls_retfloat
cmpl $FFI_TYPE_DOUBLE, %eax
je .Lrcls_retdouble
cmpl $FFI_TYPE_LONGDOUBLE, %eax
je .Lrcls_retldouble
cmpl $FFI_TYPE_SINT64, %eax
je .Lrcls_retllong
.Lrcls_epilogue:
addl $36, %esp
popl %esi
popl %ebp
ret
.Lrcls_retint:
movl -24(%ebp), %eax
jmp .Lrcls_epilogue
.Lrcls_retfloat:
flds -24(%ebp)
jmp .Lrcls_epilogue
.Lrcls_retdouble:
fldl -24(%ebp)
jmp .Lrcls_epilogue
.Lrcls_retldouble:
fldt -24(%ebp)
jmp .Lrcls_epilogue
.Lrcls_retllong:
movl -24(%ebp), %eax
movl -20(%ebp), %edx
jmp .Lrcls_epilogue
.LFE3:
#endif
.section __IMPORT,__jump_table,symbol_stubs,self_modifying_code+pure_instructions,5
L_ffi_closure_SYSV_inner$stub:
.indirect_symbol _ffi_closure_SYSV_inner
hlt ; hlt ; hlt ; hlt ; hlt
.section __TEXT,__eh_frame,coalesced,no_toc+strip_static_syms+live_support
EH_frame1:
.set L$set$0,LECIE1-LSCIE1
.long L$set$0
LSCIE1:
.long 0x0
.byte 0x1
.ascii "zR\0"
.byte 0x1
.byte 0x7c
.byte 0x8
.byte 0x1
.byte 0x10
.byte 0xc
.byte 0x5
.byte 0x4
.byte 0x88
.byte 0x1
.align 2
LECIE1:
.globl _ffi_call_SYSV.eh
_ffi_call_SYSV.eh:
LSFDE1:
.set L$set$1,LEFDE1-LASFDE1
.long L$set$1
LASFDE1:
.long LASFDE1-EH_frame1
.long .LFB1-.
.set L$set$2,.LFE1-.LFB1
.long L$set$2
.byte 0x0
.byte 0x4
.set L$set$3,.LCFI0-.LFB1
.long L$set$3
.byte 0xe
.byte 0x8
.byte 0x84
.byte 0x2
.byte 0x4
.set L$set$4,.LCFI1-.LCFI0
.long L$set$4
.byte 0xd
.byte 0x4
.align 2
LEFDE1:
.globl _ffi_closure_SYSV.eh
_ffi_closure_SYSV.eh:
LSFDE2:
.set L$set$5,LEFDE2-LASFDE2
.long L$set$5
LASFDE2:
.long LASFDE2-EH_frame1
.long .LFB2-.
.set L$set$6,.LFE2-.LFB2
.long L$set$6
.byte 0x0
.byte 0x4
.set L$set$7,.LCFI2-.LFB2
.long L$set$7
.byte 0xe
.byte 0x8
.byte 0x84
.byte 0x2
.byte 0x4
.set L$set$8,.LCFI3-.LCFI2
.long L$set$8
.byte 0xd
.byte 0x4
.align 2
LEFDE2:
#if !FFI_NO_RAW_API
.globl _ffi_closure_raw_SYSV.eh
_ffi_closure_raw_SYSV.eh:
LSFDE3:
.set L$set$10,LEFDE3-LASFDE3
.long L$set$10
LASFDE3:
.long LASFDE3-EH_frame1
.long .LFB3-.
.set L$set$11,.LFE3-.LFB3
.long L$set$11
.byte 0x0
.byte 0x4
.set L$set$12,.LCFI4-.LFB3
.long L$set$12
.byte 0xe
.byte 0x8
.byte 0x84
.byte 0x2
.byte 0x4
.set L$set$13,.LCFI5-.LCFI4
.long L$set$13
.byte 0xd
.byte 0x4
.byte 0x4
.set L$set$14,.LCFI6-.LCFI5
.long L$set$14
.byte 0x85
.byte 0x3
.align 2
LEFDE3:
#endif
#endif /* ifndef __x86_64__ */
#endif

View file

@ -0,0 +1,421 @@
#if !defined(__arm__) && defined(__i386__)
/* -----------------------------------------------------------------------
darwin64.S - Copyright (c) 2006 Free Software Foundation, Inc.
Copyright (c) 2008 Red Hat, Inc.
derived from unix64.S
x86-64 Foreign Function Interface for Darwin.
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
----------------------------------------------------------------------- */
#ifdef __x86_64__
#define LIBFFI_ASM
#include <fficonfig.h>
#include <ffi.h>
.file "darwin64.S"
.text
/* ffi_call_unix64 (void *args, unsigned long bytes, unsigned flags,
void *raddr, void (*fnaddr)(void));
Bit o trickiness here -- ARGS+BYTES is the base of the stack frame
for this function. This has been allocated by ffi_call. We also
deallocate some of the stack that has been alloca'd. */
.align 3
.globl _ffi_call_unix64
_ffi_call_unix64:
LUW0:
movq (%rsp), %r10 /* Load return address. */
leaq (%rdi, %rsi), %rax /* Find local stack base. */
movq %rdx, (%rax) /* Save flags. */
movq %rcx, 8(%rax) /* Save raddr. */
movq %rbp, 16(%rax) /* Save old frame pointer. */
movq %r10, 24(%rax) /* Relocate return address. */
movq %rax, %rbp /* Finalize local stack frame. */
LUW1:
movq %rdi, %r10 /* Save a copy of the register area. */
movq %r8, %r11 /* Save a copy of the target fn. */
movl %r9d, %eax /* Set number of SSE registers. */
/* Load up all argument registers. */
movq (%r10), %rdi
movq 8(%r10), %rsi
movq 16(%r10), %rdx
movq 24(%r10), %rcx
movq 32(%r10), %r8
movq 40(%r10), %r9
testl %eax, %eax
jnz Lload_sse
Lret_from_load_sse:
/* Deallocate the reg arg area. */
leaq 176(%r10), %rsp
/* Call the user function. */
call *%r11
/* Deallocate stack arg area; local stack frame in redzone. */
leaq 24(%rbp), %rsp
movq 0(%rbp), %rcx /* Reload flags. */
movq 8(%rbp), %rdi /* Reload raddr. */
movq 16(%rbp), %rbp /* Reload old frame pointer. */
LUW2:
/* The first byte of the flags contains the FFI_TYPE. */
movzbl %cl, %r10d
leaq Lstore_table(%rip), %r11
movslq (%r11, %r10, 4), %r10
addq %r11, %r10
jmp *%r10
Lstore_table:
.long Lst_void-Lstore_table /* FFI_TYPE_VOID */
.long Lst_sint32-Lstore_table /* FFI_TYPE_INT */
.long Lst_float-Lstore_table /* FFI_TYPE_FLOAT */
.long Lst_double-Lstore_table /* FFI_TYPE_DOUBLE */
.long Lst_ldouble-Lstore_table /* FFI_TYPE_LONGDOUBLE */
.long Lst_uint8-Lstore_table /* FFI_TYPE_UINT8 */
.long Lst_sint8-Lstore_table /* FFI_TYPE_SINT8 */
.long Lst_uint16-Lstore_table /* FFI_TYPE_UINT16 */
.long Lst_sint16-Lstore_table /* FFI_TYPE_SINT16 */
.long Lst_uint32-Lstore_table /* FFI_TYPE_UINT32 */
.long Lst_sint32-Lstore_table /* FFI_TYPE_SINT32 */
.long Lst_int64-Lstore_table /* FFI_TYPE_UINT64 */
.long Lst_int64-Lstore_table /* FFI_TYPE_SINT64 */
.long Lst_struct-Lstore_table /* FFI_TYPE_STRUCT */
.long Lst_int64-Lstore_table /* FFI_TYPE_POINTER */
.text
.align 3
Lst_void:
ret
.align 3
Lst_uint8:
movzbq %al, %rax
movq %rax, (%rdi)
ret
.align 3
Lst_sint8:
movsbq %al, %rax
movq %rax, (%rdi)
ret
.align 3
Lst_uint16:
movzwq %ax, %rax
movq %rax, (%rdi)
.align 3
Lst_sint16:
movswq %ax, %rax
movq %rax, (%rdi)
ret
.align 3
Lst_uint32:
movl %eax, %eax
movq %rax, (%rdi)
.align 3
Lst_sint32:
cltq
movq %rax, (%rdi)
ret
.align 3
Lst_int64:
movq %rax, (%rdi)
ret
.align 3
Lst_float:
movss %xmm0, (%rdi)
ret
.align 3
Lst_double:
movsd %xmm0, (%rdi)
ret
Lst_ldouble:
fstpt (%rdi)
ret
.align 3
Lst_struct:
leaq -20(%rsp), %rsi /* Scratch area in redzone. */
/* We have to locate the values now, and since we don't want to
write too much data into the user's return value, we spill the
value to a 16 byte scratch area first. Bits 8, 9, and 10
control where the values are located. Only one of the three
bits will be set; see ffi_prep_cif_machdep for the pattern. */
movd %xmm0, %r10
movd %xmm1, %r11
testl $0x100, %ecx
cmovnz %rax, %rdx
cmovnz %r10, %rax
testl $0x200, %ecx
cmovnz %r10, %rdx
testl $0x400, %ecx
cmovnz %r10, %rax
cmovnz %r11, %rdx
movq %rax, (%rsi)
movq %rdx, 8(%rsi)
/* Bits 12-31 contain the true size of the structure. Copy from
the scratch area to the true destination. */
shrl $12, %ecx
rep movsb
ret
/* Many times we can avoid loading any SSE registers at all.
It's not worth an indirect jump to load the exact set of
SSE registers needed; zero or all is a good compromise. */
.align 3
LUW3:
Lload_sse:
movdqa 48(%r10), %xmm0
movdqa 64(%r10), %xmm1
movdqa 80(%r10), %xmm2
movdqa 96(%r10), %xmm3
movdqa 112(%r10), %xmm4
movdqa 128(%r10), %xmm5
movdqa 144(%r10), %xmm6
movdqa 160(%r10), %xmm7
jmp Lret_from_load_sse
LUW4:
.align 3
.globl _ffi_closure_unix64
_ffi_closure_unix64:
LUW5:
/* The carry flag is set by the trampoline iff SSE registers
are used. Don't clobber it before the branch instruction. */
leaq -200(%rsp), %rsp
LUW6:
movq %rdi, (%rsp)
movq %rsi, 8(%rsp)
movq %rdx, 16(%rsp)
movq %rcx, 24(%rsp)
movq %r8, 32(%rsp)
movq %r9, 40(%rsp)
jc Lsave_sse
Lret_from_save_sse:
movq %r10, %rdi
leaq 176(%rsp), %rsi
movq %rsp, %rdx
leaq 208(%rsp), %rcx
call _ffi_closure_unix64_inner
/* Deallocate stack frame early; return value is now in redzone. */
addq $200, %rsp
LUW7:
/* The first byte of the return value contains the FFI_TYPE. */
movzbl %al, %r10d
leaq Lload_table(%rip), %r11
movslq (%r11, %r10, 4), %r10
addq %r11, %r10
jmp *%r10
Lload_table:
.long Lld_void-Lload_table /* FFI_TYPE_VOID */
.long Lld_int32-Lload_table /* FFI_TYPE_INT */
.long Lld_float-Lload_table /* FFI_TYPE_FLOAT */
.long Lld_double-Lload_table /* FFI_TYPE_DOUBLE */
.long Lld_ldouble-Lload_table /* FFI_TYPE_LONGDOUBLE */
.long Lld_int8-Lload_table /* FFI_TYPE_UINT8 */
.long Lld_int8-Lload_table /* FFI_TYPE_SINT8 */
.long Lld_int16-Lload_table /* FFI_TYPE_UINT16 */
.long Lld_int16-Lload_table /* FFI_TYPE_SINT16 */
.long Lld_int32-Lload_table /* FFI_TYPE_UINT32 */
.long Lld_int32-Lload_table /* FFI_TYPE_SINT32 */
.long Lld_int64-Lload_table /* FFI_TYPE_UINT64 */
.long Lld_int64-Lload_table /* FFI_TYPE_SINT64 */
.long Lld_struct-Lload_table /* FFI_TYPE_STRUCT */
.long Lld_int64-Lload_table /* FFI_TYPE_POINTER */
.text
.align 3
Lld_void:
ret
.align 3
Lld_int8:
movzbl -24(%rsp), %eax
ret
.align 3
Lld_int16:
movzwl -24(%rsp), %eax
ret
.align 3
Lld_int32:
movl -24(%rsp), %eax
ret
.align 3
Lld_int64:
movq -24(%rsp), %rax
ret
.align 3
Lld_float:
movss -24(%rsp), %xmm0
ret
.align 3
Lld_double:
movsd -24(%rsp), %xmm0
ret
.align 3
Lld_ldouble:
fldt -24(%rsp)
ret
.align 3
Lld_struct:
/* There are four possibilities here, %rax/%rdx, %xmm0/%rax,
%rax/%xmm0, %xmm0/%xmm1. We collapse two by always loading
both rdx and xmm1 with the second word. For the remaining,
bit 8 set means xmm0 gets the second word, and bit 9 means
that rax gets the second word. */
movq -24(%rsp), %rcx
movq -16(%rsp), %rdx
movq -16(%rsp), %xmm1
testl $0x100, %eax
cmovnz %rdx, %rcx
movd %rcx, %xmm0
testl $0x200, %eax
movq -24(%rsp), %rax
cmovnz %rdx, %rax
ret
/* See the comment above Lload_sse; the same logic applies here. */
.align 3
LUW8:
Lsave_sse:
movdqa %xmm0, 48(%rsp)
movdqa %xmm1, 64(%rsp)
movdqa %xmm2, 80(%rsp)
movdqa %xmm3, 96(%rsp)
movdqa %xmm4, 112(%rsp)
movdqa %xmm5, 128(%rsp)
movdqa %xmm6, 144(%rsp)
movdqa %xmm7, 160(%rsp)
jmp Lret_from_save_sse
LUW9:
.section __TEXT,__eh_frame,coalesced,no_toc+strip_static_syms+live_support
EH_frame1:
.set L$set$0,LECIE1-LSCIE1 /* CIE Length */
.long L$set$0
LSCIE1:
.long 0x0 /* CIE Identifier Tag */
.byte 0x1 /* CIE Version */
.ascii "zR\0" /* CIE Augmentation */
.byte 0x1 /* uleb128 0x1; CIE Code Alignment Factor */
.byte 0x78 /* sleb128 -8; CIE Data Alignment Factor */
.byte 0x10 /* CIE RA Column */
.byte 0x1 /* uleb128 0x1; Augmentation size */
.byte 0x10 /* FDE Encoding (pcrel sdata4) */
.byte 0xc /* DW_CFA_def_cfa, %rsp offset 8 */
.byte 0x7 /* uleb128 0x7 */
.byte 0x8 /* uleb128 0x8 */
.byte 0x90 /* DW_CFA_offset, column 0x10 */
.byte 0x1
.align 3
LECIE1:
.globl _ffi_call_unix64.eh
_ffi_call_unix64.eh:
LSFDE1:
.set L$set$1,LEFDE1-LASFDE1 /* FDE Length */
.long L$set$1
LASFDE1:
.long LASFDE1-EH_frame1 /* FDE CIE offset */
.quad LUW0-. /* FDE initial location */
.set L$set$2,LUW4-LUW0 /* FDE address range */
.quad L$set$2
.byte 0x0 /* Augmentation size */
.byte 0x4 /* DW_CFA_advance_loc4 */
.set L$set$3,LUW1-LUW0
.long L$set$3
/* New stack frame based off rbp. This is a itty bit of unwind
trickery in that the CFA *has* changed. There is no easy way
to describe it correctly on entry to the function. Fortunately,
it doesn't matter too much since at all points we can correctly
unwind back to ffi_call. Note that the location to which we
moved the return address is (the new) CFA-8, so from the
perspective of the unwind info, it hasn't moved. */
.byte 0xc /* DW_CFA_def_cfa, %rbp offset 32 */
.byte 0x6
.byte 0x20
.byte 0x80+6 /* DW_CFA_offset, %rbp offset 2*-8 */
.byte 0x2
.byte 0xa /* DW_CFA_remember_state */
.byte 0x4 /* DW_CFA_advance_loc4 */
.set L$set$4,LUW2-LUW1
.long L$set$4
.byte 0xc /* DW_CFA_def_cfa, %rsp offset 8 */
.byte 0x7
.byte 0x8
.byte 0xc0+6 /* DW_CFA_restore, %rbp */
.byte 0x4 /* DW_CFA_advance_loc4 */
.set L$set$5,LUW3-LUW2
.long L$set$5
.byte 0xb /* DW_CFA_restore_state */
.align 3
LEFDE1:
.globl _ffi_closure_unix64.eh
_ffi_closure_unix64.eh:
LSFDE3:
.set L$set$6,LEFDE3-LASFDE3 /* FDE Length */
.long L$set$6
LASFDE3:
.long LASFDE3-EH_frame1 /* FDE CIE offset */
.quad LUW5-. /* FDE initial location */
.set L$set$7,LUW9-LUW5 /* FDE address range */
.quad L$set$7
.byte 0x0 /* Augmentation size */
.byte 0x4 /* DW_CFA_advance_loc4 */
.set L$set$8,LUW6-LUW5
.long L$set$8
.byte 0xe /* DW_CFA_def_cfa_offset */
.byte 208,1 /* uleb128 208 */
.byte 0xa /* DW_CFA_remember_state */
.byte 0x4 /* DW_CFA_advance_loc4 */
.set L$set$9,LUW7-LUW6
.long L$set$9
.byte 0xe /* DW_CFA_def_cfa_offset */
.byte 0x8
.byte 0x4 /* DW_CFA_advance_loc4 */
.set L$set$10,LUW8-LUW7
.long L$set$10
.byte 0xb /* DW_CFA_restore_state */
.align 3
LEFDE3:
.subsections_via_symbols
#endif /* __x86_64__ */
#endif

