// This file contains portions of code released by Microsoft under the MIT license as part // of an open-sourcing initiative in 2014 of the C# core libraries. // The original source was submitted to https://github.com/Microsoft/referencesource using System.Diagnostics; using System.Globalization; namespace System { struct DateTime : IHashable, IFormattable { // Number of 100ns ticks per time unit private const int64 TicksPerMillisecond = 10000; private const int64 TicksPerSecond = TicksPerMillisecond * 1000; private const int64 TicksPerMinute = TicksPerSecond * 60; private const int64 TicksPerHour = TicksPerMinute * 60; private const int64 TicksPerDay = TicksPerHour * 24; // Number of milliseconds per time unit private const int32 MillisPerSecond = 1000; private const int32 MillisPerMinute = MillisPerSecond * 60; private const int32 MillisPerHour = MillisPerMinute * 60; private const int32 MillisPerDay = MillisPerHour * 24; // Number of days in a non-leap year private const int32 DaysPerYear = 365; // Number of days in 4 years private const int32 DaysPer4Years = DaysPerYear * 4 + 1; // 1461 // Number of days in 100 years private const int32 DaysPer100Years = DaysPer4Years * 25 - 1; // 36524 // Number of days in 400 years private const int32 DaysPer400Years = DaysPer100Years * 4 + 1; // 146097 // Number of days from 1/1/0001 to 12/31/1600 private const int32 DaysTo1601 = DaysPer400Years * 4; // 584388 // Number of days from 1/1/0001 to 12/30/1899 private const int32 DaysTo1899 = DaysPer400Years * 4 + DaysPer100Years * 3 - 367; // Number of days from 1/1/0001 to 12/31/1969 private const int32 DaysTo1970 = DaysPer400Years * 4 + DaysPer100Years * 3 + DaysPer4Years * 17 + DaysPerYear; // 719,162 // Number of days from 1/1/0001 to 12/31/9999 private const int32 DaysTo10000 = DaysPer400Years * 25 - 366; // 3652059 private const int64 MinTicks = 0; private const int64 MaxTicks = DaysTo10000 * TicksPerDay - 1; private const int64 MaxMillis = (int64)DaysTo10000 * MillisPerDay; private const int64 FileTimeOffset = DaysTo1601 * TicksPerDay; private const int64 DoubleDateOffset = DaysTo1899 * TicksPerDay; // The minimum OA date is 0100/01/01 (Note it's year 100). // The maximum OA date is 9999/12/31 private const int64 OADateMinAsTicks = (DaysPer100Years - DaysPerYear) * TicksPerDay; // All OA dates must be greater than (not >=) OADateMinAsDouble private const double OADateMinAsDouble = -657435.0; // All OA dates must be less than (not <=) OADateMaxAsDouble private const double OADateMaxAsDouble = 2958466.0; private const int32 DatePartYear = 0; private const int32 DatePartDayOfYear = 1; private const int32 DatePartMonth = 2; private const int32 DatePartDay = 3; private static readonly int32[] DaysToMonth365 = new int32[]( 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365) ~ delete _; private static readonly int32[] DaysToMonth366 = new int32[]( 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366) ~ delete _; public static readonly DateTime MinValue = DateTime(MinTicks, DateTimeKind.Unspecified); public static readonly DateTime MaxValue = DateTime(MaxTicks, DateTimeKind.Unspecified); private const uint64 TicksMask = 0x3FFFFFFFFFFFFFFFUL; private const uint64 FlagsMask = 0xC000000000000000; private const uint64 LocalMask = 0x8000000000000000; private const int64 TicksCeiling = 0x4000000000000000; private const uint64 KindUnspecified = 0x0000000000000000UL; private const uint64 KindUtc = 0x4000000000000000UL; private const uint64 KindLocal = 0x8000000000000000; private const uint64 KindLocalAmbiguousDst = 0xC000000000000000; private const int32 KindShift = 62; private const String TicksField = "ticks"; private const String DateDataField = "dateData"; // The data is stored as an unsigned 64-bit