View file

@ -0,0 +1,873 @@
#if !defined(__arm__) && defined(__i386__)
/* -----------------------------------------------------------------------
ffi.c - Copyright (c) 1996, 1998, 1999, 2001, 2007, 2008 Red Hat, Inc.
Copyright (c) 2002 Ranjit Mathew
Copyright (c) 2002 Bo Thorsen
Copyright (c) 2002 Roger Sayle
Copyright (C) 2008, 2010 Free Software Foundation, Inc.
x86 Foreign Function Interface
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
----------------------------------------------------------------------- */
#if !defined(__x86_64__) || defined(_WIN64)
#ifdef _WIN64
#include <windows.h>
#endif
#include <ffi.h>
#include <ffi_common.h>
#include <stdlib.h>
/* ffi_prep_args is called by the assembly routine once stack space
has been allocated for the function's arguments */
void ffi_prep_args(char *stack, extended_cif *ecif)
{
register unsigned int i;
register void **p_argv;
register char *argp;
register ffi_type **p_arg;
#ifdef X86_WIN32
size_t p_stack_args[2];
void *p_stack_data[2];
char *argp2 = stack;
int stack_args_count = 0;
int cabi = ecif->cif->abi;
#endif
argp = stack;
if ((ecif->cif->flags == FFI_TYPE_STRUCT
|| ecif->cif->flags == FFI_TYPE_MS_STRUCT)
#ifdef X86_WIN64
&& (ecif->cif->rtype->size != 1 && ecif->cif->rtype->size != 2
&& ecif->cif->rtype->size != 4 && ecif->cif->rtype->size != 8)
#endif
)
{
*(void **) argp = ecif->rvalue;
#ifdef X86_WIN32
/* For fastcall/thiscall this is first register-passed
argument. */
if (cabi == FFI_THISCALL || cabi == FFI_FASTCALL)
{
p_stack_args[stack_args_count] = sizeof (void*);
p_stack_data[stack_args_count] = argp;
++stack_args_count;
}
#endif
argp += sizeof(void*);
}
p_argv = ecif->avalue;
for (i = ecif->cif->nargs, p_arg = ecif->cif->arg_types;
i != 0;
i--, p_arg++)
{
size_t z;
/* Align if necessary */
if ((sizeof(void*) - 1) & (size_t) argp)
argp = (char *) ALIGN(argp, sizeof(void*));
z = (*p_arg)->size;
#ifdef X86_WIN64
if (z > sizeof(ffi_arg)
|| ((*p_arg)->type == FFI_TYPE_STRUCT
&& (z != 1 && z != 2 && z != 4 && z != 8))
#if FFI_TYPE_DOUBLE != FFI_TYPE_LONGDOUBLE
|| ((*p_arg)->type == FFI_TYPE_LONGDOUBLE)
#endif
)
{
z = sizeof(ffi_arg);
*(void **)argp = *p_argv;
}
else if ((*p_arg)->type == FFI_TYPE_FLOAT)
{
memcpy(argp, *p_argv, z);
}
else
#endif
if (z < sizeof(ffi_arg))
{
z = sizeof(ffi_arg);
switch ((*p_arg)->type)
{
case FFI_TYPE_SINT8:
*(ffi_sarg *) argp = (ffi_sarg)*(SINT8 *)(* p_argv);
break;
case FFI_TYPE_UINT8:
*(ffi_arg *) argp = (ffi_arg)*(UINT8 *)(* p_argv);
break;
case FFI_TYPE_SINT16:
*(ffi_sarg *) argp = (ffi_sarg)*(SINT16 *)(* p_argv);
break;
case FFI_TYPE_UINT16:
*(ffi_arg *) argp = (ffi_arg)*(UINT16 *)(* p_argv);
break;
case FFI_TYPE_SINT32:
*(ffi_sarg *) argp = (ffi_sarg)*(SINT32 *)(* p_argv);
break;
case FFI_TYPE_UINT32:
*(ffi_arg *) argp = (ffi_arg)*(UINT32 *)(* p_argv);
break;
case FFI_TYPE_STRUCT:
*(ffi_arg *) argp = *(ffi_arg *)(* p_argv);
break;
default:
FFI_ASSERT(0);
}
}
else
{
memcpy(argp, *p_argv, z);
}
#ifdef X86_WIN32
/* For thiscall/fastcall convention register-passed arguments
are the first two none-floating-point arguments with a size
smaller or equal to sizeof (void*). */
if ((cabi == FFI_THISCALL && stack_args_count < 1)
|| (cabi == FFI_FASTCALL && stack_args_count < 2))
{
if (z <= 4
&& ((*p_arg)->type != FFI_TYPE_FLOAT
&& (*p_arg)->type != FFI_TYPE_STRUCT))
{
p_stack_args[stack_args_count] = z;
p_stack_data[stack_args_count] = argp;
++stack_args_count;
}
}
#endif
p_argv++;
#ifdef X86_WIN64
argp += (z + sizeof(void*) - 1) & ~(sizeof(void*) - 1);
#else
argp += z;
#endif
}
#ifdef X86_WIN32
/* We need to move the register-passed arguments for thiscall/fastcall
on top of stack, so that those can be moved to registers ecx/edx by
call-handler. */
if (stack_args_count > 0)
{
size_t zz = (p_stack_args[0] + 3) & ~3;
char *h;
/* Move first argument to top-stack position. */
if (p_stack_data[0] != argp2)
{
h = alloca (zz + 1);
memcpy (h, p_stack_data[0], zz);
memmove (argp2 + zz, argp2,
(size_t) ((char *) p_stack_data[0] - (char*)argp2));
memcpy (argp2, h, zz);
}
argp2 += zz;
--stack_args_count;
if (zz > 4)
stack_args_count = 0;
/* If we have a second argument, then move it on top
after the first one. */
if (stack_args_count > 0 && p_stack_data[1] != argp2)
{
zz = p_stack_args[1];
zz = (zz + 3) & ~3;
h = alloca (zz + 1);
h = alloca (zz + 1);
memcpy (h, p_stack_data[1], zz);
memmove (argp2 + zz, argp2, (size_t) ((char*) p_stack_data[1] - (char*)argp2));
memcpy (argp2, h, zz);
}
}
#endif
return;
}
/* Perform machine dependent cif processing */
ffi_status ffi_prep_cif_machdep(ffi_cif *cif)
{
unsigned int i;
ffi_type **ptr;
/* Set the return type flag */
switch (cif->rtype->type)
{
case FFI_TYPE_VOID:
case FFI_TYPE_UINT8:
case FFI_TYPE_UINT16:
case FFI_TYPE_SINT8:
case FFI_TYPE_SINT16:
#ifdef X86_WIN64
case FFI_TYPE_UINT32:
case FFI_TYPE_SINT32:
#endif
case FFI_TYPE_SINT64:
case FFI_TYPE_FLOAT:
case FFI_TYPE_DOUBLE:
#ifndef X86_WIN64
#if FFI_TYPE_DOUBLE != FFI_TYPE_LONGDOUBLE
case FFI_TYPE_LONGDOUBLE:
#endif
#endif
cif->flags = (unsigned) cif->rtype->type;
break;
case FFI_TYPE_UINT64:
#ifdef X86_WIN64
case FFI_TYPE_POINTER:
#endif
cif->flags = FFI_TYPE_SINT64;
break;
case FFI_TYPE_STRUCT:
#ifndef X86
if (cif->rtype->size == 1)
{
cif->flags = FFI_TYPE_SMALL_STRUCT_1B; /* same as char size */
}
else if (cif->rtype->size == 2)
{
cif->flags = FFI_TYPE_SMALL_STRUCT_2B; /* same as short size */
}
else if (cif->rtype->size == 4)
{
#ifdef X86_WIN64
cif->flags = FFI_TYPE_SMALL_STRUCT_4B;
#else
cif->flags = FFI_TYPE_INT; /* same as int type */
#endif
}
else if (cif->rtype->size == 8)
{
cif->flags = FFI_TYPE_SINT64; /* same as int64 type */
}
else
#endif
{
#ifdef X86_WIN32
if (cif->abi == FFI_MS_CDECL)
cif->flags = FFI_TYPE_MS_STRUCT;
else
#endif
cif->flags = FFI_TYPE_STRUCT;
/* allocate space for return value pointer */
cif->bytes += ALIGN(sizeof(void*), FFI_SIZEOF_ARG);
}
break;
default:
#ifdef X86_WIN64
cif->flags = FFI_TYPE_SINT64;
break;
case FFI_TYPE_INT:
cif->flags = FFI_TYPE_SINT32;
#else
cif->flags = FFI_TYPE_INT;
#endif
break;
}
for (ptr = cif->arg_types, i = cif->nargs; i > 0; i--, ptr++)
{
//BCF
//int align = (*ptr)->alignment;
int align = sizeof(int);
if (((*ptr)->alignment - 1) & cif->bytes)
cif->bytes = ALIGN(cif->bytes, align);
cif->bytes += ALIGN((*ptr)->size, FFI_SIZEOF_ARG);
}
#ifdef X86_WIN64
/* ensure space for storing four registers */
cif->bytes += 4 * sizeof(ffi_arg);
#endif
//BCF - was unconditional before
#ifndef X86_WIN32
cif->bytes = (cif->bytes + 15) & ~0xF;
#endif
return FFI_OK;
}
#ifdef X86_WIN64
extern int
ffi_call_win64(void (*)(char *, extended_cif *), extended_cif *,
unsigned, unsigned, unsigned *, void (*fn)(void));
#elif defined(X86_WIN32)
extern void
ffi_call_win32(void (*)(char *, extended_cif *), extended_cif *,
unsigned, unsigned, unsigned, unsigned *, void (*fn)(void));
#else
extern void ffi_call_SYSV(void (*)(char *, extended_cif *), extended_cif *,
unsigned, unsigned, unsigned *, void (*fn)(void));
#endif
void ffi_call(ffi_cif *cif, void (*fn)(void), void *rvalue, void **avalue)
{
extended_cif ecif;
ecif.cif = cif;
ecif.avalue = avalue;
/* If the return value is a struct and we don't have a return */
/* value address then we need to make one */
#ifdef X86_WIN64
if (rvalue == NULL
&& cif->flags == FFI_TYPE_STRUCT
&& cif->rtype->size != 1 && cif->rtype->size != 2
&& cif->rtype->size != 4 && cif->rtype->size != 8)
{
ecif.rvalue = alloca((cif->rtype->size + 0xF) & ~0xF);
}
#else
if (rvalue == NULL
&& (cif->flags == FFI_TYPE_STRUCT
|| cif->flags == FFI_TYPE_MS_STRUCT))
{
ecif.rvalue = alloca(cif->rtype->size);
}
#endif
else
ecif.rvalue = rvalue;
switch (cif->abi)
{
#ifdef X86_WIN64
case FFI_WIN64:
ffi_call_win64(ffi_prep_args, &ecif, cif->bytes,
cif->flags, ecif.rvalue, fn);
break;
#elif defined(X86_WIN32)
case FFI_SYSV:
case FFI_STDCALL:
case FFI_MS_CDECL:
ffi_call_win32(ffi_prep_args, &ecif, cif->abi, cif->bytes, cif->flags,
ecif.rvalue, fn);
break;
case FFI_THISCALL:
case FFI_FASTCALL:
{
unsigned int abi = cif->abi;
unsigned int i, passed_regs = 0;
if (cif->flags == FFI_TYPE_STRUCT)
++passed_regs;
for (i=0; i < cif->nargs && passed_regs < 2;i++)
{
size_t sz;
if (cif->arg_types[i]->type == FFI_TYPE_FLOAT
|| cif->arg_types[i]->type == FFI_TYPE_STRUCT)
continue;
sz = (cif->arg_types[i]->size + 3) & ~3;
if (sz == 0 || sz > 4)
continue;
++passed_regs;
}
if (passed_regs < 2 && abi == FFI_FASTCALL)
abi = FFI_THISCALL;
if (passed_regs < 1 && abi == FFI_THISCALL)
abi = FFI_STDCALL;
ffi_call_win32(ffi_prep_args, &ecif, abi, cif->bytes, cif->flags,
ecif.rvalue, fn);
}
break;
#else
case FFI_SYSV:
ffi_call_SYSV(ffi_prep_args, &ecif, cif->bytes, cif->flags, ecif.rvalue,
fn);
break;
#endif
default:
FFI_ASSERT(0);
break;
}
}
/** private members **/
/* The following __attribute__((regparm(1))) decorations will have no effect
on MSVC or SUNPRO_C -- standard conventions apply. */
static void ffi_prep_incoming_args_SYSV (char *stack, void **ret,
void** args, ffi_cif* cif);
void FFI_HIDDEN ffi_closure_SYSV (ffi_closure *)
__attribute__ ((regparm(1)));
unsigned int FFI_HIDDEN ffi_closure_SYSV_inner (ffi_closure *, void **, void *)
__attribute__ ((regparm(1)));
void FFI_HIDDEN ffi_closure_raw_SYSV (ffi_raw_closure *)
__attribute__ ((regparm(1)));
#ifdef X86_WIN32
void FFI_HIDDEN ffi_closure_raw_THISCALL (ffi_raw_closure *)
__attribute__ ((regparm(1)));
void FFI_HIDDEN ffi_closure_STDCALL (ffi_closure *)
__attribute__ ((regparm(1)));
void FFI_HIDDEN ffi_closure_THISCALL (ffi_closure *)
__attribute__ ((regparm(1)));
#endif
#ifdef X86_WIN64
void FFI_HIDDEN ffi_closure_win64 (ffi_closure *);
#endif
/* This function is jumped to by the trampoline */
#ifdef X86_WIN64
void * FFI_HIDDEN
ffi_closure_win64_inner (ffi_closure *closure, void *args) {
ffi_cif *cif;
void **arg_area;
void *result;
void *resp = &result;
cif = closure->cif;
arg_area = (void**) alloca (cif->nargs * sizeof (void*));
/* this call will initialize ARG_AREA, such that each
* element in that array points to the corresponding
* value on the stack; and if the function returns
* a structure, it will change RESP to point to the
* structure return address. */
ffi_prep_incoming_args_SYSV(args, &resp, arg_area, cif);
(closure->fun) (cif, resp, arg_area, closure->user_data);
/* The result is returned in rax. This does the right thing for
result types except for floats; we have to 'mov xmm0, rax' in the
caller to correct this.
TODO: structure sizes of 3 5 6 7 are returned by reference, too!!!
*/
return cif->rtype->size > sizeof(void *) ? resp : *(void **)resp;
}
#else
unsigned int FFI_HIDDEN __attribute__ ((regparm(1)))
ffi_closure_SYSV_inner (ffi_closure *closure, void **respp, void *args)
{
/* our various things... */
ffi_cif *cif;
void **arg_area;
cif = closure->cif;
arg_area = (void**) alloca (cif->nargs * sizeof (void*));
/* this call will initialize ARG_AREA, such that each
* element in that array points to the corresponding
* value on the stack; and if the function returns
* a structure, it will change RESP to point to the
* structure return address. */
ffi_prep_incoming_args_SYSV(args, respp, arg_area, cif);
(closure->fun) (cif, *respp, arg_area, closure->user_data);
return cif->flags;
}
#endif /* !X86_WIN64 */
static void
ffi_prep_incoming_args_SYSV(char *stack, void **rvalue, void **avalue,
ffi_cif *cif)
{
register unsigned int i;
register void **p_argv;
register char *argp;
register ffi_type **p_arg;
argp = stack;
#ifdef X86_WIN64
if (cif->rtype->size > sizeof(ffi_arg)
|| (cif->flags == FFI_TYPE_STRUCT
&& (cif->rtype->size != 1 && cif->rtype->size != 2
&& cif->rtype->size != 4 && cif->rtype->size != 8))) {
*rvalue = *(void **) argp;
argp += sizeof(void *);
}
#else
if ( cif->flags == FFI_TYPE_STRUCT
|| cif->flags == FFI_TYPE_MS_STRUCT ) {
*rvalue = *(void **) argp;
argp += sizeof(void *);
}
#endif
p_argv = avalue;
for (i = cif->nargs, p_arg = cif->arg_types; (i != 0); i--, p_arg++)
{
size_t z;
/* Align if necessary */
if ((sizeof(void*) - 1) & (size_t) argp) {
argp = (char *) ALIGN(argp, sizeof(void*));
}
#ifdef X86_WIN64
if ((*p_arg)->size > sizeof(ffi_arg)
|| ((*p_arg)->type == FFI_TYPE_STRUCT
&& ((*p_arg)->size != 1 && (*p_arg)->size != 2
&& (*p_arg)->size != 4 && (*p_arg)->size != 8)))
{
z = sizeof(void *);
*p_argv = *(void **)argp;
}
else
#endif
{
z = (*p_arg)->size;
/* because we're little endian, this is what it turns into. */
*p_argv = (void*) argp;
}
p_argv++;
#ifdef X86_WIN64
argp += (z + sizeof(void*) - 1) & ~(sizeof(void*) - 1);
#else
argp += z;
#endif
}
return;
}
#define FFI_INIT_TRAMPOLINE_WIN64(TRAMP,FUN,CTX,MASK) \
{ unsigned char *__tramp = (unsigned char*)(TRAMP); \
void* __fun = (void*)(FUN); \
void* __ctx = (void*)(CTX); \
*(unsigned char*) &__tramp[0] = 0x41; \
*(unsigned char*) &__tramp[1] = 0xbb; \
*(unsigned int*) &__tramp[2] = MASK; /* mov $mask, %r11 */ \
*(unsigned char*) &__tramp[6] = 0x48; \
*(unsigned char*) &__tramp[7] = 0xb8; \
*(void**) &__tramp[8] = __ctx; /* mov __ctx, %rax */ \
*(unsigned char *) &__tramp[16] = 0x49; \
*(unsigned char *) &__tramp[17] = 0xba; \
*(void**) &__tramp[18] = __fun; /* mov __fun, %r10 */ \
*(unsigned char *) &__tramp[26] = 0x41; \
*(unsigned char *) &__tramp[27] = 0xff; \
*(unsigned char *) &__tramp[28] = 0xe2; /* jmp %r10 */ \
}
/* How to make a trampoline. Derived from gcc/config/i386/i386.c. */
#define FFI_INIT_TRAMPOLINE(TRAMP,FUN,CTX) \
{ unsigned char *__tramp = (unsigned char*)(TRAMP); \
unsigned int __fun = (unsigned int)(FUN); \
unsigned int __ctx = (unsigned int)(CTX); \
unsigned int __dis = __fun - (__ctx + 10); \
*(unsigned char*) &__tramp[0] = 0xb8; \
*(unsigned int*) &__tramp[1] = __ctx; /* movl __ctx, %eax */ \
*(unsigned char *) &__tramp[5] = 0xe9; \
*(unsigned int*) &__tramp[6] = __dis; /* jmp __fun */ \
}
#ifdef zX86_WIN32
#define FFI_INIT_TRAMPOLINE_THISCALL(TRAMP,FUN,CTX,SIZE) \
{ unsigned char *__tramp = (unsigned char*)(TRAMP); \
unsigned int __fun = (unsigned int)(FUN); \
unsigned int __ctx = (unsigned int)(CTX); \
unsigned int __dis = __fun - (__ctx + 10); \
unsigned short __size = (unsigned short)(SIZE); \
*(unsigned char*) &__tramp[0] = 0xb8; \
*(unsigned int*) &__tramp[1] = __ctx; /* movl __ctx, %eax */ \
*(unsigned char*) &__tramp[5] = 0x58; /* pop eax - old return */ \
*(unsigned char*) &__tramp[6] = 0x51; /* push ecx - this */ \
*(unsigned char*) &__tramp[7] = 0x50; /* push eax */ \
*(unsigned char *) &__tramp[8] = 0xe8; \
*(unsigned int*) &__tramp[9] = __dis; /* call __fun */ \
*(unsigned char *) &__tramp[13] = 0xc2; \
*(unsigned short*) &__tramp[14] = __size; /* ret __size */ \
}
#else
#define FFI_INIT_TRAMPOLINE_THISCALL(TRAMP,FUN,CTX,SIZE) \
{ unsigned char *__tramp = (unsigned char*)(TRAMP); \
unsigned int __fun = (unsigned int)(FUN); \
unsigned int __ctx = (unsigned int)(CTX); \
unsigned int __dis = __fun - (__ctx + 49); \
unsigned short __size = (unsigned short)(SIZE); \
*(unsigned int *) &__tramp[0] = 0x8324048b; /* mov (%esp), %eax */ \
*(unsigned int *) &__tramp[4] = 0x4c890cec; /* sub $12, %esp */ \
*(unsigned int *) &__tramp[8] = 0x04890424; /* mov %ecx, 4(%esp) */ \
*(unsigned char*) &__tramp[12] = 0x24; /* mov %eax, (%esp) */ \
*(unsigned char*) &__tramp[13] = 0xb8; \
*(unsigned int *) &__tramp[14] = __size; /* mov __size, %eax */ \
*(unsigned int *) &__tramp[18] = 0x08244c8d; /* lea 8(%esp), %ecx */ \
*(unsigned int *) &__tramp[22] = 0x4802e8c1; /* shr $2, %eax ; dec %eax */ \
*(unsigned short*) &__tramp[26] = 0x0b74; /* jz 1f */ \
*(unsigned int *) &__tramp[28] = 0x8908518b; /* 2b: mov 8(%ecx), %edx */ \
*(unsigned int *) &__tramp[32] = 0x04c18311; /* mov %edx, (%ecx) ; add $4, %ecx */ \
*(unsigned char*) &__tramp[36] = 0x48; /* dec %eax */ \
*(unsigned short*) &__tramp[37] = 0xf575; /* jnz 2b ; 1f: */ \
*(unsigned char*) &__tramp[39] = 0xb8; \
*(unsigned int*) &__tramp[40] = __ctx; /* movl __ctx, %eax */ \
*(unsigned char *) &__tramp[44] = 0xe8; \
*(unsigned int*) &__tramp[45] = __dis; /* call __fun */ \
*(unsigned char*) &__tramp[49] = 0xc2; /* ret */ \
*(unsigned short*) &__tramp[50] = (__size + 8); /* ret (__size + 8) */ \
}
#endif
#define FFI_INIT_TRAMPOLINE_STDCALL(TRAMP,FUN,CTX,SIZE) \
{ unsigned char *__tramp = (unsigned char*)(TRAMP); \
unsigned int __fun = (unsigned int)(FUN); \
unsigned int __ctx = (unsigned int)(CTX); \
unsigned int __dis = __fun - (__ctx + 10); \
unsigned short __size = (unsigned short)(SIZE); \
*(unsigned char*) &__tramp[0] = 0xb8; \
*(unsigned int*) &__tramp[1] = __ctx; /* movl __ctx, %eax */ \
*(unsigned char *) &__tramp[5] = 0xe8; \
*(unsigned int*) &__tramp[6] = __dis; /* call __fun */ \
*(unsigned char *) &__tramp[10] = 0xc2; \
*(unsigned short*) &__tramp[11] = __size; /* ret __size */ \
}
/* the cif must already be prep'ed */
ffi_status
ffi_prep_closure_loc (ffi_closure* closure,
ffi_cif* cif,
void (*fun)(ffi_cif*,void*,void**,void*),
void *user_data,
void *codeloc)
{
#ifdef X86_WIN64
#define ISFLOAT(IDX) (cif->arg_types[IDX]->type == FFI_TYPE_FLOAT || cif->arg_types[IDX]->type == FFI_TYPE_DOUBLE)
#define FLAG(IDX) (cif->nargs>(IDX)&&ISFLOAT(IDX)?(1<<(IDX)):0)
if (cif->abi == FFI_WIN64)
{
int mask = FLAG(0)|FLAG(1)|FLAG(2)|FLAG(3);
FFI_INIT_TRAMPOLINE_WIN64 (&closure->tramp[0],
&ffi_closure_win64,
codeloc, mask);
/* make sure we can execute here */
}
#else
if (cif->abi == FFI_SYSV)
{
FFI_INIT_TRAMPOLINE (&closure->tramp[0],
&ffi_closure_SYSV,
(void*)codeloc);
}
#ifdef X86_WIN32
else if (cif->abi == FFI_THISCALL)
{
FFI_INIT_TRAMPOLINE_THISCALL (&closure->tramp[0],
&ffi_closure_THISCALL,
(void*)codeloc,
cif->bytes);
}
else if (cif->abi == FFI_STDCALL)
{
FFI_INIT_TRAMPOLINE_STDCALL (&closure->tramp[0],
&ffi_closure_STDCALL,
(void*)codeloc, cif->bytes);
}
else if (cif->abi == FFI_MS_CDECL)
{
FFI_INIT_TRAMPOLINE (&closure->tramp[0],
&ffi_closure_SYSV,
(void*)codeloc);
}
#endif /* X86_WIN32 */
#endif /* !X86_WIN64 */
else
{
return FFI_BAD_ABI;
}
closure->cif = cif;
closure->user_data = user_data;
closure->fun = fun;
return FFI_OK;
}
/* ------- Native raw API support -------------------------------- */
#if !FFI_NO_RAW_API
ffi_status
ffi_prep_raw_closure_loc (ffi_raw_closure* closure,
ffi_cif* cif,
void (*fun)(ffi_cif*,void*,ffi_raw*,void*),
void *user_data,
void *codeloc)
{
int i;
if (cif->abi != FFI_SYSV) {
#ifdef X86_WIN32
if (cif->abi != FFI_THISCALL)
#endif
return FFI_BAD_ABI;
}
/* we currently don't support certain kinds of arguments for raw
closures. This should be implemented by a separate assembly
language routine, since it would require argument processing,
something we don't do now for performance. */
for (i = cif->nargs-1; i >= 0; i--)
{
FFI_ASSERT (cif->arg_types[i]->type != FFI_TYPE_STRUCT);
FFI_ASSERT (cif->arg_types[i]->type != FFI_TYPE_LONGDOUBLE);
}
#ifdef X86_WIN32
if (cif->abi == FFI_SYSV)
{
#endif
FFI_INIT_TRAMPOLINE (&closure->tramp[0], &ffi_closure_raw_SYSV,
codeloc);
#ifdef X86_WIN32
}
else if (cif->abi == FFI_THISCALL)
{
FFI_INIT_TRAMPOLINE_THISCALL (&closure->tramp[0], &ffi_closure_raw_THISCALL,
codeloc, cif->bytes);
}
#endif
closure->cif = cif;
closure->user_data = user_data;
closure->fun = fun;
return FFI_OK;
}
static void
ffi_prep_args_raw(char *stack, extended_cif *ecif)
{
memcpy (stack, ecif->avalue, ecif->cif->bytes);
}
/* we borrow this routine from libffi (it must be changed, though, to
* actually call the function passed in the first argument. as of
* libffi-1.20, this is not the case.)
*/
void
ffi_raw_call(ffi_cif *cif, void (*fn)(void), void *rvalue, ffi_raw *fake_avalue)
{
extended_cif ecif;
void **avalue = (void **)fake_avalue;
ecif.cif = cif;
ecif.avalue = avalue;
/* If the return value is a struct and we don't have a return */
/* value address then we need to make one */
if (rvalue == NULL
&& (cif->flags == FFI_TYPE_STRUCT
|| cif->flags == FFI_TYPE_MS_STRUCT))
{
ecif.rvalue = alloca(cif->rtype->size);
}
else
ecif.rvalue = rvalue;
switch (cif->abi)
{
#ifdef X86_WIN32
case FFI_SYSV:
case FFI_STDCALL:
case FFI_MS_CDECL:
ffi_call_win32(ffi_prep_args_raw, &ecif, cif->abi, cif->bytes, cif->flags,
ecif.rvalue, fn);
break;
case FFI_THISCALL:
case FFI_FASTCALL:
{
unsigned int abi = cif->abi;
unsigned int i, passed_regs = 0;
if (cif->flags == FFI_TYPE_STRUCT)
++passed_regs;
for (i=0; i < cif->nargs && passed_regs < 2;i++)
{
size_t sz;
if (cif->arg_types[i]->type == FFI_TYPE_FLOAT
|| cif->arg_types[i]->type == FFI_TYPE_STRUCT)
continue;
sz = (cif->arg_types[i]->size + 3) & ~3;
if (sz == 0 || sz > 4)
continue;
++passed_regs;
}
if (passed_regs < 2 && abi == FFI_FASTCALL)
cif->abi = abi = FFI_THISCALL;
if (passed_regs < 1 && abi == FFI_THISCALL)
cif->abi = abi = FFI_STDCALL;
ffi_call_win32(ffi_prep_args_raw, &ecif, abi, cif->bytes, cif->flags,
ecif.rvalue, fn);
}
break;
#else
case FFI_SYSV:
ffi_call_SYSV(ffi_prep_args_raw, &ecif, cif->bytes, cif->flags,
ecif.rvalue, fn);
break;
#endif
default:
FFI_ASSERT(0);
break;
}
}
#endif
#endif /* !__x86_64__ || X86_WIN64 */
#endif