integeter // Bits 01-62: The value of 100-nanosecond ticks where 0 represents 1/1/0001 12:00am, up until the value // 12/31/9999 23:59:59.9999999 // Bits 63-64: A four-state value that describes the DateTimeKind value of the date time, with a 2nd // value for the rare case where the date time is local, but is in an overlapped daylight // savings time hour and it is in daylight savings time. This allows distinction of these // otherwise ambiguous local times and prevents data loss when round tripping from Local to // UTC time. private uint64 dateData; int64 InternalTicks { get { return (int64)(dateData & TicksMask); } } private uint64 InternalKind { get { return (dateData & FlagsMask); } } public this() { dateData = 0; } public this(int64 ticks) { if (ticks < MinTicks || ticks > MaxTicks) Runtime.FatalError(); //Contract.EndContractBlock(); dateData = (uint64)ticks; } private this(uint64 dateData) { this.dateData = dateData; } public this(int64 ticks, DateTimeKind kind) { if (ticks < MinTicks || ticks > MaxTicks) { Runtime.FatalError(); } if (kind < DateTimeKind.Unspecified || kind > DateTimeKind.Local) { Runtime.FatalError(); } //Contract.EndContractBlock(); this.dateData = ((uint64)ticks | ((uint64)kind << KindShift)); } public this(int64 ticks, DateTimeKind kind, bool isAmbiguousDst) { if (ticks < MinTicks || ticks > MaxTicks) { Runtime.FatalError(); } //Contract.Requires(kind == DateTimeKind.Local, "Internal Constructor is for local times only"); //Contract.EndContractBlock(); dateData = ((uint64)ticks | (isAmbiguousDst ? KindLocalAmbiguousDst : KindLocal)); } // Constructs a DateTime from a given year, month, and day. The // time-of-day of the resulting DateTime is always midnight. // public this(int year, int month, int day) { this.dateData = (.)DateToTicks(year, month, day).Value; } public this(int year, int month, int day, int hour, int minute, int second) { this.dateData = (uint64)(DateToTicks(year, month, day).Get() + TimeToTicks(hour, minute, second).Get()); } private static Result DateToTicks(int year, int month, int day) { if (year >= 1 && year <= 9999 && month >= 1 && month <= 12) { int32[] days = IsLeapYear(year) ? DaysToMonth366 : DaysToMonth365; if (day >= 1 && day <= days[month] - days[month - 1]) { int y = year - 1; int n = y * 365 + y / 4 - y / 100 + y / 400 + days[month - 1] + day - 1; return n * TicksPerDay; } } //throw new ArgumentOutOfRangeException(null, Environment.GetResourceString("ArgumentOutOfRange_BadYearMonthDay")); return .Err; } // Constructs a DateTime from a given year, month, day, hour, // minute, and second. // public this(int year, int month, int day, int hour, int minute, int second, int millisecond) { if (millisecond < 0 || millisecond >= MillisPerSecond) { //throw new ArgumentOutOfRangeException("millisecond", Environment.GetResourceString("ArgumentOutOfRange_Range", 0, MillisPerSecond - 1)); Runtime.FatalError(); } //Contract.EndContractBlock(); int64 ticks = DateToTicks(year, month, day).Get() + TimeToTicks(hour, minute, second).Get(); ticks += millisecond * TicksPerMillisecond; if (ticks < MinTicks || ticks > MaxTicks) Runtime.FatalError(); //throw new ArgumentException(Environment.GetResourceString("Arg_DateTimeRange")); this.dateData = (uint64)ticks; } private static Result TimeToTicks(int hour, int minute, int second) { //TimeSpan.TimeToTicks is a family access function which does no error checking, so //we need to put some error checking out here. if (hour >= 0 && hour < 24 && minute >= 0 && minute < 60 && second >= 0 && second < 60) { return (TimeSpan.