View file

@ -0,0 +1,678 @@
#if !defined(__arm__) && defined(__i386__)
/* -----------------------------------------------------------------------
ffi64.c - Copyright (c) 2013 The Written Word, Inc.
Copyright (c) 2011 Anthony Green
Copyright (c) 2008, 2010 Red Hat, Inc.
Copyright (c) 2002, 2007 Bo Thorsen <bo@suse.de>
x86-64 Foreign Function Interface
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
----------------------------------------------------------------------- */
#include <ffi.h>
#include <ffi_common.h>
#include <stdlib.h>
#include <stdarg.h>
#ifdef __x86_64__
#define MAX_GPR_REGS 6
#define MAX_SSE_REGS 8
#if defined(__INTEL_COMPILER)
#define UINT128 __m128
#else
#if defined(__SUNPRO_C)
#include <sunmedia_types.h>
#define UINT128 __m128i
#else
#define UINT128 __int128_t
#endif
#endif
union big_int_union
{
UINT32 i32;
UINT64 i64;
UINT128 i128;
};
struct register_args
{
/* Registers for argument passing. */
UINT64 gpr[MAX_GPR_REGS];
union big_int_union sse[MAX_SSE_REGS];
};
extern void ffi_call_unix64 (void *args, unsigned long bytes, unsigned flags,
void *raddr, void (*fnaddr)(void), unsigned ssecount);
/* All reference to register classes here is identical to the code in
gcc/config/i386/i386.c. Do *not* change one without the other. */
/* Register class used for passing given 64bit part of the argument.
These represent classes as documented by the PS ABI, with the
exception of SSESF, SSEDF classes, that are basically SSE class,
just gcc will use SF or DFmode move instead of DImode to avoid
reformatting penalties.
Similary we play games with INTEGERSI_CLASS to use cheaper SImode moves
whenever possible (upper half does contain padding). */
enum x86_64_reg_class
{
X86_64_NO_CLASS,
X86_64_INTEGER_CLASS,
X86_64_INTEGERSI_CLASS,
X86_64_SSE_CLASS,
X86_64_SSESF_CLASS,
X86_64_SSEDF_CLASS,
X86_64_SSEUP_CLASS,
X86_64_X87_CLASS,
X86_64_X87UP_CLASS,
X86_64_COMPLEX_X87_CLASS,
X86_64_MEMORY_CLASS
};
#define MAX_CLASSES 4
#define SSE_CLASS_P(X) ((X) >= X86_64_SSE_CLASS && X <= X86_64_SSEUP_CLASS)
/* x86-64 register passing implementation. See x86-64 ABI for details. Goal
of this code is to classify each 8bytes of incoming argument by the register
class and assign registers accordingly. */
/* Return the union class of CLASS1 and CLASS2.
See the x86-64 PS ABI for details. */
static enum x86_64_reg_class
merge_classes (enum x86_64_reg_class class1, enum x86_64_reg_class class2)
{
/* Rule #1: If both classes are equal, this is the resulting class. */
if (class1 == class2)
return class1;
/* Rule #2: If one of the classes is NO_CLASS, the resulting class is
the other class. */
if (class1 == X86_64_NO_CLASS)
return class2;
if (class2 == X86_64_NO_CLASS)
return class1;
/* Rule #3: If one of the classes is MEMORY, the result is MEMORY. */
if (class1 == X86_64_MEMORY_CLASS || class2 == X86_64_MEMORY_CLASS)
return X86_64_MEMORY_CLASS;
/* Rule #4: If one of the classes is INTEGER, the result is INTEGER. */
if ((class1 == X86_64_INTEGERSI_CLASS && class2 == X86_64_SSESF_CLASS)
|| (class2 == X86_64_INTEGERSI_CLASS && class1 == X86_64_SSESF_CLASS))
return X86_64_INTEGERSI_CLASS;
if (class1 == X86_64_INTEGER_CLASS || class1 == X86_64_INTEGERSI_CLASS
|| class2 == X86_64_INTEGER_CLASS || class2 == X86_64_INTEGERSI_CLASS)
return X86_64_INTEGER_CLASS;
/* Rule #5: If one of the classes is X87, X87UP, or COMPLEX_X87 class,
MEMORY is used. */
if (class1 == X86_64_X87_CLASS
|| class1 == X86_64_X87UP_CLASS
|| class1 == X86_64_COMPLEX_X87_CLASS
|| class2 == X86_64_X87_CLASS
|| class2 == X86_64_X87UP_CLASS
|| class2 == X86_64_COMPLEX_X87_CLASS)
return X86_64_MEMORY_CLASS;
/* Rule #6: Otherwise class SSE is used. */
return X86_64_SSE_CLASS;
}
/* Classify the argument of type TYPE and mode MODE.
CLASSES will be filled by the register class used to pass each word
of the operand. The number of words is returned. In case the parameter
should be passed in memory, 0 is returned. As a special case for zero
sized containers, classes[0] will be NO_CLASS and 1 is returned.
See the x86-64 PS ABI for details.
*/
static int
classify_argument (ffi_type *type, enum x86_64_reg_class classes[],
size_t byte_offset)
{
switch (type->type)
{
case FFI_TYPE_UINT8:
case FFI_TYPE_SINT8:
case FFI_TYPE_UINT16:
case FFI_TYPE_SINT16:
case FFI_TYPE_UINT32:
case FFI_TYPE_SINT32:
case FFI_TYPE_UINT64:
case FFI_TYPE_SINT64:
case FFI_TYPE_POINTER:
{
int size = byte_offset + type->size;
if (size <= 4)
{
classes[0] = X86_64_INTEGERSI_CLASS;
return 1;
}
else if (size <= 8)
{
classes[0] = X86_64_INTEGER_CLASS;
return 1;
}
else if (size <= 12)
{
classes[0] = X86_64_INTEGER_CLASS;
classes[1] = X86_64_INTEGERSI_CLASS;
return 2;
}
else if (size <= 16)
{
classes[0] = classes[1] = X86_64_INTEGERSI_CLASS;
return 2;
}
else
FFI_ASSERT (0);
}
case FFI_TYPE_FLOAT:
if (!(byte_offset % 8))
classes[0] = X86_64_SSESF_CLASS;
else
classes[0] = X86_64_SSE_CLASS;
return 1;
case FFI_TYPE_DOUBLE:
classes[0] = X86_64_SSEDF_CLASS;
return 1;
case FFI_TYPE_LONGDOUBLE:
classes[0] = X86_64_X87_CLASS;
classes[1] = X86_64_X87UP_CLASS;
return 2;
case FFI_TYPE_STRUCT:
{
const int UNITS_PER_WORD = 8;
int words = (type->size + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
ffi_type **ptr;
int i;
enum x86_64_reg_class subclasses[MAX_CLASSES];
/* If the struct is larger than 32 bytes, pass it on the stack. */
if (type->size > 32)
return 0;
for (i = 0; i < words; i++)
classes[i] = X86_64_NO_CLASS;
/* Zero sized arrays or structures are NO_CLASS. We return 0 to
signalize memory class, so handle it as special case. */
if (!words)
{
classes[0] = X86_64_NO_CLASS;
return 1;
}
/* Merge the fields of structure. */
for (ptr = type->elements; *ptr != NULL; ptr++)
{
int num;
byte_offset = ALIGN (byte_offset, (*ptr)->alignment);
num = classify_argument (*ptr, subclasses, byte_offset % 8);
if (num == 0)
return 0;
for (i = 0; i < num; i++)
{
int pos = byte_offset / 8;
classes[i + pos] =
merge_classes (subclasses[i], classes[i + pos]);
}
byte_offset += (*ptr)->size;
}
if (words > 2)
{
/* When size > 16 bytes, if the first one isn't
X86_64_SSE_CLASS or any other ones aren't
X86_64_SSEUP_CLASS, everything should be passed in
memory. */
if (classes[0] != X86_64_SSE_CLASS)
return 0;
for (i = 1; i < words; i++)
if (classes[i] != X86_64_SSEUP_CLASS)
return 0;
}
/* Final merger cleanup. */
for (i = 0; i < words; i++)
{
/* If one class is MEMORY, everything should be passed in
memory. */
if (classes[i] == X86_64_MEMORY_CLASS)
return 0;
/* The X86_64_SSEUP_CLASS should be always preceded by
X86_64_SSE_CLASS or X86_64_SSEUP_CLASS. */
if (classes[i] == X86_64_SSEUP_CLASS
&& classes[i - 1] != X86_64_SSE_CLASS
&& classes[i - 1] != X86_64_SSEUP_CLASS)
{
/* The first one should never be X86_64_SSEUP_CLASS. */
FFI_ASSERT (i != 0);
classes[i] = X86_64_SSE_CLASS;
}
/* If X86_64_X87UP_CLASS isn't preceded by X86_64_X87_CLASS,
everything should be passed in memory. */
if (classes[i] == X86_64_X87UP_CLASS
&& (classes[i - 1] != X86_64_X87_CLASS))
{
/* The first one should never be X86_64_X87UP_CLASS. */
FFI_ASSERT (i != 0);
return 0;
}
}
return words;
}
default:
FFI_ASSERT(0);
}
return 0; /* Never reached. */
}
/* Examine the argument and return set number of register required in each
class. Return zero iff parameter should be passed in memory, otherwise
the number of registers. */
static int
examine_argument (ffi_type *type, enum x86_64_reg_class classes[MAX_CLASSES],
_Bool in_return, int *pngpr, int *pnsse)
{
int i, n, ngpr, nsse;
n = classify_argument (type, classes, 0);
if (n == 0)
return 0;
ngpr = nsse = 0;
for (i = 0; i < n; ++i)
switch (classes[i])
{
case X86_64_INTEGER_CLASS:
case X86_64_INTEGERSI_CLASS:
ngpr++;
break;
case X86_64_SSE_CLASS:
case X86_64_SSESF_CLASS:
case X86_64_SSEDF_CLASS:
nsse++;
break;
case X86_64_NO_CLASS:
case X86_64_SSEUP_CLASS:
break;
case X86_64_X87_CLASS:
case X86_64_X87UP_CLASS:
case X86_64_COMPLEX_X87_CLASS:
return in_return != 0;
default:
abort ();
}
*pngpr = ngpr;
*pnsse = nsse;
return n;
}
/* Perform machine dependent cif processing. */
ffi_status
ffi_prep_cif_machdep (ffi_cif *cif)
{
int gprcount, ssecount, i, avn, n, ngpr, nsse, flags;
enum x86_64_reg_class classes[MAX_CLASSES];
size_t bytes;
gprcount = ssecount = 0;
flags = cif->rtype->type;
if (flags != FFI_TYPE_VOID)
{
n = examine_argument (cif->rtype, classes, 1, &ngpr, &nsse);
if (n == 0)
{
/* The return value is passed in memory. A pointer to that
memory is the first argument. Allocate a register for it. */
gprcount++;
/* We don't have to do anything in asm for the return. */
flags = FFI_TYPE_VOID;
}
else if (flags == FFI_TYPE_STRUCT)
{
/* Mark which registers the result appears in. */
_Bool sse0 = SSE_CLASS_P (classes[0]);
_Bool sse1 = n == 2 && SSE_CLASS_P (classes[1]);
if (sse0 && !sse1)
flags |= 1 << 8;
else if (!sse0 && sse1)
flags |= 1 << 9;
else if (sse0 && sse1)
flags |= 1 << 10;
/* Mark the true size of the structure. */
flags |= cif->rtype->size << 12;
}
}
/* Go over all arguments and determine the way they should be passed.
If it's in a register and there is space for it, let that be so. If
not, add it's size to the stack byte count. */
for (bytes = 0, i = 0, avn = cif->nargs; i < avn; i++)
{
if (examine_argument (cif->arg_types[i], classes, 0, &ngpr, &nsse) == 0
|| gprcount + ngpr > MAX_GPR_REGS
|| ssecount + nsse > MAX_SSE_REGS)
{
long align = cif->arg_types[i]->alignment;
if (align < 8)
align = 8;
bytes = ALIGN (bytes, align);
bytes += cif->arg_types[i]->size;
}
else
{
gprcount += ngpr;
ssecount += nsse;
}
}
if (ssecount)
flags |= 1 << 11;
cif->flags = flags;
cif->bytes = ALIGN (bytes, 8);
return FFI_OK;
}
void
ffi_call (ffi_cif *cif, void (*fn)(void), void *rvalue, void **avalue)
{
enum x86_64_reg_class classes[MAX_CLASSES];
char *stack, *argp;
ffi_type **arg_types;
int gprcount, ssecount, ngpr, nsse, i, avn;
_Bool ret_in_memory;
struct register_args *reg_args;
/* Can't call 32-bit mode from 64-bit mode. */
FFI_ASSERT (cif->abi == FFI_UNIX64);
/* If the return value is a struct and we don't have a return value
address then we need to make one. Note the setting of flags to
VOID above in ffi_prep_cif_machdep. */
ret_in_memory = (cif->rtype->type == FFI_TYPE_STRUCT
&& (cif->flags & 0xff) == FFI_TYPE_VOID);
if (rvalue == NULL && ret_in_memory)
rvalue = alloca (cif->rtype->size);
/* Allocate the space for the arguments, plus 4 words of temp space. */
stack = alloca (sizeof (struct register_args) + cif->bytes + 4*8);
reg_args = (struct register_args *) stack;
argp = stack + sizeof (struct register_args);
gprcount = ssecount = 0;
/* If the return value is passed in memory, add the pointer as the
first integer argument. */
if (ret_in_memory)
reg_args->gpr[gprcount++] = (unsigned long) rvalue;
avn = cif->nargs;
arg_types = cif->arg_types;
for (i = 0; i < avn; ++i)
{
size_t size = arg_types[i]->size;
int n;
n = examine_argument (arg_types[i], classes, 0, &ngpr, &nsse);
if (n == 0
|| gprcount + ngpr > MAX_GPR_REGS
|| ssecount + nsse > MAX_SSE_REGS)
{
long align = arg_types[i]->alignment;
/* Stack arguments are *always* at least 8 byte aligned. */
if (align < 8)
align = 8;
/* Pass this argument in memory. */
argp = (void *) ALIGN (argp, align);
memcpy (argp, avalue[i], size);
argp += size;
}
else
{
/* The argument is passed entirely in registers. */
char *a = (char *) avalue[i];
int j;
for (j = 0; j < n; j++, a += 8, size -= 8)
{
switch (classes[j])
{
case X86_64_INTEGER_CLASS:
case X86_64_INTEGERSI_CLASS:
/* Sign-extend integer arguments passed in general
purpose registers, to cope with the fact that
LLVM incorrectly assumes that this will be done
(the x86-64 PS ABI does not specify this). */
switch (arg_types[i]->type)
{
case FFI_TYPE_SINT8:
*(SINT64 *)&reg_args->gpr[gprcount] = (SINT64) *((SINT8 *) a);
break;
case FFI_TYPE_SINT16:
*(SINT64 *)&reg_args->gpr[gprcount] = (SINT64) *((SINT16 *) a);
break;
case FFI_TYPE_SINT32:
*(SINT64 *)&reg_args->gpr[gprcount] = (SINT64) *((SINT32 *) a);
break;
default:
reg_args->gpr[gprcount] = 0;
memcpy (&reg_args->gpr[gprcount], a, size < 8 ? size : 8);
}
gprcount++;
break;
case X86_64_SSE_CLASS:
case X86_64_SSEDF_CLASS:
reg_args->sse[ssecount++].i64 = *(UINT64 *) a;
break;
case X86_64_SSESF_CLASS:
reg_args->sse[ssecount++].i32 = *(UINT32 *) a;
break;
default:
abort();
}
}
}
}
ffi_call_unix64 (stack, cif->bytes + sizeof (struct register_args),
cif->flags, rvalue, fn, ssecount);
}
extern void ffi_closure_unix64(void);
ffi_status
ffi_prep_closure_loc (ffi_closure* closure,
ffi_cif* cif,
void (*fun)(ffi_cif*, void*, void**, void*),
void *user_data,
void *codeloc)
{
volatile unsigned short *tramp;
/* Sanity check on the cif ABI. */
{
int abi = cif->abi;
if (UNLIKELY (! (abi > FFI_FIRST_ABI && abi < FFI_LAST_ABI)))
return FFI_BAD_ABI;
}
tramp = (volatile unsigned short *) &closure->tramp[0];
tramp[0] = 0xbb49; /* mov <code>, %r11 */
*((unsigned long long * volatile) &tramp[1])
= (unsigned long) ffi_closure_unix64;
tramp[5] = 0xba49; /* mov <data>, %r10 */
*((unsigned long long * volatile) &tramp[6])
= (unsigned long) codeloc;
/* Set the carry bit iff the function uses any sse registers.
This is clc or stc, together with the first byte of the jmp. */
tramp[10] = cif->flags & (1 << 11) ? 0x49f9 : 0x49f8;
tramp[11] = 0xe3ff; /* jmp *%r11 */
closure->cif = cif;
closure->fun = fun;
closure->user_data = user_data;
return FFI_OK;
}
int
ffi_closure_unix64_inner(ffi_closure *closure, void *rvalue,
struct register_args *reg_args, char *argp)
{
ffi_cif *cif;
void **avalue;
ffi_type **arg_types;
long i, avn;
int gprcount, ssecount, ngpr, nsse;
int ret;
cif = closure->cif;
avalue = alloca(cif->nargs * sizeof(void *));
gprcount = ssecount = 0;
ret = cif->rtype->type;
if (ret != FFI_TYPE_VOID)
{
enum x86_64_reg_class classes[MAX_CLASSES];
int n = examine_argument (cif->rtype, classes, 1, &ngpr, &nsse);
if (n == 0)
{
/* The return value goes in memory. Arrange for the closure
return value to go directly back to the original caller. */
rvalue = (void *) (unsigned long) reg_args->gpr[gprcount++];
/* We don't have to do anything in asm for the return. */
ret = FFI_TYPE_VOID;
}
else if (ret == FFI_TYPE_STRUCT && n == 2)
{
/* Mark which register the second word of the structure goes in. */
_Bool sse0 = SSE_CLASS_P (classes[0]);
_Bool sse1 = SSE_CLASS_P (classes[1]);
if (!sse0 && sse1)
ret |= 1 << 8;
else if (sse0 && !sse1)
ret |= 1 << 9;
}
}
avn = cif->nargs;
arg_types = cif->arg_types;
for (i = 0; i < avn; ++i)
{
enum x86_64_reg_class classes[MAX_CLASSES];
int n;
n = examine_argument (arg_types[i], classes, 0, &ngpr, &nsse);
if (n == 0
|| gprcount + ngpr > MAX_GPR_REGS
|| ssecount + nsse > MAX_SSE_REGS)
{
long align = arg_types[i]->alignment;
/* Stack arguments are *always* at least 8 byte aligned. */
if (align < 8)
align = 8;
/* Pass this argument in memory. */
argp = (void *) ALIGN (argp, align);
avalue[i] = argp;
argp += arg_types[i]->size;
}
/* If the argument is in a single register, or two consecutive
integer registers, then we can use that address directly. */
else if (n == 1
|| (n == 2 && !(SSE_CLASS_P (classes[0])
|| SSE_CLASS_P (classes[1]))))
{
/* The argument is in a single register. */
if (SSE_CLASS_P (classes[0]))
{
avalue[i] = &reg_args->sse[ssecount];
ssecount += n;
}
else
{
avalue[i] = &reg_args->gpr[gprcount];
gprcount += n;
}
}
/* Otherwise, allocate space to make them consecutive. */
else
{
char *a = alloca (16);
int j;
avalue[i] = a;
for (j = 0; j < n; j++, a += 8)
{
if (SSE_CLASS_P (classes[j]))
memcpy (a, &reg_args->sse[ssecount++], 8);
else
memcpy (a, &reg_args->gpr[gprcount++], 8);
}
}
}
/* Invoke the closure. */
closure->fun (cif, rvalue, avalue, closure->user_data);
/* Tell assembly how to perform return type promotions. */
return ret;
}
#endif /* __x86_64__ */
#endif