[Friend]TimeToTicks(hour, minute, second)); } return .Err; } // Returns the number of days in the month given by the year and // month arguments. // public static Result DaysInMonth(int year, int month) { if (month < 1 || month > 12) return .Err; //throw new ArgumentOutOfRangeException("month", Environment.GetResourceString("ArgumentOutOfRange_Month")); //Contract.EndContractBlock(); // IsLeapYear checks the year argument int32[] days = IsLeapYear(year) ? DaysToMonth366 : DaysToMonth365; return days[month] - days[month - 1]; } public static Result IsLeapYear(int year) { if (year < 1 || year > 9999) { return .Err; } return year % 4 == 0 && (year % 100 != 0 || year % 400 == 0); } // Returns the date part of this DateTime. The resulting value // corresponds to this DateTime with the time-of-day part set to // zero (midnight). // public DateTime Date { get { int64 ticks = InternalTicks; return DateTime((uint64)(ticks - ticks % TicksPerDay) | InternalKind); } } // Returns a given date part of this DateTime. This method is used // to compute the year, day-of-year, month, or day part. private int32 GetDatePart(int32 part) { int64 ticks = InternalTicks; // n = number of days since 1/1/0001 int32 n = (int32)(ticks / TicksPerDay); // y400 = number of whole 400-year periods since 1/1/0001 int32 y400 = n / DaysPer400Years; // n = day number within 400-year period n -= y400 * DaysPer400Years; // y100 = number of whole 100-year periods within 400-year period int32 y100 = n / DaysPer100Years; // Last 100-year period has an extra day, so decrement result if 4 if (y100 == 4) y100 = 3; // n = day number within 100-year period n -= y100 * DaysPer100Years; // y4 = number of whole 4-year periods within 100-year period int32 y4 = n / DaysPer4Years; // n = day number within 4-year period n -= y4 * DaysPer4Years; // y1 = number of whole years within 4-year period int32 y1 = n / DaysPerYear; // Last year has an extra day, so decrement result if 4 if (y1 == 4) y1 = 3; // If year was requested, compute and return it if (part == DatePartYear) { return y400 * 400 + y100 * 100 + y4 * 4 + y1 + 1; } // n = day number within year n -= y1 * DaysPerYear; // If day-of-year was requested, return it if (part == DatePartDayOfYear) return n + 1; // Leap year calculation looks different from IsLeapYear since y1, y4, // and y100 are relative to year 1, not year 0 bool leapYear = y1 == 3 && (y4 != 24 || y100 == 3); int32[] days = leapYear ? DaysToMonth366 : DaysToMonth365; // All months have less than 32 days, so n >> 5 is a good conservative // estimate for the month //BCF- Note, the original read `int32 m = n >> 5 + 1;`, which may have been a bug. Preserving original precedence. int32 m = n >> (5 + 1); // m = 1-based month number while (n >= days[m]) m++; // If month was requested, return it if (part == DatePartMonth) return m; // Return 1-based day-of-month return n - days[m - 1] + 1; } // Returns the day-of-month part of this DateTime. The returned // value is an integer between 1 and 31. // public int32 Day { get { //Contract.Ensures(Contract.Result() >= 1); //Contract.Ensures(Contract.Result() <= 31); return GetDatePart(DatePartDay); } } // Returns the day-of-week part of this DateTime. The returned value // is an integer between 0 and 6, where 0 indicates Sunday, 1 indicates // Monday, 2 indicates Tuesday, 3 indicates Wednesday, 4 indicates // Thursday, 5 indicates Friday, and 6 indicates Saturday. // public DayOfWeek DayOfWeek { get { //Contract.Ensures(Contract.Result() >= DayOfWeek.Sunday); //Contract.Ensures(Contract.Result() <= DayOfWeek.Saturday); return (DayOfWeek)((InternalTicks / TicksPerDay + 1) % 7); } } // Returns the day-of-year part of this DateTime. The returned value // is an integer between 1 and 366. // public int32 DayOfYear { get { //Contract.Ensures(Contract.Result() >= 1); //Contract.Ensures(Contract.Result() <= 366); // leap year return GetDatePart(DatePartDayOfYear); } } // Returns the hash code for this DateTime. // public int GetHashCode() { return (int)InternalTicks; } // Returns the hour part of this DateTime. The returned value is an // integer between 0 and 23. // public int Hour { get { //Contract.Ensures(Contract.Result() >= 0); //Contract.Ensures(Contract.Result() < 24); return (int32)((InternalTicks / TicksPerHour) % 24); } } bool IsAmbiguousDaylightSavingTime() { return (InternalKind == KindLocalAmbiguousDst); } public DateTimeKind Kind { get { switch (InternalKind) { case KindUnspecified: return DateTimeKind.Unspecified; case KindUtc: return DateTimeKind.Utc; default: return DateTimeKind.Local; } } } // Returns the millisecond part of this DateTime. The returned value // is an integer between 0 and 999. // public int Millisecond { get { //Contract.Ensures(Contract.Result() >= 0); //Contract.Ensures(Contract.Result() < 1000); return (int)((InternalTicks / TicksPerMillisecond) % 1000); } } // Returns the minute part of this DateTime. The returned value is // an integer between 0 and 59. // public int Minute { get { //Contract.Ensures(Contract.Result() >= 0); //Contract.Ensures(Contract.Result() < 60); return (int)((InternalTicks / TicksPerMinute) % 60); } } /// Returns the second part of this DateTime. The returned value is /// an integer between 0 and 59. // public int Second { get { //Contract.Ensures(Contract.Result() >= 0); //Contract.Ensures(Contract.Result() < 60); return (int)((InternalTicks / TicksPerSecond) % 60); } } // Returns the month part of this DateTime. The returned value is an // integer between 1 and 12. // public int Month { get { //Contract.Ensures(Contract.Result() >= 1); return GetDatePart(DatePartMonth); } } // Returns a DateTime representing the current date and time. The // resolution of the returned value depends on the system timer. For // Windows NT 3.5 and later the timer resolution is approximately 10ms, // for Windows NT 3.1 it is approximately 16ms, and for Windows 95 and 98 // it is approximately 55ms. // public static DateTime Now { get { //Contract.Ensures(Contract.Result().Kind == DateTimeKind.Local); DateTime utc = UtcNow; bool isAmbiguousLocalDst = false; int64 offset = TimeZoneInfo.[Friend]GetDateTimeNowUtcOffsetFromUtc(utc, out isAmbiguousLocalDst).Ticks; int64 tick = utc.Ticks + offset; if (tick > DateTime.MaxTicks) { return DateTime(DateTime.MaxTicks, DateTimeKind.Local); } if (tick < DateTime.MinTicks) { return DateTime(DateTime.MinTicks, DateTimeKind.Local); } return DateTime(tick, DateTimeKind.Local, isAmbiguousLocalDst); } } public static DateTime UtcNow { get { //Contract.Ensures(Contract.Result().Kind == DateTimeKind.Utc); // following code is tuned for speed. Don't change it without running benchmark. int64 ticks = 0; ticks = (int64)Platform.BfpSystem_GetTimeStamp(); return DateTime(((uint64)(ticks + FileTimeOffset)) | KindUtc); } } /*static int64 GetSystemTimeAsFileTime() { ThrowUnimplemented(); }*/ public int64 Ticks { get { return InternalTicks; } } // Returns the time-of-day part of this DateTime. The returned value // is a TimeSpan that indicates the time elapsed since midnight. // public TimeSpan TimeOfDay { get { return TimeSpan(InternalTicks % TicksPerDay); } } // Returns a DateTime representing the current date. The date part // of the returned value is the current date, and the time-of-day part of // the returned value is zero (midnight). // public static DateTime Today { get { return DateTime.Now.Date; } } // Returns the year part of this DateTime. The returned value is an // integer between 1 and 9999. // public int32 Year { get { //Contract.Ensures(Contract.Result() >= 1 && Contract.Result() <= 9999); return GetDatePart(DatePartYear); } } // Checks whether a given year is a leap year. This method returns true if // year is a leap year, or false if not. // public static bool IsLeapYear(int32 year) { if (year < 1 || year > 9999) { Runtime.FatalError(); } //Contract.EndContractBlock(); return year % 4 == 0 && (year % 100 != 0 || year % 400 == 0); } public static DateTime SpecifyKind(DateTime value, DateTimeKind kind) { return DateTime(value.InternalTicks, kind); } // Creates a DateTime from a Windows filetime. A Windows filetime is // a long representing the date and time as the number of // 100-nanosecond intervals that have elapsed since 1/1/1601 12:00am. // public static DateTime FromFileTime(int64 fileTime) { return FromFileTimeUtc(fileTime).ToLocalTime(); } public static DateTime FromFileTimeUtc(int64 fileTime) { int64 universalTicks = fileTime + FileTimeOffset; return DateTime(universalTicks, .Utc); } public int64 ToFileTime() { return ToUniversalTime().ToFileTimeUtc(); } public Result ToFileTimeUtc() { // Treats the input as universal if it is not specified int64 ticks = ((InternalKind & LocalMask) != 0UL) ? ToUniversalTime().InternalTicks : this.InternalTicks; ticks -= FileTimeOffset; if (ticks < 0) return .Err; return ticks; } public TimeSpan Subtract(DateTime value) { return TimeSpan(InternalTicks - value.InternalTicks); } public static Result FromBinaryRaw(int64 dateData) { int64 ticks = dateData & (int64)TicksMask; if ((ticks < MinTicks) || (ticks > MaxTicks)) return .Err; return DateTime((uint64)dateData); } public int64 ToBinaryRaw() { return (int64)dateData; } public Result AddTicks(int64 value) { int64 ticks = InternalTicks; if (value > MaxTicks - ticks) { //throw new ArgumentOutOfRangeException("value", Environment.GetResourceString("ArgumentOutOfRange_DateArithmetic")); return .Err; } if (value < MinTicks - ticks) { //throw new ArgumentOutOfRangeException("value", Environment.GetResourceString("ArgumentOutOfRange_DateArithmetic")); return .Err; } return DateTime((uint64)(ticks + value) | InternalKind); } private Result Add(double value, int scale) { int64 millis = (int64)(value * scale + (value >= 0 ? 0.5 : -0.5)); if (millis <= -MaxMillis || millis >= MaxMillis) return .Err; //throw new ArgumentOutOfRangeException("value", Environment.GetResourceString("ArgumentOutOfRange_AddValue")); return AddTicks(millis * TicksPerMillisecond); } // Returns the DateTime resulting from adding the given number of // years to this DateTime. The result is computed by incrementing // (or decrementing) the year part of this DateTime by value // years. If the month and day of this DateTime is 2/29, and if the // resulting year is not a leap year, the month and day of the resulting // DateTime becomes 2/28. Otherwise, the month, day, and time-of-day // parts of the result are the same as those of this DateTime. // public Result AddYears(int value) { if (value < -10000 || value > 10000) return .Err; return AddMonths(value * 12); } /// Returns the DateTime resulting from adding a fractional number of /// days to this DateTime. The result is computed by rounding the /// fractional number of days given by value to the nearest /// millisecond, and adding that interval to this DateTime. The /// value argument is permitted to be negative. // public DateTime AddDays(double value) { return Add(value, MillisPerDay); } // Returns the DateTime resulting from adding a fractional number of // hours to this DateTime. The result is computed by rounding the // fractional number of hours given by value to the nearest // millisecond, and adding that interval to this DateTime. The // value argument is permitted to be negative. // public DateTime AddHours(double value) { return Add(value, MillisPerHour); } // Returns the DateTime resulting from the given number of // milliseconds to this DateTime. The result is computed by