View file

@ -0,0 +1,463 @@
#if !defined(__arm__) && defined(__i386__)
/* -----------------------------------------------------------------------
freebsd.S - Copyright (c) 1996, 1998, 2001, 2002, 2003, 2005 Red Hat, Inc.
Copyright (c) 2008 Björn König
X86 Foreign Function Interface for FreeBSD
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
----------------------------------------------------------------------- */
#ifndef __x86_64__
#define LIBFFI_ASM
#include <fficonfig.h>
#include <ffi.h>
.text
.globl ffi_prep_args
.align 4
.globl ffi_call_SYSV
.type ffi_call_SYSV,@function
ffi_call_SYSV:
.LFB1:
pushl %ebp
.LCFI0:
movl %esp,%ebp
.LCFI1:
/* Make room for all of the new args. */
movl 16(%ebp),%ecx
subl %ecx,%esp
movl %esp,%eax
/* Place all of the ffi_prep_args in position */
pushl 12(%ebp)
pushl %eax
call *8(%ebp)
/* Return stack to previous state and call the function */
addl $8,%esp
call *28(%ebp)
/* Load %ecx with the return type code */
movl 20(%ebp),%ecx
/* Protect %esi. We're going to pop it in the epilogue. */
pushl %esi
/* If the return value pointer is NULL, assume no return value. */
cmpl $0,24(%ebp)
jne 0f
/* Even if there is no space for the return value, we are
obliged to handle floating-point values. */
cmpl $FFI_TYPE_FLOAT,%ecx
jne noretval
fstp %st(0)
jmp epilogue
0:
call 1f
.Lstore_table:
.long noretval-.Lstore_table /* FFI_TYPE_VOID */
.long retint-.Lstore_table /* FFI_TYPE_INT */
.long retfloat-.Lstore_table /* FFI_TYPE_FLOAT */
.long retdouble-.Lstore_table /* FFI_TYPE_DOUBLE */
.long retlongdouble-.Lstore_table /* FFI_TYPE_LONGDOUBLE */
.long retuint8-.Lstore_table /* FFI_TYPE_UINT8 */
.long retsint8-.Lstore_table /* FFI_TYPE_SINT8 */
.long retuint16-.Lstore_table /* FFI_TYPE_UINT16 */
.long retsint16-.Lstore_table /* FFI_TYPE_SINT16 */
.long retint-.Lstore_table /* FFI_TYPE_UINT32 */
.long retint-.Lstore_table /* FFI_TYPE_SINT32 */
.long retint64-.Lstore_table /* FFI_TYPE_UINT64 */
.long retint64-.Lstore_table /* FFI_TYPE_SINT64 */
.long retstruct-.Lstore_table /* FFI_TYPE_STRUCT */
.long retint-.Lstore_table /* FFI_TYPE_POINTER */
.long retstruct1b-.Lstore_table /* FFI_TYPE_SMALL_STRUCT_1B */
.long retstruct2b-.Lstore_table /* FFI_TYPE_SMALL_STRUCT_2B */
1:
pop %esi
add (%esi, %ecx, 4), %esi
jmp *%esi
/* Sign/zero extend as appropriate. */
retsint8:
movsbl %al, %eax
jmp retint
retsint16:
movswl %ax, %eax
jmp retint
retuint8:
movzbl %al, %eax
jmp retint
retuint16:
movzwl %ax, %eax
jmp retint
retfloat:
/* Load %ecx with the pointer to storage for the return value */
movl 24(%ebp),%ecx
fstps (%ecx)
jmp epilogue
retdouble:
/* Load %ecx with the pointer to storage for the return value */
movl 24(%ebp),%ecx
fstpl (%ecx)
jmp epilogue
retlongdouble:
/* Load %ecx with the pointer to storage for the return value */
movl 24(%ebp),%ecx
fstpt (%ecx)
jmp epilogue
retint64:
/* Load %ecx with the pointer to storage for the return value */
movl 24(%ebp),%ecx
movl %eax,0(%ecx)
movl %edx,4(%ecx)
jmp epilogue
retstruct1b:
/* Load %ecx with the pointer to storage for the return value */
movl 24(%ebp),%ecx
movb %al,0(%ecx)
jmp epilogue
retstruct2b:
/* Load %ecx with the pointer to storage for the return value */
movl 24(%ebp),%ecx
movw %ax,0(%ecx)
jmp epilogue
retint:
/* Load %ecx with the pointer to storage for the return value */
movl 24(%ebp),%ecx
movl %eax,0(%ecx)
retstruct:
/* Nothing to do! */
noretval:
epilogue:
popl %esi
movl %ebp,%esp
popl %ebp
ret
.LFE1:
.ffi_call_SYSV_end:
.size ffi_call_SYSV,.ffi_call_SYSV_end-ffi_call_SYSV
.align 4
FFI_HIDDEN (ffi_closure_SYSV)
.globl ffi_closure_SYSV
.type ffi_closure_SYSV, @function
ffi_closure_SYSV:
.LFB2:
pushl %ebp
.LCFI2:
movl %esp, %ebp
.LCFI3:
subl $40, %esp
leal -24(%ebp), %edx
movl %edx, -12(%ebp) /* resp */
leal 8(%ebp), %edx
movl %edx, 4(%esp) /* args = __builtin_dwarf_cfa () */
leal -12(%ebp), %edx
movl %edx, (%esp) /* &resp */
#if defined HAVE_HIDDEN_VISIBILITY_ATTRIBUTE || !defined __PIC__
call ffi_closure_SYSV_inner
#else
movl %ebx, 8(%esp)
.LCFI7:
call 1f
1: popl %ebx
addl $_GLOBAL_OFFSET_TABLE_+[.-1b], %ebx
call ffi_closure_SYSV_inner@PLT
movl 8(%esp), %ebx
#endif
movl -12(%ebp), %ecx
cmpl $FFI_TYPE_INT, %eax
je .Lcls_retint
/* Handle FFI_TYPE_UINT8, FFI_TYPE_SINT8, FFI_TYPE_UINT16,
FFI_TYPE_SINT16, FFI_TYPE_UINT32, FFI_TYPE_SINT32. */
cmpl $FFI_TYPE_UINT64, %eax
jge 0f
cmpl $FFI_TYPE_UINT8, %eax
jge .Lcls_retint
0: cmpl $FFI_TYPE_FLOAT, %eax
je .Lcls_retfloat
cmpl $FFI_TYPE_DOUBLE, %eax
je .Lcls_retdouble
cmpl $FFI_TYPE_LONGDOUBLE, %eax
je .Lcls_retldouble
cmpl $FFI_TYPE_SINT64, %eax
je .Lcls_retllong
cmpl $FFI_TYPE_SMALL_STRUCT_1B, %eax
je .Lcls_retstruct1b
cmpl $FFI_TYPE_SMALL_STRUCT_2B, %eax
je .Lcls_retstruct2b
cmpl $FFI_TYPE_STRUCT, %eax
je .Lcls_retstruct
.Lcls_epilogue:
movl %ebp, %esp
popl %ebp
ret
.Lcls_retint:
movl (%ecx), %eax
jmp .Lcls_epilogue
.Lcls_retfloat:
flds (%ecx)
jmp .Lcls_epilogue
.Lcls_retdouble:
fldl (%ecx)
jmp .Lcls_epilogue
.Lcls_retldouble:
fldt (%ecx)
jmp .Lcls_epilogue
.Lcls_retllong:
movl (%ecx), %eax
movl 4(%ecx), %edx
jmp .Lcls_epilogue
.Lcls_retstruct1b:
movsbl (%ecx), %eax
jmp .Lcls_epilogue
.Lcls_retstruct2b:
movswl (%ecx), %eax
jmp .Lcls_epilogue
.Lcls_retstruct:
movl %ebp, %esp
popl %ebp
ret $4
.LFE2:
.size ffi_closure_SYSV, .-ffi_closure_SYSV
#if !FFI_NO_RAW_API
#define RAW_CLOSURE_CIF_OFFSET ((FFI_TRAMPOLINE_SIZE + 3) & ~3)
#define RAW_CLOSURE_FUN_OFFSET (RAW_CLOSURE_CIF_OFFSET + 4)
#define RAW_CLOSURE_USER_DATA_OFFSET (RAW_CLOSURE_FUN_OFFSET + 4)
#define CIF_FLAGS_OFFSET 20
.align 4
FFI_HIDDEN (ffi_closure_raw_SYSV)
.globl ffi_closure_raw_SYSV
.type ffi_closure_raw_SYSV, @function
ffi_closure_raw_SYSV:
.LFB3:
pushl %ebp
.LCFI4:
movl %esp, %ebp
.LCFI5:
pushl %esi
.LCFI6:
subl $36, %esp
movl RAW_CLOSURE_CIF_OFFSET(%eax), %esi /* closure->cif */
movl RAW_CLOSURE_USER_DATA_OFFSET(%eax), %edx /* closure->user_data */
movl %edx, 12(%esp) /* user_data */
leal 8(%ebp), %edx /* __builtin_dwarf_cfa () */
movl %edx, 8(%esp) /* raw_args */
leal -24(%ebp), %edx
movl %edx, 4(%esp) /* &res */
movl %esi, (%esp) /* cif */
call *RAW_CLOSURE_FUN_OFFSET(%eax) /* closure->fun */
movl CIF_FLAGS_OFFSET(%esi), %eax /* rtype */
cmpl $FFI_TYPE_INT, %eax
je .Lrcls_retint
/* Handle FFI_TYPE_UINT8, FFI_TYPE_SINT8, FFI_TYPE_UINT16,
FFI_TYPE_SINT16, FFI_TYPE_UINT32, FFI_TYPE_SINT32. */
cmpl $FFI_TYPE_UINT64, %eax
jge 0f
cmpl $FFI_TYPE_UINT8, %eax
jge .Lrcls_retint
0:
cmpl $FFI_TYPE_FLOAT, %eax
je .Lrcls_retfloat
cmpl $FFI_TYPE_DOUBLE, %eax
je .Lrcls_retdouble
cmpl $FFI_TYPE_LONGDOUBLE, %eax
je .Lrcls_retldouble
cmpl $FFI_TYPE_SINT64, %eax
je .Lrcls_retllong
.Lrcls_epilogue:
addl $36, %esp
popl %esi
popl %ebp
ret
.Lrcls_retint:
movl -24(%ebp), %eax
jmp .Lrcls_epilogue
.Lrcls_retfloat:
flds -24(%ebp)
jmp .Lrcls_epilogue
.Lrcls_retdouble:
fldl -24(%ebp)
jmp .Lrcls_epilogue
.Lrcls_retldouble:
fldt -24(%ebp)
jmp .Lrcls_epilogue
.Lrcls_retllong:
movl -24(%ebp), %eax
movl -20(%ebp), %edx
jmp .Lrcls_epilogue
.LFE3:
.size ffi_closure_raw_SYSV, .-ffi_closure_raw_SYSV
#endif
.section .eh_frame,EH_FRAME_FLAGS,@progbits
.Lframe1:
.long .LECIE1-.LSCIE1 /* Length of Common Information Entry */
.LSCIE1:
.long 0x0 /* CIE Identifier Tag */
.byte 0x1 /* CIE Version */
#ifdef __PIC__
.ascii "zR\0" /* CIE Augmentation */
#else
.ascii "\0" /* CIE Augmentation */
#endif
.byte 0x1 /* .uleb128 0x1; CIE Code Alignment Factor */
.byte 0x7c /* .sleb128 -4; CIE Data Alignment Factor */
.byte 0x8 /* CIE RA Column */
#ifdef __PIC__
.byte 0x1 /* .uleb128 0x1; Augmentation size */
.byte 0x1b /* FDE Encoding (pcrel sdata4) */
#endif
.byte 0xc /* DW_CFA_def_cfa */
.byte 0x4 /* .uleb128 0x4 */
.byte 0x4 /* .uleb128 0x4 */
.byte 0x88 /* DW_CFA_offset, column 0x8 */
.byte 0x1 /* .uleb128 0x1 */
.align 4
.LECIE1:
.LSFDE1:
.long .LEFDE1-.LASFDE1 /* FDE Length */
.LASFDE1:
.long .LASFDE1-.Lframe1 /* FDE CIE offset */
#ifdef __PIC__
.long .LFB1-. /* FDE initial location */
#else
.long .LFB1 /* FDE initial location */
#endif
.long .LFE1-.LFB1 /* FDE address range */
#ifdef __PIC__
.byte 0x0 /* .uleb128 0x0; Augmentation size */
#endif
.byte 0x4 /* DW_CFA_advance_loc4 */
.long .LCFI0-.LFB1
.byte 0xe /* DW_CFA_def_cfa_offset */
.byte 0x8 /* .uleb128 0x8 */
.byte 0x85 /* DW_CFA_offset, column 0x5 */
.byte 0x2 /* .uleb128 0x2 */
.byte 0x4 /* DW_CFA_advance_loc4 */
.long .LCFI1-.LCFI0
.byte 0xd /* DW_CFA_def_cfa_register */
.byte 0x5 /* .uleb128 0x5 */
.align 4
.LEFDE1:
.LSFDE2:
.long .LEFDE2-.LASFDE2 /* FDE Length */
.LASFDE2:
.long .LASFDE2-.Lframe1 /* FDE CIE offset */
#ifdef __PIC__
.long .LFB2-. /* FDE initial location */
#else
.long .LFB2
#endif
.long .LFE2-.LFB2 /* FDE address range */
#ifdef __PIC__
.byte 0x0 /* .uleb128 0x0; Augmentation size */
#endif
.byte 0x4 /* DW_CFA_advance_loc4 */
.long .LCFI2-.LFB2
.byte 0xe /* DW_CFA_def_cfa_offset */
.byte 0x8 /* .uleb128 0x8 */
.byte 0x85 /* DW_CFA_offset, column 0x5 */
.byte 0x2 /* .uleb128 0x2 */
.byte 0x4 /* DW_CFA_advance_loc4 */
.long .LCFI3-.LCFI2
.byte 0xd /* DW_CFA_def_cfa_register */
.byte 0x5 /* .uleb128 0x5 */
#if !defined HAVE_HIDDEN_VISIBILITY_ATTRIBUTE && defined __PIC__
.byte 0x4 /* DW_CFA_advance_loc4 */
.long .LCFI7-.LCFI3
.byte 0x83 /* DW_CFA_offset, column 0x3 */
.byte 0xa /* .uleb128 0xa */
#endif
.align 4
.LEFDE2:
#if !FFI_NO_RAW_API
.LSFDE3:
.long .LEFDE3-.LASFDE3 /* FDE Length */
.LASFDE3:
.long .LASFDE3-.Lframe1 /* FDE CIE offset */
#ifdef __PIC__
.long .LFB3-. /* FDE initial location */
#else
.long .LFB3
#endif
.long .LFE3-.LFB3 /* FDE address range */
#ifdef __PIC__
.byte 0x0 /* .uleb128 0x0; Augmentation size */
#endif
.byte 0x4 /* DW_CFA_advance_loc4 */
.long .LCFI4-.LFB3
.byte 0xe /* DW_CFA_def_cfa_offset */
.byte 0x8 /* .uleb128 0x8 */
.byte 0x85 /* DW_CFA_offset, column 0x5 */
.byte 0x2 /* .uleb128 0x2 */
.byte 0x4 /* DW_CFA_advance_loc4 */
.long .LCFI5-.LCFI4
.byte 0xd /* DW_CFA_def_cfa_register */
.byte 0x5 /* .uleb128 0x5 */
.byte 0x4 /* DW_CFA_advance_loc4 */
.long .LCFI6-.LCFI5
.byte 0x86 /* DW_CFA_offset, column 0x6 */
.byte 0x3 /* .uleb128 0x3 */
.align 4
.LEFDE3:
#endif
#endif /* ifndef __x86_64__ */
#endif