rounding // the number of milliseconds given by value to the nearest integer, // and adding that interval to this DateTime. The value // argument is permitted to be negative. // public DateTime AddMilliseconds(double value) { return Add(value, 1); } // Returns the DateTime resulting from adding a fractional number of // minutes to this DateTime. The result is computed by rounding the // fractional number of minutes given by value to the nearest // millisecond, and adding that interval to this DateTime. The // value argument is permitted to be negative. // public DateTime AddMinutes(double value) { return Add(value, MillisPerMinute); } // Returns the DateTime resulting from adding the given number of // months to this DateTime. The result is computed by incrementing // (or decrementing) the year and month parts of this DateTime by // months months, and, if required, adjusting the day part of the // resulting date downwards to the last day of the resulting month in the // resulting year. The time-of-day part of the result is the same as the // time-of-day part of this DateTime. // // In more precise terms, considering this DateTime to be of the // form y / m / d + t, where y is the // year, m is the month, d is the day, and t is the // time-of-day, the result is y1 / m1 / d1 + t, // where y1 and m1 are computed by adding months months // to y and m, and d1 is the largest value less than // or equal to d that denotes a valid day in month m1 of year // y1. // public Result AddMonths(int months) { if (months < -120000 || months > 120000) return .Err; //throw new ArgumentOutOfRangeException("months", Environment.GetResourceString("ArgumentOutOfRange_DateTimeBadMonths")); int y = GetDatePart(DatePartYear); int m = GetDatePart(DatePartMonth); int d = GetDatePart(DatePartDay); int i = m - 1 + months; if (i >= 0) { m = i % 12 + 1; y = y + i / 12; } else { m = 12 + (i + 1) % 12; y = y + (i - 11) / 12; } if (y < 1 || y > 9999) { //throw new ArgumentOutOfRangeException("months", Environment.GetResourceString("ArgumentOutOfRange_DateArithmetic")); return .Err; } int days = DaysInMonth(y, m); if (d > days) d = days; return DateTime((uint64)(Try!(DateToTicks(y, m, d)) + InternalTicks % TicksPerDay) | InternalKind); } // Returns the DateTime resulting from adding a fractional number of // seconds to this DateTime. The result is computed by rounding the // fractional number of seconds given by value to the nearest // millisecond, and adding that interval to this DateTime. The // value argument is permitted to be negative. // public DateTime AddSeconds(double value) { return Add(value, MillisPerSecond); } public static int operator <=>(DateTime lhs, DateTime rhs) { return lhs.InternalTicks <=> rhs.InternalTicks; } public static Result operator +(DateTime d, TimeSpan t) { int64 ticks = d.InternalTicks; int64 valueTicks = (int64)t; if (valueTicks > MaxTicks - ticks || valueTicks < MinTicks - ticks) { return .Err; } return DateTime((uint64)(ticks + valueTicks) | d.InternalKind); } public Result Subtract(TimeSpan t) { int64 ticks = InternalTicks; int64 valueTicks = (int64)t; if (ticks - MinTicks < valueTicks || ticks - MaxTicks > valueTicks) { return .Err; } return DateTime((uint64)(ticks - valueTicks) | InternalKind); } public static DateTime operator -(DateTime d, TimeSpan t) { int64 ticks = d.InternalTicks; int64 valueTicks = (int64)t; Runtime.Assert((ticks - MinTicks >= valueTicks && ticks - MaxTicks <= valueTicks)); return DateTime((uint64)(ticks - valueTicks) | d.InternalKind); } public static TimeSpan operator -(DateTime lhs, DateTime rhs) { return TimeSpan(lhs.InternalTicks - rhs.InternalTicks); } public DateTime ToLocalTime() { return ToLocalTime(false); } DateTime ToLocalTime(bool throwOnOverflow) { if (Kind == DateTimeKind.Local) { return this; } #unwarn bool isDaylightSavings = false; bool isAmbiguousLocalDst = false; //int64 offset = 0; //ThrowUnimplemented(); int64 offset = TimeZoneInfo.[Friend]GetUtcOffsetFromUtc(this, TimeZoneInfo.Local, out isDaylightSavings, out isAmbiguousLocalDst).Ticks; #unwarn int64 tick = Ticks + offset; if (tick > DateTime.MaxTicks) { if (throwOnOverflow) Runtime.FatalError(); else return DateTime(DateTime.MaxTicks, DateTimeKind.Local); } if (tick < DateTime.MinTicks) { if (throwOnOverflow) Runtime.FatalError(); else return DateTime(DateTime.MinTicks, DateTimeKind.Local); } return DateTime(tick, DateTimeKind.Local, isAmbiguousLocalDst); } public void ToLongDateString(String outString) { DateTimeFormat.[Friend]Format(this, "D", DateTimeFormatInfo.CurrentInfo, outString); } public void ToLongTimeString(String outString) { DateTimeFormat.[Friend]Format(this, "T", DateTimeFormatInfo.CurrentInfo, outString); } public void ToShortDateString(String outString) { DateTimeFormat.[Friend]Format(this, "d", DateTimeFormatInfo.CurrentInfo, outString); } public void ToShortTimeString(String outString) { DateTimeFormat.[Friend]Format(this, "t", DateTimeFormatInfo.CurrentInfo, outString); } public override void ToString(String outString) { DateTimeFormat.[Friend]Format(this, .(), DateTimeFormatInfo.CurrentInfo, outString); } public void ToString(String outString, String format) { DateTimeFormat.[Friend]Format(this, format, DateTimeFormatInfo.CurrentInfo, outString); } public void ToString(String outString, IFormatProvider provider) { DateTimeFormat.[Friend]Format(this, .(), DateTimeFormatInfo.GetInstance(provider), outString); } public void ToString(String outString, String format, IFormatProvider provider) { DateTimeFormat.[Friend]Format(this, format, DateTimeFormatInfo.GetInstance(provider), outString); } public DateTime ToUniversalTime() { return TimeZoneInfo.[Friend]ConvertTimeToUtc(this, TimeZoneInfoOptions.NoThrowOnInvalidTime); } /*public static Boolean TryParse(String s, out DateTime result) { return DateTimeParse.TryParse(s, DateTimeFormatInfo.CurrentInfo, DateTimeStyles.None, out result); } public static Boolean TryParse(String s, IFormatProvider provider, DateTimeStyles styles, out DateTime result) { DateTimeFormatInfo.ValidateStyles(styles, "styles"); return DateTimeParse.TryParse(s, DateTimeFormatInfo.GetInstance(provider), styles, out result); } public static Boolean TryParseExact(String s, String format, IFormatProvider provider, DateTimeStyles style, out DateTime result) { DateTimeFormatInfo.ValidateStyles(style, "style"); return DateTimeParse.TryParseExact(s, format, DateTimeFormatInfo.GetInstance(provider), style, out result); } public static Boolean TryParseExact(String s, String[] formats, IFormatProvider provider, DateTimeStyles style, out DateTime result) { DateTimeFormatInfo.ValidateStyles(style, "style"); return DateTimeParse.TryParseExactMultiple(s, formats, DateTimeFormatInfo.GetInstance(provider), style, out result); }*/ static Result TryCreate(int year, int month, int day, int hour, int minute, int second, int millisecond) { if (year < 1 || year > 9999 || month < 1 || month > 12) { return .Err; } int32[] days = Try!(IsLeapYear(year)) ? DaysToMonth366 : DaysToMonth365; if (day < 1 || day > days[month] - days[month - 1]) { return .Err; } if (hour < 0 || hour >= 24 || minute < 0 || minute >= 60 || second < 0 || second >= 60) { return .Err; } if (millisecond < 0 || millisecond >= MillisPerSecond) { return .Err; } int64 ticks = Try!(DateToTicks(year, month, day)) + Try!(TimeToTicks(hour, minute, second)); ticks += millisecond * TicksPerMillisecond; if (ticks < MinTicks || ticks > MaxTicks) { return .Err; } return DateTime(ticks, DateTimeKind.Unspecified); } } }