View file

@ -0,0 +1,488 @@
#if !defined(__arm__) && defined(__i386__)
/* -----------------------------------------------------------------------
sysv.S - Copyright (c) 2013 The Written Word, Inc.
- Copyright (c) 1996,1998,2001-2003,2005,2008,2010 Red Hat, Inc.
X86 Foreign Function Interface
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
----------------------------------------------------------------------- */
#ifndef __x86_64__
#define LIBFFI_ASM
#include <fficonfig.h>
#include <ffi.h>
.text
.globl ffi_prep_args
.align 4
.globl ffi_call_SYSV
.type ffi_call_SYSV,@function
ffi_call_SYSV:
.LFB1:
pushl %ebp
.LCFI0:
movl %esp,%ebp
.LCFI1:
/* Make room for all of the new args. */
movl 16(%ebp),%ecx
subl %ecx,%esp
/* Align the stack pointer to 16-bytes */
andl $0xfffffff0, %esp
movl %esp,%eax
/* Place all of the ffi_prep_args in position */
pushl 12(%ebp)
pushl %eax
call *8(%ebp)
/* Return stack to previous state and call the function */
addl $8,%esp
call *28(%ebp)
/* Load %ecx with the return type code */
movl 20(%ebp),%ecx
/* Protect %esi. We're going to pop it in the epilogue. */
pushl %esi
/* If the return value pointer is NULL, assume no return value. */
cmpl $0,24(%ebp)
jne 0f
/* Even if there is no space for the return value, we are
obliged to handle floating-point values. */
cmpl $FFI_TYPE_FLOAT,%ecx
jne noretval
fstp %st(0)
jmp epilogue
0:
call 1f
.Lstore_table:
.long noretval-.Lstore_table /* FFI_TYPE_VOID */
.long retint-.Lstore_table /* FFI_TYPE_INT */
.long retfloat-.Lstore_table /* FFI_TYPE_FLOAT */
.long retdouble-.Lstore_table /* FFI_TYPE_DOUBLE */
.long retlongdouble-.Lstore_table /* FFI_TYPE_LONGDOUBLE */
.long retuint8-.Lstore_table /* FFI_TYPE_UINT8 */
.long retsint8-.Lstore_table /* FFI_TYPE_SINT8 */
.long retuint16-.Lstore_table /* FFI_TYPE_UINT16 */
.long retsint16-.Lstore_table /* FFI_TYPE_SINT16 */
.long retint-.Lstore_table /* FFI_TYPE_UINT32 */
.long retint-.Lstore_table /* FFI_TYPE_SINT32 */
.long retint64-.Lstore_table /* FFI_TYPE_UINT64 */
.long retint64-.Lstore_table /* FFI_TYPE_SINT64 */
.long retstruct-.Lstore_table /* FFI_TYPE_STRUCT */
.long retint-.Lstore_table /* FFI_TYPE_POINTER */
1:
pop %esi
add (%esi, %ecx, 4), %esi
jmp *%esi
/* Sign/zero extend as appropriate. */
retsint8:
movsbl %al, %eax
jmp retint
retsint16:
movswl %ax, %eax
jmp retint
retuint8:
movzbl %al, %eax
jmp retint
retuint16:
movzwl %ax, %eax
jmp retint
retfloat:
/* Load %ecx with the pointer to storage for the return value */
movl 24(%ebp),%ecx
fstps (%ecx)
jmp epilogue
retdouble:
/* Load %ecx with the pointer to storage for the return value */
movl 24(%ebp),%ecx
fstpl (%ecx)
jmp epilogue
retlongdouble:
/* Load %ecx with the pointer to storage for the return value */
movl 24(%ebp),%ecx
fstpt (%ecx)
jmp epilogue
retint64:
/* Load %ecx with the pointer to storage for the return value */
movl 24(%ebp),%ecx
movl %eax,0(%ecx)
movl %edx,4(%ecx)
jmp epilogue
retint:
/* Load %ecx with the pointer to storage for the return value */
movl 24(%ebp),%ecx
movl %eax,0(%ecx)
retstruct:
/* Nothing to do! */
noretval:
epilogue:
popl %esi
movl %ebp,%esp
popl %ebp
ret
.LFE1:
.ffi_call_SYSV_end:
.size ffi_call_SYSV,.ffi_call_SYSV_end-ffi_call_SYSV
.align 4
FFI_HIDDEN (ffi_closure_SYSV)
.globl ffi_closure_SYSV
.type ffi_closure_SYSV, @function
ffi_closure_SYSV:
.LFB2:
pushl %ebp
.LCFI2:
movl %esp, %ebp
.LCFI3:
subl $40, %esp
leal -24(%ebp), %edx
movl %edx, -12(%ebp) /* resp */
leal 8(%ebp), %edx
#ifdef __SUNPRO_C
/* The SUNPRO compiler doesn't support GCC's regparm function
attribute, so we have to pass all three arguments to
ffi_closure_SYSV_inner on the stack. */
movl %edx, 8(%esp) /* args = __builtin_dwarf_cfa () */
leal -12(%ebp), %edx
movl %edx, 4(%esp) /* &resp */
movl %eax, (%esp) /* closure */
#else
movl %edx, 4(%esp) /* args = __builtin_dwarf_cfa () */
leal -12(%ebp), %edx
movl %edx, (%esp) /* &resp */
#endif
#if defined HAVE_HIDDEN_VISIBILITY_ATTRIBUTE || !defined __PIC__
call ffi_closure_SYSV_inner
#else
movl %ebx, 8(%esp)
.LCFI7:
call 1f
1: popl %ebx
addl $_GLOBAL_OFFSET_TABLE_+[.-1b], %ebx
call ffi_closure_SYSV_inner@PLT
movl 8(%esp), %ebx
#endif
movl -12(%ebp), %ecx
cmpl $FFI_TYPE_INT, %eax
je .Lcls_retint
/* Handle FFI_TYPE_UINT8, FFI_TYPE_SINT8, FFI_TYPE_UINT16,
FFI_TYPE_SINT16, FFI_TYPE_UINT32, FFI_TYPE_SINT32. */
cmpl $FFI_TYPE_UINT64, %eax
jge 0f
cmpl $FFI_TYPE_UINT8, %eax
jge .Lcls_retint
0: cmpl $FFI_TYPE_FLOAT, %eax
je .Lcls_retfloat
cmpl $FFI_TYPE_DOUBLE, %eax
je .Lcls_retdouble
cmpl $FFI_TYPE_LONGDOUBLE, %eax
je .Lcls_retldouble
cmpl $FFI_TYPE_SINT64, %eax
je .Lcls_retllong
cmpl $FFI_TYPE_STRUCT, %eax
je .Lcls_retstruct
.Lcls_epilogue:
movl %ebp, %esp
popl %ebp
ret
.Lcls_retint:
movl (%ecx), %eax
jmp .Lcls_epilogue
.Lcls_retfloat:
flds (%ecx)
jmp .Lcls_epilogue
.Lcls_retdouble:
fldl (%ecx)
jmp .Lcls_epilogue
.Lcls_retldouble:
fldt (%ecx)
jmp .Lcls_epilogue
.Lcls_retllong:
movl (%ecx), %eax
movl 4(%ecx), %edx
jmp .Lcls_epilogue
.Lcls_retstruct:
movl %ebp, %esp
popl %ebp
ret $4
.LFE2:
.size ffi_closure_SYSV, .-ffi_closure_SYSV
#if !FFI_NO_RAW_API
/* Precalculate for e.g. the Solaris 10/x86 assembler. */
#if FFI_TRAMPOLINE_SIZE == 10
#define RAW_CLOSURE_CIF_OFFSET 12
#define RAW_CLOSURE_FUN_OFFSET 16
#define RAW_CLOSURE_USER_DATA_OFFSET 20
#elif FFI_TRAMPOLINE_SIZE == 24
#define RAW_CLOSURE_CIF_OFFSET 24
#define RAW_CLOSURE_FUN_OFFSET 28
#define RAW_CLOSURE_USER_DATA_OFFSET 32
#else
#define RAW_CLOSURE_CIF_OFFSET ((FFI_TRAMPOLINE_SIZE + 3) & ~3)
#define RAW_CLOSURE_FUN_OFFSET (RAW_CLOSURE_CIF_OFFSET + 4)
#define RAW_CLOSURE_USER_DATA_OFFSET (RAW_CLOSURE_FUN_OFFSET + 4)
#endif
#define CIF_FLAGS_OFFSET 20
.align 4
FFI_HIDDEN (ffi_closure_raw_SYSV)
.globl ffi_closure_raw_SYSV
.type ffi_closure_raw_SYSV, @function
ffi_closure_raw_SYSV:
.LFB3:
pushl %ebp
.LCFI4:
movl %esp, %ebp
.LCFI5:
pushl %esi
.LCFI6:
subl $36, %esp
movl RAW_CLOSURE_CIF_OFFSET(%eax), %esi /* closure->cif */
movl RAW_CLOSURE_USER_DATA_OFFSET(%eax), %edx /* closure->user_data */
movl %edx, 12(%esp) /* user_data */
leal 8(%ebp), %edx /* __builtin_dwarf_cfa () */
movl %edx, 8(%esp) /* raw_args */
leal -24(%ebp), %edx
movl %edx, 4(%esp) /* &res */
movl %esi, (%esp) /* cif */
call *RAW_CLOSURE_FUN_OFFSET(%eax) /* closure->fun */
movl CIF_FLAGS_OFFSET(%esi), %eax /* rtype */
cmpl $FFI_TYPE_INT, %eax
je .Lrcls_retint
/* Handle FFI_TYPE_UINT8, FFI_TYPE_SINT8, FFI_TYPE_UINT16,
FFI_TYPE_SINT16, FFI_TYPE_UINT32, FFI_TYPE_SINT32. */
cmpl $FFI_TYPE_UINT64, %eax
jge 0f
cmpl $FFI_TYPE_UINT8, %eax
jge .Lrcls_retint
0:
cmpl $FFI_TYPE_FLOAT, %eax
je .Lrcls_retfloat
cmpl $FFI_TYPE_DOUBLE, %eax
je .Lrcls_retdouble
cmpl $FFI_TYPE_LONGDOUBLE, %eax
je .Lrcls_retldouble
cmpl $FFI_TYPE_SINT64, %eax
je .Lrcls_retllong
.Lrcls_epilogue:
addl $36, %esp
popl %esi
popl %ebp
ret
.Lrcls_retint:
movl -24(%ebp), %eax
jmp .Lrcls_epilogue
.Lrcls_retfloat:
flds -24(%ebp)
jmp .Lrcls_epilogue
.Lrcls_retdouble:
fldl -24(%ebp)
jmp .Lrcls_epilogue
.Lrcls_retldouble:
fldt -24(%ebp)
jmp .Lrcls_epilogue
.Lrcls_retllong:
movl -24(%ebp), %eax
movl -20(%ebp), %edx
jmp .Lrcls_epilogue
.LFE3:
.size ffi_closure_raw_SYSV, .-ffi_closure_raw_SYSV
#endif
#if defined __GNUC__
/* Only emit dwarf unwind info when building with GNU toolchain. */
#if defined __PIC__
# if defined __sun__ && defined __svr4__
/* 32-bit Solaris 2/x86 uses datarel encoding for PIC. GNU ld before 2.22
doesn't correctly sort .eh_frame_hdr with mixed encodings, so match this. */
# define FDE_ENCODING 0x30 /* datarel */
# define FDE_ENCODE(X) X@GOTOFF
# else
# define FDE_ENCODING 0x1b /* pcrel sdata4 */
# if defined HAVE_AS_X86_PCREL
# define FDE_ENCODE(X) X-.
# else
# define FDE_ENCODE(X) X@rel
# endif
# endif
#else
# define FDE_ENCODING 0 /* absolute */
# define FDE_ENCODE(X) X
#endif
.section .eh_frame,EH_FRAME_FLAGS,@progbits
.Lframe1:
.long .LECIE1-.LSCIE1 /* Length of Common Information Entry */
.LSCIE1:
.long 0x0 /* CIE Identifier Tag */
.byte 0x1 /* CIE Version */
#ifdef HAVE_AS_ASCII_PSEUDO_OP
#ifdef __PIC__
.ascii "zR\0" /* CIE Augmentation */
#else
.ascii "\0" /* CIE Augmentation */
#endif
#elif defined HAVE_AS_STRING_PSEUDO_OP
#ifdef __PIC__
.string "zR" /* CIE Augmentation */
#else
.string "" /* CIE Augmentation */
#endif
#else
#error missing .ascii/.string
#endif
.byte 0x1 /* .uleb128 0x1; CIE Code Alignment Factor */
.byte 0x7c /* .sleb128 -4; CIE Data Alignment Factor */
.byte 0x8 /* CIE RA Column */
#ifdef __PIC__
.byte 0x1 /* .uleb128 0x1; Augmentation size */
.byte FDE_ENCODING
#endif
.byte 0xc /* DW_CFA_def_cfa */
.byte 0x4 /* .uleb128 0x4 */
.byte 0x4 /* .uleb128 0x4 */
.byte 0x88 /* DW_CFA_offset, column 0x8 */
.byte 0x1 /* .uleb128 0x1 */
.align 4
.LECIE1:
.LSFDE1:
.long .LEFDE1-.LASFDE1 /* FDE Length */
.LASFDE1:
.long .LASFDE1-.Lframe1 /* FDE CIE offset */
.long FDE_ENCODE(.LFB1) /* FDE initial location */
.long .LFE1-.LFB1 /* FDE address range */
#ifdef __PIC__
.byte 0x0 /* .uleb128 0x0; Augmentation size */
#endif
.byte 0x4 /* DW_CFA_advance_loc4 */
.long .LCFI0-.LFB1
.byte 0xe /* DW_CFA_def_cfa_offset */
.byte 0x8 /* .uleb128 0x8 */
.byte 0x85 /* DW_CFA_offset, column 0x5 */
.byte 0x2 /* .uleb128 0x2 */
.byte 0x4 /* DW_CFA_advance_loc4 */
.long .LCFI1-.LCFI0
.byte 0xd /* DW_CFA_def_cfa_register */
.byte 0x5 /* .uleb128 0x5 */
.align 4
.LEFDE1:
.LSFDE2:
.long .LEFDE2-.LASFDE2 /* FDE Length */
.LASFDE2:
.long .LASFDE2-.Lframe1 /* FDE CIE offset */
.long FDE_ENCODE(.LFB2) /* FDE initial location */
.long .LFE2-.LFB2 /* FDE address range */
#ifdef __PIC__
.byte 0x0 /* .uleb128 0x0; Augmentation size */
#endif
.byte 0x4 /* DW_CFA_advance_loc4 */
.long .LCFI2-.LFB2
.byte 0xe /* DW_CFA_def_cfa_offset */
.byte 0x8 /* .uleb128 0x8 */
.byte 0x85 /* DW_CFA_offset, column 0x5 */
.byte 0x2 /* .uleb128 0x2 */
.byte 0x4 /* DW_CFA_advance_loc4 */
.long .LCFI3-.LCFI2
.byte 0xd /* DW_CFA_def_cfa_register */
.byte 0x5 /* .uleb128 0x5 */
#if !defined HAVE_HIDDEN_VISIBILITY_ATTRIBUTE && defined __PIC__
.byte 0x4 /* DW_CFA_advance_loc4 */
.long .LCFI7-.LCFI3
.byte 0x83 /* DW_CFA_offset, column 0x3 */
.byte 0xa /* .uleb128 0xa */
#endif
.align 4
.LEFDE2:
#if !FFI_NO_RAW_API
.LSFDE3:
.long .LEFDE3-.LASFDE3 /* FDE Length */
.LASFDE3:
.long .LASFDE3-.Lframe1 /* FDE CIE offset */
.long FDE_ENCODE(.LFB3) /* FDE initial location */
.long .LFE3-.LFB3 /* FDE address range */
#ifdef __PIC__
.byte 0x0 /* .uleb128 0x0; Augmentation size */
#endif
.byte 0x4 /* DW_CFA_advance_loc4 */
.long .LCFI4-.LFB3
.byte 0xe /* DW_CFA_def_cfa_offset */
.byte 0x8 /* .uleb128 0x8 */
.byte 0x85 /* DW_CFA_offset, column 0x5 */
.byte 0x2 /* .uleb128 0x2 */
.byte 0x4 /* DW_CFA_advance_loc4 */
.long .LCFI5-.LCFI4
.byte 0xd /* DW_CFA_def_cfa_register */
.byte 0x5 /* .uleb128 0x5 */
.byte 0x4 /* DW_CFA_advance_loc4 */
.long .LCFI6-.LCFI5
.byte 0x86 /* DW_CFA_offset, column 0x6 */
.byte 0x3 /* .uleb128 0x3 */
.align 4
.LEFDE3:
#endif
#endif
#endif /* ifndef __x86_64__ */
#if defined __ELF__ && defined __linux__
.section .note.GNU-stack,"",@progbits
#endif
#endif

View file

@ -0,0 +1,437 @@
#if !defined(__arm__) && defined(__i386__)
/* -----------------------------------------------------------------------
unix64.S - Copyright (c) 2013 The Written Word, Inc.
- Copyright (c) 2008 Red Hat, Inc
- Copyright (c) 2002 Bo Thorsen <bo@suse.de>
x86-64 Foreign Function Interface
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
----------------------------------------------------------------------- */
#ifdef __x86_64__
#define LIBFFI_ASM
#include <fficonfig.h>
#include <ffi.h>
.text
/* ffi_call_unix64 (void *args, unsigned long bytes, unsigned flags,
void *raddr, void (*fnaddr)(void));
Bit o trickiness here -- ARGS+BYTES is the base of the stack frame
for this function. This has been allocated by ffi_call. We also
deallocate some of the stack that has been alloca'd. */
.align 2
.globl ffi_call_unix64
.type ffi_call_unix64,@function
ffi_call_unix64:
.LUW0:
movq (%rsp), %r10 /* Load return address. */
leaq (%rdi, %rsi), %rax /* Find local stack base. */
movq %rdx, (%rax) /* Save flags. */
movq %rcx, 8(%rax) /* Save raddr. */
movq %rbp, 16(%rax) /* Save old frame pointer. */
movq %r10, 24(%rax) /* Relocate return address. */
movq %rax, %rbp /* Finalize local stack frame. */
.LUW1:
movq %rdi, %r10 /* Save a copy of the register area. */
movq %r8, %r11 /* Save a copy of the target fn. */
movl %r9d, %eax /* Set number of SSE registers. */
/* Load up all argument registers. */
movq (%r10), %rdi
movq 8(%r10), %rsi
movq 16(%r10), %rdx
movq 24(%r10), %rcx
movq 32(%r10), %r8
movq 40(%r10), %r9
testl %eax, %eax
jnz .Lload_sse
.Lret_from_load_sse:
/* Deallocate the reg arg area. */
leaq 176(%r10), %rsp
/* Call the user function. */
call *%r11
/* Deallocate stack arg area; local stack frame in redzone. */
leaq 24(%rbp), %rsp
movq 0(%rbp), %rcx /* Reload flags. */
movq 8(%rbp), %rdi /* Reload raddr. */
movq 16(%rbp), %rbp /* Reload old frame pointer. */
.LUW2:
/* The first byte of the flags contains the FFI_TYPE. */
movzbl %cl, %r10d
leaq .Lstore_table(%rip), %r11
movslq (%r11, %r10, 4), %r10
addq %r11, %r10
jmp *%r10
.Lstore_table:
.long .Lst_void-.Lstore_table /* FFI_TYPE_VOID */
.long .Lst_sint32-.Lstore_table /* FFI_TYPE_INT */
.long .Lst_float-.Lstore_table /* FFI_TYPE_FLOAT */
.long .Lst_double-.Lstore_table /* FFI_TYPE_DOUBLE */
.long .Lst_ldouble-.Lstore_table /* FFI_TYPE_LONGDOUBLE */
.long .Lst_uint8-.Lstore_table /* FFI_TYPE_UINT8 */
.long .Lst_sint8-.Lstore_table /* FFI_TYPE_SINT8 */
.long .Lst_uint16-.Lstore_table /* FFI_TYPE_UINT16 */
.long .Lst_sint16-.Lstore_table /* FFI_TYPE_SINT16 */
.long .Lst_uint32-.Lstore_table /* FFI_TYPE_UINT32 */
.long .Lst_sint32-.Lstore_table /* FFI_TYPE_SINT32 */
.long .Lst_int64-.Lstore_table /* FFI_TYPE_UINT64 */
.long .Lst_int64-.Lstore_table /* FFI_TYPE_SINT64 */
.long .Lst_struct-.Lstore_table /* FFI_TYPE_STRUCT */
.long .Lst_int64-.Lstore_table /* FFI_TYPE_POINTER */
.align 2
.Lst_void:
ret
.align 2
.Lst_uint8:
movzbq %al, %rax
movq %rax, (%rdi)
ret
.align 2
.Lst_sint8:
movsbq %al, %rax
movq %rax, (%rdi)
ret
.align 2
.Lst_uint16:
movzwq %ax, %rax
movq %rax, (%rdi)
.align 2
.Lst_sint16:
movswq %ax, %rax
movq %rax, (%rdi)
ret
.align 2
.Lst_uint32:
movl %eax, %eax
movq %rax, (%rdi)
.align 2
.Lst_sint32:
cltq
movq %rax, (%rdi)
ret
.align 2
.Lst_int64:
movq %rax, (%rdi)
ret
.align 2
.Lst_float:
movss %xmm0, (%rdi)
ret
.align 2
.Lst_double:
movsd %xmm0, (%rdi)
ret
.Lst_ldouble:
fstpt (%rdi)
ret
.align 2
.Lst_struct:
leaq -20(%rsp), %rsi /* Scratch area in redzone. */
/* We have to locate the values now, and since we don't want to
write too much data into the user's return value, we spill the
value to a 16 byte scratch area first. Bits 8, 9, and 10
control where the values are located. Only one of the three
bits will be set; see ffi_prep_cif_machdep for the pattern. */
movd %xmm0, %r10
movd %xmm1, %r11
testl $0x100, %ecx
cmovnz %rax, %rdx
cmovnz %r10, %rax
testl $0x200, %ecx
cmovnz %r10, %rdx
testl $0x400, %ecx
cmovnz %r10, %rax
cmovnz %r11, %rdx
movq %rax, (%rsi)
movq %rdx, 8(%rsi)
/* Bits 12-31 contain the true size of the structure. Copy from
the scratch area to the true destination. */
shrl $12, %ecx
rep movsb
ret
/* Many times we can avoid loading any SSE registers at all.
It's not worth an indirect jump to load the exact set of
SSE registers needed; zero or all is a good compromise. */
.align 2
.LUW3:
.Lload_sse:
movdqa 48(%r10), %xmm0
movdqa 64(%r10), %xmm1
movdqa 80(%r10), %xmm2
movdqa 96(%r10), %xmm3
movdqa 112(%r10), %xmm4
movdqa 128(%r10), %xmm5
movdqa 144(%r10), %xmm6
movdqa 160(%r10), %xmm7
jmp .Lret_from_load_sse
.LUW4:
.size ffi_call_unix64,.-ffi_call_unix64
.align 2
.globl ffi_closure_unix64
.type ffi_closure_unix64,@function
ffi_closure_unix64:
.LUW5:
/* The carry flag is set by the trampoline iff SSE registers
are used. Don't clobber it before the branch instruction. */
leaq -200(%rsp), %rsp
.LUW6:
movq %rdi, (%rsp)
movq %rsi, 8(%rsp)
movq %rdx, 16(%rsp)
movq %rcx, 24(%rsp)
movq %r8, 32(%rsp)
movq %r9, 40(%rsp)
jc .Lsave_sse
.Lret_from_save_sse:
movq %r10, %rdi
leaq 176(%rsp), %rsi
movq %rsp, %rdx
leaq 208(%rsp), %rcx
call ffi_closure_unix64_inner@PLT
/* Deallocate stack frame early; return value is now in redzone. */
addq $200, %rsp
.LUW7:
/* The first byte of the return value contains the FFI_TYPE. */
movzbl %al, %r10d
leaq .Lload_table(%rip), %r11
movslq (%r11, %r10, 4), %r10
addq %r11, %r10
jmp *%r10
.Lload_table:
.long .Lld_void-.Lload_table /* FFI_TYPE_VOID */
.long .Lld_int32-.Lload_table /* FFI_TYPE_INT */
.long .Lld_float-.Lload_table /* FFI_TYPE_FLOAT */
.long .Lld_double-.Lload_table /* FFI_TYPE_DOUBLE */
.long .Lld_ldouble-.Lload_table /* FFI_TYPE_LONGDOUBLE */
.long .Lld_int8-.Lload_table /* FFI_TYPE_UINT8 */
.long .Lld_int8-.Lload_table /* FFI_TYPE_SINT8 */
.long .Lld_int16-.Lload_table /* FFI_TYPE_UINT16 */
.long .Lld_int16-.Lload_table /* FFI_TYPE_SINT16 */
.long .Lld_int32-.Lload_table /* FFI_TYPE_UINT32 */
.long .Lld_int32-.Lload_table /* FFI_TYPE_SINT32 */
.long .Lld_int64-.Lload_table /* FFI_TYPE_UINT64 */
.long .Lld_int64-.Lload_table /* FFI_TYPE_SINT64 */
.long .Lld_struct-.Lload_table /* FFI_TYPE_STRUCT */
.long .Lld_int64-.Lload_table /* FFI_TYPE_POINTER */
.align 2
.Lld_void:
ret
.align 2
.Lld_int8:
movzbl -24(%rsp), %eax
ret
.align 2
.Lld_int16:
movzwl -24(%rsp), %eax
ret
.align 2
.Lld_int32:
movl -24(%rsp), %eax
ret
.align 2
.Lld_int64:
movq -24(%rsp), %rax
ret
.align 2
.Lld_float:
movss -24(%rsp), %xmm0
ret
.align 2
.Lld_double:
movsd -24(%rsp), %xmm0
ret
.align 2
.Lld_ldouble:
fldt -24(%rsp)
ret
.align 2
.Lld_struct:
/* There are four possibilities here, %rax/%rdx, %xmm0/%rax,
%rax/%xmm0, %xmm0/%xmm1. We collapse two by always loading
both rdx and xmm1 with the second word. For the remaining,
bit 8 set means xmm0 gets the second word, and bit 9 means
that rax gets the second word. */
movq -24(%rsp), %rcx
movq -16(%rsp), %rdx
movq -16(%rsp), %xmm1
testl $0x100, %eax
cmovnz %rdx, %rcx
movd %rcx, %xmm0
testl $0x200, %eax
movq -24(%rsp), %rax
cmovnz %rdx, %rax
ret
/* See the comment above .Lload_sse; the same logic applies here. */
.align 2
.LUW8:
.Lsave_sse:
movdqa %xmm0, 48(%rsp)
movdqa %xmm1, 64(%rsp)
movdqa %xmm2, 80(%rsp)
movdqa %xmm3, 96(%rsp)
movdqa %xmm4, 112(%rsp)
movdqa %xmm5, 128(%rsp)
movdqa %xmm6, 144(%rsp)
movdqa %xmm7, 160(%rsp)
jmp .Lret_from_save_sse
.LUW9:
.size ffi_closure_unix64,.-ffi_closure_unix64
#ifdef __GNUC__
/* Only emit DWARF unwind info when building with the GNU toolchain. */
#ifdef HAVE_AS_X86_64_UNWIND_SECTION_TYPE
.section .eh_frame,"a",@unwind
#else
.section .eh_frame,"a",@progbits
#endif
.Lframe1:
.long .LECIE1-.LSCIE1 /* CIE Length */
.LSCIE1:
.long 0 /* CIE Identifier Tag */
.byte 1 /* CIE Version */
.ascii "zR\0" /* CIE Augmentation */
.uleb128 1 /* CIE Code Alignment Factor */
.sleb128 -8 /* CIE Data Alignment Factor */
.byte 0x10 /* CIE RA Column */
.uleb128 1 /* Augmentation size */
.byte 0x1b /* FDE Encoding (pcrel sdata4) */
.byte 0xc /* DW_CFA_def_cfa, %rsp offset 8 */
.uleb128 7
.uleb128 8
.byte 0x80+16 /* DW_CFA_offset, %rip offset 1*-8 */
.uleb128 1
.align 8
.LECIE1:
.LSFDE1:
.long .LEFDE1-.LASFDE1 /* FDE Length */
.LASFDE1:
.long .LASFDE1-.Lframe1 /* FDE CIE offset */
#if HAVE_AS_X86_PCREL
.long .LUW0-. /* FDE initial location */
#else
.long .LUW0@rel
#endif
.long .LUW4-.LUW0 /* FDE address range */
.uleb128 0x0 /* Augmentation size */
.byte 0x4 /* DW_CFA_advance_loc4 */
.long .LUW1-.LUW0
/* New stack frame based off rbp. This is a itty bit of unwind
trickery in that the CFA *has* changed. There is no easy way
to describe it correctly on entry to the function. Fortunately,
it doesn't matter too much since at all points we can correctly
unwind back to ffi_call. Note that the location to which we
moved the return address is (the new) CFA-8, so from the
perspective of the unwind info, it hasn't moved. */
.byte 0xc /* DW_CFA_def_cfa, %rbp offset 32 */
.uleb128 6
.uleb128 32
.byte 0x80+6 /* DW_CFA_offset, %rbp offset 2*-8 */
.uleb128 2
.byte 0xa /* DW_CFA_remember_state */
.byte 0x4 /* DW_CFA_advance_loc4 */
.long .LUW2-.LUW1
.byte 0xc /* DW_CFA_def_cfa, %rsp offset 8 */
.uleb128 7
.uleb128 8
.byte 0xc0+6 /* DW_CFA_restore, %rbp */
.byte 0x4 /* DW_CFA_advance_loc4 */
.long .LUW3-.LUW2
.byte 0xb /* DW_CFA_restore_state */
.align 8
.LEFDE1:
.LSFDE3:
.long .LEFDE3-.LASFDE3 /* FDE Length */
.LASFDE3:
.long .LASFDE3-.Lframe1 /* FDE CIE offset */
#if HAVE_AS_X86_PCREL
.long .LUW5-. /* FDE initial location */
#else
.long .LUW5@rel
#endif
.long .LUW9-.LUW5 /* FDE address range */
.uleb128 0x0 /* Augmentation size */
.byte 0x4 /* DW_CFA_advance_loc4 */
.long .LUW6-.LUW5
.byte 0xe /* DW_CFA_def_cfa_offset */
.uleb128 208
.byte 0xa /* DW_CFA_remember_state */
.byte 0x4 /* DW_CFA_advance_loc4 */
.long .LUW7-.LUW6
.byte 0xe /* DW_CFA_def_cfa_offset */
.uleb128 8
.byte 0x4 /* DW_CFA_advance_loc4 */
.long .LUW8-.LUW7
.byte 0xb /* DW_CFA_restore_state */
.align 8
.LEFDE3:
#endif /* __GNUC__ */
#endif /* __x86_64__ */
#if defined __ELF__ && defined __linux__
.section .note.GNU-stack,"",@progbits
#endif
#endif

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,473 @@
#if !defined(__arm__) && defined(__i386__)
#define LIBFFI_ASM
#include <fficonfig.h>
#include <ffi.h>
/* Constants for ffi_call_win64 */
#define STACK 0
#define PREP_ARGS_FN 32
#define ECIF 40
#define CIF_BYTES 48
#define CIF_FLAGS 56
#define RVALUE 64
#define FN 72
/* ffi_call_win64 (void (*prep_args_fn)(char *, extended_cif *),
extended_cif *ecif, unsigned bytes, unsigned flags,
unsigned *rvalue, void (*fn)());
*/
#ifdef _MSC_VER
PUBLIC ffi_call_win64
EXTRN __chkstk:NEAR
EXTRN ffi_closure_win64_inner:NEAR
_TEXT SEGMENT
;;; ffi_closure_win64 will be called with these registers set:
;;; rax points to 'closure'
;;; r11 contains a bit mask that specifies which of the
;;; first four parameters are float or double
;;;
;;; It must move the parameters passed in registers to their stack location,
;;; call ffi_closure_win64_inner for the actual work, then return the result.
;;;
ffi_closure_win64 PROC FRAME
;; copy register arguments onto stack
test r11, 1
jne first_is_float
mov QWORD PTR [rsp+8], rcx
jmp second
first_is_float:
movlpd QWORD PTR [rsp+8], xmm0
second:
test r11, 2
jne second_is_float
mov QWORD PTR [rsp+16], rdx
jmp third
second_is_float:
movlpd QWORD PTR [rsp+16], xmm1
third:
test r11, 4
jne third_is_float
mov QWORD PTR [rsp+24], r8
jmp fourth
third_is_float:
movlpd QWORD PTR [rsp+24], xmm2
fourth:
test r11, 8
jne fourth_is_float
mov QWORD PTR [rsp+32], r9
jmp done
fourth_is_float:
movlpd QWORD PTR [rsp+32], xmm3
done:
.ALLOCSTACK 40
sub rsp, 40
.ENDPROLOG
mov rcx, rax ; context is first parameter
mov rdx, rsp ; stack is second parameter
add rdx, 48 ; point to start of arguments
mov rax, ffi_closure_win64_inner
call rax ; call the real closure function
add rsp, 40
movd xmm0, rax ; If the closure returned a float,
; ffi_closure_win64_inner wrote it to rax
ret 0
ffi_closure_win64 ENDP
ffi_call_win64 PROC FRAME
;; copy registers onto stack
mov QWORD PTR [rsp+32], r9
mov QWORD PTR [rsp+24], r8
mov QWORD PTR [rsp+16], rdx
mov QWORD PTR [rsp+8], rcx
.PUSHREG rbp
push rbp
.ALLOCSTACK 48
sub rsp, 48 ; 00000030H
.SETFRAME rbp, 32
lea rbp, QWORD PTR [rsp+32]
.ENDPROLOG
mov eax, DWORD PTR CIF_BYTES[rbp]
add rax, 15
and rax, -16
call __chkstk
sub rsp, rax
lea rax, QWORD PTR [rsp+32]
mov QWORD PTR STACK[rbp], rax
mov rdx, QWORD PTR ECIF[rbp]
mov rcx, QWORD PTR STACK[rbp]
call QWORD PTR PREP_ARGS_FN[rbp]
mov rsp, QWORD PTR STACK[rbp]
movlpd xmm3, QWORD PTR [rsp+24]
movd r9, xmm3
movlpd xmm2, QWORD PTR [rsp+16]
movd r8, xmm2
movlpd xmm1, QWORD PTR [rsp+8]
movd rdx, xmm1
movlpd xmm0, QWORD PTR [rsp]
movd rcx, xmm0
call QWORD PTR FN[rbp]
ret_struct4b$:
cmp DWORD PTR CIF_FLAGS[rbp], FFI_TYPE_SMALL_STRUCT_4B
jne ret_struct2b$
mov rcx, QWORD PTR RVALUE[rbp]
mov DWORD PTR [rcx], eax
jmp ret_void$
ret_struct2b$:
cmp DWORD PTR CIF_FLAGS[rbp], FFI_TYPE_SMALL_STRUCT_2B
jne ret_struct1b$
mov rcx, QWORD PTR RVALUE[rbp]
mov WORD PTR [rcx], ax
jmp ret_void$
ret_struct1b$:
cmp DWORD PTR CIF_FLAGS[rbp], FFI_TYPE_SMALL_STRUCT_1B
jne ret_uint8$
mov rcx, QWORD PTR RVALUE[rbp]
mov BYTE PTR [rcx], al
jmp ret_void$
ret_uint8$:
cmp DWORD PTR CIF_FLAGS[rbp], FFI_TYPE_UINT8
jne ret_sint8$
mov rcx, QWORD PTR RVALUE[rbp]
movzx rax, al
mov QWORD PTR [rcx], rax
jmp ret_void$
ret_sint8$:
cmp DWORD PTR CIF_FLAGS[rbp], FFI_TYPE_SINT8
jne ret_uint16$
mov rcx, QWORD PTR RVALUE[rbp]
movsx rax, al
mov QWORD PTR [rcx], rax
jmp ret_void$
ret_uint16$:
cmp DWORD PTR CIF_FLAGS[rbp], FFI_TYPE_UINT16
jne ret_sint16$
mov rcx, QWORD PTR RVALUE[rbp]
movzx rax, ax
mov QWORD PTR [rcx], rax
jmp SHORT ret_void$
ret_sint16$:
cmp DWORD PTR CIF_FLAGS[rbp], FFI_TYPE_SINT16
jne ret_uint32$
mov rcx, QWORD PTR RVALUE[rbp]
movsx rax, ax
mov QWORD PTR [rcx], rax
jmp SHORT ret_void$
ret_uint32$:
cmp DWORD PTR CIF_FLAGS[rbp], FFI_TYPE_UINT32
jne ret_sint32$
mov rcx, QWORD PTR RVALUE[rbp]
mov eax, eax
mov QWORD PTR [rcx], rax
jmp SHORT ret_void$
ret_sint32$:
cmp DWORD PTR CIF_FLAGS[rbp], FFI_TYPE_SINT32
jne ret_float$
mov rcx, QWORD PTR RVALUE[rbp]
cdqe
mov QWORD PTR [rcx], rax
jmp SHORT ret_void$
ret_float$:
cmp DWORD PTR CIF_FLAGS[rbp], FFI_TYPE_FLOAT
jne SHORT ret_double$
mov rax, QWORD PTR RVALUE[rbp]
movss DWORD PTR [rax], xmm0
jmp SHORT ret_void$
ret_double$:
cmp DWORD PTR CIF_FLAGS[rbp], FFI_TYPE_DOUBLE
jne SHORT ret_sint64$
mov rax, QWORD PTR RVALUE[rbp]
movlpd QWORD PTR [rax], xmm0
jmp SHORT ret_void$
ret_sint64$:
cmp DWORD PTR CIF_FLAGS[rbp], FFI_TYPE_SINT64
jne ret_void$
mov rcx, QWORD PTR RVALUE[rbp]
mov QWORD PTR [rcx], rax
jmp SHORT ret_void$
ret_void$:
xor rax, rax
lea rsp, QWORD PTR [rbp+16]
pop rbp
ret 0
ffi_call_win64 ENDP
_TEXT ENDS
END
#else
#ifdef SYMBOL_UNDERSCORE
#define SYMBOL_NAME(name) _##name
#else
#define SYMBOL_NAME(name) name
#endif
.text
.extern SYMBOL_NAME(ffi_closure_win64_inner)
# ffi_closure_win64 will be called with these registers set:
# rax points to 'closure'
# r11 contains a bit mask that specifies which of the
# first four parameters are float or double
#
# It must move the parameters passed in registers to their stack location,
# call ffi_closure_win64_inner for the actual work, then return the result.
#
.balign 16
.globl SYMBOL_NAME(ffi_closure_win64)
SYMBOL_NAME(ffi_closure_win64):
# copy register arguments onto stack
test $1,%r11
jne .Lfirst_is_float
mov %rcx, 8(%rsp)
jmp .Lsecond
.Lfirst_is_float:
movlpd %xmm0, 8(%rsp)
.Lsecond:
test $2, %r11
jne .Lsecond_is_float
mov %rdx, 16(%rsp)
jmp .Lthird
.Lsecond_is_float:
movlpd %xmm1, 16(%rsp)
.Lthird:
test $4, %r11
jne .Lthird_is_float
mov %r8,24(%rsp)
jmp .Lfourth
.Lthird_is_float:
movlpd %xmm2, 24(%rsp)
.Lfourth:
test $8, %r11
jne .Lfourth_is_float
mov %r9, 32(%rsp)
jmp .Ldone
.Lfourth_is_float:
movlpd %xmm3, 32(%rsp)
.Ldone:
#.ALLOCSTACK 40
sub $40, %rsp
#.ENDPROLOG
mov %rax, %rcx # context is first parameter
mov %rsp, %rdx # stack is second parameter
add $48, %rdx # point to start of arguments
mov $SYMBOL_NAME(ffi_closure_win64_inner), %rax
callq *%rax # call the real closure function
add $40, %rsp
movq %rax, %xmm0 # If the closure returned a float,
# ffi_closure_win64_inner wrote it to rax
retq
.ffi_closure_win64_end:
.balign 16
.globl SYMBOL_NAME(ffi_call_win64)
SYMBOL_NAME(ffi_call_win64):
# copy registers onto stack
mov %r9,32(%rsp)
mov %r8,24(%rsp)
mov %rdx,16(%rsp)
mov %rcx,8(%rsp)
#.PUSHREG rbp
push %rbp
#.ALLOCSTACK 48
sub $48,%rsp
#.SETFRAME rbp, 32
lea 32(%rsp),%rbp
#.ENDPROLOG
mov CIF_BYTES(%rbp),%eax
add $15, %rax
and $-16, %rax
cmpq $0x1000, %rax
jb Lch_done
Lch_probe:
subq $0x1000,%rsp
orl $0x0, (%rsp)
subq $0x1000,%rax
cmpq $0x1000,%rax
ja Lch_probe
Lch_done:
subq %rax, %rsp
orl $0x0, (%rsp)
lea 32(%rsp), %rax
mov %rax, STACK(%rbp)
mov ECIF(%rbp), %rdx
mov STACK(%rbp), %rcx
callq *PREP_ARGS_FN(%rbp)
mov STACK(%rbp), %rsp
movlpd 24(%rsp), %xmm3
movd %xmm3, %r9
movlpd 16(%rsp), %xmm2
movd %xmm2, %r8
movlpd 8(%rsp), %xmm1
movd %xmm1, %rdx
movlpd (%rsp), %xmm0
movd %xmm0, %rcx
callq *FN(%rbp)
.Lret_struct4b:
cmpl $FFI_TYPE_SMALL_STRUCT_4B, CIF_FLAGS(%rbp)
jne .Lret_struct2b
mov RVALUE(%rbp), %rcx
mov %eax, (%rcx)
jmp .Lret_void
.Lret_struct2b:
cmpl $FFI_TYPE_SMALL_STRUCT_2B, CIF_FLAGS(%rbp)
jne .Lret_struct1b
mov RVALUE(%rbp), %rcx
mov %ax, (%rcx)
jmp .Lret_void
.Lret_struct1b:
cmpl $FFI_TYPE_SMALL_STRUCT_1B, CIF_FLAGS(%rbp)
jne .Lret_uint8
mov RVALUE(%rbp), %rcx
mov %al, (%rcx)
jmp .Lret_void
.Lret_uint8:
cmpl $FFI_TYPE_UINT8, CIF_FLAGS(%rbp)
jne .Lret_sint8
mov RVALUE(%rbp), %rcx
movzbq %al, %rax
movq %rax, (%rcx)
jmp .Lret_void
.Lret_sint8:
cmpl $FFI_TYPE_SINT8, CIF_FLAGS(%rbp)
jne .Lret_uint16
mov RVALUE(%rbp), %rcx
movsbq %al, %rax
movq %rax, (%rcx)
jmp .Lret_void
.Lret_uint16:
cmpl $FFI_TYPE_UINT16, CIF_FLAGS(%rbp)
jne .Lret_sint16
mov RVALUE(%rbp), %rcx
movzwq %ax, %rax
movq %rax, (%rcx)
jmp .Lret_void
.Lret_sint16:
cmpl $FFI_TYPE_SINT16, CIF_FLAGS(%rbp)
jne .Lret_uint32
mov RVALUE(%rbp), %rcx
movswq %ax, %rax
movq %rax, (%rcx)
jmp .Lret_void
.Lret_uint32:
cmpl $FFI_TYPE_UINT32, CIF_FLAGS(%rbp)
jne .Lret_sint32
mov RVALUE(%rbp), %rcx
movl %eax, %eax
movq %rax, (%rcx)
jmp .Lret_void
.Lret_sint32:
cmpl $FFI_TYPE_SINT32, CIF_FLAGS(%rbp)
jne .Lret_float
mov RVALUE(%rbp), %rcx
cltq
movq %rax, (%rcx)
jmp .Lret_void
.Lret_float:
cmpl $FFI_TYPE_FLOAT, CIF_FLAGS(%rbp)
jne .Lret_double
mov RVALUE(%rbp), %rax
movss %xmm0, (%rax)
jmp .Lret_void
.Lret_double:
cmpl $FFI_TYPE_DOUBLE, CIF_FLAGS(%rbp)
jne .Lret_sint64
mov RVALUE(%rbp), %rax
movlpd %xmm0, (%rax)
jmp .Lret_void
.Lret_sint64:
cmpl $FFI_TYPE_SINT64, CIF_FLAGS(%rbp)
jne .Lret_void
mov RVALUE(%rbp), %rcx
mov %rax, (%rcx)
jmp .Lret_void
.Lret_void:
xor %rax, %rax
lea 16(%rbp), %rsp
pop %rbp
retq
.ffi_call_win64_end:
#endif /* !_MSC_VER */
#endif

View file

@ -0,0 +1,473 @@
#if !defined(__arm__) && defined(__i386__)
#define LIBFFI_ASM
#include <fficonfig.h>
#include <ffi.h>
/* Constants for ffi_call_win64 */
#define STACK 0
#define PREP_ARGS_FN 32
#define ECIF 40
#define CIF_BYTES 48
#define CIF_FLAGS 56
#define RVALUE 64
#define FN 72
/* ffi_call_win64 (void (*prep_args_fn)(char *, extended_cif *),
extended_cif *ecif, unsigned bytes, unsigned flags,
unsigned *rvalue, void (*fn)());
*/
#ifdef _MSC_VER
PUBLIC ffi_call_win64
EXTRN __chkstk:NEAR
EXTRN ffi_closure_win64_inner:NEAR
_TEXT SEGMENT
;;; ffi_closure_win64 will be called with these registers set:
;;; rax points to 'closure'
;;; r11 contains a bit mask that specifies which of the
;;; first four parameters are float or double
;;;
;;; It must move the parameters passed in registers to their stack location,
;;; call ffi_closure_win64_inner for the actual work, then return the result.
;;;
ffi_closure_win64 PROC FRAME
;; copy register arguments onto stack
test r11, 1
jne first_is_float
mov QWORD PTR [rsp+8], rcx
jmp second
first_is_float:
movlpd QWORD PTR [rsp+8], xmm0
second:
test r11, 2
jne second_is_float
mov QWORD PTR [rsp+16], rdx
jmp third
second_is_float:
movlpd QWORD PTR [rsp+16], xmm1
third:
test r11, 4
jne third_is_float
mov QWORD PTR [rsp+24], r8
jmp fourth
third_is_float:
movlpd QWORD PTR [rsp+24], xmm2
fourth:
test r11, 8
jne fourth_is_float
mov QWORD PTR [rsp+32], r9
jmp done
fourth_is_float:
movlpd QWORD PTR [rsp+32], xmm3
done:
.ALLOCSTACK 40
sub rsp, 40
.ENDPROLOG
mov rcx, rax ; context is first parameter
mov rdx, rsp ; stack is second parameter
add rdx, 48 ; point to start of arguments
mov rax, ffi_closure_win64_inner
call rax ; call the real closure function
add rsp, 40
movd xmm0, rax ; If the closure returned a float,
; ffi_closure_win64_inner wrote it to rax
ret 0
ffi_closure_win64 ENDP
ffi_call_win64 PROC FRAME
;; copy registers onto stack
mov QWORD PTR [rsp+32], r9
mov QWORD PTR [rsp+24], r8
mov QWORD PTR [rsp+16], rdx
mov QWORD PTR [rsp+8], rcx
.PUSHREG rbp
push rbp
.ALLOCSTACK 48
sub rsp, 48 ; 00000030H
.SETFRAME rbp, 32
lea rbp, QWORD PTR [rsp+32]
.ENDPROLOG
mov eax, DWORD PTR CIF_BYTES[rbp]
add rax, 15
and rax, -16
call __chkstk
sub rsp, rax
lea rax, QWORD PTR [rsp+32]
mov QWORD PTR STACK[rbp], rax
mov rdx, QWORD PTR ECIF[rbp]
mov rcx, QWORD PTR STACK[rbp]
call QWORD PTR PREP_ARGS_FN[rbp]
mov rsp, QWORD PTR STACK[rbp]
movlpd xmm3, QWORD PTR [rsp+24]
movd r9, xmm3
movlpd xmm2, QWORD PTR [rsp+16]
movd r8, xmm2
movlpd xmm1, QWORD PTR [rsp+8]
movd rdx, xmm1
movlpd xmm0, QWORD PTR [rsp]
movd rcx, xmm0
call QWORD PTR FN[rbp]
ret_struct4b$:
cmp DWORD PTR CIF_FLAGS[rbp], FFI_TYPE_SMALL_STRUCT_4B
jne ret_struct2b$
mov rcx, QWORD PTR RVALUE[rbp]
mov DWORD PTR [rcx], eax
jmp ret_void$
ret_struct2b$:
cmp DWORD PTR CIF_FLAGS[rbp], FFI_TYPE_SMALL_STRUCT_2B
jne ret_struct1b$
mov rcx, QWORD PTR RVALUE[rbp]
mov WORD PTR [rcx], ax
jmp ret_void$
ret_struct1b$:
cmp DWORD PTR CIF_FLAGS[rbp], FFI_TYPE_SMALL_STRUCT_1B
jne ret_uint8$
mov rcx, QWORD PTR RVALUE[rbp]
mov BYTE PTR [rcx], al
jmp ret_void$
ret_uint8$:
cmp DWORD PTR CIF_FLAGS[rbp], FFI_TYPE_UINT8
jne ret_sint8$
mov rcx, QWORD PTR RVALUE[rbp]
movzx rax, al
mov QWORD PTR [rcx], rax
jmp ret_void$
ret_sint8$:
cmp DWORD PTR CIF_FLAGS[rbp], FFI_TYPE_SINT8
jne ret_uint16$
mov rcx, QWORD PTR RVALUE[rbp]
movsx rax, al
mov QWORD PTR [rcx], rax
jmp ret_void$
ret_uint16$:
cmp DWORD PTR CIF_FLAGS[rbp], FFI_TYPE_UINT16
jne ret_sint16$
mov rcx, QWORD PTR RVALUE[rbp]
movzx rax, ax
mov QWORD PTR [rcx], rax
jmp SHORT ret_void$
ret_sint16$:
cmp DWORD PTR CIF_FLAGS[rbp], FFI_TYPE_SINT16
jne ret_uint32$
mov rcx, QWORD PTR RVALUE[rbp]
movsx rax, ax
mov QWORD PTR [rcx], rax
jmp SHORT ret_void$
ret_uint32$:
cmp DWORD PTR CIF_FLAGS[rbp], FFI_TYPE_UINT32
jne ret_sint32$
mov rcx, QWORD PTR RVALUE[rbp]
mov eax, eax
mov QWORD PTR [rcx], rax
jmp SHORT ret_void$
ret_sint32$:
cmp DWORD PTR CIF_FLAGS[rbp], FFI_TYPE_SINT32
jne ret_float$
mov rcx, QWORD PTR RVALUE[rbp]
cdqe
mov QWORD PTR [rcx], rax
jmp SHORT ret_void$
ret_float$:
cmp DWORD PTR CIF_FLAGS[rbp], FFI_TYPE_FLOAT
jne SHORT ret_double$
mov rax, QWORD PTR RVALUE[rbp]
movss DWORD PTR [rax], xmm0
jmp SHORT ret_void$
ret_double$:
cmp DWORD PTR CIF_FLAGS[rbp], FFI_TYPE_DOUBLE
jne SHORT ret_sint64$
mov rax, QWORD PTR RVALUE[rbp]
movlpd QWORD PTR [rax], xmm0
jmp SHORT ret_void$
ret_sint64$:
cmp DWORD PTR CIF_FLAGS[rbp], FFI_TYPE_SINT64
jne ret_void$
mov rcx, QWORD PTR RVALUE[rbp]
mov QWORD PTR [rcx], rax
jmp SHORT ret_void$
ret_void$:
xor rax, rax
lea rsp, QWORD PTR [rbp+16]
pop rbp
ret 0
ffi_call_win64 ENDP
_TEXT ENDS
END
#else
#ifdef SYMBOL_UNDERSCORE
#define SYMBOL_NAME(name) _##name
#else
#define SYMBOL_NAME(name) name
#endif
.text
.extern SYMBOL_NAME(ffi_closure_win64_inner)
# ffi_closure_win64 will be called with these registers set:
# rax points to 'closure'
# r11 contains a bit mask that specifies which of the
# first four parameters are float or double
#
# It must move the parameters passed in registers to their stack location,
# call ffi_closure_win64_inner for the actual work, then return the result.
#
.balign 16
.globl SYMBOL_NAME(ffi_closure_win64)
SYMBOL_NAME(ffi_closure_win64):
# copy register arguments onto stack
test $1,%r11
jne .Lfirst_is_float
mov %rcx, 8(%rsp)
jmp .Lsecond
.Lfirst_is_float:
movlpd %xmm0, 8(%rsp)
.Lsecond:
test $2, %r11
jne .Lsecond_is_float
mov %rdx, 16(%rsp)
jmp .Lthird
.Lsecond_is_float:
movlpd %xmm1, 16(%rsp)
.Lthird:
test $4, %r11
jne .Lthird_is_float
mov %r8,24(%rsp)
jmp .Lfourth
.Lthird_is_float:
movlpd %xmm2, 24(%rsp)
.Lfourth:
test $8, %r11
jne .Lfourth_is_float
mov %r9, 32(%rsp)
jmp .Ldone
.Lfourth_is_float:
movlpd %xmm3, 32(%rsp)
.Ldone:
#.ALLOCSTACK 40
sub $40, %rsp
#.ENDPROLOG
mov %rax, %rcx # context is first parameter
mov %rsp, %rdx # stack is second parameter
add $48, %rdx # point to start of arguments
mov $SYMBOL_NAME(ffi_closure_win64_inner), %rax
callq *%rax # call the real closure function
add $40, %rsp
movq %rax, %xmm0 # If the closure returned a float,
# ffi_closure_win64_inner wrote it to rax
retq
.ffi_closure_win64_end:
.balign 16
.globl SYMBOL_NAME(ffi_call_win64)
SYMBOL_NAME(ffi_call_win64):
# copy registers onto stack
mov %r9,32(%rsp)
mov %r8,24(%rsp)
mov %rdx,16(%rsp)
mov %rcx,8(%rsp)
#.PUSHREG rbp
push %rbp
#.ALLOCSTACK 48
sub $48,%rsp
#.SETFRAME rbp, 32
lea 32(%rsp),%rbp
#.ENDPROLOG
mov CIF_BYTES(%rbp),%eax
add $15, %rax
and $-16, %rax
cmpq $0x1000, %rax
jb Lch_done
Lch_probe:
subq $0x1000,%rsp
orl $0x0, (%rsp)
subq $0x1000,%rax
cmpq $0x1000,%rax
ja Lch_probe
Lch_done:
subq %rax, %rsp
orl $0x0, (%rsp)
lea 32(%rsp), %rax
mov %rax, STACK(%rbp)
mov ECIF(%rbp), %rdx
mov STACK(%rbp), %rcx
callq *PREP_ARGS_FN(%rbp)
mov STACK(%rbp), %rsp
movlpd 24(%rsp), %xmm3
movd %xmm3, %r9
movlpd 16(%rsp), %xmm2
movd %xmm2, %r8
movlpd 8(%rsp), %xmm1
movd %xmm1, %rdx
movlpd (%rsp), %xmm0
movd %xmm0, %rcx
callq *FN(%rbp)
.Lret_struct4b:
cmpl $FFI_TYPE_SMALL_STRUCT_4B, CIF_FLAGS(%rbp)
jne .Lret_struct2b
mov RVALUE(%rbp), %rcx
mov %eax, (%rcx)
jmp .Lret_void
.Lret_struct2b:
cmpl $FFI_TYPE_SMALL_STRUCT_2B, CIF_FLAGS(%rbp)
jne .Lret_struct1b
mov RVALUE(%rbp), %rcx
mov %ax, (%rcx)
jmp .Lret_void
.Lret_struct1b:
cmpl $FFI_TYPE_SMALL_STRUCT_1B, CIF_FLAGS(%rbp)
jne .Lret_uint8
mov RVALUE(%rbp), %rcx
mov %al, (%rcx)
jmp .Lret_void
.Lret_uint8:
cmpl $FFI_TYPE_UINT8, CIF_FLAGS(%rbp)
jne .Lret_sint8
mov RVALUE(%rbp), %rcx
movzbq %al, %rax
movq %rax, (%rcx)
jmp .Lret_void
.Lret_sint8:
cmpl $FFI_TYPE_SINT8, CIF_FLAGS(%rbp)
jne .Lret_uint16
mov RVALUE(%rbp), %rcx
movsbq %al, %rax
movq %rax, (%rcx)
jmp .Lret_void
.Lret_uint16:
cmpl $FFI_TYPE_UINT16, CIF_FLAGS(%rbp)
jne .Lret_sint16
mov RVALUE(%rbp), %rcx
movzwq %ax, %rax
movq %rax, (%rcx)
jmp .Lret_void
.Lret_sint16:
cmpl $FFI_TYPE_SINT16, CIF_FLAGS(%rbp)
jne .Lret_uint32
mov RVALUE(%rbp), %rcx
movswq %ax, %rax
movq %rax, (%rcx)
jmp .Lret_void
.Lret_uint32:
cmpl $FFI_TYPE_UINT32, CIF_FLAGS(%rbp)
jne .Lret_sint32
mov RVALUE(%rbp), %rcx
movl %eax, %eax
movq %rax, (%rcx)
jmp .Lret_void
.Lret_sint32:
cmpl $FFI_TYPE_SINT32, CIF_FLAGS(%rbp)
jne .Lret_float
mov RVALUE(%rbp), %rcx
cltq
movq %rax, (%rcx)
jmp .Lret_void
.Lret_float:
cmpl $FFI_TYPE_FLOAT, CIF_FLAGS(%rbp)
jne .Lret_double
mov RVALUE(%rbp), %rax
movss %xmm0, (%rax)
jmp .Lret_void
.Lret_double:
cmpl $FFI_TYPE_DOUBLE, CIF_FLAGS(%rbp)
jne .Lret_sint64
mov RVALUE(%rbp), %rax
movlpd %xmm0, (%rax)
jmp .Lret_void
.Lret_sint64:
cmpl $FFI_TYPE_SINT64, CIF_FLAGS(%rbp)
jne .Lret_void
mov RVALUE(%rbp), %rcx
mov %rax, (%rcx)
jmp .Lret_void
.Lret_void:
xor %rax, %rax
lea 16(%rbp), %rsp
pop %rbp
retq
.ffi_call_win64_end:
#endif /* !_MSC_VER */
#endif